EP0994935A1 - Verfahren zur erzeugung von intensiven weisstrübungen in wässrigen tensidischen zubereitungen - Google Patents

Verfahren zur erzeugung von intensiven weisstrübungen in wässrigen tensidischen zubereitungen

Info

Publication number
EP0994935A1
EP0994935A1 EP98940080A EP98940080A EP0994935A1 EP 0994935 A1 EP0994935 A1 EP 0994935A1 EP 98940080 A EP98940080 A EP 98940080A EP 98940080 A EP98940080 A EP 98940080A EP 0994935 A1 EP0994935 A1 EP 0994935A1
Authority
EP
European Patent Office
Prior art keywords
fatty
acid
carbon atoms
alcohol
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98940080A
Other languages
English (en)
French (fr)
Inventor
Achim Ansmann
Rolf Kawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP0994935A1 publication Critical patent/EP0994935A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/361Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0089Pearlescent compositions; Opacifying agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters

Definitions

  • the invention relates to a process for producing intense white turbidity in aqueous surfactant preparations, in which wax bodies of a defined particle size are stirred into the surfactant solutions, and the use of the wax bodies as opacifiers.
  • opacifiers are either polymers or mixtures of alkyl polygiucosides and glycerides, as are described, for example, in international patent application WO 96/30476 (Henkel).
  • a particular problem with the use of opacifiers is to impart a whiteness to the preparations which is permanent and independent of temperature, so that there is no clouding or sedimentation even when the compositions are stored in the warm for a long time.
  • the object of the invention was to remedy this problem in the simplest possible way.
  • the invention relates to a process for producing intense white turbidity in aqueous surfactant preparations, in which wax bodies with a solidification point above 30 ° C. to form powders with an average grain size of at most 50, preferably 0.1 to 25 and processed in particular 1 to 15 microns and stirred this below 30, preferably at 20 to 25 ° C in the surfactant solutions.
  • wax bodies with a solidification point above 30 ° C which are usually used as pearlescent waxes
  • pearlescent in surfactant concentrates or their dilutions adjusted to the application concentration cause an intensive and constant whitening if they previously have a medium grain size milled below 50 ⁇ m and then stirred into the surfactant solutions without melting.
  • the new opacifiers result in finely divided dispersions that are exceptionally stable in storage. It is necessary to grind the wax bodies, since they are usually in the form of flakes or lozenges and cannot otherwise be dispersed.
  • wax bodies are incorporated above their solidification point, they crystallize out of the hot surfactant solutions in a lamellar structure and then do not produce a white cloudiness, but pearlescence.
  • opacifiers can now also be produced from commercially available pearlescent waxes, i.e. the raw material base is standardized and simplified.
  • suitable wax bodies with a solidification point above 30 ° C. are: alkylene glycol esters; Fatty acid alkanolamides; Partial glycerides; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 12, preferably at least 18 carbon atoms; Ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms and 2 to 10 hydroxyl groups; long chain fatty acids and their salts; as well as their mixtures.
  • alkylene glycol ester (a) Alkylene glycol ester.
  • the alkylene glycol esters are usually mono- and / or diesters of alkylene glycols which follow the formula (I)
  • R 1 CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 carbon atoms
  • R 2 is hydrogen or R 1 CO
  • A is a linear or branched alkylene radical having 2 to 4 carbon atoms and n is a number from 1 to 5 stands.
  • Typical examples are mono- and / or diesters of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol or tetraethylene glycol with fatty acids with 6 to 22, preferably 12 to 18 Carbon atoms as there are: caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, and erachic acid, as well as arachidic acid, and arachidic acid, arachidic acid, and arachidic acid technical blends.
  • the use of ethylene glycol mono- and / or distearate is particularly preferred.
  • R 3 CO for a linear or branched, saturated or unsaturated acyl radical with 6 to 22 carbon atoms
  • R 4 for hydrogen or an optionally hydroxy-substituted alkyl radical with 1 to 4 carbon atoms
  • B for a linear or branched alkylene group with 1 to 4 carbon atoms .
  • Typical examples are condensation products of ethanolamine, methylethanolamine, diethanolamine, propanolamine, methylpropanolamine and dipropanolamine and their mixtures with caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, oleic acid, isostearic acid, isostearic acid Petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • the use of stearic acid ethanolamide is particularly preferred.
  • Partial glycerides which are suitable as wax bodies are mono- and / or diesters of glycerol with fatty acids, namely for example caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid , Elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures. They follow the formula (III),
  • R 6 and R 7 independently of one another for hydrogen or R 5 CO, x, y and z in total for 0 or for numbers from 1 to 30 and X for is an alkali or alkaline earth metal with the proviso that at least one of the two radicals R 6 and R 7 is hydrogen.
  • Typical examples are lauric acid mono- glyceride, lauric, coconut fatty, coconut fatty acid triglyceride, palmitic acid monoglyceride, Palmitinklaretriglycerid, oleic, stearic acid diglyceride, isostearic acid, Isostearinklarediglycerid monoglyceride, oleic acid diglyceride, tallow fatty acid, Talgfettklarediglycerid, behenic acid, Behenklakladredigly- cerid, Erucaklaklamonoglycerid, Erucaklakladrediglycerid and technical mixtures thereof, the minor product of the manufacturing process yet may contain small amounts of triglyceride.
  • esters Polyvalent carboxylic acid and hydroxycarboxylic acid esters.
  • suitable wax bodies are esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms.
  • suitable acid components of these esters are malonic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, phthalic acid, isophthalic acid and in particular succinic acid and malic acid, citric acid and in particular tartaric acid and mixtures thereof.
  • the fatty alcohols contain 6 to 22, preferably 12 to 18 and in particular 16 to 18 carbon atoms in the alkyl chain.
  • Typical examples are capronic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, lino alcoholyl alcohol, lino alcoholyl alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, lino alcohol alcohol, Erucyl alcohol and brassidyl alcohol and their technical mixtures.
  • the esters can be present as full or partial esters, preferably mono- and especially diesters of carboxylic or hydroxycarboxylic acids.
  • Typical examples are succinic acid mono- and dilauryl esters, succinic acid mono- and dicetearlyesters, succinic acid mono- and distearyl esters, tartaric acid mono- and dilauryl esters, tartaric acid mono- and dicocoalkyl esters, tartaric acid mono- and dicetearyl esters, citric acid monoester -trilaurylester, citric acid mono-, -di and -trikokosalkyl- as well as citric acid mono-, -di and -tricetearylester.
  • R 8 represents a linear alkyl radical having 18 to 48, preferably 24 to 36 carbon atoms.
  • Typical examples are hydroxystearyl alcohol, behenyl alcohols and oxidation products of long-chain paraffins.
  • Fat ketones that are suitable as wax bodies preferably follow the formula (V), R9-C0-R1 »(V)
  • R 9 and R 10 independently of one another represent alkyl and / or alkenyl radicals having 1 to 22 carbon atoms, with the proviso that they have a total of at least 12 and preferably 18 to 48 carbon atoms.
  • the ketones can be prepared by prior art methods, for example by pyrolysis of the corresponding fatty acid magnesium salts.
  • the ketones can be symmetrical or asymmetrical, but the two radicals R 9 and R 10 preferably differ only by one carbon atom and are derived from fatty acids having 6 to 22 carbon atoms. Ketones with a total of 18 to 42 carbon atoms are characterized by particularly advantageous turbidity properties.
  • R 11 CO represents a linear or branched acyl radical having 24 to 48, preferably 28 to 32, carbon atoms.
  • Fat ethers of the type mentioned are usually prepared by acidic condensation of the corresponding fatty alcohols. Fat ethers with particularly advantageous turbidity properties are obtained by condensation of fatty alcohols having 16 to 22 carbon atoms, such as, for example, cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol and / or erucyl alcohol.
  • R 14 and R 15 independently of one another represent alkyl and / or alkenyl radicals having 1 to 22 carbon atoms, with the proviso that they have a total of at least 24 and preferably 32 to 48 carbon atoms.
  • the substances are obtained by, for example, dimethyl or transesterified with the corresponding fatty alcohols in a manner known per se. Accordingly, the fatty carbonates can be constructed symmetrically or asymmetrically. However, carbonates are preferably used in which R 14 and R 15 are the same and represent alkyl radicals having 16 to 22 carbon atoms.
  • Esterification products of dimethyl or diethyl carbonate with cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol and / or erucyl alcohol in the form of their mono- and diesters or their technical mixtures are particularly preferred.
  • the ring opening products are known substances which are usually produced by acid-catalyzed reaction of terminal or internal olefin epoxides with aliphatic alcohols.
  • the reaction products preferably follow the formula (IX)
  • R 16 and R 17 represent hydrogen or an alkyl radical having 10 to 20 carbon atoms, with the proviso that the sum of the carbon atoms of R 16 and R 17 is in the range from 10 to 20 and R 18 represents an alkyl and / or alkenyl radical having 2 to 22, preferably 12 to 18 carbon atoms and / or the radical of a polyol having 2 to 15 carbon atoms and 2 to 10 hydroxyl groups.
  • Typical examples are ring opening products of ⁇ -dodecenepoxide, ⁇ -hexadecenepoxide, ⁇ -octadecenepoxide, ⁇ -eicosenepoxide, ⁇ -docosenepoxide, i-dodecenepoxide, i-hexadecenepoxide, i-octadecenepoxide, i-eicosenepoxide and / or i-docosenalkoxide with ethanol, ethanol , Coconut fatty alcohol, myristyl alcohol, cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, behenyl alcohol and / or erucyl alcohol.
  • Ring opening products of hexa- and / or octadecene epoxides with fatty alcohols having 16 to 18 carbon atoms are preferably used.
  • polyols are used for the ring opening, the following substances are involved: glycerin; Alkylene glycols such as ethylene glycol, ethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons; technical oligoglycerol mixtures with a degree of self-condensation of 1.5 to 10, such as technical digiycerol mixtures with a diglycerol content of 40 to 50% by weight; Methyl compounds, such as, in particular, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol; Lower alkyl glucosides, especially those
  • R 19 CO represents an optionally hydroxyl-substituted acyl radical having 18 to 54 carbon atoms.
  • the fatty acids can also be used in the form of their salts, especially their alkali and / or alkaline earth salts. Typical examples are hydroxystearic acid, behenic acid and / or calcium stearate or aluminum stearate.
  • wax bodies which have an average grain size of 0.1 to 25, preferably 1 to 15 and in particular 2 to 10 ⁇ m (determined by X-ray diffraction).
  • the powders have a crystalline, but preferably an amorphous structure.
  • wax bodies which are produced in a manner known per se by cooling the melts and then e.g. can be made up as flakes or lozenges.
  • These wax bodies can then be ground to the desired size at a temperature below their solidification point by grinding, for example in a commercially available ball mill.
  • the wax bodies are comminuted by spraying in a manner known per se before the crystallization at a temperature above their solidification point, the desired particle size distribution being established automatically.
  • the wax bodies are usually stirred into the aqueous surfactant solutions in a cold process in amounts of 0.1 to 5, preferably 0.5 to 3% by weight, based on the preparations.
  • These can be both concentrates and application dilutions (e.g. hair shampoos or hand dishwashing detergents) which have an active substance content in the range from 1 to 70, preferably 10 to 50 and in particular 15 to 35% by weight.
  • Another object of the invention therefore relates to the use of wax bodies with a solidification point above 30 ° C in the form of powders with an average grain size of a maximum of 50 ⁇ m as an opacifying agent to produce an intense whitening in aqueous surfactant preparations.
  • the solutions can contain anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxymixed ether sulfates, fatty (sulfate) sulfates, monoglyl sulfate, monoglyl sulfate, monoglyl sulfate, monoglyl sulfate, monoglyl sulfate, monoglyl sulfate, monoglyl sulf
  • non-ionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or glucoronic acid amide (in particular, glucoronic acid amide) vegetable oils, glucoronic acid amide, glucoronic acid amide, and / or glucoronic acid amide (glucoronic acid amide), in particular, glucoronic acid amide, glucoronic acid amide, (V), glucoronic acid amide, (v) Wheat-based products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • glucoronic acid amide in particular, glucoronic acid amide,
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of cationic surfactants are quaternary ammonium compounds and ester quats, in particular quaternized fatty acid trialkanolamine ester salts.
  • Typical examples of amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • the surfactant solutions can contain polyols to improve the flowability, for example:
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides especially those with 1 to 8 carbons in the alkyl radical such as methyl and butyl glucoside;
  • Sugar alcohols having 5 to 12 carbon atoms such as, for example, sorbitol or mannitol,
  • Aminosugars such as glucamine.
  • surfactant solutions are ready-to-use dilutions for use by the consumer, these can contain other typical ingredients of cosmetic preparations than there are: oil substances, emulsifiers, greasing agents, stabilizers, consistency enhancers, thickeners, cation polymers, silicone compounds, biogenic agents, antidandruff agents , Film formers, preservatives, hydrotropes, solubilizers, UV light protection filters, insect repellents, self-tanners, perfume oils, dyes and the like.
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C6-C22 fatty acids with linear C6-C22 fatty alcohols, esters of branched C6-Ci3 carboxylic acids with linear C6-C22- Fatty alcohols, esters of linear C ⁇ -C ⁇ fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerediol or trimer triol) and / or Guerbet alcohols, triglycerides Based on C ⁇ -Cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C6-Ci8 fatty acids, esters of C6-C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, vegetable oils, branched primary alcohol
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups: (1) Adducts of 2 to 30 moles of ethylene oxide and / or 0 to 5 moles of propylene oxide with linear fatty alcohols with 8 to 22 C atoms, with fatty acids with 12 to 22 C atoms and with alkylphenols with 8 to 15 C atoms in the Alkyl group;
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polystyrene resin e.g. Polyglycerol polyricinoleate or polyglycerol poly-12-hydroxystearate. Mixtures of compounds from several of these classes of substances are also suitable;
  • partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerin, polyglycerin, pentaerythritol, dipentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside - glucoside) and polyglucoside (eg cellulose);
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and di-esters of fatty acids, polyacrylates, (for example Carbopole® from Goodrich or Synthalene® from Sigma), polyacrylic amides, polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • polysaccharides in particular xanthan gum, guar guar, agar
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers such as e.g. Amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides such as e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines such as Bis-dimethylamino-1, 3-propane, cationic guar gum such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers such as Mirapol® A-15, Mirapol® AD-1, Mirapoi® AZ-1 of Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines such as Bis-dimethylamino-1, 3-propane
  • cationic guar gum such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers such as Mirapol® A-15, Mirapol® AD-1, Mirapoi®
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Typical examples of fats are glycerides, beeswax, camamauba wax, candelilla wax, montan wax, paraffin wax or microwaxes, if appropriate in combination with hydrophilic waxes, for example cetylstearyl alcohol or partial glycerides.
  • Metal salts of fatty acids such as magnesium, aluminum and / or zinc stearate can be used as stabilizers.
  • Biogenic active substances are to be understood, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • Climbazole, octopirox and zinc pyrethione can be used as antidandruff agents.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinyl-pyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerates, pemulene and alkyl-modified carbopol types (Goodrich) can serve as swelling agents for aqueous phases.
  • UV light protection filters are understood to mean organic substances which are able to absorb ultraviolet rays and release the absorbed energy in the form of longer-wave radiation, for example heat.
  • Typical examples are 4-aminobenzoic acid and its esters and derivatives (e.g. 2-ethylhexyl p-dimethylaminobenzoate or p-dimethylaminobenzoic acid octyl ester), methoxy cinnamic acid and its derivatives (e.g. 4-methoxy cinnamic acid 2-ethylhexyl ester), benzophenones (e.g.
  • Finely dispersed metal oxides or salts are also suitable for this purpose, such as titanium dioxide, zinc oxide, iron oxide, aluminum oxide, cerium oxide, zirconium oxide, silicates (talc) and barium sulfate.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or shape which differs from the spherical shape in some other way.
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin. Typical examples are superoxide dismutase, tocopherols (vitamin E) and ascorbic acid (vitamin C).
  • hydrotropes such as, for example, ethanol, isopropyl alcohol, or the polyols already mentioned above can also be used.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid.
  • N, N-diethyl-m-touluamide, 1, 2-pentanediol or Insect repellent 3535 are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanner.
  • Perfume oils include extracts from flowers (lavender, roses, jasmine, neroli), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway seeds, juniper), fruit peels (bergamot, lemon, oranges), roots (Macis, Angelica, Celery, Cardamom, Costus, Iris, Calmus), woods (sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemon grass, sage, thyme), needles and branches (spruce , Fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Animal raw materials such as musk, civet and castoreum are also suitable.
  • Ambroxan, eugenol, isoeugenol, citronellal, hydroxycitronellal, geraniol, citronellol, geranyl acetate, citral, ionone and methylionone are suitable as synthetic or semi-synthetic perfume oils.
  • the dyes which can be used are those which are suitable and approved for cosmetic purposes, as described, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, p. 106 are compiled. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • Wax particles of different average grain sizes were dispersed in a concentrated ether sulfate solution once at 22 ° C. (cold) and once at 80 ° C. (hot).
  • Table 1 percentages as% by weight); Examples 1 to 5 are according to the invention, Examples V1 to V4 are used for comparison.

Abstract

Vorgeschlagen wird ein Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen, bei dem man Wachskörper mit einem Erstarrungspunkt oberhalb von 30 °C zu Pulvern mit einer durchschnittlichen Korngröße von maximal 50 νm zerkleinert und diese unterhalb von 30 °C in die Tensidlösungen einrührt.

Description

Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen, bei dem man Wachskörper einer definierten Teilchengröße in die Tensidiö- sungen einrührt sowie die Verwendung der Wachskörper als Trübungsmittel.
Stand der Technik
Bei der Formulierung einer Vielzahl von oberflächenaktiven Haushaltsprodukten wie beispielsweise Ge- schirrspülmitteln oder Haarshampoos wird besonderer Wert darauf gelegt, daß die Produkte möglichst klar vorliegen und auch im Verlauf der Lagerung nicht austrüben. In anderen Fällen werden für den gleichen Anwendungszweck Produkte gewünscht, die trübe sind und dabei einen Glimmereffekt, den sogenannten "Perlglanz" zeigen. Eine dritte Gruppe von Produkten wird mit einer nicht-glänzenden Weißtrübung hergestellt, wobei sogenannte Trübungsmittel zum Einsatz gelangen. Typische Trübungsmittel stellen entweder Polymere oder Mischungen von Alkylpolygiucosiden und Glyceriden dar, wie sie beispielsweise in der internationalen Patentanmeldung WO 96/30476 (Henkel) beschrieben werden. Ein besonderes Problem bei der Verwendung von Trübungsmitteln besteht darin, den Zubereitungen eine Weißtrübung zu verleihen, die dauerhaft und temperaturunabhängig ist, so daß es auch bei längerer Lagerung der Mittel in der Wärme weder zu Austrübungen noch zu Sedimentation kommt. Die Aufgabe der Erfindung hat darin bestanden, diesem Problem auf möglichst einfachem Wege abzuhelfen.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen, bei dem man Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C zu Pulvern mit einer durchschnittlichen Korngröße von maximal 50, vorzugsweise 0,1 bis 25 und insbesondere 1 bis 15 μm verarbeitet und diese unterhalb von 30, vorzugsweise bei 20 bis 25°C in die Tensidlösungen einrührt.
Überraschenderweise wurde gefunden, daß Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C, die üblicherweise als Perlglanzwachse Verwendung finden, dann anstelle des bekannten Perlglanzes in Tensidkonzentraten bzw. deren auf Anwendungskonzentration eingestellten Verdünnungen eine intensive und beständige Weißtrübung hervorrufen, wenn sie zuvor auf eine mittlere Korngröße unterhalb von 50 μm vermählen und dann ohne Aufzuschmelzen in die Tensidlösungen eingerührt werden. Die neuen Trübungsmittel ergeben feinteilige Dispersionen, die außergewöhnlich lagerstabil sind. Das Vermählen der Wachskörper ist erforderlich, da sie in der Regel als Schuppen oder Pastillen vorliegen und sich ansonsten nicht dispergieren lassen. Werden die Wachskörper oberhalb ihres Erstarrungspunktes eingearbeitet, kristallisieren sie aus den heißen Tensidlösungen in einer blätt- chenförmigen Struktur aus und ergeben dann keine Weißtrübung, sondern Perlglanz. Ein weiterer Vorteil liegt darin, daß man ausgehend von handelsüblichen Perlglanzwachsen nunmehr auch Trübungsmittel herstellen kann, d.h. die Rohstoffbasis vereinheitlicht und vereinfacht wird.
Wachskörper
Als Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C kommen beispielsweise in Frage : Alkylenglycolester; Fettsäurealkanolamide; Partialglyceride; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 12, vorzugsweise mindestens 18 Kohlenstoffatome aufweisen; Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen; langkettige Fettsäuren und deren Salze; sowie deren Mischungen.
(a) Alkylenglycolester. Bei den Alkylenglycolestem handelt es sich üblicherweise um Mono- und/oder Diester von Alkylenglycolen die der Formel (I) folgen,
in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R1CO und A für einen linearen oder verzweigten Alkylenrest mit 2 bis 4 Kohlenstoffatomen und n für Zahlen von 1 bis 5 steht. Typische Beispiele sind Mono- und/oder Diester von Ethylenglycol, Propylenglycol, Diethylenglycol, Dipropylenglycol, Triethylenglycol oder Tetraethylenglycol mit Fettsäuren mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen als da sind: Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Besonders bevorzugt ist der Einsatz von Ethylenglycolmono- und/oder -distearat.
(b) Fettsäurealkanolamide. Fettsäurealkanolamide, die als Wachskörper in Frage kommen, folgen der Formel (II),
R3CO-NR -B-OH (II)
in der R3CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R4 für Wasserstoff oder einen gegebenenfalls hydroxysubstituierten Alkyl- rest mit 1 bis 4 Kohlenstoffatomen und B für eine lineare oder verzweigte Alkylengruppe mit 1 bis 4 Kohlenstoffatomen. Typische Beispiele sind Kondensationsprodukte von Ethanolamin, Methyl- ethanolamin, Diethanolamin, Propanolamin, Methylpropanolamin und Dipropanolamin sowie deren Mischungen mit Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Besonders bevorzugt ist der Einsatz von Stea nsäureethanolamid.
(c) Partialglyceride. Partialglyceride, die als Wachskörper in Frage kommen, stellen Mono- und/oder Diester des Glycerins mit Fettsäuren, nämlich beispielsweise Capronsäure, Caprylsäure, 2-Ethyl- hexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen dar. Sie folgen der Formel (III),
CH-0(CH2CH20)yR6 (III)
I CH2θ(CH2CH20)z-R7
in der R5CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 und R7 unabhängig voneinander für Wasserstoff oder R5CO, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30 und X für ein Alkali- oder Erdalkalimetall mit der Maßgabe steht, daß mindestens einer der beiden Reste R6 und R7 Wasserstoff darstellt. Typische Beispiele sind Laurinsäuremono- glycerid, Laurinsäurediglycerid, Kokosfettsäuremonoglycerid, Kokosfettsäuretriglycerid, Palmitin- säuremonoglycerid, Palmitinsäuretriglycerid, Stearinsäuremonoglycerid, Stearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Talgfettsäuremonoglycerid, Talgfettsäurediglycerid, Behensäuremonoglycerid, Behensäuredigly- cerid, Erucasäuremonoglycerid, Erucasäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können.
(d) Mehrwertige Carbonsäure- und Hydroxycarbonsäureester. Als Wachskörper kommen weiterhin Ester von mehrwertigen, gegebenenfalls hydroxysubstituierten Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen in Frage. Als Säurekomponente dieser Ester kommen beispielsweise Malonsäure, Maleinsäure, Fumarsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Dodecandisäure Phthalsäure, Isophthalsäure und insbesondere Bernsteinsäure sowie Äpfelsäure, Citronensäure und insbesondere Weinsäure und deren Mischungen in Betracht. Die Fettalkohole enthalten 6 bis 22, vorzugsweise 12 bis 18 und insbesondere 16 bis 18 Kohlenstoffatome in der Alkylkette. Typische Beispiele sind Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinal- kohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stea- rylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linoiylalkohol, Lino- lenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Die Ester können als Voll- oder Partialester vorliegen, vorzugsweise werden Mono- und vor allem Diester der Carbon- bzw. Hy- droxycarbonsäuren eingesetzt. Typische Beispiele sind Bemsteinsäuremono- und -dilaurylester, Bemsteinsäuremono- und -dicetearlyester, Bemsteinsäuremono- und -distearylester, Weinsäure- mono- und -dilaurylester, Weinsäuremono- und -dikokosalkylester, Weinsäuremono- und -dicetea- rylester, Citronensäuremono-, -di- und -trilaurylester, Citronensäuremono-, -di- und -trikokosalkyl- ester sowie Citronensäuremono-, -di- und -tricetearylester.
(e) Fettalkohole. Als weitere Gruppe von Wachskörpern können langkettige Fettalkohole eingesetzt werden, die der Formel (IV) folgen,
R«OH (IV)
in der R8 für einen linearen Alkylrest mit 18 bis 48, vorzugsweise 24 bis 36 Kohlenstoffatomen steht. Typische Beispiele sind Hydroxystearylalkohol, Behenylalkohole sowie Oxidationsprodukte langkettiger Paraffine.
(f) Fettketone. Fettketone, die als Wachskörper in Betracht kommen, folgen vorzugsweise der Formel (V), R9-C0-R1» (V)
in der R9 und R10 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 12 und vorzugsweise 18 bis 48 Kohlenstoffatome aufweisen. Die Ketone können nach Verfahrens des Stands der Technik hergestellt werden, beispielsweise durch Pyrolyse der entsprechenden Fettsäure-Magnesiumsalze. Die Ketone können symmetrisch oder unsymmetrisch aufgebaut sein, vorzugsweise unterscheiden sich die beiden Reste R9 und R10 aber nur um ein Kohlenstoffatom und leiten sich von Fettsäuren mit 6 bis 22 Kohlenstoffatomen ab. Dabei zeichnet sich Ketone mit in Summe 18 bis 42 Kohlenstoffatomen durch besonders vorteilhafte Trübungseigenschaften aus.
(g) Fettaldehyde. Als Wachskörper geeignete Fettaldehyde entsprechen der Formel (VI),
R1 COH (VI)
in der R11CO für einen linearen oder verzweigten Acylrest mit 24 bis 48, vorzugsweise 28 bis 32 Kohlenstoffatomen steht.
(h) Fettether. Als Wachskörper kommen ferner Fettether der Formel (VII) in Frage,
in der R12 und R13 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 24 und vorzugsweise 32 bis 48 Kohlenstoffatome aufweisen. Fettether der genannten Art werden üblicherweise durch saure Kondensation der entsprechenden Fettalkohole hergestellt. Fettether mit besonders vorteilhaften Trübungseigenschaften werden durch Kondensation von Fettalkoholen mit 16 bis 22 Kohlenstoffatomen, wie beispielsweise Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearyl- alkohol, Oleylalkohol, Behenylalkohol und/oder Erucylalkohol erhalten.
(i) Fettcarbonate. Als Wachskörper kommen weiterhin Fettcarbonate der Formel (VIII) in Betracht,
in der R14 und R15 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 24 und vorzugsweise 32 bis 48 Kohlenstoffatome aufweisen. Die Stoffe werden erhalten, indem man beispielsweise Dimethyl- oder Diethylcarbonat mit den entsprechenden Fettalkoholen in an sich bekannter Weise umestert. Demzufolge können die Fettcarbonate symmetrisch oder unsymmetrisch aufgebaut sein. Vorzugsweise werden jedoch Carbonate eingesetzt, in denen R14 und R15 gleich sind und für Alkyireste mit 16 bis 22 Kohlenstoffatomen stehen. Besonders bevorzugt sind Umeste- rungsprodukte von Dimethyl- bzw. Diethylcarbonat mit Cetylalkohol, Cetearylalkohol, Stearylalko- hol, Isostearylalkohol, Oleylalkohol, Behenylaikohol und/ oder Erucylalkohol in Form ihrer Mono- und Diester bzw. deren technischen Mischungen.
(j) Epoxidringoffnungsprodukte. Bei den Ringöffnungsprodukten handelt es sich um bekannte Stoffe, die üblicherweise durch säurekatalysierte Umsetzung von endständigen oder innenständigen Olefinepoxiden mit aliphatischen Alkoholen hergestellt werden. Die Reaktionsprodukte folgen vorzugsweise der Formel (IX),
OH
in der R16 und R17 für Wasserstoff oder einen Alkylrest mit 10 bis 20 Kohlenstoffatomen steht, mit der Maßgabe, daß die Summe der Kohlenstoffatome von R16 und R17 im Bereich von 10 bis 20 liegt und R18 für einen Alkyl- und/oder Alkenylrest mit 2 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und/oder den Rest eines Polyols mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen steht. Typische Beispiele sind Ringöffnungsprodukte von α-Dodecenepoxid, α- Hexadecenepoxid, α-Octadecenepoxid, α-Eicosenepoxid, α-Docosenepoxid, i-Dodecenepoxid, i- Hexadecenepoxid, i-Octadecenepoxid, i-Eicosenepoxid und/oder i-Docosenepoxid mit Ethanol, Laurylalkohol, Kokosfettalkohol, Myristylalkohol, Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenyl- alkohol, Behenylaikohol und/oder Erucylalkohol. Vorzugsweise werden Ringöffnungsprodukte von Hexa- und/oder Octadecenepoxiden mit Fettalkoholen mit 16 bis 18 Kohlenstoffatomen eingesetzt. Werden anstelle der Fettalkohole Polyole für die Ringöffnung eingesetzt, so handelt es sich beispielsweise um folgende Stoffe: Glycerin; Alkylenglycole wie beispielsweise Ethylenglycol, Di- ethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton; technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Digiyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%; Methyolverbindungen, wie insbesondere Tri- methylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit; Niedrig- alkylglucoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkylrest wie beispielsweise Methyl- und Butylglucosid; Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Sorbit oder Mannit, Zucker mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Glucose oder Saccharose; Aminozucker wie beispielsweise Glucamin.
(k) Fettsäuren. Auch langkettige Fettsäuren eignen sich als Wachskörper und folgen vorzugsweise der Formel (X),
in der R19CO für einen gegebenenfalls hydroxysubstituierten Acylrest mit 18 bis 54 Kohlenstoffatomen steht. Die Fettsäuren können auch in Form ihrer Salze, speziell ihrer Alkali- und/oder Erdalkalisalze eingesetzt werden. Typische Beispiele sind Hydroxystearinsäure, Behensäure und/oder Calciumstearat bzw. Aluminiumstearat.
Zerkleinerung
Im Sinne der Erfindung hat es sich als vorteilhaft erwiesen, Wachskörper einzusetzen, die eine mittlere Korngröße von 0,1 bis 25, vorzugsweise 1 bis 15 und insbesondere von 2 bis 10 μm (bestimmt durch Röntgenbeugung) einzusetzen. Dabei weisen die Pulver eine kristalline, vorzugsweise aber eine amorphe Struktur auf. Üblicherweise geht man von Wachskörpern aus, die in an sich bekannter Weise durch Abkühlen der Schmelzen hergestellt und dann z.B. als Schuppem oder Pastillen konfektioniert werden. Diese Wachskörper können dann bei einer Temperatur unterhalb ihres Erstarrungspunktes durch Vermählen beispielsweise in einer handelsüblichen Kugelmühle auf die gewünschte Größe vermählen werden. In einer bevorzugten Ausführungsform der Erfindung werden die Wachskörper jedoch noch vor der Kristallisation bei einer Temperatur oberhalb ihres Erstarrungspunktes in an sich bekannter Weise durch Versprühen zerkleinert, wobei sich die gewünschte Korngrößenverteilung automatisch einstellt.
Gewerbliche Anwendbarkeit
Üblicherweise werden die Wachskörper im Kaltverfahren in Mengen von 0,1 bis 5, vorzugsweise 0,5 bis 3 Gew.-% - bezogen auf die Zubereitungen - in die wäßrigen Tensidlösungen eingerührt. Bei diesen kann es sich sowohl um Konzentrate als auch Anwendungsverdünnungen (z.B. Haarshampoos oder Handgeschirrspülmittel) handeln, die einen Aktivsubstanzgehalt im Bereich von 1 bis 70, vorzugsweise 10 bis 50 und insbesondere 15 bis 35 Gew.-% aufweisen.
Ein weiterer Gegenstand der Erfindung betrifft daher die Verwendung von Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C in Form von Pulvern mit einer durchschnittlichen Korngröße von maximal 50 μm als Trübungsmittel zur Erzeugung einer intensiven Weißtrübung in wäßrigen tensidischen Zubereitungen.
Die Lösungen können anionische, nichtionische, kationische und/oder amphotere bzw. zwitterionische Tenside enthalten. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersuifonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsuifosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligogiucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolygly- colester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederi- vate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoπiumverbindungen und Esterquats, insbesondere quaternierte Fettsäuretrialkanol- aminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
Tensidkonzentrate
Die Tensidlösungen können, soweit es sich um Konzentrate handelt, zur Verbesserung der Fließfähigkeit Polyole enthalten, wie beispielsweise:
• Glycerin;
• Alkylenglycole wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton; • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkylrest wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Glucose oder Saccharose;
• Aminozucker wie beispielsweise Glucamin.
Anwendunqsverdünnungen
Handelt es sich bei den Tensidlösungen um fertige Verdünnungen zur Anwendung durch den Verbraucher, können diese weitere typische Inhaltsstoffe von kosmetischen Zubereitungen enthalten als da sind: Ölkörper, Emulgatoren, Überfettungsmittel, Stabilisatoren, Konsistenzgeber, Verdickungs- mittel, Kationpolymere, Siliconverbindungen, biogene Wirkstoffe, Antischuppenmittel, Filmbildner, Konservierungsmittel, Hydrotrope, Solubilisatoren, UV-Lichtschutzfilter, Insektenrepellentien, Selbstbräuner, Parfümöle, Farbstoffe und dergleichen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22- Fettalkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen Cε-C∑∑-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimer- diol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-Ci8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare Cδ-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), Dialkylether, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage: (1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2 i8-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxy- lierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(6) Polyol- und insbesondere Polyglycerinester wie z.B. Polyglycerinpolyricinoleat oder Polyglyce- rinpoly-12-hydroxystearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta- erythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Lauryl- glucosid) sowie Poiyglucoside (z.B. Cellulose);
(9) Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate;
(10) Wollwachsalkohole;
(11) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin sowie
(13) Polyalkylenglycole.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloiigoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccha- ride, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl- cellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -di-ester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacryl- amide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäure- glyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. ein quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinyl-imidazol-Polymere wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide wie beispielsweise Lauryldimonium hydroxy- propyl hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethyl- aminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dime- thyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide wie z.B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen wie z.B. Dibrombutan mit Bisdialkylaminen wie z.B. Bis-Dimethylamino-1 ,3- propan, kationischer Guar-Gum wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Celanese, quaternierte Ammoniumsalz-Polymere wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapoi® AZ-1 der Miranol.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methyl-phenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Camaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Toco- pherolpalmitat, Ascorbinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen. Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quatemiertes Chitosan, Polyvinylpyrrolidon, Vinyl-pyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure- reihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen. Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineratstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Unter UV-Lichtschutzfiltern sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerweliiger Strahlung, z.B. Wärme wieder abzugeben. Typische Beispiele sind 4-Aminobenzoesäure sowie ihre Ester und Derivate (z.B. 2-Ethylhexyl-p-dimethylaminobenzoat oder p-Dimethylaminobenzoesäureoctylester), Methoxy- zimtsäure und ihre Derivate (z.B. 4-Methoxyzimtsäure-2-ethylhexylester), Benzophenone (z.B. Oxyben- zon, 2-Hydroxy-4-methoxybenzophenon), Dibenzoylmethane, Salicylatester, 2-Phenylbenzimidazol-5- sulfonsäure, 1-(4-tert.Butylphenyl)-3-(4'-methoxyphenyl)-propan-1 ,3-dion, 3-(4'-Methyl)benzylidenbor- nan-2-on, Methylbenzylidencampher und dergleichen. Weiterhin kommen für diesen Zweck auch feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk) und Bariumsulfat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C).
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope wie beispielsweise Ethanol, Isopropylalkohol, oder die bereits oben genannten Polyole eingesetzt werden. Als Konsevierungs- mittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure. Als Insekten-Repellentien kommen N,N-Diethyl-m-touluamid, 1 ,2-Pentandiol oder Insect repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton.
Als Parfümöle seien genannt die Extrakte von Blüten (Lavendel, Rosen, Jasmin, Neroli), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemon- gras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Moschus, Zibet und Castoreum. Als synthetische bzw. halbsynthetische Parfümöle kommen Ambroxan, Eugenol, Isoeugenol, Citronellal, Hydroxycitronellal, Geraniol, Citronellol, Geranylacetat, Citral, lonon und Methylionon in Betracht.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoff- kom-mission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81- 106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Beispiele
In einer konzentrierten Ethersulfatlösung wurden Wachsköφer unterschiedlicher mittlerer Korngröße einmal bei 22°C (kalt) und einmal bei 80°C (heiß) dispergiert. Das Trübungsverhalten (WT = Weißtrübung, PG = Perlglanz) wurde unmittelbar nach dem Abkühlen auf Raumtemperatur untersucht; der Weißgrad der erfindungsgemäßen Beispiele blieb bei Lagerung über einen Zeitraum von 4 Wochen konstant, Die Ergebnisse sind in Tabelle 1 zusammengefaßt (Prozentangaben als Gew.-%); die Beispiele 1 bis 5 sind erfindungsgemäß, die Beispiele V1 bis V4 dienen zum Vergleich.
Tabelle 1
Weißtrübung und Perlglanz

Claims

Patentansprüche
1. Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen, dadurch gekennzeichnet, daß man Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C zu Pulvern mit einer durchschnittlichen Korngröße von maximal 50 μm zerkleinert und diese unterhalb von 30°C in die Tensidlösungen einrührt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man Wachskörper einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von
(a) Alkylenglycolestern,
(b) Fettsäurealkanolamiden,
(c) Partialgiyceriden,
(d) Estern von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen;
(e) Fettalkoholen, Fettketonen, Fettaldehyden, Fettethem und/oder Fettcarbonaten, die in Summe mindestens 18 Kohlenstoffatome aufweisen,
(f) Ringöffnungsprodukten von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen, und/oder
(g) langkettigen Fettsäuren bzw. deren Salzen.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man Wachskörper mit einer mittleren Korngröße von 0,1 bis 25 μm einsetzt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die Wachskörper bei einer Temperatur unterhalb ihres Erstarrungspunktes durch Vermählen zerkleinert.
5. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die Wachskörper bei einer Temperatur oberhalb ihres Erstarrungspunktes durch Versprühen zerkleinert.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man die Wachsköφer bei Temperaturen von 20 bis 25°C in die Tensidlösungen einrührt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man die Wachsköφer in Mengen von 0,1 bis 5 Gew.-% - bezogen auf die Zubereitungen - in die wäßrigen Tensidlösungen einrührt.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man die Wachsköφer in wäßrige Tensidlösungen einrührt, die einen Aktivsubstanzgehalt im Bereich von 1 bis 70 Gew.-% aufweisen.
9. Verwendung von Wachskörper mit einem Erstarrungspunkt oberhalb von 30°C in Form von Pulvern mit einer durchschnittlichen Korngröße von maximal 50 μm als Trübungsmittel.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß man Wachskörper einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von
(a) Alkylenglycolestern,
(b) Fettsäurealkanolamiden,
(c) Partialgiyceriden,
(d) Estern von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen;
(e) Fettalkoholen, Fettketonen, Fettaldehyden, Fettethem und/oder Fettcarbonaten, die in Summe mindestens 18 Kohlenstoffatome aufweisen,
(f) Ringöffnungsprodukten von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen, und/oder
(g) langkettigen Fettsäuren bzw. deren Salzen.
EP98940080A 1997-07-02 1998-06-23 Verfahren zur erzeugung von intensiven weisstrübungen in wässrigen tensidischen zubereitungen Withdrawn EP0994935A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19728084 1997-07-02
DE1997128084 DE19728084C2 (de) 1997-07-02 1997-07-02 Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen
PCT/EP1998/003831 WO1999001529A1 (de) 1997-07-02 1998-06-23 Verfahren zur erzeugung von intensiven weisstrübungen in wässrigen tensidischen zubereitungen

Publications (1)

Publication Number Publication Date
EP0994935A1 true EP0994935A1 (de) 2000-04-26

Family

ID=7834318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98940080A Withdrawn EP0994935A1 (de) 1997-07-02 1998-06-23 Verfahren zur erzeugung von intensiven weisstrübungen in wässrigen tensidischen zubereitungen

Country Status (4)

Country Link
EP (1) EP0994935A1 (de)
JP (1) JP2002508016A (de)
DE (1) DE19728084C2 (de)
WO (1) WO1999001529A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034619A1 (de) * 2000-07-17 2002-01-31 Cognis Deutschland Gmbh Aniontensidfreie niedrigviskose Trübungsmittel
DE10305552A1 (de) 2003-02-10 2004-08-19 Cognis Deutschland Gmbh & Co. Kg Textilausrüstungsmittel
CN101970633B (zh) 2008-03-14 2013-07-17 荷兰联合利华有限公司 洗衣处理组合物
WO2018086857A1 (de) * 2016-11-14 2018-05-17 Werner & Mertz Gmbh Wässrige wasch- oder reinigungsmittel-zusammensetzungen, enthaltend natürliche wachse als trübende mittel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165308A (en) * 1981-04-03 1982-10-12 Lion Corp Production of pearlescent dispersion
US4438096A (en) * 1982-05-27 1984-03-20 Helene Curtis Industries, Inc. Pearlescent shampoo
US4654207A (en) * 1985-03-13 1987-03-31 Helene Curtis Industries, Inc. Pearlescent shampoo and method for preparation of same
JPS63139996A (ja) * 1986-12-02 1988-06-11 ライオン株式会社 真珠様光沢剤の製造方法
DE3843572A1 (de) * 1988-12-23 1990-06-28 Henkel Kgaa Fliessfaehiges perlglanzkonzentrat
GB9207637D0 (en) * 1991-04-24 1992-05-27 Kao Corp Milky detergent composition for hard surfaces
DE19511572C2 (de) * 1995-03-29 1998-02-26 Henkel Kgaa Niedrigviskose Trübungsmittelkonzentrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9901529A1 *

Also Published As

Publication number Publication date
JP2002508016A (ja) 2002-03-12
DE19728084A1 (de) 1999-01-07
WO1999001529A1 (de) 1999-01-14
DE19728084C2 (de) 1999-04-29

Similar Documents

Publication Publication Date Title
DE19756454C1 (de) Verwendung von Glycerincarbonat
DE19646869C1 (de) Kosmetische Zubereitungen
DE19805703A1 (de) Haarnachbehandlungsmittel
DE19732015C1 (de) Selbstemulgierende Zubereitungen
DE19837841A1 (de) Verwendung von wäßrigen Wachsdispersionen als Konsistenzgeber
EP1002038B1 (de) Wässrige perlglanzkonzentrate
WO1999009944A1 (de) Wässrige perlglanzdispersionen
DE19742285C1 (de) Verwendung von ungesättigten Betaintensiden als Verdickungsmittel
EP0906389B1 (de) Verwendung von hydroxycarbonsäureestern als verdickungsmittel
DE19728084C2 (de) Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen
DE19738645C1 (de) Wassermischbare Kationtensidkonzentrate
DE19738641C1 (de) Esterquats auf Zimtsäurebasis
EP1021163B1 (de) Kosmetische mittel
DE19754283A1 (de) Verwendung von Detergensgemischen
WO1998050006A1 (de) Haarbehandlungsmittel
DE19724868A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
WO1999018913A2 (de) Verwendung von sterolestern als rückfettungsmittel
EP1301073A1 (de) Verwendung von esterquats als mikrobizide wirkstoffe
DE19851430A1 (de) Verwendung von kationaktiven Mischungen
EP1000135B1 (de) Wässrige perlglanzkonzentrate
DE19724867C1 (de) Verwendung von Emulgatormischungen
EP0878188A2 (de) Verwendung von Milchsäureestern als Rückfettungsmittel in Haut- und Haarpflegemitteln
DE19810012A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19850734A1 (de) Alkoholische kosmetische Zubereitungen
DE19851429A1 (de) Verwendung von kationaktiven Mischungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030103