EP0966515A1 - Verfahren zur herstellung von waschmittelrohstoffen - Google Patents

Verfahren zur herstellung von waschmittelrohstoffen

Info

Publication number
EP0966515A1
EP0966515A1 EP98913552A EP98913552A EP0966515A1 EP 0966515 A1 EP0966515 A1 EP 0966515A1 EP 98913552 A EP98913552 A EP 98913552A EP 98913552 A EP98913552 A EP 98913552A EP 0966515 A1 EP0966515 A1 EP 0966515A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
sulfates
ether
carbon atoms
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98913552A
Other languages
English (en)
French (fr)
Other versions
EP0966515B1 (de
Inventor
Thomas LÜDER
Konstantinos Scholinakis
Bernhard Gutsche
Christoph Breucker
Norbert Wrede
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7821512&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0966515(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP0966515A1 publication Critical patent/EP0966515A1/de
Application granted granted Critical
Publication of EP0966515B1 publication Critical patent/EP0966515B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • the invention relates to a method for contact drying aqueous surfactant pastes in a horizontal thin-film evaporator or dryer.
  • Anionic and amphoteric or zwitterionic surfactants are important constituents of solid detergents and bar soaps.
  • the usual way of producing the detergents is to spray an aqueous, generally highly alkaline, slurry of the ingredients (“slurry”) and to heat it in countercurrent
  • slurry aqueous, generally highly alkaline, slurry of the ingredients
  • this conventional spray drying involves a high pollution of the exhaust air with organic cargo
  • this conventional spray drying involves a high pollution of the exhaust air with organic cargo
  • alternative drying methods which are more advantageous from an ecological point of view, in particular the contact drying of aqueous surfactant pastes in thin-film dryers, which result in dry products leads, which can then be processed to the end product, for example in mixers with the further likewise dried detergent ingredients.
  • the complex object of the invention was therefore to provide a method for contact drying aqueous anionic surfactant and / or amphoteric surfactant pastes which does not have the disadvantages described above and in particular with minimal technical effort under production conditions to give color-correct, hydrolysis-free, free-flowing granules with high bulk densities and uniform grain size distribution.
  • the invention relates to a process for the production of solid detergent raw materials by simultaneous drying and granulation of aqueous pastes of anionic and / or amphoteric surfactants in a horizontal thin-film evaporator or dryer with rotating internals, which is characterized in that drying is carried out at a Temperature in the range of 120 to 130 ° C.
  • the invention includes the finding that the hydrolysis tendency continues can be suppressed if the contact drying is carried out in the presence of (a) 0.05 to 0.5% by weight of alkali carbonate and / or (b) an alkaline gas stream.
  • the water is preferably removed by a gas flow and not by applying a vacuum.
  • anionic surfactants which can be dried in the context of the process according to the invention are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkylethersulfonates, glycerolethersulfonates, .alpha.-methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, glyceryl ether ether sulfates, hydroxyl ether ether sulfates, and hydroxyl ether ether sulfates ) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • the surfactants mentioned are exclusively known compounds. With regard to the structure and manufacture of these substances, reference is made to relevant reviews, for example, J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, pp. 54-124 or J.Falbe (ed.), "Catalysts, Tenside und Mineralöladditive ", Thieme Verlag, Stuttgart, 1978, pp. 123-217.
  • aqueous pastes is understood to mean aqueous preparations of the surfactants which have an active substance content in the range from 5 to 80, preferably 10 to 70,% by weight. For energetic and theological reasons, it is advantageous to use pastes which have a solids content of at least 30, better 50 and at most 70% by weight.
  • the anionic surfactants are used in the form of their alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium, glucammonium salts.
  • alkyl and / or alkenyl (ether) sulfates, sulfosuccinates and / or betaines are dried and processed into light-colored, free-flowing granules.
  • Alkyl and / or alkenyl sulfates, sulfosuccinates and / or betaines are dried and processed into light-colored, free-flowing granules.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary alcohols which follow the formula (I)
  • R 1 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates that can be used for the purposes of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palm oleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, petroelselyl alcohol, elaidyl alcohol , Gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen oxosynthesis.
  • Guerbet alcohols with 16 to 32 carbon atoms can also serve as raw materials.
  • the sulfation products can preferably be used in the form of their alkali metal salts, and in particular their sodium salts.
  • Alkyl sulfates based on Ci ⁇ tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • ether sulfates Alkyl and / or alkenyl ether sulfates
  • anionic surfactants which are produced on an industrial scale by SO 3 - or chlorosulfonic acid (CSA) sulfation of oxoalcohol or fatty alcohol polyglycol ethers and subsequent neutralization.
  • CSA chlorosulfonic acid
  • ether sulfates are suitable which follow the formula (II)
  • R 2 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • m is a number from 1 to 10
  • X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Typical examples are the sulfates of addition products with an average of 1 to 10 and in particular 2 to 5 moles of ethylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol,
  • Addition products of ethylene oxide with Guerbet alcohols with 16 to 32 carbon atoms can also be used as raw materials.
  • the ether sulfates can have both a conventional and a narrow homolog distribution. It is particularly preferred to use ether sulfates based on adducts of an average of 2 to 3 mol ethylene oxide with technical C12 / 14 or " Gi2 / ⁇ _ coconut oil alcohol fractions in the form of their sodium and / or magnesium salts.
  • Sulfosuccinates which are also referred to as sulfosuccinic acid esters, are known anionic surfactants which can be obtained by the relevant methods of preparative organic chemistry. They follow formula (III)
  • R 3 is an alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • R 4 is R 3 or X
  • p and q independently of one another are 0 or numbers from 1 to 10
  • X is an alkali or alkaline earth metal, ammonium, Alkylammonium, alkanolamonium or glucamonium.
  • maleic acid but preferably maleic anhydride, which are esterified in the first step with optionally ethoxylated primary alcohols. At this point, the mono / diester ratio can be adjusted by varying the amount of alcohol and the temperature.
  • bisulfite is added, which is usually carried out in the solvent methanol.
  • Typical examples are sulfosuccinic acid monoesters and / or diesters in the form of their sodium salts which are derived from fatty alcohols having 8 to 18, preferably 8 to 10 or 12 to 14, carbon atoms; the fatty alcohols can be etherified with an average of 1 to 10 and preferably 1 to 5 moles of ethylene oxide and have both a conventional and preferably a narrowed homolog distribution.
  • Examples include di-n-octyl sulfosuccinate and monolauryl 3EO sulfosuccinate in the form of their sodium salts.
  • Betaines are known surfactants which are predominantly produced by carboxyalkylation, preferably carboxymethylation, of aminic compounds.
  • the starting materials are preferably condensed with halocarboxylic acids or their salts, in particular with sodium chloroacetate, one mol of salt being formed per mole of betaine.
  • unsaturated carboxylic acids such as acrylic acid is also possible.
  • betaines and "real" amphoteric surfactants reference is made to the contribution by U.PIoog in Seifen- ⁇ le-Fette-Wwachs, 198, 373 (1982). Further overviews on this topic can be found for example by A. O'Lennick et al. in HAPPI, Nov.
  • betaines are the carboxyalkylation products of secondary and in particular tertiary amines which follow the formula (IV)
  • R 5 represents alkyl and / or alkenyl radicals having 6 to 22 carbon atoms
  • R 6 represents hydrogen or alkyl radicals having 1 to 4 carbon atoms
  • R 7 represents alkyl radicals having 1 to 4 carbon atoms
  • x represents numbers from 1 to 6
  • Y represents a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, decyldimethylamine, dodecylmethylamine, dodecyldimethylamine, dodecylethylmethylamine, C12 / 1 their technical mixtures.
  • R 8 CO represents an aliphatic acyl radical having 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • y represents numbers from 1 to 3
  • R 6 , R 7 , x and Y have the meanings given above.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbons Substance atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroseic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadolic acid, as well as gensoleic acid, behenic acid, and behenic acid with N, N-dimethylaminoethylamine, " N, N-dimethylaminopropylamine, N, N-diethylamino
  • Imidazolines are also suitable starting materials for the betaines to be used in the context of the invention. These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyhydric amines such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine. The corresponding carboxyalkylation products are mixtures of different open-chain betaines. Typical examples are condensation products of the above-mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again C12 / 1. Coconut fatty acid, which are subsequently betainized with sodium chloroacetate.
  • AEEA aminoethylethanolamine
  • Typical examples are condensation products of the above-mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again C12 / 1. Coconut fatty acid, which are subsequently betainized with sodium chloroacetate.
  • the anionic or amphoteric surfactants are dried together with nonionic surfactants of the alkyl and / or alkenyl oligoglycoside type which follow the formula (VI),
  • R 9 represents an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G represents a sugar radical having 5 or 6 carbon atoms
  • p represents numbers from 1 to 10.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the alkyl or alkenyl radical R 9 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capro alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 9 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, Guerbet alcohols, as described above, and the technical ones which can be obtained, as well as their Guerbet alcohols, as can be described above, as well as the technical Guerbet alcohols which can be obtained as well as their technical descriptions.
  • Alkyl oligoglucosides based on hardened C12 / 1. Coconut alcohol with a DP of 1 to 3 are preferred.
  • the joint drying can be carried out in such a way that the aqueous pastes of the different surfactants are mixed beforehand, homogenized and then introduced into the thin-film evaporator. However, it is also possible to meter in the pastes separately and to mix them in situ.
  • the weight ratio between the anionic / amphoteric surfactants and alkyl and / or alkenyl oligoglycosides can - based on the detergent content - be 10:90 to 90:10, preferably 25:75 to 75:25. Mixtures of sulfosuccinates and alkyl oligoglucosides in a weight ratio of 40:60 to 60:40 which are particularly suitable for the production of bar soaps after drying are particularly preferred.
  • the simultaneous drying and granulation is carried out in a horizontally arranged thin-film evaporator or dryer with rotating internals, such as that sold by VRV under the name “Flashdryer” or by VOMM under the name “Turbodryer”.
  • rotating internals such as that sold by VRV under the name “Flashdryer” or by VOMM under the name “Turbodryer”.
  • this is a pipe that can be heated to different temperatures across several zones.
  • the paste-like feed material which is metered in via a pump, is flung against the heated wall by means of one or more shafts, which are provided with blades or shares of flies as rotating internals, on which the drying takes place in a thin layer, typically 1 to 10 mm thick he follows.
  • a temperature gradient from 130 (product inlet) to 20 ° C (product discharge) to the thin film evaporator For this purpose, for example, the first two zones of the evaporator are heated to 120 to 130 ° C and the last are cooled to 20 ° C.
  • the thin-film evaporator or dryer is operated at atmospheric pressure and gassed in countercurrent with air, but preferably with an alkaline gas stream, for example ammonia (throughput 50 to 150 m 3 / h). " - The inlet temperature of the gas is usually 20 to 30, the outlet temperature 90 to 110 ° C.
  • the throughput of the surfactant pastes is of course dependent on the size of the dryer, for example 5 to 25 kg / h. It is recommended to temper the pastes at 40 to 60 ° C. during feeding and to add 0.05 to 0.5% by weight, based on the solids content, of alkali carbonate, preferably sodium carbonate, to avoid hydrolysis processes.
  • alkali carbonate preferably sodium carbonate
  • Another preferred embodiment of the process according to the invention consists in mixing the aqueous surfactant on the hot contact surface with the already dried end product.
  • a partial product stream of about 10 to 40, preferably 15 to 25% by weight, based on the mass flow of the paste used, is removed at the outlet of the dryer and metered back into the apparatus directly by means of a solids metering screw in the immediate vicinity of the paste inlet.
  • the addition of the end product can specifically shift the grain size distribution of the granules to coarser products, i.e. the undesirable proportion of fine dust can be significantly reduced.
  • an increase in throughput based on analog process conditions can be achieved without returning solids.
  • the granules which are still around 50 to 70 ° C., on a conveyor belt, preferably a vibrating trough or the like, and to apply them quickly, ie within a dwell time of 20 to 60 s, with ambient air Cool temperatures of around 30 to 40 ° C.
  • the granules of particularly hygroscopic surfactants can also be subsequently depleted by adding 0.5 to 2% by weight of silica.
  • the granules obtainable by the process according to the invention can then be mixed with other ingredients of powdered surface-active agents, such as door powders for detergents. It is also possible without problems to incorporate the powders into aqueous preparations. In fact, no differences in the application properties are observed when using the powders compared to the aqueous starting pastes.
  • the granules can also be easily incorporated, for example, together with fatty acids, fatty acid salts, fatty alcohols, starch, polyglycols and the like, particularly in bar soaps of combibar or syndet type, toothpastes or for the production of emulsifiers for emulsion polymerization.
  • the granules were produced in a flash dryer from VRV SpA, Milan / IT. It was a horizontally arranged thin film evaporator (length 1100 mm, inside diameter: 155 mm) with 4 shafts and 22 blades, the distance to the wall of which was 2 mm. The dryer had three separate heating or cooling zones and a total heat exchanger area of 0.44 m 2 . The operation was carried out at normal pressure.
  • aqueous surfactant pastes solids content 70% by weight
  • sodium carbonate sodium carbonate
  • the heating zones 1 and 2 had been set to 125 ° C and its cooling zone 3 to 20 ° C.
  • the speed of the rotors was 24 m / s.
  • the flash dryer was gassed with air or an air / ammonia mixture 1: 1 (approx. 110 m 3 / h); the gas outlet temperature was approx. 65 ° C.
  • the pre-dried, still about 60 ° C hot granules were placed on a vibrating trough (length 1 m), gassed with room air and cooled to about 40 ° C within 30 s. It was then powdered with about 1% by weight of silica (Sipernat® 50 S). A dry, pure-white granulate which was free-flowing and non-clumping, even after long storage in the air, was obtained. The characteristics of the granulate are shown in Table 1.
  • Examples 6 to 8 show that, with the water content of the end product remaining the same, the throughput of paste could be increased from 8.5 to 13.5 kg / h when the powder recycling was used. The quantity recycled could be varied within a wide range (examples 7 and 8).
  • the product according to Example 8 is considerably coarser than Example 1.
  • Examples 9 and 10 show that an increase in throughput without powder recycling can lead to an increase in the product water content from 0.7 to 1.3% by weight.
  • the powder recycling (example 11) reduced the product moisture and again led to powders with a lower dust content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Description

Verfahren zur Herstellung von Waschmittelrohstoffen
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Kontakttrocknung von wäßrigen Tensidpasten in einem horizontalen Dünnschichtverdampfer bzw. -trockner.
Stand der Technik
Anionische und amphotere bzw. zwitterionische Tenside stellen wichtige Bestandteile von festen Waschmitteln und Stückseifen dar. Üblicherweise geht man zur Herstellung der Waschmittel so vor, daß eine wäßrige, in der Regel hochalkalische Aufschlämmung der Inhaltsstoffe („Slurry") versprüht und dabei im Gegenstrom mit heißen Inertgasen getrocknet wird. Nachdem mit dieser konventionellen Sprühtrocknung jedoch eine hohe Belastung der Abluft mit organischer Fracht verbunden ist, besteht ein Bedarf nach alternativen Trocknungsverfahren, die aus ökologischer Sicht vorteilhafter sind. Hierzu zählt insbesondere die Kontakttrocknung von wäßrigen Tensidpasten in Dünnschichttrocknern, die zu trockenen Produkten führt, die dann beispielsweise in Mischern mit den weiteren ebenfalls getrockneten Waschmittelinhaltsstoffen zum Endprodukt verarbeitet werden können.
Aus der europäischen Patentanmeldung EP-A1 0 572 957 (Kao) ist ein Verfahren zur Trocknung von Alkyl- bzw. Alkylethersulfaten bekannt, bei dem man verdünnte Tensidpasten zunächst bis auf 60 bis 80 Gew.-% Aktivsubstanz aufkonzentriert und diese dann anschließend in einem vertikalen Dünnschichtverdampfer im Vakuum bei Temperaturen im Bereich von 50 bis 140°C trocknet. Ein wesentlicher Nachteil dieses Verfahrens besteht indes darin, daß das Arbeiten unter vermindertem Druck eine technisch aufwendige, vakuumgeeignete Ausschleusung des Fertigproduktes erfordert. Durch den ständigen Kontakt mit dem heißen Produkt besteht die Gefahr, daß es zu Anbackungen und damit zu Funktionsstörungen kommt, die dann für die Reinigung eine komplette Betriebsunterbrechung erforderlich machen. Ein weiterer entscheidender Nachteil besteht ferner darin, daß der Einsatz eines vertikalen Dünnschichtverdampfers mit Wandkontakt der Rotorblätter im Dauerbetrieb die Aufrechterhaltung eines fließfähigen Produktfilmes über die gesamte Apparatelänge auf der Wand erfordert, um eine mechanische Überlastung der Anlage zu vermeiden. Damit ist das Verfahren nicht zur Direktherstellung eines Pulvers, sondern nur zur Herstellung einer konzentrierten heißen Schmelze geeignet, die separat kristallisiert (z.B. in einer Schuppenwalze oder einer) und anschließend zerkleinert werden muß.
Demgegenüber wird in der internationalen Patentanmeldung WO 96/06916 (Unilever) ein Verfahren zur Trocknung von wäßrigen Aniontensidpasten in einem horizontalen Dünnschichtverdampfer vorgeschlagen, das bei leichtem Vakuum bis fast Normaldruck und Temperaturen oberhalb von 130°C arbeitet. Ein weiteres Merkmal dieses Verfahrens ist der Einsatz einer sehr hohen Umfanggeschwindigkeit der eingesetzten Rührorgane von mindestens 15 m/s, was einen direkten Wandkontakt praktisch ausschließt und zu farblich einwandfreien Produkten führt. Bei der Trocknung von wäßrigen Aniontensidpasten, insbesondere wäßrigen Pasten von Alkylsulfaten oder Alkylethersulfaten, besteht jedoch grundsätzlich die Gefahr unerwünschter Hydrolyse im Produkt. Schon kurzfristiges, punktuelles Absinken des pH-Wertes führt in Gegenwart von Wasser zur Rückspaltung, zur Bildung anorganischen Sulfats und zum Rückgang des Gehaltes an waschaktiver Substanz. Bei der Nacharbeitung der Lehre der WO 96/06916 hat die Anmelderin gefunden, daß sich über einen Zeitraum von mehreren Betriebsstunden ein hydrolysefreies Produkt nicht reproduzierbar herstellen läßt.
Die komplexe Aufgabe der Erfindung hat damit darin bestanden, ein Verfahren zur Kontakttrocknung von wäßrigen Aniontensid- und/oder Amphotensidpasten zur Verfügung zu stellen, das die oben geschilderten Nachteile nicht aufweist und insbesondere bei minimalen technischen Aufwand unter Produktionsbedingungen zu farblich einwandfreien, hydrolysefreien, rieselfähigen Granulaten mit hohen Schüttgewichten und einheitlicher Korngrößenverteilung führt.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von festen Waschmittelrohstoffen durch gleichzeitige Trocknung und Granulierung von wäßrigen Pasten von anionischen und/oder amphoteren Tensiden in einem horizontalen Dünnschichtverdampfer- bzw. -trockner mit rotierenden Einbauten, das sich dadurch auszeichnet, daß man die Trocknung bei einer Temperatur im Bereich von 120 bis 130°C durchführt.
Überraschenderweise wurde gefunden, daß sich farblich einwandfreie, rieselfähig Granulate auch gerade dann erhalten lassen, wenn man die Trockentemperatur in dem angegebenen Bereich hält. Schon geringes Abweichen nach oben führt zu einem unerwünschten Anstieg des Gehaltes an anorganischem Sulfat, geringfügiges Abweichen nach unten zu Produkten, die keine ausreichende Rieselfähigkeit mehr besitzen. Die Erfindung schließt die Erkenntnis ein, daß die Hydrolysetendenz weiter zurückgedrängt werden kann, wenn man die Kontakttrocknung in Gegenwart von (a) 0,05 bis 0,5 Gew.- % Alkalicarbonat und/oder (b) eines alkalisch eingestellten Gasstromes durchführt. Die Wasserentfernung erfolgt dabei vorzugsweise durch einen Gasstrom und nicht durch Anlegen eines Vakuums. Ein weiterer Vorteil des Verfahrens besteht darin, daß Produkte mit hohem Schüttgewicht (oberhalb von 600 g/l) erhalten werden, die unabhängig von der eingesetzten Tensidpaste eine sehr einheitliche Korngrößenverteilung aufweisen.
Tenside
Typische Beispiele für anionische Tenside, die im Sinne des erfindungsgemäßen Verfahrens getrocknet werden können, sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkyl- ethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalko- holethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäure- amid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyce- ride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis), Alkyl(ether)phosphate sowie Sulfate von Ringöffnungsprodukten von Olefin- epoxiden mit Wasser oder Alkoholen. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
Unter dem Begriff wäßrige Pasten sind in diesem Zusammenhang wäßrige Zubereitungen der Tenside zu verstehen, die einen Aktivsubstanzgehalt im Bereich von 5 bis 80, vorzugsweise 10 bis 70 Gew.-% aufweisen. Aus energetischen und Theologischen Gründen ist es vorteilhaft, Pasten einzusetzen, die einen Feststoffgehalt von mindestens 30, besser 50, und maximal 70 Gew.-% besitzen. Die Aniontenside werden in Form ihrer Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium-, Glucam- moniumsalzen eingesetzt. In weiteren bevorzugten Ausführungsformen des Verfahrens werden Alkyl- und/oder Alkenyl(ether)sulfate, Sulfosuccinate und/oder Betaine getrocknet und zu hellfarbigen, rieselfähigen Granulaten verarbeitet. Alkyl- und/oder Alkenylsulfate
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (I) folgen,
in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palm- oleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Ara- chylalkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roe- len'schen Oxosynthese erhalten werden. Weiterhin können auch Guerbetalkohole mit 16 bis 32 Kohlenstoffatomen als Rohstoffe dienen. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze, und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von Ciβ -Talgfettalkoholen bzw. pflanzlicher Fettalkohole vergleichbarer C-Ketten- verteilung in Form ihrer Natriumsalze.
Alkyl- und/oder Alkenylethersυlfate
Alkyl- und/oder Alkenylethersulfate ("Ethersulfate") stellen bekannte anionische Tenside dar, die großtechnisch durch S03- oder Chlorsulfonsäure (CSA)-Sulfatierung von Oxoalkohol- bzw. Fettalkohol- polyglycolethern und nachfolgende Neutralisation hergestellt werden. Im Sinne der Erfindung kommen Ethersulfate in Betracht, die der Formel (II) folgen,
R20-(CH2CH2θ)mS03X (II)
in der R2 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, m für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele sind die Sulfate von Anlagerungsprodukten von durchschnittlich 1 bis 10 und insbesondere 2 bis 5 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Bras- sidylalkohol sowie deren technische Mischungen, in Form ihrer Natrium- und/oder Magnesiumsalze. Weiterhin können auch Anlagerungsprodukte von Ethylenoxid an Guerbetalkohole mit 16 bis 32 Kohlenstoffatomen als Rohstoffe eingesetzt werden. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aufweisen. Besonders bevorzugt ist der Einsatz von Ethersulfaten auf Basis von Addukten von durchschnittlich 2 bis 3 Mol Ethylenoxid an technische C12/14- bzw."Gi2/ι_- Kokosfettalkoholfraktionen in Form ihrer Natrium- und/oder Magnesiumsalze.
Sulfosuccinate
Sulfosuccinate, die auch als Sulfobernsteinsäureester bezeichnet werden, stellen bekannte anionische Tenside dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Sie folgen der Formel (III),
SO3X
I
R3( CH2CH2)pOOC-CH-CH2-COO(CH2CH2θ)qR4 (III)
in der R3 für einen Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, R4 für R3 oder X, p und q unabhängig voneinander für 0 oder Zahlen von 1 bis 10 und X für ein Alkali- oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolamonium oder Glucamonium steht.Zu ihrer Herstellung geht man üblicherweise von Maleinsäure, vorzugsweise aber Maleinsäureanhydrid aus, die im ersten Schritt mit gegebenenfalls ethoxylierten primären Alkoholen verestert werden. An dieser Stelle kann durch Variation von Alkoholmenge und Temperatur das Mono-/Diester-Verhältnis eingestellt werden. Im zweiten Schritt erfolgt die Anlagerung von Bisulfit, die üblicherweise im Lösungsmittel Methanol durchgeführt wird. Neuere Übersichten zu Herstellung und Verwendung von Sulfosuccinaten sind beispielsweise von T.Schoenberg in Cosm. Toil. 104, 105 (1989), J.A.Milne in R. Soc. Chem. (Ind. Appl. Surf.ll) 77, 77 (1990) sowie W.Hreczuch et al. in J. Am. Oil. Chem. Soc. 70, 707 (1993) erschienen. Typische Beispiele sind Sulfobemsteinsäuremono- und/oder -diester in Form ihrer Natriumsalze, die sich von Fettalkoholen mit 8 bis 18, vorzugsweise 8 bis 10 bzw. 12 bis 14 Kohlenstoffatomen ableiten; die Fettalkohole können dabei mit durchschnittlich 1 bis 10 und vorzugsweise 1 bis 5 Mol Ethylenoxid verethert sein und dabei sowohl eine konventionelle als auch vorzugsweise eine eingeengte Homologenverteilung aufweisen. Exemplarisch genannt seien Di-n-octylsulfosuccinat und Monolauryl-3EO- sulfosuccinat in Form ihrer Natriumsalze. Betaine
Betaine stellen bekannte Tenside dar, die überwiegend durch Carboxyalkylierung, vorzugsweise Carb- oxymethylierung von aminischen Verbindungen hergestellt werden. Vorzugsweise werden die Ausgangsstoffe mit Halogencarbonsäuren oder deren Salzen, insbesondere mit Natriumchloracetat kondensiert, wobei pro Mol Betain ein Mol Salz gebildet wird. Ferner ist auch die Anlagerung von ungesättigten Carbonsäuren wie beispielweise Acrylsäure möglich. Zur Nomenklatur und insbesondere zur Unterscheidung zwischen Betainen und "echten" Amphotensiden sei auf den Beitrag von U.PIoog in Seifen-Öle-Fette-Wachse, 198, 373 (1982) verwiesen. Weitere Übersichten zu diesem Thema finden sich beispielsweise von A.O'Lennick et al. in HAPPI, Nov. 70 (1986), S.Holzman et al. in Tens. Det. 23, 309 (1986), R.Bibo et al. in Soap Cosm.Chem.Spec. Apr. 46 (1990) und P.EIIis et al. in Euro Cosm. 1, 14 (1994). Beispiele für geeignete Betaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (IV) folgen,
R6
I R5-N-(CH2)χCOOY (IV)
I
R7
in der R5 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R7 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, x für Zahlen von 1 bis 6 und Y für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, Decyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/1 .-Kokos- alkyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethylmethyl- amin, Oleyldimethylamin, Ci6/ι_-Talgalkyldimethylamin, Guerbetamine sowie deren technische Gemische.
Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (V) folgen,
I R8CO-NH-(CH2)x-N-(CH2)yCOOY (V)
I R7
in der R8CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, y für Zahlen von 1 bis 3 steht und R6, R7, x und Y die oben angegebenen Bedeutungen haben. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlen- Stoffatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitin- säure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroseiinsäure, Linol- säure, Linolensaure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure, Erucasäure Guerbetsäuren sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, "N,N-Dimethyl- aminopropylamin, N,N-Diethylaminoethylamin und N,N-Diethylaminopropylamin, die mit Natriumchlor- acetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von Cβ -Kokos- fettsäure-N,N-dimethylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen als geeignete Ausgangsstoffe für die im Sinne der Erfindung einzusetzenden Betaine auch Imidazoline in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethylentriamin erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offen- kettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum C12/1 .-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Alkyl- und/oder Alkenyloligoglykoside
In einer besonderen Ausführungsform der Erfindung werden die anionischen bzw. amphoteren Tensiden gemeinsam mit nichtionischen Tensiden vom Typ der Alkyl- und/oder Alkenyloligoglykosiden getrocknet, die der Formel (VI) folgen,
R90-[G]P (VI)
in der R9 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie, beispielsweise durch sauer katalysierte Acetalisierung von Glucose mit Fettalkoholen erhalten werden. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/ oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1 ,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1 ,7 ist und insbesondere zwischen 1 ,2 und 1 ,4 liegt.
Der Alkyl- bzw. Alkenylrest R9 kann sich von primären Alkoholen mit 4 bis 11 , vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8- Cι0 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem Cβ-Cis-Kokosfett- alkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% Ci2-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer Cg/n-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R9 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol, Guerbetalkoholen sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/1 .-Kokosalkohol mit einem DP von 1 bis 3.
Die gemeinsame Trocknung kann dergestalt erfolgen, daß man die wäßrigen Pasten der unterschiedlichen Tenside zuvor vermischt, homogenisiert und dann in den Dünnschichtverdampfer einbringt. Es ist jedoch ebenfalls möglich, die Pasten getrennt einzudosieren und die Vermischung in situ vorzunehmen. Das Gewichtsverhältnis zwischen den anionischen/amphoteren Tensiden und Alkyl- und/oder Alkenyloligoglykosiden kann dabei - bezogen auf den Waschaktivsubstanzgehalt - 10 : 90 bis 90 : 10, vorzugsweise 25 : 75 bis 75 : 25 betragen. Besonders bevorzugt sind dabei Mischungen von Sulfosuccinaten und Alkyloligoglucosiden im Gewichtsverhältnis 40 : 60 bis 60 : 40, die sich nach der Trocknung hervorragend zur Herstellung von Stückseifen eignen.
Trocknen und Granulieren im Flashdryer
Die gleichzeitige Trocknung und Granulierung erfolgt in einem horizontal angeordneten Dünnschichtverdampfer bzw. -trockner mit rotierenden Einbauten, wie er z.B. von der Firma VRV unter der Bezeichnung „Flashdryer" oder der Firma VOMM unter der Bezeichnung „Turbodryer" vertrieben wird. Hierbei handelt es sich, vereinfacht dargestellt, um ein Rohr, das über mehre Zonen hinweg unterschiedlich temperiert werden kann. Über eine oder mehrere Wellen, die mit Blättern oder Flugscharen als rotierende Einbauten versehen sind, wird das pastöse Einsatzmaterial, das über eine Pumpe eindosiert wird, gegen die beheizte Wandung geschleudert, an der die Trocknung in einer dünnen Schicht von typischerweise 1 bis 10 mm Stärke erfolgt. Im Sinne der Erfindung hat es sich als vorteilhaft erwiesen, an den Dünnschichtverdampfer einen Temperaturgradienten von 130 (Produkteinlaß) auf 20°C (Produktaustrag) anzulegen. Hierzu werden beispielsweise die beiden ersten Zonen des Verdampfers auf 120 bis 130°C geheizt und die letzte bis auf 20°C gekühlt. Der Dünnschichtverdampfer bzw. -trockner wird bei atmosphärischem Druck betrieben und im Gegenstrom mit Luft, vorzugsweise aber mit einem alkalisch eingestellten Gasstrom, z.B. Ammoniak (Durchsatz 50 bis 150 m3/h) begast." -Die Eintrittstenmperatur des Gases liegt in der Regel bei 20 bis 30, die Austrittstemperatur bei 90 bis 110°C. Die Durchsatzmenge der Tensidpasten ist natürlich von der Größe des Trockners abhängig, liegt beispielsweise bei 5 bis 25 kg/h. Es empfiehlt sich, die Pasten bei der Einspeisung auf 40 bis 60°C zu temperieren und ihnen zur Vermeidung von Hydrolyseprozessen 0,05 bis 0,5 Gew.-% - bezogen auf den Feststoffgehalt - an Alkalicarbonat, vorzugsweise Natriumcarbonat, zuzusetzen.
Ein weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, das wäßrige Tensid auf der heißen Kontaktfläche mit bereits getrocknetem Endprodukt zu vermischen. Hierzu wird ein Produktteilstrom von etwa 10 bis 40, vorzugsweise 15 bis 25 Gew.-% - bezogen auf den Massenfluß der eingesetzten Paste - am Austritt des Trockners entnommen und mit Hilfe einer Feststoffdosierschnecke in unmittelbarer Nähe des Pasteneintritts direkt in den Apparat rückdosiert. Durch diese Maßnahme gelingt es, die Klebrigkeit des wäßrigen Tensids zu vermindern und einen besseren Wandkontakt des Produktes auf der gesamten zur Verfügung stehenden Oberfläche herzustellen. Hierdurch wird der Produkttransport vergleichmäßigt und die Produkttrocknung intensiviert. Gleichzeitig kann durch die Zugabe des Endproduktes die Korngrößenverteilung des Granulats gezielt zu gröberen Produkten verschoben, d.h. der unerwünschte Feinstaubanteil signifikant reduziert werden. Mit dieser Maßnahme ist eine Durchsatzsteigerung bezogen auf analoge Prozeßbedingungen ohne Feststoffrückführung zu erreichen.
Nach der Trocknung hat es sich weiterhin als sehr vorteilhaft erwiesen, die noch etwa 50 bis 70°C heißen Granulate auf ein Förderband, vorzugsweise eine Schwingrinne oder dergleichen zu geben und dort rasch, d.h. innerhalb einer Verweilzeit von 20 bis 60 s, mit Umgebungsluft auf Temperaturen von etwa 30 bis 40°C abzukühlen. Zur weiteren Verbesserung der Beständigkeit gegenüber unerwünschter Wasseraufnahme kann man die Granulate besonders hygroskopischer Tenside auch anschließend durch Zugabe von 0,5 bis 2 Gew.-% Kieselsäure abpudem. Gewerbliche Anwendbarkeit
Die nach dem erfindungsgemäßen Verfahren erhältlichen Granulate können anschließend mit weiteren Inhaltsstoffen von pulverförmigen oberflächenaktiven Mitteln, wie beispielsweise Türmpulvern für Waschmittel abgemischt werden. Es ist ferner problemlos möglich, die Pulver in wäßrige Zubereitungen einzuarbeiten. Tatsächlich werden bei Verwendung der Pulver gegenüber den wäßrigen Ausgangspasten keine Unterschiede in den anwendungstechnischen Eigenschaften beobachtet. Auch gerade in Stückseifen vom Combibar- oder Syndettyp, Zahnpasten oder zur Herstellung von Emulgatoren für die Emulsionspolymerisation lassen sich die Granulate beispielsweise zusammen mit Fettsäuren, Fettsäuresalzen, Fettalkoholen, Stärke, Polyglycolen und dergleichen ohne weiteres einarbeiten.
Beispiele
Beispiele 1 bis 5
Die Herstellung der Granulate erfolgte in einem Flashdryer der VRV S.p.A., Mailand/IT. Es handelte sich hierbei um einen horizontal angeordneten Dünnschichtverdampfer (Länge 1100 mm, Innendurchmesser : 155 mm) mit 4 Wellen und 22 Blättern, deren Abstand zur Wandung 2 mm betrug. Der Trockner besaß drei separate Heiz- bzw. Kühlzonen und eine Wärmeaustauscherfläche von insgesamt 0,44 m2. Der Betrieb erfolgte bei Normaldruck. Über eine Schwingpumpe wurden jeweils auf 50°C temperierte, gegebenenfalls mit 1 Gew.-% Natriumcarbonat additivierte wäßrige Tensidpasten (Fest- stoffgehalt 70 Gew.-%) mit einem Durchsatz von 11 ,5 kg/h in den Dünnschichtverdampfer gepumpt, dessen Heizzonen 1 und 2 auf 125°C und dessen Kühlzone 3 auf 20°C eingestellt worden waren. Die Geschwindigkeit der Rotoren betrug 24 m/s. Der Flashdryer wurde mit Luft bzw. einem Luft/ Ammoniakgemisch 1 :1 (ca. 110 m3/h) begast; die Gasaustrittstemperatur betrug ca. 65°C. Das vorgetrocknete, noch etwa 60°C heiße Granulat wurde auf eine Schwingrinne (Länge 1 m) gegeben, mit Raumluft begast und innerhalb von 30 s auf etwa 40°C abgekühlt. Anschließend wurde es mit etwa 1 Gew.-% Kieselsäure (Sipernat® 50 S) abgepudert. Es wurde ein trockenes, rein-weißes, auch nach längerer Lagerung an der Luft rieselfähiges und nicht-klumpendes Granulat erhalten. Die Kenndaten des Granulats sind in Tabelle 1 wiedergegeben.
Tabelle 1 :
Kenndaten des Flashdryer Granulats (Prozentangaben als Gew.-%)
1) Zusatz von Natriumcarbonat zur Paste, Luft/Ammoniak-Gasstrom
2) Zusatz von Natriumcarbonat zur Paste RW = Restwassergehalt im Granulat
SD = Schüttdichte Beispiele 6 bis 11
Analog Beispiel 1 wurden Alkylsulfatpasten getrocknet. Dabei wurde jedoch ein Produktteilstrom (Beispiele 7, 8 und 11 ) am Austritt des Trockners entnommen und mit Hilfe einer Feststoffdosierschnecke in unmittelbarer Nähe des Pasteneintritts direkt in den Apparat zurückdosiert. Die Ergebnisse sind in Tabelle 2 zusammengefaßt.
Tabelle 2
Trocknung von AS-Pasten mit Produktrückführung (Prozentangaben als Gew.-%)
1) Kokosalkylsulfat-Natriumsalz, 35 Gew.-% Aktivsubstanz
2) Lauryisulfat-Natriumsalz, 35 Gew.-% Aktivsubstanz
Die Beispiele 6 bis 8 zeigen, daß bei gleichbleibendem Wassergehalt des Endproduktes der Durchsatz von Paste von 8,5 auf 13,5 kg/h gesteigert werden konnte, wenn die Pulverrückführung eingesetzt wurde, Die rückgeführte Menge konnte dabei in weiten Bereichen variiert werden (Beispiele 7 und 8). Das Produkt gemäß Beispiel 8 ist gegenüber Beispiel 1 wesentlich gröber. Die Beispiele 9 und 10 zeigen, daß eine Durchsatzerhöhung ohne Pulverrückführung zu einem Anstieg des Produktwassergehaltes von 0,7 auf 1 ,3 Gew.-% führen kann. Die Pulverrückführung (Beispiel 11) reduzierte die Produktfeuchte und führte wieder zu Pulvern mit geringerem Staubanteil.

Claims

Patentansprüche
1. Verfahren zur Herstellung von festen Waschmittelrohstoffen durch gleichzeitige Trocknung und Granulierung von wäßrigen Pasten von anionischen und/oder amphoteren Tensiden in einem horizontalen Dünnschichtverdampfer bzw. -trockner mit rotierenden Einbauten, dadurch gekennzeichnet, daß man die Trocknung bei einer-Temperatur im Bereich von 120 bis 130°C durchführt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man wäßrige Pasten von anionischen und/oder amphoteren Tensiden einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Seifen, Alkylbenzolsulfonaten, Alkansulfonaten, Olefinsulfonaten, Alkylethersulfonaten, Gly- cerinethersulfonaten, α-Methylestersulfonaten, Sulfofettsäuren, Alk(en)ylsulfaten, Alk(en)ylether- sulfaten, Glycerinethersulfaten, Hydroxymischethersulfaten, Monoglycerid(ether)sulfaten, Fett- säureamid(ether)sulfaten, Mono- und Dialkylsulfosuccinaten, Mono- und Dialkylsulfosuccinamaten, Sulfotriglyceriden, Amidseifen, Ethercarbonsäuren und deren Salzen, Fettsäureisethionaten, Fett- säuresarcosinaten, Fettsäuretauriden, N-Acylaminosäuren, Alkyloligoglucosidsulfaten, Proteinfettsäurekondensaten, Alkyl(ether)phosphaten, Alkylbetainen, Alkylamidobetainen, Aminopropio- naten, Aminoglycinaten, Imidazoliniumbetainen und Sulfobetainen.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man wäßrige Pasten von Alkyl- und/oder Alkenylsulfaten der Formel (I) einsetzt,
R 0-S03X (I)
in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man wäßrige Pasten von Alkylethersulfaten der Formel (II) einsetzt,
R 0-(CH2CH2θ)mS03X (II)
in der R2 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, m für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man wäßrige Pasten von Sulfosuccinaten der Formel (III) einsetzt,
S03X
I
R3(OCH2CH2)POC-CH-CH2-COO(CH2CH20)qR4 (III)
in der R3 für einen Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, R4 für R3 oder X, p und q unabhängig voneinander für 0 oder Zahlen von 1 bis 10 und X für ein Alkali- oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolamonium oder Glucammonium steht.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man wäßrige Pasten von Betainen der Formel (IV) einsetzt,
R6
I
R5-N-(CH2)χCOOY (IV)
I
R7
in der R5 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R7 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, x für Zahlen von 1 bis 6 und Y für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man Betaine der Formel (V) einsetzt,
R6
I
R8CO-NH-(CH2)χ-N-(CH2)yCOOY (V)
I R7
in der R8CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, y für Zahlen von 1 bis 3 steht und R6, R7, x und Y die oben angegebenen Bedeutungen haben.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man die Trocknung in Gegenwart eines alkalisch eingestellten Gasstroms durchführt.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man die Trocknung in Gegenwart von Alkalicarbonaten durchführt.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man die wäßrige Tensidpaste auf der heißen Kontaktfläche mit bereits getrocknetem Endprodukt rückvermischt.
EP98913552A 1997-02-26 1998-02-17 Verfahren zur herstellung von waschmittelrohstoffen Expired - Lifetime EP0966515B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19707649A DE19707649C1 (de) 1997-02-26 1997-02-26 Verfahren zur Herstellung von Waschmittelrohstoffen
DE19707649 1997-02-26
PCT/EP1998/000891 WO1998038278A1 (de) 1997-02-26 1998-02-17 Verfahren zur herstellung von waschmittelrohstoffen

Publications (2)

Publication Number Publication Date
EP0966515A1 true EP0966515A1 (de) 1999-12-29
EP0966515B1 EP0966515B1 (de) 2001-10-24

Family

ID=7821512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98913552A Expired - Lifetime EP0966515B1 (de) 1997-02-26 1998-02-17 Verfahren zur herstellung von waschmittelrohstoffen

Country Status (11)

Country Link
US (1) US6191097B1 (de)
EP (1) EP0966515B1 (de)
JP (1) JP2002508783A (de)
KR (1) KR20000075533A (de)
AT (1) ATE207528T1 (de)
AU (1) AU722284B2 (de)
BR (1) BR9807268A (de)
CA (1) CA2297162A1 (de)
DE (2) DE19707649C1 (de)
ES (1) ES2166156T3 (de)
WO (1) WO1998038278A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9417354D0 (en) 1994-08-26 1994-10-19 Unilever Plc Detergent particles and process for their production
GB9604000D0 (en) * 1996-02-26 1996-04-24 Unilever Plc Production of anionic detergent particles
US6042841A (en) * 1998-03-16 2000-03-28 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Cosmetic method of treating skin
DE19853893A1 (de) * 1998-11-23 2000-05-25 Cognis Deutschland Gmbh Verfahren zur Herstellung von Tensidgranulaten
DE19911040A1 (de) * 1999-03-12 2000-09-21 Cognis Deutschland Gmbh Tensidgranulate
DE10017191A1 (de) * 2000-04-07 2001-10-18 Cognis Deutschland Gmbh Feuchttücher (I)
US6491746B2 (en) 2000-06-14 2002-12-10 Gage Products Company Protective coating
GB0023488D0 (en) 2000-09-25 2000-11-08 Unilever Plc Production of anionic surfactant granules by in situ neutralisation
GB0023487D0 (en) 2000-09-25 2000-11-08 Unilever Plc Production of anionic surfactant granules by in situ neutralisation
GB0023489D0 (en) 2000-09-25 2000-11-08 Unilever Plc Production of anionic surfactant granules by in situ neutralisation
US7259202B1 (en) * 2003-04-10 2007-08-21 Maureen Soens Method for pre-treating stencils to ensure paint removal
EP1505147B1 (de) 2003-08-06 2008-04-02 Kao Corporation Verfahren zur Herstellung eines granularen Aniontensides
WO2006004572A2 (en) * 2004-01-26 2006-01-12 The Procter & Gamble Company Dishwashing wipe
JP5020482B2 (ja) 2005-01-13 2012-09-05 花王株式会社 アニオン界面活性剤粉粒体
US10059847B2 (en) 2012-07-27 2018-08-28 Cal-West Specialty Coatings, Inc. Protective dust suppression coating systems for paint booths

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919846A (en) * 1986-05-27 1990-04-24 Shiseido Company Ltd. Detergent composition containing a quaternary ammonium cationic surfactant and a carboxylate anionic surfactant
US5100510A (en) * 1988-04-28 1992-03-31 Colgate-Palmolive Company Apparatus for manufacturing high bulk density particulate fabric softening synthetic anionic organic detergent compositions
JPH0816237B2 (ja) * 1989-02-23 1996-02-21 花王株式会社 高密度洗剤用ペースト原料の連続乾燥方法
DE4209339A1 (de) * 1992-03-23 1993-09-30 Henkel Kgaa Verfahren zur Herstellung rieselfähiger Wasch- und Reinigungsmittelgranulate und/oder -teilgranulate
JP3179186B2 (ja) * 1992-06-01 2001-06-25 花王株式会社 アニオン活性剤粉粒体の製造方法
GB9417356D0 (en) * 1994-08-26 1994-10-19 Unilever Plc Detergent particles and process for their production
DE19520105A1 (de) * 1994-09-01 1996-03-07 Henkel Kgaa Verfahren zur Herstellung wasserfreier, rieselfähiger Tensidpulver
JPH08170093A (ja) * 1994-12-16 1996-07-02 Lion Corp α−スルホ脂肪酸アルキルエステル塩粉粒体の製造方法
GB9506360D0 (en) * 1995-03-28 1995-05-31 Unilever Plc A method of preparing polymer granules
DE19524464C2 (de) * 1995-07-10 2000-08-24 Cognis Deutschland Gmbh Verfahren zur Herstellung von Zuckertensidgranulaten
DE19534371C1 (de) * 1995-09-15 1997-02-20 Henkel Kgaa Verfahren zur Herstellung wasser- und staubfreier Zuckertensidgranulate
US5866530A (en) * 1995-11-25 1999-02-02 Henkel Kommanditgesellschaft Auf Aktien Non-aqueous liquid mixtures of alkyl polyglycoside and alkyl polyalkylene glycol ether useful in various detergent applications
US5780421A (en) * 1996-03-05 1998-07-14 Henkel Corporation Sulfated/sulfonated surfactants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9838278A1 *

Also Published As

Publication number Publication date
DE59801861D1 (de) 2001-11-29
AU722284B2 (en) 2000-07-27
WO1998038278A1 (de) 1998-09-03
BR9807268A (pt) 2000-05-23
CA2297162A1 (en) 1998-09-03
KR20000075533A (ko) 2000-12-15
DE19707649C1 (de) 1998-10-22
AU6821498A (en) 1998-09-18
US6191097B1 (en) 2001-02-20
ATE207528T1 (de) 2001-11-15
JP2002508783A (ja) 2002-03-19
ES2166156T3 (es) 2002-04-01
EP0966515B1 (de) 2001-10-24

Similar Documents

Publication Publication Date Title
EP0972006B1 (de) Verfahren zur herstellung von aniontensidgranulaten
EP0966515B1 (de) Verfahren zur herstellung von waschmittelrohstoffen
DE2050560C3 (de)
EP1288281B1 (de) Geminitenside und Polyethylenglycol
EP0632826B1 (de) Verfahren zur herstellung rieselfähiger wasch- und reinigungsmittelgranulate und/oder -teilgranulate
EP0796318B1 (de) Feste, rieselfähige zubereitungen
DE19524464C2 (de) Verfahren zur Herstellung von Zuckertensidgranulaten
WO1995008616A1 (de) Detergensgemische und wasch- oder reinigungsmittel mit verbesserten löseeigenschaften
DE10004678A1 (de) Tensidgranulate
EP1348756A1 (de) Verfahren zur Herstellung fester Mittel
DE19806495C1 (de) Verfahren zur Herstellung wasser- und staubfreier Aniontensidgranulate
DE19543990C2 (de) Flüssige Vorprodukte für Wasch-, Spül- und Reinigungsmittel
EP0929647B1 (de) Verfahren zur herstellung wasser- und staubfreier aniontensidgranulate
EP1131400B1 (de) Verfahren zur herstellung von tensidgranulaten
DE19817509C2 (de) Verwendung von Fettsäurepolyglycolestersulfaten
DE19801085A1 (de) Homogene Tensidgranulate für die Herstellung von stückigen Wasch- und Reinigungsmitteln
WO1999010470A1 (de) Verwendung von fettsäurepolyglycolestersulfaten
WO1996020271A1 (de) Verfahren zur herstellung von wasserfreien tensiden
EP1007613A1 (de) Verfahren zur herstellung wasser- und staubfreier aniontensidgranulate
DE19641277A1 (de) Syndetseifen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011024

REF Corresponds to:

Ref document number: 207528

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59801861

Country of ref document: DE

Date of ref document: 20011129

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020217

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166156

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

BERE Be: lapsed

Owner name: COGNIS DEUTSCHLAND G.M.B.H.

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

26 Opposition filed

Opponent name: UNILEVER PLC

Effective date: 20020718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: UNILEVER PLC

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

NLS Nl: assignments of ep-patents

Owner name: COGNIS DEUTSCHLAND II GMBH & CO. KG

Owner name: COGNIS CHEMIE GMBH & CO. KG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20030905

NLR2 Nl: decision of opposition

Effective date: 20030905

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080203

Year of fee payment: 11

Ref country code: IT

Payment date: 20080226

Year of fee payment: 11

Ref country code: GB

Payment date: 20080213

Year of fee payment: 11

Ref country code: DE

Payment date: 20080214

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080208

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

NLS Nl: assignments of ep-patents

Owner name: COGNIS IP MANAGEMENT GMBH

Effective date: 20090507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090217

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090217

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090217