EP0961921A2 - Thermischer membransensor und verfahren zu seiner herstellung - Google Patents

Thermischer membransensor und verfahren zu seiner herstellung

Info

Publication number
EP0961921A2
EP0961921A2 EP98963367A EP98963367A EP0961921A2 EP 0961921 A2 EP0961921 A2 EP 0961921A2 EP 98963367 A EP98963367 A EP 98963367A EP 98963367 A EP98963367 A EP 98963367A EP 0961921 A2 EP0961921 A2 EP 0961921A2
Authority
EP
European Patent Office
Prior art keywords
membrane
layer
silicon
sensor
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98963367A
Other languages
German (de)
English (en)
French (fr)
Inventor
Klaus Heyers
Wilhelm Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0961921A2 publication Critical patent/EP0961921A2/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/028Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples using microstructures, e.g. made of silicon

Definitions

  • the invention relates to a method for producing a thermal membrane sensor over a silicon substrate according to the preamble of claim 1 and to membrane sensors produced by this method.
  • a method for producing a thermal membrane sensor over a silicon substrate according to the preamble of claim 1 and to membrane sensors produced by this method.
  • Such a method and such sensor sensors are known from "ITG Technical Report 126: Sensor Technology and Application", pp. 285-289.
  • Thin layers deposited over a silicon substrate, in particular silicon layers, under which there is a spacing free space and which thus function as a membrane, are used in technology for various purposes.
  • An area of application for such membrane components is sensors and here in particular thermal membrane sensors with which physical quantities, e.g. a mass flow, can be detected by detecting a change in temperature in the thin membrane layer.
  • the thin membrane layer is thermally decoupled from the substrate as well as possible.
  • a thin membrane is used as the sensor carrier by anisotropic backside etching of a silicon wafer generated.
  • a double-sided lithography is used for masking, which is only possible through increased equipment complexity.
  • the deep etching pits form a mechanical weak point through the entire wafer, which forces it to be very careful when it is processed further in order not to break the wafer plate. Since the etch stop planes run obliquely in the crystal, the opening on the back is larger than on the front. This increases the required wafer area per sensor considerably.
  • the use of complicated layer packages made of metal and insulators on the silicon membrane can cause great problems with regard to drift of the layers and long-term stability, for example by detachment of the layers from one another.
  • I forming an etching mask leaving a region on the silicon substrate in which the membrane is to be formed on a main surface of the substrate; II electrochemically etching the exposed substrate area to a certain depth to form porous silicon within the exposed area; III removing the mask; IV depositing a thin membrane layer of silicon carbide or nitride; V opening predetermined areas in the membrane layer of silicon carbide or nitride from its upper surface; VI Selective formation of circuit structures on the upper surface of the membrane layer, and VII Removing the porous silicon layer (2) under the membrane layer by sacrificial layer etching.
  • circuit structures in the known thermal membrane sensor have been deposited by sputtering metal atoms on the upper surface of the membrane and are therefore sensitive to external mechanical and chemical influences.
  • step VI such a method is characterized in that in step VI the circuit structures are implanted in the upper surface of the membrane layer.
  • porous silicon thus offers the possibility of producing a silicon carbide or silicon nitride membrane inexpensively and quickly over the silicon substrate, and then, according to the invention, a masked or thermoresistive doping Manufacture thermoelectric sensor so that its circuit structures are largely protected against external mechanical and chemical influences.
  • the process according to the invention is not only suitable for the production of a thermal membrane sensor, but also for any type of thin elements using membranes exposed over a silicon substrate, e.g. also for the production of actuators that contain a membrane deflected by pressure or vacuum.
  • the membrane thickness achievable with the method is in a range from a few 10 to a few 100 n.
  • the porous silicon layer is preferably formed in the silicon substrate by an electrochemical anodizing process in hydrofluoric acid electrolyte.
  • the layer of silicon carbide or silicon nitride deposited above is preferably formed by a low-temperature LPCVD or PECVD process. Alternatively, such a thin layer can also be deposited by a reactive sputtering process. It should be emphasized here that a silicon carbide layer should be preferred with regard to its greater mechanical and chemical strength or resistance.
  • the openings in the silicon carbide or nitride layer are preferably made by a dry etching process, e.g. formed in a plasma etcher.
  • the desired conductor tracks for the thermo-resistive elements are now defined by a further lithography step and generated in at least one implantation step. The conductor tracks are formed, for example, from aluminum.
  • thermoresistive unit can be placed directly in the upper surface of the membrane with the help of a surface Design the micro-electronics so that the thermal sensor is CMOS-compatible and insensitive to external chemical and mechanical influences.
  • the inventive method can also be used to produce a thermal membrane sensor which uses the thermoelectric effect by using a thermopile made of two different substances with a large Seebeck effect, e.g. Antimony / Wi ⁇ muth or silicon / aluminum, is implanted in the upper surface of the membrane. An additional implantation is carried out after a further lithography.
  • a thermopile made of two different substances with a large Seebeck effect e.g. Antimony / Wi ⁇ muth or silicon / aluminum
  • a thin protective coating made of silicon carbide or silicon nitride can be applied over the entire surface.
  • the production method according to the invention can also be used to produce a thermal membrane sensor used as a radiation sensor (bolometer).
  • a radiation sensor bolometer
  • an additional absorber layer is applied, which consists, for example, of black gold or black silicon.
  • Black gold shows a broadband strong absorption of approximately 98% and is generated by thermal evaporation of gold in a low-pressure nitrogen atmosphere.
  • black silicon is generated, for example, in a plasma etcher by suitable process control.
  • porous silicon is used as
  • Support material and support for the thin membrane layer has served in a suitable solvent, such as.
  • porous silicon has an extremely enlarged surface area compared to the educt.
  • the ratio of the surface of nanoporous silicon to the surface of bulk silicon is approximately 10 6 .
  • the above-described method according to the invention makes it possible for the first time to manufacture a thermal sensor in surface micromechanics CMOS-compatible, the active surface of which has a very large substrate spacing due to the technology used for the porous silicon, and thus a substantial thermal decoupling from the substrate.
  • the support material of the membrane in particular silicon carbide, is chemically and mechanically very resistant.
  • thermal membrane sensor Due to the particularly simple process step sequence and the low wafer area consumption in comparison to conventional structuring steps (e.g. with KOH), the production of a thermal membrane sensor can be carried out very inexpensively. All process steps are available in semiconductor manufacturing.
  • the drawing figures 1A-1E show individual process steps of a preferred exemplary embodiment in the form of a schematic cross section through a wafer area in which a thermal membrane sensor is formed.
  • FIG. 1A shows process steps I and II, by means of which an etching mask 3 in the form of a photoresist is first applied to an upper surface of a correspondingly pretreated substrate block 1, which then exposed and then removed (step I).
  • the masked substrate 1 is then locally porously etched to a defined depth by electrochemical anodization in a hydrofluoric acid electrolyte, as a result of which a layer 2 of porous silicon is formed (step II).
  • Fig. 1B shows that over the layer 2 made of porous silicon after removing the mask 3, a thin membrane layer 4 made of silicon carbide or nitride, particularly preferably made of silicon carbide, either by a low-temperature LPCVD process or a low-temperature PECVD process or by reactive sputtering is separated (steps III and IV).
  • FIG. IC shows, the upper surface of the thin membrane layer 4 is lithographically structured and the membrane layer 4 by a dry etching process, e.g. in a plasma etcher, which creates openings 5, 7 which extend through the membrane layer 4 to the porous silicon layer 2 (step V).
  • a dry etching process e.g. in a plasma etcher
  • openings 5, 7 which extend through the membrane layer 4 to the porous silicon layer 2 (step V).
  • the membrane, the central region of layer 4 that can be seen in FIG. IC is connected to the peripheral region 4 'of the membrane layer by bridges.
  • thermoresistive elements in particular heater and sensor, are now defined by a further lithography step and implanted in an implantation step in the upper surface of the membrane layer 4 (step IV).
  • Aluminum is particularly suitable for implanting conductor tracks.
  • thermoresistive elements in the form of a thermopile can also be formed by implanting two different substances with a large Seebeck effect in the upper surface of the membrane 4. Such substances are, for example, antimony / bismuth and silicon / aluminum. there an additional implantation is carried out after a further lithography step.
  • an additional thin, all-over protective layer 9 made of silicon carbide or silicon nitride can be applied to protect against soiling, which can impair the function of the sensor.
  • the thermal membrane sensor is used as a radiation meter (bolometer), an additional absorber layer (not shown in the figure), e.g. made of black gold.
  • an additional absorber layer e.g. made of black gold.
  • the sacrificial layer 2 made of porous silicon is removed by means of a suitable solvent, such as e.g. Ammonia, removed.
  • a suitable solvent such as e.g. Ammonia

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
EP98963367A 1997-11-25 1998-11-23 Thermischer membransensor und verfahren zu seiner herstellung Ceased EP0961921A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19752208 1997-11-25
DE19752208A DE19752208A1 (de) 1997-11-25 1997-11-25 Thermischer Membransensor und Verfahren zu seiner Herstellung
PCT/DE1998/003444 WO1999027325A2 (de) 1997-11-25 1998-11-23 Thermischer membransensor und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP0961921A2 true EP0961921A2 (de) 1999-12-08

Family

ID=7849774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98963367A Ceased EP0961921A2 (de) 1997-11-25 1998-11-23 Thermischer membransensor und verfahren zu seiner herstellung

Country Status (5)

Country Link
US (1) US6825057B1 (ja)
EP (1) EP0961921A2 (ja)
JP (1) JP2001510641A (ja)
DE (1) DE19752208A1 (ja)
WO (1) WO1999027325A2 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118103C (zh) * 1998-10-21 2003-08-13 李韫言 微细加工热辐射红外传感器
US7427526B2 (en) 1999-12-20 2008-09-23 The Penn State Research Foundation Deposited thin films and their use in separation and sacrificial layer applications
DE10030352A1 (de) * 2000-06-21 2002-01-10 Bosch Gmbh Robert Mikromechanisches Bauelement, insbesondere Sensorelement, mit einer stabilisierten Membran und Verfahren zur Herstellung eines derartigen Bauelements
DE10032579B4 (de) 2000-07-05 2020-07-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10058009A1 (de) * 2000-11-23 2002-06-06 Bosch Gmbh Robert Strömungssensor
FR2822541B1 (fr) * 2001-03-21 2003-10-03 Commissariat Energie Atomique Procedes et dispositifs de fabrication de detecteurs de rayonnement
DE10117486A1 (de) * 2001-04-07 2002-10-17 Bosch Gmbh Robert Verfahren zur Herstelung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
DE10136164A1 (de) * 2001-07-25 2003-02-20 Bosch Gmbh Robert Mikromechanisches Bauelement
EP1306348B1 (de) * 2001-10-24 2007-05-16 Robert Bosch Gmbh Verfahren zur Herstellung einer Membransensoreinheit sowie Membransensoreinheit
EP1306349B1 (de) * 2001-10-24 2007-03-14 Robert Bosch Gmbh Verfahren zur Herstellung eines Membransensor-Arrays sowie Membransensor-Array
DE10161202C1 (de) 2001-12-13 2003-05-08 Bosch Gmbh Robert Verfahren zur Reduktion der Dicke eines Silizium-Substrates
US7309620B2 (en) * 2002-01-11 2007-12-18 The Penn State Research Foundation Use of sacrificial layers in the manufacture of high performance systems on tailored substrates
US6787387B2 (en) 2002-06-24 2004-09-07 Matsushita Electric Industrial Co., Ltd. Electronic device and method for fabricating the electronic device
DE10305442A1 (de) * 2003-02-11 2004-08-19 Robert Bosch Gmbh Verfahren zur Herstellung einer mikromechanischen Vorrichtung und Vorrichtung
JP5345404B2 (ja) 2006-03-14 2013-11-20 インスティチュート フュア ミクロエレクトロニク シュトゥットガルト 集積回路の製造方法
DE102006059394B4 (de) * 2006-12-08 2019-11-21 Institut Für Mikroelektronik Stuttgart Integrierte Schaltung und Verfahren zu deren Herstellung
DE102006041396A1 (de) 2006-09-04 2008-03-06 Robert Bosch Gmbh Mikrosieb zur Filterung von Partikeln in Mikrofluidik-Anwendungen und dessen Herstellung
US7500392B1 (en) * 2007-10-11 2009-03-10 Memsys, Inc. Solid state microanemometer device and method of fabrication
US8058615B2 (en) * 2008-02-29 2011-11-15 Sionyx, Inc. Wide spectral range hybrid image detector
US8293568B2 (en) * 2008-07-28 2012-10-23 Day4 Energy Inc. Crystalline silicon PV cell with selective emitter produced with low temperature precision etch back and passivation process
WO2010019161A1 (en) * 2008-08-15 2010-02-18 Sionyx, Inc. Wideband semiconducting light detector
DE102008041750A1 (de) * 2008-09-02 2010-03-18 Robert Bosch Gmbh Thermisch entkoppeltes mikrostrukturiertes Referenzelement für Sensoren
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
KR102234065B1 (ko) 2009-09-17 2021-03-31 사이오닉스, 엘엘씨 감광성 이미징 장치 및 이와 관련된 방법
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US20120146172A1 (en) 2010-06-18 2012-06-14 Sionyx, Inc. High Speed Photosensitive Devices and Associated Methods
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
JP2014525091A (ja) 2011-07-13 2014-09-25 サイオニクス、インク. 生体撮像装置および関連方法
US9595655B2 (en) * 2011-09-07 2017-03-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
US8552380B1 (en) * 2012-05-08 2013-10-08 Cambridge Cmos Sensors Limited IR detector
CN102829880B (zh) * 2012-08-23 2014-04-16 江苏物联网研究发展中心 基于黒硅的高性能mems热电堆红外探测器及其制备方法
US9212940B2 (en) * 2012-09-07 2015-12-15 Xiang Zheng Tu Vacuum cavity-insulated flow sensors
JP6466346B2 (ja) 2013-02-15 2019-02-06 サイオニクス、エルエルシー アンチブルーミング特性を有するハイダイナミックレンジcmos画像センサおよび関連づけられた方法
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9209345B2 (en) 2013-06-29 2015-12-08 Sionyx, Inc. Shallow trench textured regions and associated methods
CN104627949A (zh) * 2013-11-14 2015-05-20 盛美半导体设备(上海)有限公司 微电子机械系统结构形成方法
DE102015226197A1 (de) * 2015-12-21 2017-06-22 Robert Bosch Gmbh Verfahren zur Herstellung eines Strömungssensors auf Dünnfilmbasis sowie ein solcher Strömungssensor
CN105439074B (zh) * 2015-12-24 2017-06-16 杭州士兰微电子股份有限公司 空腔薄膜及其制造方法
CN105502278B (zh) * 2015-12-24 2017-11-24 杭州士兰微电子股份有限公司 空腔薄膜及其制造方法
IT201600109345A1 (it) * 2016-10-28 2018-04-28 Consorzio Delta Ti Res Generatore termoelettrico integrato e relativo metodo di fabbricazione

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576996A (en) * 1969-04-14 1971-05-04 Us Air Force Instrument for measuring the net flux of radiant energy through a plane
DE3319605A1 (de) 1983-05-30 1984-12-06 Siemens AG, 1000 Berlin und 8000 München Sensor mit polykristallinen silicium-widerstaenden
DD221604A1 (de) * 1983-12-06 1985-04-24 Adw Ddr Thermoelektrischer detektor
US4779994A (en) * 1987-10-15 1988-10-25 Virginia Polytechnic Institute And State University Heat flux gage
US4784721A (en) * 1988-02-22 1988-11-15 Honeywell Inc. Integrated thin-film diaphragm; backside etch
US5354695A (en) * 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
GB8812955D0 (en) * 1988-06-01 1988-10-05 Emi Plc Thorn Thermal imaging
CN1018844B (zh) * 1990-06-02 1992-10-28 中国科学院兰州化学物理研究所 防锈干膜润滑剂
DE4102285A1 (de) * 1991-01-26 1992-08-06 Messerschmitt Boelkow Blohm Verfahren zur herstellung einer membrandiode
DE4309917A1 (de) * 1992-03-30 1993-10-07 Awa Microelectronics Verfahren zur Herstellung von Siliziummikrostrukturen sowie Siliziummikrostruktur
US5629790A (en) * 1993-10-18 1997-05-13 Neukermans; Armand P. Micromachined torsional scanner
DE4400838A1 (de) * 1994-01-14 1995-07-20 Smt & Hybrid Gmbh Gassensorchip und Verfahren zu dessen Herstellung
DE4418207C1 (de) * 1994-05-25 1995-06-22 Siemens Ag Thermischer Sensor/Aktuator in Halbleitermaterial
US5707148A (en) * 1994-09-23 1998-01-13 Ford Global Technologies, Inc. Catalytic calorimetric gas sensor
JPH08152356A (ja) * 1994-11-30 1996-06-11 Terumo Corp 赤外線センサ
FR2732697B1 (fr) * 1995-04-04 1997-06-20 Centre Nat Rech Scient Couches minces d'alliages quasi-cristallins, leur preparation et leurs utilisations
US5968678A (en) * 1995-08-31 1999-10-19 Sanyo Electric., Ltd. Magneto-optical recording medium and manufacturing method thereof
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
EP0856825B1 (en) * 1997-01-31 2004-11-17 STMicroelectronics S.r.l. Process for manufacturing integrated semiconductor devices comprising a chemoresistive gas microsensor
US5944970A (en) * 1997-04-29 1999-08-31 Honeywell Inc. Solid state electrochemical sensors
DE69817518D1 (de) * 1997-07-10 2003-10-02 St Microelectronics Srl Verfahren zur Herstellung einer integrieten Schaltungsstruktur durch Entfernung einer Opferschicht
US6133572A (en) * 1998-06-05 2000-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Infrared detector system with controlled thermal conductance
US6100107A (en) * 1998-08-06 2000-08-08 Industrial Technology Research Institute Microchannel-element assembly and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9927325A2 *

Also Published As

Publication number Publication date
JP2001510641A (ja) 2001-07-31
WO1999027325A2 (de) 1999-06-03
DE19752208A1 (de) 1999-06-02
US6825057B1 (en) 2004-11-30
WO1999027325A3 (de) 1999-08-12

Similar Documents

Publication Publication Date Title
WO1999027325A2 (de) Thermischer membransensor und verfahren zu seiner herstellung
DE102005004878B4 (de) Mikromechanischer kapazitiver Drucksensor und entsprechendes Herstellungsverfahren
DE4402085C2 (de) Verfahren zur mikrotechnischen Herstellung eines kapazitiven Differenzdrucksensors und mikrotechnisch hergestellter Differenzdrucksensor
DE3635462C2 (ja)
DE19810534C2 (de) Mehrachsenbeschleunigungssensor und Herstellungsverfahren eines Mehrachsenbeschleunigungssensor
EP0721587B1 (de) Mikromechanische vorrichtung und verfahren zu deren herstellung
DE19718370B4 (de) Verfahren zum Herstellen einer Membran eines Drucksensors oder akustischen Wandlers und akustischer Wandler oder Drucksensor
EP1846319B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE69912376T2 (de) Verfahren zur herstellung eines halbleiterbauelements
DE2919418C2 (ja)
DE4309206C1 (de) Halbleitervorrichtung mit einem Kraft- und/oder Beschleunigungssensor
WO1994028426A1 (de) Verfahren zur herstellung oberflächen-mikromechanischer strukturen
EP1379862B1 (de) Messelektrodenpaar, biosensor mit einem solchen messelektrodenpaar und verfahren zur herstellung
EP0831964B1 (de) Verfahren zur herstellung eines gasdurchlasses mit selektiv wirkender durchtrittsfläche sowie nach diesem verfahren hergestellter gasdurchlass
DE19600400C2 (de) Mikromechanisches Bauteil mit planarisiertem Deckel auf einem Hohlraum und Herstellverfahren
EP1167934A1 (de) Mikromechanisches Bauelement, insbesondere Sensorelement, mit einer stabilisierten Membran und Verfahren zur Herstellung eines derartigen Bauelementes
DE102012216618A1 (de) Anordnung von mindestens zwei Wafern zum Detektieren von elektromagnetischer Strahlung und Verfahren zum Herstellen der Anordnung
DE19843984B4 (de) Verfahren zur Herstellung von Strahlungssensoren
EP1115649B1 (de) Mikromechanisches bauelement mit verschlossenen membranöffnungen
DE19839606C1 (de) Mikromechanisches Bauelement und Verfahren zu dessen Herstellung
DE4041578A1 (de) Sensor
DE10036284A1 (de) Herstellungsverfahren für ein Sensorbauelement, insbesondere Dünnschicht-Hochdrucksensor und Sensorbauelement
EP3822624B1 (de) Kapazitives sensorelement zur erfassung mindestens einer eigenschaft eines fluiden mediums in mindestens einem messraum und verfahren zur herstellung des sensorelements
DE19603829A1 (de) Verfahren zur Herstellung von mikromechanischen Strukturen aus Silizium
DE102017200156A1 (de) Herstellungsverfahren für eine mikromechanische Sensorvorrichtung und entsprechende mikromechanische Sensorvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990825

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20050413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20051030