EP0952422B9 - Simulator für Vorderlader-Rohrwaffen - Google Patents

Simulator für Vorderlader-Rohrwaffen Download PDF

Info

Publication number
EP0952422B9
EP0952422B9 EP98810345A EP98810345A EP0952422B9 EP 0952422 B9 EP0952422 B9 EP 0952422B9 EP 98810345 A EP98810345 A EP 98810345A EP 98810345 A EP98810345 A EP 98810345A EP 0952422 B9 EP0952422 B9 EP 0952422B9
Authority
EP
European Patent Office
Prior art keywords
projectile
simulator
grenade
launcher tube
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810345A
Other languages
English (en)
French (fr)
Other versions
EP0952422A1 (de
EP0952422B1 (de
Inventor
René Lazecki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUAG Electronics AG
Original Assignee
RUAG Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP98810345A priority Critical patent/EP0952422B9/de
Application filed by RUAG Electronics AG filed Critical RUAG Electronics AG
Priority to ES98810345T priority patent/ES2199415T3/es
Priority to DE59808533T priority patent/DE59808533D1/de
Priority to DK98810345T priority patent/DK0952422T3/da
Priority to PT98810345T priority patent/PT952422E/pt
Priority to AT98810345T priority patent/ATE241794T1/de
Priority to IL12927899A priority patent/IL129278A/xx
Priority to CA002268645A priority patent/CA2268645C/en
Priority to NZ335221A priority patent/NZ335221A/en
Priority to NO19991864A priority patent/NO318326B1/no
Priority to US09/294,992 priority patent/US6193517B1/en
Publication of EP0952422A1 publication Critical patent/EP0952422A1/de
Application granted granted Critical
Publication of EP0952422B1 publication Critical patent/EP0952422B1/de
Publication of EP0952422B9 publication Critical patent/EP0952422B9/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A33/00Adaptations for training; Gun simulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition
    • F42B8/12Projectiles or missiles
    • F42B8/20Mortar grenades

Definitions

  • the present invention relates to a simulator for Muzzle-loading barrel weapons according to the preamble of claim 1 as well as suitable ammunition.
  • Simulation systems for training the operator military weapon systems offer various advantages and therefore gain increasing interest. Among others are clear less to no security measures necessary, while practicing on real, far-reaching weapon systems in addition to the strict safety measures for the practitioners even large areas, which are difficult to access find, have to be cordoned off to people and Avoid damage to property. After all, practicing in the Usually on simulators also associated with lower costs and can therefore be carried out more intensively. Can too situations are simulated with simulators in the Reality practiced only with great effort or not at all can be e.g. the influence of the weather, shooting in built-up area. For weapon systems with relatively expensive Ammunition such as B. muzzle-loading barrel weapons, what u. a. Mine, grenade and rocket launcher count is a special one Advantage of reusable ammunition.
  • Patent US-2,801,586 describes use in one Mortar to make the caliber smaller.
  • a shot of the reduced caliber that can be shot with the insert.
  • the shot is provided with a propellant charge inside.
  • By changing the outlets for the propellant are the trajectory and range adjustable.
  • An object of the present invention is to provide a Muzzle loader gun simulator specifying the one realistic practice of the operation while avoiding allowed at least one of the disadvantages mentioned above.
  • the mine thrower simulator 1 is the same externally a "real" mine thrower: on the base plate 2 the launch tube 3 is pivoted. The upper part of the The launch tube 3 is via a sighting and adjusting unit 4 movably attached to a support 5.
  • the simulator is in the range of Compasses largely made of anti-magnetic material, in particular the base plate 2 and the launch tube 3 in order not to disturb the earth's magnetic field.
  • a material can e.g. B. aluminum, an alloy thereof or brass serve.
  • the launch tube 3 has the outlet opening at the lower end 7 on, out of the grenade 8 after being above by the practitioner was inserted, again from the launch tube 3 below fall out.
  • the low head largely avoids this Damage to the grenade 8.
  • a padding for. B. a mat, be designed to further increase the danger to the grenades 8 reduce.
  • the alignment measuring unit 6 already mentioned comprises one electronic magnetic compass for direction (azimuth) and Protractor (inclinometer) to determine the elevation and the tilting of the launch tube 3.
  • the Alignment unit is located with a Radio data transmission unit 9 and a GPS unit 10 for Determining the position of the simulator on a carrier 11, which is attached to the launch tube 3.
  • Determination of geographic position and elevation and tilting can be done easily with standard components done with sufficient accuracy. Is problematic however, the determination of the direction. In numerous tests was only able to achieve sufficient accuracy with the specified magnetic compass sensor can be achieved. This however, does not rule out that others will in the future Sensor types are used, if necessary also under corresponding reduction in requirements. As a limit 10 artillery units were assumed for accuracy corresponding to a spread of ⁇ 10 m at 1 km range or 1 ⁇ 2 ° angular resolution on the launch tube.
  • Evaluation unit 12 Inside the launch tube 3 is the Evaluation unit 12 with misalignment device and one Battery 13 as power supply for the mine thrower simulator. All of these measuring and control modules 6, 9, 10, 12, 13 are among themselves by power supply, signal and Data lines 21 connected.
  • the misalignment device e.g. B. in the manner of a Eccentric gear, also establishes the connection between Launch tube 3 and the bearing ball 14, which on the Base plate 2 rests. After a shot, the Misalignment device from the evaluation unit 12 activated to align the launch tube too change.
  • the misalignment i. H. the effect the shock of a real mine launcher when fired, simulated.
  • the Evaluation device 16 is usually in the care the trainer and serves on the one hand to monitor the correct operation of the mine detector simulator and leads to others the calculation of the trajectory and the virtual Point of impact of the shot.
  • the device 16 can e.g. B. one with a corresponding receiving unit portable computer ("laptop").
  • Fig. 3 shows a section of the mine thrower simulator 1 in enlarged view.
  • the launch tube 3 is a grenade 8 just sliding down lower end an optical transmitter 17, via which in the Grenade 8 contains shot control data as light signals 18 can send out.
  • the light signals 18 are from the optical Receiver 19 detected and to the launcher control 12 Evaluation forwarded.
  • the transmitter 17 has a cone of light of a suitably chosen opening angle increases Intensity of the light signal detected by the receiver 19 the approach of the grenade 8.
  • This distance dependency the intensity is used, one in the tube 3 to detect grenades sliding down (in contrast to a inserted into the tube end before firing, but still grenade detained).
  • the disappearance of the light signal when the grenade 8 falls out of the drop opening 7 can serve as a trigger for the simulation of the launch, d. H. as equivalent to the ignition of the propellant charge real grenade.
  • baffles 20 In the area of the outlet opening 7 there are baffles 20, the grenade 8 even with almost vertical alignment the launch tube 3 out of the tube.
  • the Baffles 20 have a passage for the light signal 18 or open a window.
  • the Fig. 4 and 5 show an enlarged grenade 8. They consists essentially of the body 31, the igniter 32 and the tail 33 with additional charge plate 34.
  • the igniter 32 is, like a real grenade, in the body 31 screwed.
  • the body 31 arranged shot control 35 Via a mark on the detonator end that is screwed into the body 31, the body 31 arranged shot control 35 (Fig. 7) recognize which Detonator type exists (impact, delay, time detonator etc.). It can be used with the same type of grenade the usual types of ammunition and uses are shown , where appropriate by the shot control 35 or in the evaluation device 16 also illegal combinations be recognized, e.g. B. an impact detonator in one Lighting grenade.
  • the additional charge plate 34 the simulation shot simple, preferably additional charges simulated platelets are in recordings between two each Guide wing 36 are inserted. So that the shot control 35 can see how many additional charge plates were plugged in, from which the flight distance is calculated, there is a sensor 37 between each two guide vanes 36 for the additional charge plates.
  • the sensors 37 can e.g. B. work optically (reflex light barrier) or inductively. in the In the case of inductive sensors, the plates 34 consist Metal or from a metallized carrier material
  • the transmitter 17th At the lower end of the tail 33 is the transmitter 17th arranged.
  • FIG. 6 shows a block diagram of the shot control 35. It comprises a central processing unit 41, which essentially consists of a microcontroller. A capacitor of extremely high capacitance, e.g. B. known gold cap capacitors. Because of the low energy available, the shot control is only switched on by an inclination sensor 42 when the grenade is at an angle to the horizontal which is in the range of the elevation of the mine thrower simulator (e.g. 45 ° to 90 °).
  • the energy source is preferred during storage the grenade in a special transport container (not shown) charged.
  • the transport container has this u. a. via a battery.
  • the energy transfer can by electrical contacts on the grenade 8 and in the container or z. B. done wirelessly by induction.
  • the energy of the energy source 43 is designed such that essentially used up after a shot, the unrealistic, immediate reuse of the Grenade prevented after its "launch". Rather, then a grenade after the shot back into the Put the transport container back and leave it there until the energy source is recharged.
  • the central unit 41 controls the data transmission Transmitter 17, which generates the light signals 18.
  • Additional, optional sensors 44 may also be present his.
  • a brightness sensor could be replaced by the Darkness in tube 3 serve to launch in Cooperation with the inclination sensor 42 to recognize, or an acceleration sensor that detects the "launch" by the Impact of the grenade 8 on the launcher tube bottom, the Discharge device or the base plate with or without Combination with the inclinometer 42 recognizes.
  • others built into the grenade Sensors e.g. B. switches, optical, inductive or capacitive sensors, alone or in combination use to detect whether the grenade is in the Launch tube is located.
  • the launcher control 51 (Fig. 7) consists of the Evaluation unit 12 to which the sensors for position 10 (GPS unit), Elevation / Tilt 52 (inclinometer) and Direction 53 (compass) are connected.
  • the receipt of the Light signals from a grenade 8 in the launch tube 3 is used Light detector 19, whose output signals are both a measure of the removal of the grenade 8, d. H. whose position in Launch tube 8, as well as the information about the grenade wear that are emitted by the shot control.
  • the launch data i.e. all the data needed to to calculate the firing are via the sending unit 15 transmitted to the evaluation device 16.
  • energy source 54 serves a battery or a rechargeable battery.
  • the mine thrower simulator can still be operated via the control unit 55 can be set to different, real types of advertisers that z. B. are characterized by the caliber.
  • a typical exercise sequence should be shown:
  • the mine thrower simulator is set up and on a target directed.
  • the trainer controls continuously happening by means of the data provided by the Evaluation device can be displayed.
  • Mine thrower simulator aligned and the necessary number Grenade is laid out by the shooter. Raising the Grenades and inclination according to the pipe inclination leads to activation of the shot control 35, however only when a detonator is screwed in and (virtual) is sharp.
  • While sliding down in the launch tube 3 the characteristic data of the grenade to the Thrower control 51 communicates this together with the Data on the alignment of the launch tube with the Evaluation device 16 transmitted.
  • the evaluation device uses this data to calculate the trajectory and impact and / or gives a message in the event of unauthorized operating states out.
  • the grenade falls out of the discharge opening 7 to deactivate them, be it due to lack of energy or in that the shot control after simulating a shot blocked itself. It is conceivable that also a data transmission especially for this purpose from Mine cannon simulator on the grenade in the launch tube takes place.
  • the grenades are in the Launch tube braked by an air cushion located under them in the launch tube because of the necessarily relative forms a tight seal with the pipe wall. Because of the Such an air cushion in the ejection opening Do not train the simulator. For a more realistic flextime the grenades in the pipe, especially for practicing Rapid fire, the grenades can rub against the pipe wall be increased by appropriate measures such. B. at least in some places a tighter fit, special Material pairing or attaching or fitting for example felt surfaces or similar material on or in the Surface sections of the grenades that are in line with the pipe wall Come into contact, and / or in the pipe wall.
  • the outlet opening 7 closed with a lid to keep the grenade braked on the launcher tube or let it bounce without braking and preferably the lid after the typical delay time between throw-in and open the grenade. Opening the lid can e.g. B. by the action of the weight of the grenade, with an auxiliary drive (motor) or the saved The energy of the sliding grenade take place.
  • a suitable shape of the lid can also serve to the grenade relatively gentle and defined from the launcher tube to remove.
  • the lid can also be closed by an electromagnet be held so that the control of the Mine detector simulator by an electrical signal Can release the lid. Under the weight of the grenade, possibly reinforced by their kinetic energy the lid is pushed open and the grenade slides out. The lid is then automatically activated by a return spring closed again.
  • controlled opening could be consist in the fact that the closing spring is designed that the lid moves itself under the weight of the Grenade opens. It is also sufficient if the Cover the outlet opening only so far that the Grenades can no longer fall out of the pipe.
  • the Cover another kind of guide, e.g. B. in the manner of a short Pipe piece, and / or a friction increasing Have lining (felt strips; feather strips) to the Reduce the falling speed of the grenades.
  • Echo method e.g. B. by means of ultrasound, working Detection unit to be arranged in the pipe, the presence and movement of a grenade in the launch tube independently allowed to determine, and / or inductive sensors for this on the launch tube.
  • the measuring and evaluation units available on the simulator can also be arranged differently, is conceivable for example the arrangement of all parts in the launch tube, so that, if anything, only the antenna of the transmitter unit 15 must be attached outside. It is also conceivable that To mount compass in another suitable place e.g. B. the base plate 2, but then with a suitable Measuring device, e.g. B. an optical encoder between the base plate 2 and the bearing ball 14 of the launcher tube, the Angular difference measured and in the evaluation be taken into account. It is also conceivable that the Reactivating or charging the grenades, e.g. B. how proposed in the transport container, also the possibility consists of reprogramming the grenades, e.g. B. as an explosive or light ammunition. This would only programmable ammunition for the simulation of all possible real ammunition types are sufficient. Programming, possibly even connecting a fresh one Energy source, could also be changed by changing the jacket (see above) of the body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electron Tubes For Measurement (AREA)
  • Glass Compositions (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Holo Graphy (AREA)
  • Stored Programmes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Support Of The Bearing (AREA)
  • Instructional Devices (AREA)

Description

Die vorliegende Erfindung betrifft einen Simulator für Vorderlader-Rohrwaffen gemäss Oberbegriff des Anspruchs 1 sowie dafür geeignete Munition.
Simulationssysteme für das Training der Bedienung militärischer Waffensysteme bieten verschiedene Vorteile und gewinnen daher zunehmend an Interesse. U. a. sind deutlich geringere bis keine Sicherheitsmassnahmen mehr nötig, während beim Üben an realen, weitreichenden Waffensystemen neben den strengen Sicherheitsmassnahmen für die Übenden auch noch grosse Gebiete, die je nachdem nur schwierig zu finden sind, abgesperrt werden müssen, um Personen- und Sachschäden zu vermeiden. Schliesslich ist das Üben in der Regel an Simulatoren auch mit geringeren Kosten verbunden und kann daher intensiver durchgeführt werden. Auch können mit Simulatoren Situationen geübt werden, die in der Realität nur mit grossem Aufwand oder überhaupt nicht geübt werden können z.B. der Einfluss des Wetters, Schiessen im überbautem Gebiet. Bei Waffensystemen mit relativ teurer Munition, wie z. B. Vorderlader-Rohrwaffen, wozu u. a. Minen-, Granat- und Raketenwerfer zählen, ist ein besonderer Vorteil eine wiederverwendbare Munition.
Bekannte Projekte für Minenwerfersimulatoren leiden u. a. daran, dass die Simulation in entscheidenden Punkten nicht der Realität entspricht, wodurch dann gefährliche Bedienungsfehler an Echtsystemen provoziert werden. Nach dem Durchführen eines Abschusses befindet sich bei den bekannten Konstruktionen der Schuss, d. h. die Mine, Granate, Beleuchtungsgranate usw., im Abschussrohr und muss daraus entfernt werden. Dazu wird vorgeschlagen, den Schuss mittels eines geeigneten Werkzeugs wieder nach oben aus dem Rohr herauszuziehen. Zum einen ist diese Manipulation in der Realität ausserordentlich gefährlich, zum anderen ist es mit einem solchen Minenwerfersimulator auch nicht möglich, Schnellfeuer zu üben, bei dem die Schüsse so schnell als möglich hintereinander abgefeuert werden.
Ein anderer Vorschlag besteht in dem automatischen Herausschleudern der Granaten. Eine Möglichkeit besteht im Vorsehen einer sehr schwachen Treibladung, eine andere darin, eine Feder, pneumatische oder hydraulische Zylinder o. ä. vorzusehen. Erstere Möglichkeit ist mit Lärmentwicklung und mit Verbrauch von Treibladungen verbunden, die andere verlangt das manuelle oder motorische Spannen der Feder bzw. das Erzeugen des pneumatischen oder hydraulischen Drucks. Ein motorisches Spannen bzw. Druckerzeugen verlangt seinerseits eine relativ starke Energiequelle, die beim realitätsnahen Üben im Gelände in der Regel nicht zur Verfügung steht. Alle Auswurftechniken verlangen jedenfalls wieder Sicherheitsmassnahmen, da jede Granate einige Meter weit weggeschleudert wird. Es besteht auch die Gefahr, dass die teure Simulationsgranate bei ungünstiger Landung, z. B. auf der Heckflosse, bis zur Unbrauchbarkeit beschädigt wird. Aber auch die in der Spitze angeordneten Zünder können bei regulärer Landung beschädigt werden. Schliesslich ist nicht zu vergessen, dass die Übungsminen/granaten nach der Übung wieder zeitaufwendig gesucht und eingesammelt werden müssen.
Das Patent US-2,801,586 beschreibt einen Einsatz in einen Mörser, um das Kaliber zu verkleinern. Für den Einsatz wird weiter ein Schuss des verringerten Kalibers angegeben, der mit dem Einsatz abgeschossen werden kann. Der Schuss ist mit einer Treibladung im Innern versehen. Durch Verändern der Auslässe für das Treibgas ist die Flugbahn und -weite einstellbar.
Eine Aufgabe vorliegender Erfindung besteht darin, einen Simulator für Vorderlader-Rohrwaffen anzugeben, der ein realitätsnahes Üben der Bedienung unter Vermeidung mindestens eines der oben genannten Nachteile erlaubt.
Ein solcher Simulator für Vorderlader-Rohrwaffen ist im Anspruch 1 angegeben, die weiteren Ansprüche definieren bevorzugte Ausführungsformen und speziell für den erfindungsgemässen Simulator geeignete Munition.
Die Erfindung soll anhand eines Ausführungsbeispiels unter Bezugnahme auf Figuren erläutert werden.
Fig. 1
zeigt schematisch eine Seitenansicht eines Minenwerfersimulatars ;
Fig. 2
zeigt die Auswertungseinheit;
Fig. 3
zeigt schematisch einen Teilschnitt durch einen Minenwerfersimulator;
Fig. 4
zeigt eine Seitenansicht eines Schusses für den Minenwerfersimulator;
Fig. 5
zeigt eine Ansicht von unten des Minenwerfersimulators gemäss Figur 4;
Fig. 6
zeigt das Blockschema der Elektronik in einem Simulationsschuss; und
Fig. 7
zeigt das Blockschema der Elektronik im Minenwerfersimulator.
Der erfindungsgemässe Minenwerfersimulator 1 gleicht äusserlich einem "echten" Minenwerfer: Auf der Grundplatte 2 steht schwenkbar das Abschussrohr 3. Der obere Teil des Abschussrohrs 3 ist über eine Visier- und Justiereinheit 4 beweglich an einer Stütze 5 angebracht. Da für die Simulation die Ausrichtung des Abschussrohrs 3 u. a. durch einen elektronischen Kompass in der Ausrichtungsmesseinheit 6 gemessen wird, besteht der Simulator im Bereich des Kompasses weitgehend aus antimagnetischem Material, insbesondere die Grundplatte 2 und das Abschussrohr 3, um das Erdmagnetfeld nicht zu stören. Als ein solches Material kann z. B. Aluminium, eine Legierung davon oder Messing dienen.
Das Abschussrohr 3 weist am unteren Ende die Ausfallöffnung 7 auf, aus der die Granate 8, nachdem sie oben vom Übenden eingeschoben wurde, wieder aus dem Abschussrohr 3 unten herausfällt. Die geringe Fallhöhe vermeidet dabei weitgehend Beschädigungen der Granate 8. Zusätzlich kann unter der Ausfallöffnung 7 eine Polsterung, z. B. eine Matte, ausgelegt werden, um die Gefahr für die Granaten 8 weiter zu verringern.
Die bereits erwähnte Ausrichtungsmesseinheit 6 umfasst einen elektronischen Magnetkompass für die Richtung (Azimuth) und Winkelmesser (Inklinometer) zur Bestimmung der Elevation und der Verkippung des Abschussrohrs 3. Die Ausrichtungsmesseinheit befindet sich zusammen mit einer Funkdatenübermittlungseinheit 9 und einer GPS-Einheit 10 zur Bestimmung der Position des Simulators auf einem Träger 11, der am Abschussrohr 3 angebracht ist.
Die Bestimmung der geographischen Position und von Elevation und Verkippung kann mit marktgängigen Bauteilen problemlos mit genügender Genauigkeit erfolgen. Problematisch ist dagegen die Bestimmung der Richtung. In zahlreichen Tests konnte bisher eine ausreichende Genauigkeit nur mit dem angegebenen Magnetkompasssensor erzielt werden. Dies schliesst jedoch nicht aus, dass zukünftig andere Sensortypen zum Einsatz gelangen, gegebenenfalls auch unter entsprechender Verringerung der Anforderungen. Als Grenze für die Zielgenauigkeit wurden 10 Artillerie-‰ angenommen entsprechend einer Streuung ≤ 10 m auf 1 km Schussweite oder ½° Winkelauflösung am Abschussrohr.
Im Inneren des Abschussrohrs 3 befindet sich die Auswertungseinheit 12 mit Dejustiereinrichtung und eine Batterie 13 als Stromversorgung des Minenwerfersimulators. Alle diese Mess- und Steuermodule 6, 9, 10, 12, 13 sind untereinander durch Stromversorgungs-, Signal- und Datenleitungen 21 verbunden.
Die Dejustiereinrichtung, z. B. in der Art eines Exzentergetriebs, stellt zugleich die Verbindung zwischen Abschussrohr 3 und der Lagerkugel 14 dar, die auf der Grundplatte 2 aufliegt. Nach einem Abschuss wird die Dejustiereinrichtung von der Auswertungseinheit 12 aktiviert, um die Ausrichtung des Abschussrohrs zu verändern. Damit wird die Dejustierung, d. h. die Wirkung der Erschütterung eines echten Minenwerfers beim Abschuss, simuliert.
Von der Werferauswertungseinheit 12 ermittelte Daten werden drahtlos von der Sendeeinheit 15 bei einem Abschuss an ein Auswertungsgerät 16 (Fig. 2) übermittelt. Das Auswertungsgerät 16 befindet sich in der Regel in der Obhut des Übungsleiters und dient zum einen der Überwachung der korrekten Bedienung des Minenwerfersimulators und führt zum anderen die Berechnung der Flugbahn und des virtuellen Auftreffpunktes des Schusses durch. Das Gerät 16 kann z. B. ein mit einer entsprechenden Empfangseinheit versehener tragbarer Computer ("Laptop") sein.
Fig. 3 zeigt einen Ausschnitt des Minenwerfersimulators 1 in vergrösserter Darstellung. Im Abschussrohr 3 befindet sich eine gerade herabgleitende Granate 8. Sie trägt an ihrem unteren Ende einen optischen Sender 17, über den die in der Granate 8 enthaltene Schusssteuerung Daten als Lichtsignale 18 aussenden kann. Die Lichtsignale 18 werden vom optischen Empfänger 19 erfasst und an die Werfersteuerung 12 zur Auswertung weitergeleitet. Da der Sender 17 einen Lichtkegel von geeignet gewähltem Öffnungswinkel aussendet, steigt die Intensität des vom Empfänger 19 erfassten Lichtsignals mit der Annäherung der Granate 8. Diese Entfernungsabhängigkeit der Intensität wird dazu benutzt, eine im Rohr 3 herabgleitende Granate zu erkennen (im Gegensatz zu einer vor dem Abschuss in das Rohrende eingeführten, aber noch festgehaltenen Granate). Das Verschwinden des Lichtsignals beim Herausfallen der Granate 8 aus der Ausfallöffnung 7 kann als Auslöser für die Simulation des Abschusses dienen, d. h. als Äquivalent zur Zündung des Treibsatzes einer echten Granate.
Im Bereich der Ausfallöffnung 7 befinden sich Leitbleche 20, die die Granate 8 auch bei nahezu senkrechter Ausrichtung des Abschussrohrs 3 aus dem Rohr hinausleiten. Die Leitbleche 20 weisen für das Lichtsignal 18 einen Durchgang oder ein Fenster auf.
Die Figg. 4 und 5 zeigen vergrössert eine Granate 8. Sie besteht im wesentlichen aus dem Körper 31, dem Zünder 32 und dem Leitwerk 33 mit Zusatzladungsplättchen 34. Der Zünder 32 ist, wie bei einer echten Granate, im Körper 31 eingeschraubt. Über eine Markierung an dem Zünderende, das in den Körper 31 hineingeschraubt ist, kann die im Körper 31 angeordnete Schusssteuerung 35 (Fig. 7) erkennen, welcher Zündertyp vorliegt (Aufschlag-, Verzögerungs-, Zeitzünder usw.). Es können damit mit einem und demselben Granatentyp die üblichen Munitions- und Anwendungsarten dargestellt werden, wobei gegebenenfalls durch die Schusssteuerung 35 oder im Auswertungsgerät 16 auch unerlaubte Kombinationen erkannt werden, z. B. ein Aufschlagzünder in einer Beleuchtungsgranate.
Die Zusatzladungsplättchen 34, die beim Simulationsschuss einfache, bevorzugt Zusatzladungen nachgebildete Plättchen sind, können jeweils in Aufnahmen zwischen je zwei Leitflügel 36 eingesteckt werden. Damit die Schusssteuerung 35 erkennen kann, wieviele Zusatzladungsplättchen aufgesteckt wurden, woraus die Flugweite berechnet wird, befindet sich zwischen je zwei Leitflügeln 36 ein Sensor 37 für die Zusatzladungsplättchen. Die Sensoren 37 können z. B. optisch (Reflexlichtschranke) oder induktiv arbeiten. Im Fall induktiver Sensoren bestehen die Plättchen 34 aus Metall oder aus einem metallisierten Trägermaterial
Am unteren Ende des Leitwerks 33 ist der Sender 17 angeordnet.
Aus der Darstellung dieses beispielhaften Simulationsschusses ergibt sich auch, dass ein Auswerfen durch verringerte Treibladung auf zusätzliche Schwierigkeiten stösst: Selbst eine verringerte Treibladung würde hohe Temperaturen im Leitwerk erzeugen, die nach dem Pulverabbrand entstandenen Treibgase sind sehr heiss und stehen unter hohem Druck und die Schusssteuerung 35 in der Granate ist einer grossen Beschleunigung ausgesetzt, wodurch die Schusssteuerung 35, die Sensoren 37 und der Sender 17 in Mitleidenschaft gezogen werden könnten und entsprechend mit hohem Aufwand temperatur-, druck- und beschleunigungsfest ausgeführt werden müssten.
Fig. 6 zeigt ein Blockschaltbild der Schusssteuerung 35. Sie umfasst eine Zentraleinheit 41, die im wesentlichen aus einem Mikrocontroller besteht. Als Energiequelle 43 dient ein Kondensator extrem hoher Kapazität, z. B. an sich bekannte Gold-Cap-Kondensatoren. Wegen der doch geringen zur Verfügung stehenden Energie wird die Schusssteuerung erst durch einen Neigungssensor 42 eingeschaltet, wenn die Granate einen Winkel zur Horizontalen einnimmt, der im Bereich der Elevation des Minenwerfersimulators liegt (z. B. 45° bis 90°).
Die Energiequelle wird bevorzugt während der Aufbewahrung der Granate in einem speziellen Transportbehälter (nicht dargestellt) aufgeladen. Der Transportbehälter verfügt dazu u. a. über eine Batterie. Die Energieübertragung kann durch elektrische Kontakte an der Granate 8 und im Behälter oder z. B. drahtlos auf induktivem Weg erfolgen.
Da die Energie der Energiequelle 43 so ausgelegt ist, dass sie im wesentlichen nach einem Abschuss aufgebraucht ist, wird die realitätsfremde, sofortige Wiederverwendung der Granate nach deren "Abschuss" verhindert. Vielmehr muss dann eine Granate nach dem Abschuss wieder in den Transportbehälter zurückgelegt und solange darin belassen werden, bis die Energiequelle wieder aufgeladen ist.
Im Falle von Energiequellen höherer Kapazität ist es für eine realistische Simulation nötig, dass sich die Granate entweder nach einem Abschuss deaktiviert oder ein spezielles Signal erzeugt, das anzeigt, dass die Granate wiederverwendet wurde.
Die Zentraleinheit 41 steuert für die Datenübertragung den Sender 17 an, der die Lichtsignale 18 erzeugt.
Es können noch weitere, optionale Sensoren 44 vorhanden sein. Z. B. könnte ein Helligkeitssensor durch die Dunkelheit im Rohr 3 dazu dienen, einen Abschuss in Zusammenarbeit mit dem Neigungssensor 42 zu erkennen, oder ein Beschleunigungssensor, der den "Abschuss" durch das Aufprallen der Granate 8 am Werferrohrboden, der Ableiteinrichtung oder der Grundplatte mit oder ohne Kombination mit dem Neigungsmesser 42 erkennt. Im weiteren ist es auch denkbar, andere in der Granate eingebaute Sensoren, z. B. Schalter, optische, induktive oder kapazitive Sensoren, allein oder in Kombination zu verwenden, um zu detektieren, ob sich die Granate im Abschussrohr befindet. .
Die Werfersteuerung 51 (Fig. 7) besteht aus der Auswertungseinheit 12, an die die Sensoren für Position 10 (GPS-Einheit), Elevation/Kippung 52 (Inklinometer) und Richtung 53 (Kompass) angeschlossen sind. Dem Empfang der Lichtsignale einer Granate 8 im Abschussrohr 3 dient der Lichtdetektor 19, dessen Ausgangssignale sowohl ein Mass für die Entfernung der Granate 8, d. h. deren Position im Abschussrohr 8, als auch die Informationen über die Granate tragen, die von der Schusssteuerung ausgesendet werden.
Die Abschussdaten, also alle Daten, die benötigt werden, um den Abschuss zu berechnen, werden über die Sendeeinheit 15 zum Auswertungsgerät 16 übertragen. Als Energiequelle 54 dient eine Batterie oder ein Akku.
Der Minenwerfersimulator kann über die Bedieneinheit 55 noch auf verschiedene, reale Werfertypen eingestellt werden, die z. B. durch das Kaliber charakterisiert sind.
Es soll noch ein typischer Übungsablauf dargestellt werden: Der Minenwerfersimulator wird aufgestellt und auf ein Ziel gerichtet. Der Übungsleiter kontrolliert dabei kontinuierlich das Geschehen mittels der Daten, die vom Auswertungsgerät angezeigt werden. Je nach (virtuellem) anzupeilendem Ziel und den Schussvorgaben wird der Minenwerfersimulator ausgerichtet und die nötige Anzahl Granaten wird vom Schützen bereitgelegt. Das Anheben der Granaten und Schrägstellung entsprechend der Rohrneigung führt zur Aktivierung der Schusssteuerung 35, allerdings erst, wenn auch ein Zünder eingeschraubt und (virtuell) scharf ist. Während des Hinabgleitens im Abschussrohr 3 werden die charakteristischen Daten der Granate an die Werfersteuerung 51 übermittelt, die diese zusammen mit den Daten über die Ausrichtung des Abschussrohrs an das Auswertungsgerät 16 übermittelt. Das Auswertungsgerät berechnet anhand dieser Daten die Flugbahn und den Einschlag und/oder gibt bei unerlaubten Betriebszuständen eine Meldung aus.
Das Herausfallen der Granate aus der Ausfallöffnung 7 führt zu deren Desaktivierung, sei es durch Energiemangel oder dadurch, dass sich die Schusssteuerung nach dem Simulieren eines Schusses selbst blockiert. Denkbar ist dabei, dass auch eine Datenübertragung insbesondere zu diesem Zweck vom Minenwerfersimulator auf die Granate im Abschussrohr stattfindet.
Da der beschriebene Minenwerfersimulator weder ein Abschussgeräusch erzeugt - auch wenn dies für realitätsnahe Simulation gegebenenfalls, wenn auch mit wesentlich reduzierter Lautstärke, durch einen Geräuschgenerator erzeugt werden kann - noch Granaten ausgeschleudert werden, kann mit diesem Gerät an praktisch jedem Ort geübt werden, z. B. auch in bebautem Gebiet oder in Hallen.
Bei einem realen Minenwerfer werden die Granaten im Abschussrohr durch ein Luftpolster gebremst, das sich unter ihnen im Abschussrohr wegen dem notwendigerweise relativ dichten Abschluss mit der Rohrwand bildet. Wegen der Auswurföffnung kann sich ein solches Luftpolster im Simulator nicht ausbilden. Für eine realistischere Gleitzeit der Granaten im Rohr, insbesondere für das Üben von Schnellfeuer, kann die Reibung der Granaten an der Rohrwand durch geeignete Massnahmen erhöht werden, wie z. B. zumindest stellenweise engere Passung, spezielle Materialpaarung oder Anbringen bzw. Einpassen von beispielsweise Filzflächen o. ä. Material auf bzw. in die Oberflächenpartien der Granaten, die mit der Rohrwand in Kontakt kommen, und/oder in die Rohrwand. Es ist zudem denkbar, die Ausfallöffnung 7 mit einem Deckel verschlossen zu halten, die Granate auf dem Werferrohrboden gebremst oder ungebremst aufprallen zu lassen und den Deckel vorzugsweise nach Ablauf der typischen Verzögerungszeit zwischen Einwurf und Zündung der Granate zu öffnen. Das Öffnen des Deckels kann z. B. durch Einwirkung des Eigengewichts der Granate, mit einem Hilfsantrieb (Motor) oder der gespeicherten Energie der herabgleitenden Granate erfolgen. Durch eine geeignete Form des Deckels kann dieser zudem dazu dienen, die Granate relativ sanft und definiert aus dem Werferrohr zu entfernen.
Der Deckel kann auch durch einen Elektromagneten geschlossen gehalten werden, so dass die Steuerung des Minenwerfersimulators durch ein elektrisches Signal den Deckel freigeben kann. Unter dem Gewicht der Granate, gegebenenfalls verstärkt durch deren Bewegungsenergie, wird der Deckel aufgedrückt, und die Granate gleitet heraus. Durch eine Rückholfeder wird der Deckel danach selbsttätig wieder geschlossen.
Eine mögliche Alternative zur kontrollierten Öffnung könnte darin bestehen, dass die Schliessfeder so ausgelegt ist, dass sich der Deckel von selbst unter dem Eigengewicht der Granate öffnet. Es ist im übrigen ausreichend, wenn der Deckel die Ausfallöffnung nur soweit schliesst, dass die Granaten nicht mehr aus dem Rohr herausfallen können.
Bei Simulatoren für Minenwerfer, die nicht selbsttätig feuern, sondern bei denen von aussen eine im Abschussrohr befindliche Granate abgeschossen wird, z. B. über eine Reissleine, muss ein solcher Deckel oder eine äquivalente Verschlussvorrichtung vorhanden sein. Erst durch Betätigen des Auslösers wird zum einen die Simulation ausgelöst, zum anderen der Deckel freigegeben, so dass die Granate herausfallen kann.
Zum Abbremsen der Granate beim Herausfallen kann das Rückholfederelement so stark ausgelegt werden, dass sich eine effektive Bremswirkung auf die Granate durch Einklemmen zwischen Abschussrohr und Klappe ergibt. Zusätzlich kann der Deckel noch eine Art Führung, z. B. in der Art eines kurzen Rohrstücks, und/oder eine die Reibung vergrössernde Auskleidung (Filzstreifen; Federstreifen) aufweisen, um die Fallgeschwindigkeit der Granaten zu vermindern.
Varianten der beispielhaft angegebenen Ausführungsform sind dem Fachmann aus der Beschreibung zugänglich, ohne den Bereich der Erfindung wie beansprucht zu verlassen.
Denkbar ist beispielsweise, zusätzlich eine nach einem Echoverfahren, z. B. mittels Ultraschall, arbeitende Detektionseinheit im Rohr anzuordnen, die die Anwesenheit und Bewegung einer Granate im Abschussrohr unabhängig festzustellen gestattet, und/oder auch induktive Sensoren hierfür am Abschussrohr.
Im Hinblick auf die verschiedene äussere Form verschiedener Munitionsarten, insbesondere zwischen Leucht-und Sprengmunition, kann es auch von Vorteil sein, den Körper veränderbar zu gestalten, z. B. durch einen auswechselbaren Mantel.
Die am Simulator vorhandenen Mess- und Auswertungseinheiten können auch anders angeordnet sein, denkbar ist beispielsweise die Anordnung aller Teile im Abschussrohr, so dass, wenn überhaupt, nur noch die Antenne der Sendeeinheit 15 ausserhalb angebracht werden muss. Denkbar ist auch, den Kompass an einem anderen geeigneten Ort zu montieren z. B. der Grundplatte 2, dann muss jedoch mit einer geeigneten Messeinrichtung, z. B. einem optischen Drehgeber zwischen der Grundplatte 2 und der Lagerkugel 14 des Werferrohrs, die Winkeldifferenz gemessen und in der Auswertung berücksichtigt werden. Denkbar ist auch, dass bei der Reaktivierung bzw. Aufladung der Granaten, z. B. wie vorgeschlagen im Transportbehälter, auch die Möglichkeit besteht, die Granaten umzuprogrammieren, z. B. als Spreng- oder Leuchtmunition. Damit würde nur eine einzige, programmierbare Munition für die Simulation aller möglichen, realen Munitionsarten genügen. Die Programmierung, gegebenenfalls sogar der Anschluss einer frischen Energiequelle, könnte auch durch Wechseln des Mantels (siehe oben) des Körpers erfolgen.

Claims (19)

  1. Simulator (1) für Vorderlader-Rohrwaffen, bevorzugt für Minen- oder Granatwerfer, dadurch gekennzeichnet, dass das Abschussrohr (3) am unteren Ende eine Ausfallöffnung (7) aufweist, um das Herausfallen eines Schusses (8) zu ermöglichen.
  2. Simulator (1) gemäss Anspruch 1, dadurch gekennzeichnet, dass die Ausfallöffnung (7) mit einer Verschlussvorrichtung mindestens soweit verschlossen ist, dass eine Granate nicht durch die Ausfallöffnung hindurchfallen kann, und eine Freigabevorrichtung, durch die die Verschlussvorrichtung und damit die Ausfallöffnung (7) geöffnet werden kann, an der Verschlussvorrichtung vorhanden ist.
  3. Simulator (1) gemäss Anspruch 2, dadurch gekennzeichnet, dass die Verschlussvorrichtung im geöffneten Zustand durch Druckmittel, bevorzugt federelastische Elemente, in die verschlossene Position gedrückt wird und/oder Mittel aufweist, die eine bremsende Wirkung auf die herausfallende Granate ausüben, um eine kontrollieres Herausgleiten der Granate aus der Ausfallöffnung (7) zu gewährleisten.
  4. Simulator (1) gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Leitmittel (20), insbesondere in der Art einer auf das untere Ende der Ausfallöffnung (7) zulaufenden Rampe, vorhanden ist, um ein störungsfreies Herausfallen eines Schusses (8) aus der Ausfallöffnung sicherzustellen.
  5. Simulator (1) gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Abschussrohr (3) Bremsmittel angeordnet sind, insbesondere mindestens eine Stelle oder Stellen erhöhter Reibung und/oder Verengungen, um die Fallzeit eines Schusses (8) im Abschussrohr (3) an reale Verhältnisse anzugleichen.
  6. Simulator (1) gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass am Abschussrohr (3) und/oder am Gestell (2) des Minenwerfers Messmittel, insbesondere eine oder mehrere von
    einer Positionsmess-Vorrichtung (10), insbesondere eine nach dem GPS-Verfahren arbeitende, zur Bestimmung der geografischen Position,
    einer Neigungsmessvorrichtung (6; 52) zur Bestimmung der Elevation des Abschussrohres und
    einer Richtungsmessvorrichtung (6; 53), bevorzugt eine nach dem Kompass-Prinzip arbeitende,
    vorhanden sind, um die aktuelle Ausrichtung des Abschussrohrs (3) feststellen zu können.
  7. Simulator (1) gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass innen am unteren Ende des Abschussrohrs Empfangsmittel (19) für Datensignale vorhanden sind, insbesondere für elektromagnetische, akustische und/oder optische Strahlung (18), um ein von einem im Abschussrohr befindlichen Schuss (8) ausgesandtes Datensignal auffangen zu können.
  8. Simulator (1) gemäss Anspruch 7, dadurch gekennzeichnet, dass durch die Empfangsmittel (19) ein Signal erzeugbar ist, das in mindestens einer Grösse, inbesondere der Amplitude, von der Position des Schusses (8) im Rohr und/oder der Anwesenheit eines Schusses (8) im Abschussrohr abhängig ist, um eine Abschussimulation durch Detektieren eines im Abschussrohr herabgleitenden Schusses auszulösen.
  9. Simulator (1) gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Schussdetektionsmittel (19) vorhanden sind, bevorzugt innerhalb des Abschussrohrs am unteren Ende, um die Anwesenheit und bevorzugt auch die ungefähre Position und/oder Bewegung eines Schusses im Rohr zu bestimmen.
  10. Simulator (1) gemäss einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass am Abschussrohr (3) eine Verstellvorrichtung angebracht ist, so dass das Abschussrohr (3) dejustierbar ist und so die Auswirkung eines realen Schusses auf die Ausrichtung simulierbar ist.
  11. Simulator gemäss einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine Kontrollvorrichtung (51) vorhanden ist, durch die mindestens ein Betriebszustand, bevorzugt alle folgenden Betriebszustände feststellbar sind:
    die Durchführung eines Abschusses,
    die Ausrichtung des Abschussrohrs, insbesondere Elevation, Verkippung und/oder Richtung,
    die geografische Position,
    die Art der bei einem Schuss verwendeten Munition.
  12. Simulator (1) gemäss einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass zur Festellung der Richtung des Abschussrohrs ein mit dem Abschussrohr (3) gekoppelter Sensor für das Erdmagnetfeld vorhanden ist und die metallischen Teile des Simulators mindestens zum grössten Teil aus antimagnetischem Material, insbesondere Aluminium oder einer Aluminiumlegierung, bestehen, um eine lokale Störung des Erdmagnetfelds zu vermeiden.
  13. Schuss (8) für einen Simulator gemäss einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er Sendemittel (17) und eine Kontrolleinheit (41) aufweist, wobei die Kontrolleinheit mittels der Sendemittel Datensignale (18) aussenden kann, deren Inhalt die Art der durch den Schuss (8) zu simulierenden Munition angibt.
  14. Schuss (8) gemäss Anspruch 13, dadurch gekennzeichnet, dass er im Wesentlichen aus Leitwerk (33), Körper (31) und Zünder (32) besteht, wovon wenigstens der Zünder lösbar angebracht ist, so dass durch Auswechseln von Körper (31) und/oder Zünder (33) verschiedene Munitionsarten für Minenwerfer in Funktion und/oder Formgebung simulierbar sind.
  15. Schuss (8) gemäss Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Intensität des abgestrahlten Datensignals (18) mit der Entfernung von dem Schuss (8) abnimmt, um den Abstand des Schusses (8) von einem Empfangsmittel (19) für diese Daten bestimmen zu können.
  16. Schuss (8) gemäss einem der Ansprüche 13 bis 15 oder für einen Simulator (1) gemäss einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er mindestens eine Vorrichtung, bevorzugt 4 bis 8 Vorrichtungen, aufweist, die Zusatzladungssimulationseinheiten (34) aufnehmen kann und über Detektionsmittel (37) für die Zusatzladungssimulationseinheiten verfügt, um die Anzahl der angebrachten Zusatzladungssimulationseinheiten (34) feststellen zu können.
  17. Schuss (8) gemäss Anspruch 16, dadurch gekennzeichnet, dass die Zusatzladungssimulationseinheiten (34) im Wesentlichen aus einem Plättchen bestehen, das am Leitwerk (33) bzw. am Hals des Schusses anbringbar ist, der Schuss Anbringungsgmöglichkeiten für eine bestimmte Maximalzahl von Zusatzladungssimulationseinheiten (34) aufweist und für jede Anbringungsmöglichkeit ein Detektor (37), insbesondere ein induktiver, kapazitiver oder optischer, vorhanden ist, so dass das Vorhandensein einer Zusatzladungssimulationseinheit in der jeweiligen Anbringungsmöglichkeit festellbar ist.
  18. Schuss (8) gemäss einem der Ansprüche 13 bis 17 oder für einen Simulator (1) gemäss einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Schuss (8) eine Schusskontrolleinheit (41) und Detektionsmittel (42, 44) aufweist, wobei durch die Detektionsmittel (42, 44) ein simulierter Abschuss des Schusses detektierbar und der Schusskontrolleinheit (41) mitteilbar ist, dass der Schuss erste Sendemittel (17) für ein Signal (18) aufweist, und dass die Schusskontrolleinheit (41) bei der Durchführung eines ersten Abschusses ein erstes Signal aussendet und bei jedem zweiteren und/oder weiteren Schuss eine Information, die von der Signalisierung bei dem ersten Abschuss abweicht, oder kein Signal aussendet, so dass feststellbar ist, ob derselbe Schuss (8) mehrfach in Folge verwendet wird.
  19. Schuss (8) gemäss Anspruch 18 und Behälter für mindestens einen Schuss, dadurch gekennzeichnet, dass die Schusskontrolleinheit in den Zustand vor einem ersten Abschuss versetzbar ist, indem der Schuss in den Behälter eingelegt wird, der über zweite Verbindungsmittel verfügt, die mit komplementären, dritten Verbindungsmitteln in dem Schuss in Kontakt treten können, und durch die Kontaktaufnahme und/oder die dabei ausgetauschten Signale zwischen zweiten und dritten Verbindungsmitteln der Rücksetzvorgang auslösbar ist.
EP98810345A 1998-04-20 1998-04-20 Simulator für Vorderlader-Rohrwaffen Expired - Lifetime EP0952422B9 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES98810345T ES2199415T3 (es) 1998-04-20 1998-04-20 Simulador para armas tubulares de avancarga.
DE59808533T DE59808533D1 (de) 1998-04-20 1998-04-20 Simulator für Vorderlader-Rohrwaffen
DK98810345T DK0952422T3 (da) 1998-04-20 1998-04-20 Simulator til forladervåben
PT98810345T PT952422E (pt) 1998-04-20 1998-04-20 Simulador para armas de cano de carregar pela boca
AT98810345T ATE241794T1 (de) 1998-04-20 1998-04-20 Simulator für vorderlader-rohrwaffen
EP98810345A EP0952422B9 (de) 1998-04-20 1998-04-20 Simulator für Vorderlader-Rohrwaffen
IL12927899A IL129278A (en) 1998-04-20 1999-03-30 Simulator for front-loaded barrel weapons
CA002268645A CA2268645C (en) 1998-04-20 1999-04-13 Simulator for front-loaded barrel weapons
NZ335221A NZ335221A (en) 1998-04-20 1999-04-15 Simulator for loading and aiming training of mortar-type front-loaded barrel weapons
NO19991864A NO318326B1 (no) 1998-04-20 1999-04-19 Simulator for forladnings-rorvapen
US09/294,992 US6193517B1 (en) 1998-04-20 1999-04-19 Simulator for front-loaded barrel weapons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810345A EP0952422B9 (de) 1998-04-20 1998-04-20 Simulator für Vorderlader-Rohrwaffen

Publications (3)

Publication Number Publication Date
EP0952422A1 EP0952422A1 (de) 1999-10-27
EP0952422B1 EP0952422B1 (de) 2003-05-28
EP0952422B9 true EP0952422B9 (de) 2003-10-29

Family

ID=8236046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810345A Expired - Lifetime EP0952422B9 (de) 1998-04-20 1998-04-20 Simulator für Vorderlader-Rohrwaffen

Country Status (11)

Country Link
US (1) US6193517B1 (de)
EP (1) EP0952422B9 (de)
AT (1) ATE241794T1 (de)
CA (1) CA2268645C (de)
DE (1) DE59808533D1 (de)
DK (1) DK0952422T3 (de)
ES (1) ES2199415T3 (de)
IL (1) IL129278A (de)
NO (1) NO318326B1 (de)
NZ (1) NZ335221A (de)
PT (1) PT952422E (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643206A1 (de) * 2004-10-02 2006-04-05 Saab Ab Simulationssystem, -verfahren und Computerprogramm
KR100914320B1 (ko) 2007-10-02 2009-08-27 주식회사 코리아일레콤 곡사화기 모의 훈련 장치 및 방법
KR101229864B1 (ko) 2010-06-25 2013-02-05 주식회사 코리아일레콤 레이저를 이용한 화기 모의 장비의 통제기의 총열 교체 모의 방법
NL2007271C2 (en) * 2011-08-17 2013-02-19 Halteren Metaal B V Van Mortar simulator system.
EP3017267B1 (de) * 2013-07-03 2020-06-10 Rheinmetall Defence Electronics GmbH Vorrichtung zur simulation eines mörsers
DE202015001085U1 (de) 2015-02-12 2016-05-13 Saab Bofors Dynamics Switzerland Ltd. Mörserübungsvorrichtung
RU2612083C1 (ru) * 2016-03-28 2017-03-02 Открытое акционерное общество "Научно-производственное объединение Русские базовые информационные технологии" Комплексный тренажер для подготовки минометных подразделений
CN107084640B (zh) * 2017-06-05 2018-08-17 沈阳东朗科技开发有限公司 一种模拟训练弹自动发射系统
US10107595B1 (en) 2017-06-20 2018-10-23 Cubic Corporation Indirect fire mission training system
GB2563707B (en) * 2017-06-20 2022-08-31 Cubic Corp Instrumented training mortar system
US10907935B2 (en) 2017-06-20 2021-02-02 Cubic Corporation Indirect fire mission training system
US10352655B2 (en) 2017-06-20 2019-07-16 Cubic Corporation Instrumented training mortar system
USD889581S1 (en) * 2018-06-27 2020-07-07 The United States Of America As Represented By The Secretary Of The Army Mortar training aid
CN109210995A (zh) * 2018-09-26 2019-01-15 中国人民解放军总参谋部第六十研究所 一种间瞄火炮炮弹模拟装置
US11156419B1 (en) * 2018-10-02 2021-10-26 Inpixon Geolocation-reporting weapon-tracking device
DE102018129778B4 (de) * 2018-11-26 2022-02-24 Rheinmetall Waffe Munition Gmbh Übungsmunition und Trainingssystem unter Verwendung der Übungsmunition
CN110822988B (zh) * 2019-11-25 2021-09-10 南京智能仿真技术研究院有限公司 一种迫击炮射击训练模拟器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322212A (en) * 1942-07-03 1943-06-22 William H Allen Practice sheel
US2801586A (en) * 1953-09-03 1957-08-06 Mongello Thomas Subcaliber mortar trainer shell
US2809624A (en) * 1954-07-26 1957-10-15 Dellenbarger Machine Company I Missile firing trainer device
DE1453821C3 (de) * 1965-03-24 1975-11-20 Dynamit Nobel Ag, 5210 Troisdorf Morse rubungsgranate
SE306484B (de) * 1966-05-05 1968-11-25 Saab Ab
US3798795A (en) * 1972-07-03 1974-03-26 Rmc Res Corp Weapon aim evaluation system
US4321043A (en) * 1980-11-20 1982-03-23 The United States Of America As Represented By The Secretary Of The Navy Recoil force and weight loss simulation device
DE3729483A1 (de) * 1987-09-03 1989-03-16 Precitronic Verfahren und einrichtung fuer schuss- und gefechtssimulation
US5201658A (en) * 1991-11-18 1993-04-13 Ecc International Corporation Artillery gun simulator having fixed gun tube and recoiling breech assembly

Also Published As

Publication number Publication date
CA2268645C (en) 2008-07-22
NZ335221A (en) 2000-06-23
IL129278A (en) 2003-12-10
ES2199415T3 (es) 2004-02-16
US6193517B1 (en) 2001-02-27
EP0952422A1 (de) 1999-10-27
EP0952422B1 (de) 2003-05-28
NO991864D0 (no) 1999-04-19
DE59808533D1 (de) 2003-07-03
NO991864L (no) 1999-10-21
PT952422E (pt) 2003-10-31
NO318326B1 (no) 2005-03-07
IL129278A0 (en) 2000-02-17
ATE241794T1 (de) 2003-06-15
DK0952422T3 (da) 2003-09-22
CA2268645A1 (en) 1999-10-20

Similar Documents

Publication Publication Date Title
EP0952422B1 (de) Simulator für Vorderlader-Rohrwaffen
DE69828412T2 (de) Mit einem laser funktionierende übungswaffe welche mit einem netzwerk verbunden ist
DE3504579C2 (de)
DE60106010T2 (de) Genauigkeitsschusssimulatorsystem und -verfahren
DE102009024508A1 (de) Verfahren zur Korrektur der Flugbahn einer endphasengelenkten Munition
DE102009041094A1 (de) Waffe, insbesondere reichweitengesteuerte Druckluftwaffe
DE2905422A1 (de) Einrichtung zur schussimulation mit trefferanzeige
DE102005055099A1 (de) Einrichtung zur Simulation der Wirkung von direkt und indirekt wirkenden Waffen zur Verbesserung der Ausbildung und zur Nutzung in Gefechtsübungszentren
DE102009016147A1 (de) Zerlegendes Geschoss
EP3070429B1 (de) Projektil zum abfangen einer kleindrohne
DE3716883C2 (de) Elektronische Prüfeinrichtung
DE4340905C1 (de) Verfahren zum Bekämpfen von gewalttätigen Personen
DE3326748C2 (de)
EP1166029B1 (de) Verfahren zur gefechtsfeldsimulation
DE19617060C2 (de) Verfahren und Einrichtung zur Simulation der Wirkung von Steilfeuerwaffen auf Gefechtseinheiten
DE2633964C2 (de) Gefechts-Simulationseinrichtung
EP3887750B1 (de) Übungsmunition und trainingssystem unter verwendung der übungsmunition
CH656453A5 (en) Device for firing simulation using light pulses
DE69817496T2 (de) Hohlladungsprojektil und dazugehöriges Waffensystem
JP2773615B2 (ja) 射撃模擬装置
DE102016005911A1 (de) Messprojektil und Verfahren zur Messung eines Zustands eines Geschützes mittels eines Messprojektils
EP2894430B1 (de) Schusswaffe mit mehreren Sensoren zum Erfassen eines Betriebszustands der Schusswaffe
RU2171440C1 (ru) Стенд имитации выстрела
DE19912093A1 (de) Verfahren zur Schußsimulation
DE202020004423U1 (de) Handfeuerwaffen-System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IT LI NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000113

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RUAG ELECTRONICS

17Q First examination report despatched

Effective date: 20020201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RUAG ELECTRONICS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IT LI NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

REF Corresponds to:

Ref document number: 59808533

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030403322

Country of ref document: GR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2199415

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59808533

Country of ref document: DE

Representative=s name: MAI DOERR BESIER EUROPEAN PATENT ATTORNEYS - E, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59808533

Country of ref document: DE

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170419

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170419

Year of fee payment: 20

Ref country code: GR

Payment date: 20170425

Year of fee payment: 20

Ref country code: GB

Payment date: 20170419

Year of fee payment: 20

Ref country code: CH

Payment date: 20170421

Year of fee payment: 20

Ref country code: CY

Payment date: 20170411

Year of fee payment: 20

Ref country code: FR

Payment date: 20170419

Year of fee payment: 20

Ref country code: DK

Payment date: 20170419

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170418

Year of fee payment: 20

Ref country code: IT

Payment date: 20170424

Year of fee payment: 20

Ref country code: ES

Payment date: 20170517

Year of fee payment: 20

Ref country code: FI

Payment date: 20170412

Year of fee payment: 20

Ref country code: BE

Payment date: 20170419

Year of fee payment: 20

Ref country code: AT

Payment date: 20170420

Year of fee payment: 20

Ref country code: SE

Payment date: 20170419

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59808533

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20180420

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180419

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 241794

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180420

Ref country code: BE

Ref legal event code: MK

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180419

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180503

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180421