EP0948826A1 - Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien - Google Patents

Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien

Info

Publication number
EP0948826A1
EP0948826A1 EP97953650A EP97953650A EP0948826A1 EP 0948826 A1 EP0948826 A1 EP 0948826A1 EP 97953650 A EP97953650 A EP 97953650A EP 97953650 A EP97953650 A EP 97953650A EP 0948826 A1 EP0948826 A1 EP 0948826A1
Authority
EP
European Patent Office
Prior art keywords
boric acid
anode
additives
lithium
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97953650A
Other languages
English (en)
French (fr)
Inventor
Franz W. Winterberg
Bent Hundrup
Dennis W. Nielsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0948826A1 publication Critical patent/EP0948826A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to methods and anodes for improving the power density of lithium secondary batteries, in particular those with solid polymer solutions.
  • the current density of the electrolytes is expressed as:
  • L E is the conductivity of the electrolyte solution
  • ⁇ ⁇ is the potential difference between the anode and cathode material
  • tj r is the reduced transport size of the transport species “i”
  • ⁇ ⁇ i is the difference in the chemical potential of the species “i” between the anodes - and cathode material.
  • boric acid esters and / or boric acid ester derivatives or their compounds are added as additives to improve the power density of lithium secondary batteries, in particular those with solid polymer solutions
  • boric acid esters and / or boric acid ester derivatives are used as lithium compounds in complexes of the formula
  • R 1 and R 2 can be aromatic and / or aliphatic and in formula III M is a transition metal and the cyclopetadienyl groups can also carry fluorine instead of H.
  • Transition metals are elements whose atoms have an incomplete d-shell or which can form one or more cations with incomplete d-shells 21 - 30 in the 5th period Y to Cd (39-48), in the 6th period La to Hg including the lanthanoids, in which the 4f shell is filled (atomic numbers 57-80) and in the 7th period Ac, the actinides to Lr (89-103) Boric acid esters are preferably used
  • the residual groups cause electrochemical stability and solubility in the organic solvent. Due to the large and voluminous residual groups, the negative charge is distributed. As a result, it is very unlikely that lithium + will form ion pairs or complex species.
  • the salt is therefore dissolved or dissolved in the organic solvent dissociates
  • the additives are preferably added on the anode side
  • the additives are added in amounts of> 0 to 20% by weight, preferably 5 to 15% by weight
  • the anode according to the invention in particular in lithium ion secondary batteries and those with solid polymer solutions, contains additions of boric acid esters and / or boric acid ester derivatives or their compounds at the anode
  • the anode consists of a substance that can store lithium ions and / or lithium and conductive salts that are dissolved in solvents and / or in polymer binders and / or a conductive carbon black and / or the additive.
  • Such anodes are particularly suitable, the lithiated boric acid ester and / or boric acid ester derivatives in the form of complex compounds of the formulas
  • the additives are expediently contained in the anodes in amounts of greater than 0 to 20% by weight, preferably 5 to 15% by weight
  • Figure 1 is a schematic sectional view of a battery, for example a lithium ion battery LiC / PEO, lithium salt / Li Mn 2 0 $ without salt, with very low electrical currents in a very short time (idealized case)
  • Figure 2 is a schematic sectional view of the same system, in the difference for Figure 1, the graphs show the behavior when using larger currents
  • FIG. 3 is again a schematic sectional view of the same system, the graphs show the behavior with small and large currents, there is no salt emptying
  • FIG. 4 trends in the curve representations for small, medium and large currents
  • FIG. 5 curve representation as in FIG. 4, but ideally with immobilized anions
  • FIG. 6 shows schematic exemplary representations of how the cycle strength can be increased on the basis of the use case of polyethylene oxide (PEO)
  • FIG. 7 shows the positive derivation of 1 Ohm's law achieved using the additive substances in comparison to the curve profile without positive derivation
  • Figure 8 is a schematic representation of anodes / electrolyte / cathodes for the application of the additives and without their use
  • FIG. 2 shows the conditions for larger currents in the same system of a lithium ion battery used as an example, local drainage of the seeds occurs. Due to the existence of a mass balance of the lithium ions, their concentration is approximately constant (A)
  • the anions move towards the electrolyte against the positive electrode. Since no anions are supplied from the electrodes, a concentration gradient is created (B) According to Kohlrausch's law, the ion conductivity depends on the electrolyte concentration. If the concentration decreases, the conductivity also decreases If a concentration gradient occurs, a gradient of the conductivity arises (C) If the electrolyte conductivity decreases, the local electrolyte resistance increases With an increase in the local electrolyte resistance, a potential drop occurs (D)
  • the ideal case shown in FIG. 5 with immobilized anions will be explained in more detail below by way of example.
  • the anions are not mechanically immobilized, but their transport size is very small in relation to lithium If the anions are mechanically immobilized, the complex constant is very large, the order of magnitude of the lithium transport decreases. The overall conductivity decreases because the complex constant between the anions and lithium is large
  • FIG. 6 is based on the state that if a larger current is required, a high potential must be used. High potentials give only small numbers of cycles or only a limited cycle stability. This is shown in FIG. 6 using the example of the PEO solvent
  • FIG. 6 shows the achievement of retained currents according to the invention with then reduced potentials which are of the order of magnitude where the PEO solvent is stable.
  • the cycle ability could be increased by using the substances according to the invention above the reduced potentials thus achieved but the constant current achieved.
  • the reduced potential increases the number of cycles or the cycle strength
  • the invention achieved particularly advantageously that when the substances according to the invention were added to the electrolyte binder material in the anode, the potential, as exemplified in FIG. 6, could be reduced, without reducing the current density
  • FIG. 7 shows schematically the so-called positive derivatives of First Ohm's law achieved in addition to the graph of the normal course of First Ohm's law for ordinary batteries in lithium ion battery systems described
  • the potential for the investigations was determined to be constant.
  • the additive complexes or the substances found were added, and a positive derivation of the first Ohm's law was found.This means a larger current compared to the normally achievable course according to the first Ohm's law
  • the measurements were carried out in a lithium half-cell with an active area of approximately 1 cm 2 (standard electrolyte LP 30 EC DMC (1 1), 1 m L ⁇ PF 6 , feed rate 0.1 mV / s)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Die Erfindung betrifft Verfahren und Anode zur Verbesserung der Leistungsdichte von Lithiumsekundärbatterien, insbesondere solchen mit festen Polymerlösungen. Dies wird dadurch erreicht, daß Borsäureester und/oder Borsäureesterderivate oder deren Verbindungen als Additive zugesetzt werden. Insbesondere werden Lithium-Verbindungen in entsprechenden Komplexen zugesetzt. Gegenstand der Erfindung sind auch Anoden zur Anwendung in galvanischen Zellen, insbesondere in Lithiumionen-Sekundärbatterien und solchen mit festen Polymerlösungen, die in der Anode Borsäureester und/oder Borsäureesterderivate oder deren Verbindungen als Zusätze enthalten.

Description

Verfahren und Anode zur Verbesserung der Leistungsdichte von Lithiumsekundärbatterien
Die Erfindung betrifft Verfahren und Anode zur Verbesserung der Leistungsdichte von Lithiumsekundärbatterien, insbesondere solchen mit festen Polymerlösungen.
In Zellanordnungen und weiteren Anordnungen wird eine verbesserte Materialausnutzung gewünscht, um die Anforderungen der Nachfrager befriedigen zu können. Wenn die Ladung von Anoden zum Kathodenmaterial vorrangig in einer sekundären Batterie durch einen Elektrolyten bzw. durch eine Elektrolytlösung transportiert wird, so ist das darauf zurückzuführen, daß jedwede Materialien mit einem Potential transportiert werden. Folglich werden die positiv geladenen Ionen auch durch die Elektrolyte zur negativ geladenen Elektrode transportiert. Umgekehrt gilt dies für die Anionen.
Die Stromdichte der Elektrolyte wird ausgedrückt als:
wobei LE die Konduktivität der Elektrolytlösung ist, Δ φ ist die Potentialdifferenz zwischen dem Anoden- und Kathodenmaterial, tjr ist die reduzierte Transportgröße der Transportspezies „i", und Δ μi ist die Differenz des chemischen Potentials der Spezie „i" zwischen dem Anoden- und Kathodenmaterial.
Da alle Materialien in der Anode definiert verdünnt sind, ist dann Δ μ,- ungefähr 0, für gewöhnliche Batterien, wie beispielhaft (1) erläutert, wird dann ein Äquivalent des ersten Ohmschen Gesetzes eintreten.
Es können höhere Spannungen auftreten, als für das System vorgesehen ist. Dieses kann zu Risiken und Schäden führen, die präventiv zu vermeiden sind. Schließlich ist die Bindung der Polymere unvorteilhaft, die Aπioπen sind nicht immobilisiert Die Transportgroßenordπung des Lithiums ist unbefriedigend
Somit besteht die Aufgabe der vorliegenden Erfindung dann, vorrangig für Lithium- sekundarbattenen einen Zusatz bereitzustellen, der die Leistungsdichte unter Berücksichtigung der Betriebssicherheit erhöht, eine positive Abweichung des ersten Ohmschen Gesetzes erreicht, die Salzausleerung vermindert und die Zykleπaπzahl bzw Zyklenfestigkeit erhöht Ferner waren Verfahrensschritte zu erarbeiten, die die angeführten Verbesserungen erbringen
Die Aufgabe wird durch die kennzeichnenden Merkmale gemäß der Patentansprüche gelost Demgemäß werden zur Verbesserung der Leistungsdichte von Lithiumsekun- darbatteπen insbesondere solchen mit festen Polymerlosungen Borsaureester und/oder Borsaureesterdenvaten oder deren Verbindungen als Additive zugesetzt
Der Zusatz bewirkt daß die sogenannte Salzausleerung (Fig 3) vermindert wird, eine hohe Lithiumtransportgroßenordnung erreicht wird sowie eine positive Deπ- vation des 1 Ohmschen Gesetzes (Fig 4) resultiert Dies bewirkt auch eine erhöhte Zyklenfestigkeit des Batteriesystems sowie für festgelegte Potentiale eine Erhöhung der Leistungsdichte Das verwendete Zellsystem geht aus den Figuren hervor
Insbesondere werden Borsaureester und/oder Borsaureesterdeπvate als Lithium- verbindungen in Komplexen der Formel
und/oder
π und/oder
verwendet wobei die Restgruppen Ri und R2 aromatisch und/oder aliphatisch sein können und in Formel III M ein Ubergangsmetall ist und die Cyclopeπtadienyl- Gruppen auch Fluor anstelle von H tragen können
Ubergangsmetalle sind solche Elemente, deren Atome eine inkomplette d-Schale haben oder die ein oder mehrere Kationen mit inkompletten d-Schalen bilden können Demnach gehören gemäß der von der IUPAC empfohlenen Notation zu den Ubergangsmetalleπ in der 4 Periode die Elemente Sc bis Zn mit den Ordnungszahlen 21 - 30 in der 5 Periode Y bis Cd (39-48), in der 6 Periode La bis Hg einschließlich der Lanthanoide, bei denen die 4f-Schale aufgefüllt wird (Ordnungszahlen 57-80) und in der 7 Periode Ac, die Actinoide bis Lr (89-103) Vorzugsweise werden Borsaureester verwendet
Die Restgruppen bedingen elektrochemische Stabilität und Los chkeit im organischen Losungsmittel Durch die großen und voluminösen Restgruppen ist die negative Ladung verteilt Dies hat zur Folge, daß es sehr unwahrscheinlich ist, daß Lιthιum+ lonenpaare oder komplexierte Spezies bildet Daher ist das Salz im organischen Losungsmittel gelost bzw dissoziiert
Vorzugsweise werden die Additive an der Anodenseite zugesetzt
Die Additive werden in Mengen von > 0 bis 20 Gew %, vorzugsweise 5 bis 15 Gew % zugegeben
Die erfindungsgemaße Anode, insbesondere in Lithiumionensekundarbatteπen und solchen mit festen Polymerlosungen, enthalt an der Anode Zusätze von Borsaureester und/oder Borsaureesterdeπvaten oder deren Verbindungen
Damit wird ein vergleichsweise hoher Strom bei niedrig gewähltem Potential mit insbesondere den Effekten eines stabilen Systems sowie höhere Zyklenzahl bzw Zyklenfestigkeit erreicht
Die Anode besteht aus einer Substanz, die Lithiumionen einlagern kann und/oder Lithium und Leitsalzen, die in Losungsmitteln gelost sind und/oder in Polymerbinde- mittel und/oder einem Leitruß und/oder dem Additiv Besonders geeignet sind solche Anoden die lithnerte Borsaureester und/oder Borsaureesterdeπvate in Form komplexer Verbindungen der Formeln
und/oder
π
und/oder
als Zusatz enthalten. Die Zusätze sind zweckmäßig in Mengen von großer als 0 bis 20 Gew %, vorzugsweise 5 bis 15 Gew %, in den Anoden enthalten
Die Erfindung sei im folgenden naher unter Bezugnahme auf die beigefugten Zeichnungen erläutert In den Zeichnungen zeigen
Figur 1 eine schematische Schnittdarstellung einer Batterie, beispielhaft eine Lithiumionenbatterie LiC/PEO, Lithiumsalz/Li Mn20$ ohne Salzausieerung, mit sehr geringen elektrischen Strömen in sehr kurzer Zeit (idealisierter Fall), Figur 2 eine schematische Schnittdarstellung des gleichen Systems, im Unterschied zu Figur 1 zeigen die Kurvendarstellungen hier das Verhalten bei Nutzung größerer Strome
Figur 3 wiederum eine schematische Schnittdarstellung des gleichen Systems, die Graphen zeigen das Verhalten bei kleinen und großen Strömen, es tritt keine Salzentleerung auf
Figur 4 Tendenzen in den Kurvendarstellungen für kleinere, mittlere und größere Strome,
Figur 5 Kurvendarstellung wie in Figur 4 jedoch im Idealfall mit immobilisierten Anionen,
Figur 6 schematische beispielhafte Kurvendarstellungen, wie die Zyklenfestigkeit erhöht werden kann anhand des Einsatzfalles Polyethyleπoxid (PEO), Figur 7 Kurvendarstelluπg der unter Einsatz der Additivstoffe erreichten positiven Derivation des 1 Ohmschen Gesetzes im Vergleich zum Kurvenverlauf ohne positive Derivation
Figur 8 eine schematische Darstellung Anoden/Elektrolyt/Kathoden für den Einsatzfall der Additivstoffe und ohne deren Einsatz
Figur 9 Strom-Spannungs-Diagramm zur Darstellung der Ergebnisse in den Beispielen
In Anordnungen wie schematisch beispielsweise in Figur 1 dargestellt, treten in Fallen sehr geringer Strome in kurzen Zeitimpulsen keine Salzentleerungen auf Das gilt insbesondere für die skizzierten Lithiumionenbatterien dargestellt gemäß Figur 1 im Idealfall, die Anionen sind nicht immobilisiert Deshalb können nur geringe Strome in kurzer Zeit ohne Gradienten entnommen werden
Die Figur 2 gibt die Verhaltnisse bei größeren Strömen im gleichen beispielhaft verwendeten System einer Lithiumionenbatterie wieder, es treten lokale Saizentleerun- gen auf Aufgrund der Existenz einer Massenbalance der Lithiumionen ist deren Konzentration naherungsweise konstant (A)
Die Anionen bewegen sich zum Elektrolyten gegen die positive Elektrode Da keine Anionen von den Elektroden nachgeliefert werden, entsteht ein Konzentrationsgra- dient (B) Entsprechend dem Gesetz von Kohlrausch hangt die lonenleitfahigkeit von der Elektrolytkonzeπtration ab Wenn die Konzentration abnimmt, nimmt auch die Leitfähigkeit ab Ferner entsteht mit dem Auftreten eines Konzentrationsgradienten ein Gradient der Leitfähigkeit (C) Wenn die Elektrolytleitfahigkeit abnimmt nimmt der lokale Elektrolytwiderstand zu Mit einem Zuwachs des lokalen Elektrolytwiderstands tritt ein Potentialabfall auf (D)
Gemäß Figur 3 sind die Anionen nunmehr erfindungsgemaß in der Polymermatrix des Elektrolyten immobilisiert
So sind große und kleine Strome, ohne dann Probleme mit der Salzausieerung zu haben und damit Potentialabfalle zu verzeichnen, nutzbar, wie ebenso Figur 5 als Tendenz in den Kurvendarstellungen im Idealfall mit immobilisierten Anionen zeigt
Für kleinere, mittlere und größere Strome sind die beschriebenen Tendenzen in den Kurvendarstellungen der Figur 4 zusammengefaßt
Der gemäß Figur 5 gezeigte Idealfall mit immobilisierten Anionen soll nachstehend beispielhaft naher erläutert werden Die Anionen sind nicht mechanisch immobilisiert sondern ihre Transportgroßenordnuπg ist im Verhältnis zum Lithium sehr klein Wenn die Anionen mechanisch immobilisiert sind, dann ist die Komplexkonstante sehr groß, die Lithiumtransportgroßenordnung fallt ab Die Gesamtkonduktivitat fallt ab, da die Komplexkonstante zwischen Anionen und Lithium groß ist
Wenn die Anionen chemisch immobilisiert sind, dann ist die Komplexkonstante zwischen Lι+ und Anion sehr hoch, die Gesamtkonduktivitat ist sehr niedrig Wenn jedoch der Anionentransport im Vergleich zur Lι+ -Transportgroßenordπung sehr klein ist dann existieren keine signifikanten Komplexe zwischen den Anionen und Kationen Somit ergibt sich eine hohe Konduktivitat
Figur 6 basiert auf dem Stand, daß, wenn man einen größeren Strom benotigt, man ein hohes Potential nutzen muß Hohe Potentiale geben nur geringe Zyklenzahlen bzw nur eine bedingte Zyklenfestigkeit Dies wird in Figur 6 am Beispiels des PEO- Solvents gezeigt
Weitergehend zeigt Figur 6 die erfindungsgemaße Erreichung beibehaltener Strome bei dann verminderten Potentialen, die sich in den Größenordnungen befinden, wo das PEO-Solvent stabil ist Die Zyklenfahigkeit konnte bei Verwendung der erfindungsgemaßen Stoffe über somit erreichte verminderte Potentiale aber erreichten gleichbleibenden Strom erhöht werden Das verminderte Potential erhöht die Zyklenzahl bzw die Zyklenfestigkeit Im beispielhaft gemäß Figur 1 zugrundegelegten System einer Lithiumionenbattene wurde erfindungsgemaß besonders vorteilhaft erreicht, daß bei Zugabe der erfindungsgemaßen Stoffe gemäß der Patentansprüche zum Elektrolytbindermateπal in der Anode, das Potential, wie in Figur 6 beispielhaft gezeichnet, reduziert werden konnte, ohne die Stromdichte zu reduzieren
In Versuchsreihen konnte die Leistungsdichte des Systems erhöht und der Nacnweis hierzu gefuhrt werden So zeigt Figur 7 schematisch die erreichte sog Positive Derivationen des Ersten Ohmschen Gesetzes neben dem Graphen des normalen Verlaufs des Ersten Ohmschen Gesetzes für ordinäre Batterien in beschriebenen Lithiumionenbatteπesystemen Für die Untersuchungen wurde das Potential gleichbleibend festgelegt Die Additivkomplexe bzw die gefundenen Stoffe wurden zugesetzt, und eine positive Derivation des Ersten Ohmschen Gesetzes wurde festgestellt Das bedeutet einen größeren Strom verglichen mit dem normal erreichbaren Verlauf gemäß dem Ersten Ohmschen Gesetz Somit ist die Leistungsdichte des Systems erhöht
Aus der unter Figur 8 aufgeführten Gleichung sowie aus der Zeichnung ergibt sich, daß die Transportgroßenordnung der Anionen ungefähr 0 ist. Somit beeinflußt die chemische Potentialdifferenz die Stromdichte in keiner Weise Wenn ein lithiertes Borsaureesterdenvat hinzugefugt wurde, wird die partiale Uber- schußenergie der Lithiumionen bestandig positiv Das basiert auf einer erhöhten Stromdichte sowie einer erhöhten Lithiumtransportgroßenordnung Dann ist
dj_ _ 0 und RT d In Xu o dx dx
und t,r Δ μ, » ... > 0 volt (2).
Damit ist eine positive Derivation des Ersten Ohmschen Gesetzes gegeben
Für festgelegte Zelldesigne und Potentiale kann ein größerer Strom in einen äußeren Stromkreis entnommen werden, wenn das System positiv vom Ersten Ohmschen Gesetz abweicht Dies bedeutet somit eine erhöhte Leistungsdichte Beispiel 1 (Vergleichsbeispiel)
Rezepturen ohne Lιthιum-bιs[1 ,2-benzoldιolato(2-)-0,0']borat(1-)(LιBSE)
Aktivmaterial Gewichtsprozent
Graphit (Typ KS6) 90,29
Leitruß (Typ Super P) 4,74
Teflon-Binder 4,97
(Gesamtmasse der Elektrode 13,9 mg Aktivmasse an kS6 12,55 mg, äquivalent mit
4 67 mAh)
Beispiel 2
Rezeptur mit Lιthιum-bιs[1 ,2-benzoldιolator(2-)-0,0']borat(1 -)(LιBSE)
Aktivmaterial Gewichtsprozent
Graphit (Typ KS 6) 82,08
Leitruß (Typ Super P) 4,30
Teflon-Binder 4,53
LiBSE 9,09
(Gesamtmasse der Elektrode 1 1 3 mg, Aktivmasse an KS6 9,3 mg äquivalent mit 3 46 mAh)
In beiden Beispielen erfolgten die Messungen in einer Lithium-Halbzelle mit einer Aktivfiache von ca 1 cm2 (Standardelektrolyt LP 30 EC DMC (1 1 ), 1 m LιPF6, Vorschubgeschwindigkeit 0,1 mV/s)
Zur Darstellung der Elektroden wurden die entsprechenden Aktivmaterialien in einem Morser vermischt und auf das Nickelnetz gepreßt Ein Cydovoltamogramm wurde mit diesen zwei Zusammensetzungen an einem ansteuerbaren Potentiostaten erstellt, wie es in Figur 9 (Strom-Spannungsdiagramm) zu sehen ist. Aus dieser Figur 9 ergibt sich, daß der Kathoden und Anodenstrom erhöht ist. Daraus folgt, daß die Kapazität im System mit LiBSE (Beispiel 2) im Vergleich zum System ohne LiBSE (Beispiel 1 ) erhöht ist.

Claims

Patentansprüche
1 Verfahren und Anode zur Verbesserung der Leistungsdichte von Lithium-
Sekundärbatteπen, insbesondere solchen mit festen Polymerlösungen, dadurch gekennzeichnet, daß Borsaureester und/oder Borsäureesterderivate oder deren Verbindungen als Additive zugesetzt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Borsaureester und/oder Borsäureesterderivate als Lithium-Verbindungen in Komplexen der Formeln
und/oder
π und/oder
vorliegen, wobei die Restgruppen Ri und R2 aromatisch und/oder aliphatisch sein können und in Formel III M ein Ubergaπgsmetall ist und die Cyclopentadienyl-Gruppen auch Fluor anstelle von H tragen können
Verfahren nach einem oder mehreren der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Additive an der Anodenseite zugesetzt werden
Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Additive in Mengen von großer als 0 bis 20 Gew %, vorzugsweise 5 Gew % bis 15 Gew %, zugegeben werden
Anode zur Anwendung in galvanischen Zellen, insbesondere in Lithiumionen- Sekundarbatteπen und solchen mit festen Polymerlosungen, dadurch gekennzeichnet, daß in der Anode Borsaureester und/oder Borsaureesterdeπvate oder deren Verbindungen als Zusätze enthalten sind
Anode nach Anspruch 5 dadurch gekennzeichnet daß lithierte Borsaureester und/oder Borsaureesterdeπvate in Form komplexer Verbindungen der Formeln
und/oder
π und/oder
als Zusätze enthalten sind.
7. Anode nach Anspruch 5 und/oder 6, dadurch gekennzeichnet, daß die Zusätze in Mengen von größer als 0 bis 20 Gew.%, vorzugsweise 5 Gew.% bis 15 Gew.%, enthalten sind.
EP97953650A 1996-12-23 1997-12-19 Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien Withdrawn EP0948826A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19654057 1996-12-23
DE19654057A DE19654057C2 (de) 1996-12-23 1996-12-23 Verfahren zur Verbesserung der Leistungsdichte von Lithium-Sekundärbatterien
PCT/DE1997/002974 WO1998028807A1 (de) 1996-12-23 1997-12-19 Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien

Publications (1)

Publication Number Publication Date
EP0948826A1 true EP0948826A1 (de) 1999-10-13

Family

ID=7816040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97953650A Withdrawn EP0948826A1 (de) 1996-12-23 1997-12-19 Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien

Country Status (10)

Country Link
EP (1) EP0948826A1 (de)
JP (1) JP2001506799A (de)
KR (1) KR20000062304A (de)
AU (1) AU731463B2 (de)
BR (1) BR9714165A (de)
CA (1) CA2275969A1 (de)
DE (1) DE19654057C2 (de)
IL (1) IL130566A0 (de)
RU (1) RU2175798C2 (de)
WO (1) WO1998028807A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150053A (en) * 1997-06-06 2000-11-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
DE19910968A1 (de) 1999-03-12 2000-11-09 Merck Patent Gmbh Anwendung von Additiven in Elektrolyten für elektrochemische Zellen
KR100553736B1 (ko) * 1999-09-02 2006-02-20 삼성에스디아이 주식회사 리튬 2차 전지용 활물질 조성물
US7527899B2 (en) 2000-06-16 2009-05-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrolytic orthoborate salts for lithium batteries
JP2004511879A (ja) 2000-06-16 2004-04-15 アリゾナ ボード オブ リージェンツ, ア ボディ コーポレイト アクティング オン ビハーフ オブ アリゾナ ステート ユニバーシティ リチウム電池用伝導性ポリマー組成物
EP1197494A3 (de) 2000-09-21 2004-05-26 Kanto Kagaku Kabushiki Kaisha Neue Organoborat Verbindungen und nichtwässrige Elektrolyten und Lithium-Sekundärbatterie, die diese enthalten
JP5666225B2 (ja) * 2010-09-16 2015-02-12 株式会社豊田中央研究所 リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN102964369B (zh) * 2012-10-24 2016-04-06 中国科学院青岛生物能源与过程研究所 一类聚合物型硼酸酯锂盐及其制备方法和应用
CN104183867B (zh) * 2014-08-12 2018-06-19 中国科学院青岛生物能源与过程研究所 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195120A (en) * 1978-11-03 1980-03-25 P. R. Mallory & Co. Inc. Hydrogen evolution inhibitors for cells having zinc anodes
JPH0448709A (ja) * 1990-06-15 1992-02-18 Japan Carlit Co Ltd:The 固体電解コンデンサの製造方法
AU6237794A (en) * 1993-02-12 1994-08-29 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
DE4316104A1 (de) * 1993-05-13 1994-11-17 Manfred Wuehr Elektrolyt zur Anwendung in einer galvanischen Zelle
DE69429131T2 (de) * 1993-06-18 2002-07-11 Hitachi Maxell Elektrochemisches Element mit flüssigem organischem Elektrolyten
JP3208243B2 (ja) * 1993-11-18 2001-09-10 三洋電機株式会社 非水系電池
US5597663A (en) * 1995-05-30 1997-01-28 Motorola, Inc. Low temperature molten lithium salt electrolytes for electrochemical cells
DE19633027A1 (de) * 1996-08-16 1998-02-19 Merck Patent Gmbh Verfahren zur Herstellung von neuen Lithium-Borat-Komplexen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9828807A1 *

Also Published As

Publication number Publication date
RU2175798C2 (ru) 2001-11-10
WO1998028807A1 (de) 1998-07-02
AU5748498A (en) 1998-07-17
JP2001506799A (ja) 2001-05-22
IL130566A0 (en) 2000-06-01
AU731463B2 (en) 2001-03-29
KR20000062304A (ko) 2000-10-25
DE19654057A1 (de) 1998-06-25
BR9714165A (pt) 2002-01-02
DE19654057C2 (de) 2001-06-21
CA2275969A1 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
DE69737770T2 (de) Verfahren zur herstellung einer paste mit zinnanteilen für blei-säure-zellen
DE2841895C2 (de)
DE60123522T2 (de) Negative Elektrode für Lithium-Sekundärbatterie
DE2713780C2 (de) Elektrochemische stromerzeugende Zelle mit positiver Bromelektrode
DE102017215388A1 (de) Fluorierter ether als elektrolyt-co-lösungsmittel für eine lithiummetallbasierte anode
EP3611788A1 (de) Wiederaufladbare elektrochemische zelle
EP1665447A2 (de) Elektrochemische batteriezelle
DE2628752A1 (de) Elektrochemisches element
EP0657953A1 (de) Elektrochemisches Sekundärelement
DE102018107573B4 (de) Fluoridionen-batterie
EP3771011A2 (de) Auf so2-basierender elektrolyt für eine wiederaufladbare batteriezelle und wiederaufladbare batteriezellen damit
EP0626734A2 (de) Wiederaufladbare galvanische Lithiumzelle
EP0948826A1 (de) Verfahren und anode zur verbesserung der leistungsdichte von lithiumsekundärbatterien
DE2842500C2 (de)
DE112011102079T5 (de) Aktives Material für eine wiederaufladbare Batterie
DE102018112638B4 (de) Elektrochemische Sekundärzelle und Elektrolytzusammensetzung
EP0357952A1 (de) Nichtwässriges, wiederaufladbares galvanisches Lithiumelement mit anorganischer Elektrolytlösung
DE2619806A1 (de) Elektrochemische zellen
DE102016013809A1 (de) Additiv-Zusammensetzung, Elektrolyt mit der Additiv-Zusammensetzung und wiederaufladbare Batteriezelle mit dem Elektrolyt
DE102019132932A1 (de) Elektrolytlösung für lithium-eisen-phosphat-basierte lithium-sekundärbatterie und diese enthaltende lithium-sekundärbatterie
DE2835836B2 (de) Alkalische quecksilberfreie galvanische Sekundärzelle mit einem negativen Zwischenseparator
DE19809743B4 (de) Polymerelektrolyt-Lithiumbatterie, enthaltend ein Kaliumsalz
DE102012203194A1 (de) Elektrochemischer Energiespeicher- oder Energiewandlervorrichtung aus einer galvanischen Zelle mit elektrochemischen Halbzellen umfassend eine Suspension aus Fulleren und ionischer Flüssigkeit
DE3424099A1 (de) Zelle mit einer pbcl(pfeil abwaerts)2(pfeil abwaerts)-kathode
DE2951169A1 (de) Elektrochemische primaerzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 19990607

17Q First examination report despatched

Effective date: 19991115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021001