EP0933096B1 - Laser pour ablation de la peau - Google Patents
Laser pour ablation de la peau Download PDFInfo
- Publication number
- EP0933096B1 EP0933096B1 EP99300177A EP99300177A EP0933096B1 EP 0933096 B1 EP0933096 B1 EP 0933096B1 EP 99300177 A EP99300177 A EP 99300177A EP 99300177 A EP99300177 A EP 99300177A EP 0933096 B1 EP0933096 B1 EP 0933096B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- skin
- laser
- light source
- locations
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00057—Light
- A61B2017/00061—Light spectrum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00747—Dermatology
- A61B2017/00756—Port wine stains
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00738—Depth, e.g. depth of ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20357—Scanning mechanisms by movable optical fibre end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20359—Scanning mechanisms by movable mirrors, e.g. galvanometric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2065—Multiwave; Wavelength mixing, e.g. using four or more wavelengths
- A61B2018/207—Multiwave; Wavelength mixing, e.g. using four or more wavelengths mixing two wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
- A61B2090/0409—Specification of type of protection measures
- A61B2090/0436—Shielding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
- A61B2090/049—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against light, e.g. laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/373—Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
Definitions
- Skin problems are pervasive in society. People suffer from conditions ranging from the cosmetic, such as benign discoloration, to fatal ailments, such as malignant melanomas. Treatments range from cosmetic "cover-up" makeup to surgical excision.
- the removal (or "skin peel") of an outer layer of skin is used to treat conditions such as acne, age spots (superficial regions of excess melanin), shallow lesions (e.g. actinic keratoses), and aged skin.
- Figure 1 depicts a cross section of normal human skin. The depth of the outer layer, or epidermis (105), varies, with ranges typically from 50-150 ⁇ m in thickness. The epidermis (105) is separated from the underlying corium (dermis) (110) by a germinative layer of columnar basal cells (120). The epidermal/dermal interface is characterized by undulations.
- the basal cells (120) produce a continuing supply of keratinocytes, which are the microscopic components of the epidermis (105). Specialized cells called melanocytes (125), also reside in the basal cell (120) layer and produce the pigment melanin (130). Although some of the melanin (130) migrates toward the surface of the skin with the keratinocytes, the greatest concentration of melanin (130) remains in the basal cell layer (120).
- the uppermost layer of the dermis (110), which is adjacent to the basal cell layer (120), is known as the papillary dermis, and the papillae range in width from 25-100 ⁇ m, separated by rete ridges ("valleys") of comparable width.
- Removal of the epidermis (105) eliminates superficial sun damage, including keratoses, lentigenes, and fine wrinkling. Removal of the most superficial portions of the dermis (110), i.e. the uppermost papillary dermis, eliminates solar elastosis and ameliorates wrinkling, with little or no scarring.
- CO 2 laser radiation in the 9 - 11 ⁇ m region of the infrared
- water in all tissue
- the radiation features that result in reduced collateral damage are: a wavelength that is strongly (optically) absorbed; and a pulse duration that is short compared to the time for deposited energy to diffuse into the surrounding tissue; (see e.g., R. J. Lane, J. J. Wynne, and R. G. Geronemus, "Ultraviolet Laser Ablation of Skin: Healing Studies and a Thermal Model", Lasers in Surgery and Medicine 6: 504-513 (1987 )).
- the short pulse CO laser with an absorption coefficient in tissue of -1/50 ⁇ m -1 and a pulse duration of -10-100 ns, leads to a reduction of collateral damage as compared to a continuous wave (cw) CO 2 laser or lasers at other visible and near infrared wavelengths.
- a newer treatment that is gaining in popularity uses a pulsed erbium YAG (Er:YAG) laser, emitting radiation at 2.94 ⁇ m in the infrared, where water absorption is even stronger than at CO 2 wavelengths.
- Er:YAG light is approximately 10 times more strongly absorbed in skin than CO 2 laser light.
- a shallower layer of skin absorbs the radiation and is vaporized and ablated from the surface, leaving a thinner thermally damaged and coagulated layer adjacent to the removed tissue. Damage has not been observed to exceed a depth of -50 ⁇ m of collagen denaturation.
- Treatment with the Er:YAG laser rejuvenates skin, with less pain, less inflammation, and more rapid healing than treatment with the CO 2 laser.
- the depth of penetration with the Er:YAG laser being shallower, does not thermally stimulate new collagen growth as much as the CO 2 laser, so fine wrinkles are not eradicated as effectively.
- Dermatologists and cosmetic surgeons are finding the Er:YAG laser preferable for younger patients who have superficial skin damage but less wrinkling, while the CO 2 laser is thought to be preferable for older patients who want to have fine wrinkles removed around the lips and the eyes (see e.g., Betsy Bates, "Dermatologists Give Er:YAG Laser Mixed Reviews", Skin & Allergy News 28, No. 11 : 42 (Nov. 1997)).
- the ablation depth and the depth of coagulated skin limits the precision with which the Er:YAG can remove epidermal tissue without damaging the underlying papillary dermis. And while pain is lessened, many patients still require some sort of anesthesia during treatment and the application of a topical antibiotic/antimicrobial agent following treatment to prevent infection during healing.
- uv ultraviolet
- the present invention is directed to a system (called a Dermablator) that can be used to carry out an improved "laser peel" of the skin.
- the present invention is used in a process, Dermablation, that leads to clean, precise removal of surface skin while minimizing collateral damage to the skin underlying the treated region.
- An example of a surgical system for removing skin having features of the present invention includes: a pulsed light source capable of delivering a fluence F exceeding an ablation threshold fluence F th ; and a control mechanism, coupled to the light source, for directing light from the light source to locations on the skin and determining if a skin location has been ablated to a desired depth.
- the light source is a laser, for example: an argon fluoride (ArF) laser having a wavelength of approximately 193 nm.
- ArF argon fluoride
- the present invention has other features which limit the depth of ablation by utilizing feedback from the physiology of the skin, namely the infusion of blood into the area of excision when skin has been ablated to a sufficient depth to produce bleeding.
- the infusion of blood can act as a "stop" to prevent further ablation, thereby effectively terminating the dermablation.
- the blood can then be removed by washing it away with physiological saline solution, clearing the area for further treatment.
- the system of the present invention utilizes a laser having a relatively low blood absorption characteristic, such as an ArF laser, to ablate the skin to a sufficient depth to produce bleeding.
- a second laser such as a uv light source with a different wavelength and a relatively high blood absorption characteristic, is then utilized to penetrate the blood, heating it sufficiently to coagulate the blood, stemming subsequent bleeding, yet leaving the tissue with an intact ability to heal without the formation of scar tissue.
- the system further comprises: a coagulating light source having a different wavelength than the ArF laser and a relatively high blood absorption characteristic; means for detecting the appearance of blood at a given skin location; and means for switching to the coagulating light source, in response to the detection of blood at a given skin location.
- Examples of the coagulating light source include a krypton fluoride (KrF) laser having a wavelength of approximately 248 nm; a xenon chloride (XeCl) laser having a wavelength of approximately 308 nm; and a xenon fluoride (XeF) laser having a wavelength of approximately 351 nm.
- KrF krypton fluoride
- XeCl xenon chloride
- XeF xenon fluoride
- the present invention has still other features which provide precise lateral and depth control, permitting the epidermis to be removed down to the papillary dermis, following the undulations of the papillary dermis, so that the papillae are not penetrated even though the epidermis is removed in the adjacent rete ridges.
- This lateral and depth control may be accomplished by using careful observation, assisted by spectroscopic detection, to identify when the epidermis has been removed, exposing the underlying dermis, with spatial resolution appropriate for the spacing of the undulations of the papillary dermis.
- the lateral and depth control of the present invention is one advantage over prior art laser peels operating at wavelengths which lead to thermal damage in the tissue underlying the ablated region that renders this underlying tissue denatured and coagulated.
- the use of current CO 2 lasers make it difficult if not impossible to determine how deep the ablation has penetrated based on real-time observation and/or feedback control.
- the present invention has yet other features which provide a feedback control mechanism which utilizes the optical characteristics such as the colour, appearance and remittance of the definable skin layers.
- a feedback control mechanism which utilizes the optical characteristics such as the colour, appearance and remittance of the definable skin layers.
- the control mechanism could be a feedback control mechanism, comprising: a second light source illuminating the skin; and at least one photodetector having an input and an output; the input receiving scattered/reflected/fluoresced light from the second light source, and the output providing a feedback signal to the system causing the light source to be inhibited at a given location, in response to the second light source at the input.
- the second light source include a visible light source; an infrared light source; and an ambient light source.
- Another example of the second light source is one which is both relatively highly absorbed by epidermal melanin and relatively highly remitted by a dermal layer.
- the present invention has features that serve to automate the removal of skin, wherein the ablating laser beam can be scanned accurately and repeatably over a designated area of skin under the control of a computer system which utilizes real-time observation and/or feedback to control the depth of ablation at each location.
- the areas to be scanned may be designated by an adjunct visible alignment laser, employing an input device to scan the alignment beam over the area of skin to be treated and recording the beam positions for subsequent automatic scan of the ablating laser beam over the same scan domain.
- the area of treatment may be specified by recording its image with a camera and designating on the digital image the locations to be treated.
- An example of an automated system having features of the present invention includes an alignment and recording mechanism, comprising: a visible laser emitting a beam illuminating the skin at a location coincident with the ablating light; means for scanning the beam across the locations on the skin; and means for recording scanned beam positions, coupled to the means for scanning, for subsequent automatic scan of an ablating light source across the locations on the skin.
- An example of the computer and control mechanism includes: one or more rotatable mirrors, the mirrors positioned in the light source path for controllably scanning the light source; one or more motors, coupled to the mirrors, for angularly rotating and feeding back angular positions of the one or more mirrors; and a computer, coupled to the light source and the motors for controlling the motors and selectively shuttering the light source at a given location on the skin.
- the computer includes a feedback control system, coupled to the light source for selectively shuttering the light source at a given location on the skin.
- the shuttering mechanism could be an active mask array, coupled to the feedback control system, for selectively shuttering the light source at a given location that has been ablated to the desired depth.
- Still another example of the present invention is a robot/laser system, further including a camera for visualizing an image of the locations on the skin; a computer, coupled to the camera, the computer having an output for displaying and an input for designating the locations of the skin to which the laser is directed.
- the robot/laser system further includes: one or more rotatable mirrors, the mirrors positioned in the light source path for controllably scanning the light source; one or more motors, coupled to the mirrors, for angularly rotating and feeding back angular positions of the one or more mirrors; a second light source illuminating the skin being ablated, wherein light from the second light source is scattered/reflected/fluoresced from the ablated location; a photodetector having an input and an output; the input for receiving the light from the second light source; and the output coupled to the system and providing a feedback signal to the system for inhibiting the pulsed light source at a given location.
- the robot/laser system includes a registration mechanism for relating coordinates of a point in one patient coordinate frame of reference to a corresponding position in the robot/laser frame of reference.
- An example of the registration mechanism includes means for attaching fiducials to the skin; a movable tracking laser, coupled to the computer, for recording 3D coordinates of the fiducials; and triangulation means, for establishing 3D locations of the fiducials in the tracking laser frame of reference.
- Another example of the registration mechanism comprises: means for relating points corresponding to an area of skin in the patient frame of reference subsequent to a change in position, to the same area of skin in a patient frame of reference prior to said change in position.
- Yet another example of the registration mechanism comprises means for accurately directing the light source by relating points on an area of skin defined in a digital image, to an area of skin on the patient.
- An alternative registration mechanism comprises: means for attaching fiducials to the skin; a pair of cameras, coupled to the computer and mounted at fixed positions relative to the robot/laser system for recording coordinates of the fiducials; calibration means for relating the fixed positions of the cameras to the robot/laser system from a predetermined calibration transformation; and a camera model for mapping the relationship between each location in 2D camera images and a set of 3D points in an imaged space that map to it.
- a robot/laser system of the present invention includes: a camera for visualizing an image of the locations on the skin; a computer, coupled to the camera, the computer having an output for displaying and an input for designating the locations of the skin to which the laser is directed; a flexible optical fibre bundle having an output end and an input end, the output end being attached to a mask for affixing to the patient and the input end adapted for receiving the light source in a predetermined manner; and a removable mirror located adjacent to the input end for viewing the skin through the fibre bundle using the camera.
- the Dermablator/Dermablation can provide a modality to treat other pathologies of the epidermis, including Bowen s disease, exophytic warts, flat warts, lichen-planus-like keratosis (LPLK), and actinic keratoses.
- this invention provides an apparatus and process for treating a wide range of common skin conditions.
- An additional application is to use Dermablation to remove a basal cell carcinoma.
- the lesion can be selectively marked with an exogenous agent that provides contrast between the lesion and surrounding healthy tissue.
- Basal cell carcinomas are differentiated from surrounding tissue in biopsy specimens by standard histological treatment, i.e., staining the tissue with chemicals. Such histology is used to make the diagnosis of basal cell carcinoma in the biopsy.
- Staining agents can be applied directly on the patient, providing a visible differentiation of the basal cell carcinoma, such differentiation being used to guide the Dermablator to remove the lesion with minimal collateral damage.
- the system of the present invention is used in a method for removing skin comprising the steps of:
- controllably determining step comprises the step of controllably ablating the epidermis along the contours of an epidermal/dermal boundary.
- controllably determining step further comprises the step of detecting a colour change near or at the epidermal/dermal boundary.
- a method of use of the device of the present invention further comprises the steps of: controllably scanning the light source across the skin; and selectively shuttering the light source at a given location on the skin when it has been ablated to the desired depth.
- a method of use of the device of the present invention further comprises the steps of: illuminating the skin with a beam from a visible laser at a location coincident with the ablating light; scanning the beam across the locations on the skin; recording scanned beam positions, in response to said scanning step; and automatically scanning of an ablating light source across the locations on the skin, in response to said recording step.
- UV light removes thin layers of tissue at a rate that depends on the fluence F of the light.
- F th There is a threshold fluence F th , and areas at the surface of the tissue that are irradiated with a F exceeding F th are ablated to a depth of approximately 1 ⁇ m for each (short) pulse of light.
- the unablated tissue underlying and adjacent to the ablated area absorbs some light and is damaged to a depth of somewhat less than 1 ⁇ m, essentially to sub-cellular depth.
- Successive light pulses remove additional thin, layers, and after the last pulse there is only an ultra-thin, sub-cellular layer of tissue at the margins of the ablated region that experiences damage. Thus, collateral damage is intrinsically minimized.
- the surgeon or medical practitioner needs a source of light delivering F > F th and a delivery tool.
- the source might be a far UV pulsed laser, such as an excimer laser.
- Different excimer lasers emit radiation at different wavelengths, which ablate tissue to different depths and with different F th .
- Well-known far uv excimer laser systems include XeF at 351 nm, XeCl at 308 nm, KrF at 248 nm, and ArF at 193 nm. All excimer laser systems have been shown to be capable of emitting pulses of far uv light that exceed ablation threshold for human (and animal) tissue, including skin.
- Figure 2 depicts an example of an apparatus having features of the present invention.
- the delivery tool might be a "pipe" 205 through which the light beam 210 is transmitted from source to tissue, with an adjustable steering mirror 215 to direct the beam around corners and an adjustable lens/masking system, such as lens 220 and slit 225 at the delivery end, to shape the light beam into the desired pattern where it irradiates the tissue.
- an adjustable steering mirror 215 to direct the beam around corners
- an adjustable lens/masking system such as lens 220 and slit 225 at the delivery end, to shape the light beam into the desired pattern where it irradiates the tissue.
- Figure 3 depicts another example of an apparatus having features of the present invention.
- the delivery tool might be an optical fibre, or a fibre bundle 305 terminated by a hand-held tool 310 that the physician or technician can manipulate to deliver the light beam to the skin area to be irradiated.
- the delivery tool of Fig. 2 can be adjusted to focus the uv irradiation beam to an area small in comparison to the cross-sectional area of a rete ridge of the epidermis. Then the beam can irradiate the area until the epidermis is completely removed, before the beam is scanned/displaced to an adjacent area where the procedure is repeated, ablating this new area of epidermis down to the dermis. In this way the contours of the irregular epidermal/dermal interface can be taken into account. By scanning the uv laser beam across an area of skin in this manner, only epidermis will be removed, with depth precision that mirrors the contours of the papillae of the papillary dermis.
- one aspect of the present invention employs a unique detection scheme to enable a precisely contoured removal of tissue.
- the epidermis has melanin and thereby is coloured, whereas the dermis is white.
- the medical practitioner can watch the ablated site for the appearance of white dermal tissue.
- the skin to be irradiated 405 can also be defined by covering the area with a masking material that blocks/absorbs/reflects radiation except at the desired location for the tissue ablation.
- the masking material 410 could even be made of an erodable material and fabricated with variable thickness, so that a homogenous light beam erodes away the material and ablates skin under the mask only after it has eroded entirely through the mask.
- different areas of tissue would receive different "doses" of radiation, producing areas of treated skin with the depth of the ablation controlled by the careful fabrication of the erodable mask.
- the mask could be impregnated with a marker material, e.g., a fluorescent dye, that would give a clearly recognizable signal when the mask was being eroded, such signal ceasing as soon as the mask was entirely eroded through.
- a marker material e.g., a fluorescent dye
- the "masking” could be accomplished by applying a "sunscreen” cream or ointment, e.g. zinc oxide, to cover areas where tissue ablation is not wanted. This sunscreen would have to be of sufficient thickness so that it is not completely eroded through to the underlying skin during the treatment.
- a robot/laser system can serve to scan an ablating laser beam to deliver a precisely controlled number of pulses to each location on the area of skin being irradiated.
- Figure 4B depicts an example of such a robot/laser system having features of the present invention.
- the analogy is to a raster scan of an electron beam in a cathode ray tube (TV) display.
- the amount of energy, or number of pulses, delivered during one scan (or pass) of the laser beam is small enough so that an appropriate dose can be applied to each location by varying the number of times the area is scanned.
- one could initially deliver a larger amount of energy per scan sacrificing precision of depth control, and getting close to the desired depth.
- successive scans could be carried out at progressively less laser energy, providing increased precision of depth control and allowing the surgeon the fine control to zero in on the desired depth of tissue removal.
- one scan could consist of one laser pulse for each location of irradiated tissue or many pulses for each location, the number of pulses being selected to remove tissue to a desired depth.
- a stationary laser 415 emitting a beam that is guided by a computer-controlled mechanism.
- one such mechanism could be a pair of mirrors 420 rotating on axes at right angles to one another.
- the mirrors could be controlled by motors (not shown) having position encoders that enable precise, digital designation of the mirror angles of rotation 430.
- the motors can be controlled through a standard A/D, D/A circuitry interfaced with a computer 425 running standard servo-control software.
- the motor encoder information provides the necessary positioning information for fine control.
- This system is preferably engineered to be capable of accurate positioning of the laser beam on the skin to within 25 ⁇ m at a typical target distance of 0.5 m.
- the control scheme, encoders, motors, mechanical accuracy, and distance from target all affect the overall precision. We assume that the robot has been calibrated, and the forward and inverse kinematics are known with sufficient precision to meet these accuracy requirements.
- the system (examples of which are described below) is preferably capable of positioning the laser beam with the required precision at any location on the (irregular) surface of the skin.
- the surgeon can set the area scanned by the laser by using several possible techniques. For example, the surgeon can affix a physical mask or plate on the robot/laser system that restricts the range of mirror angles for which the beam escapes the laser device. Alternatively, the surgeon could set the extent of the range of the mirror angles by interacting with the controller software through a user input device such as a keyboard, mouse, or joystick. Once the surgeon has fixed the scan area, he can verify that it is what he intended by instructing the laser system to scan using visible light. This allows the surgeon to preview the region to be scanned by the laser. If the scanned area is not appropriate, the surgeon can reposition the patient or adjust the range of the laser as described above.
- the system can illuminate the area to be treated with light visible to the human eye or to an electronic detector or imaging detector array. This visible light serves to align the system by illuminating the tissue at the same location where the ablating uv beam strikes the tissue, when the uv is not otherwise shuttered or turned off.
- the system can be a two degrees of freedom (2DOF) robotic device that can accurately and repeatably scan a laser beam over a designated area of skin.
- the system could be a 2DOF robotic arm with a laser beam emerging from the delivery end.
- the robot/laser system can be programmed to: (i) systematically visit every location within a designated area in succession (full raster scan); (ii) visit only certain locations of interest on the skin surface; or (iii) perform a full raster scan with the exclusion of certain designated regions within the full area being scanned.
- the general procedure is to alternate between (a) designating regions of tissue to be irradiated and (b) exposing these regions of interest to laser energy, thereby removing a thin layer of tissue, with steps (a) and (b) being repeated until the treatment is complete.
- the robot/laser system 400 is capable of emitting two different laser beams, a uv radiation laser for ablation and a visible laser for alignment. With the uv radiation laser source shuttered, the surgeon scans the visible alignment beam 412 across the area of skin to be treated, thereby designating the area for the system control mechanism. The surgeon then applies a physical mask or masking material 410 to those regions 406 within the area that will be illuminated during the ablation scan but which are not to receive treatment, i.e. not to be ablated.
- the mask might be made of a reflective material, thereby directing the uv laser energy away from the underlying skin.
- it could be made of an absorbing material with a threshold for ablation greater than that of skin.
- the absorbing material might be of sufficient thickness that the process does not erode all the way through the mask.
- FIG. 4C depicts an example of a computer-controlled robot/laser system 402 in accordance with the present invention capable of emitting two different laser beams: a uv radiation laser for ablation; and a visible laser for alignment.
- the surgeon can, as before, designate the locations to be ablated by using an alignment light 412 to define these locations.
- the alignment light can be pointed and moved to outline the locations of skin to be treated.
- a phosphorescent material can be applied to make the outlined region easier to read.
- An input device 450 such as a joystick, mouse, or force-torque sensor, can be used to translate the surgeon's hand motion into motion commands for servo motors controlling the visible beam position. It is well known in the art of computer-integrated surgery to record in a computer the specific point locations on or in a patient using a multitude or variety of 3D localizing technologies, e.g., mechanical pointing devices. See e.g., Computer-integrated Surgery: Technology and Clinical Applications, Russell H. Taylor et al., (editors), The MIT Press, pp. 5-19,(1996 ) (hereinafter "Computer Surgery").
- a robot/laser system preferably includes computer software for recording the visible beam positions which have been designated by the surgeon for subsequent "playback" using the ablating laser.
- the surgeon outlines the locations to be ablated directly on the patient's skin by using the visible light beam as a "drawing" tool.
- a complete procedure may involve many iterations.
- the surgeon can use the visible light 412 to position the system.
- the area of interest 455 can then be outlined. At this point, these locations can be previewed in visible light or the system switched to ablation mode and directed to deliver controlled treatment of these locations.
- the patient should not move from the time the surgeon designates the locations of interest to the time the ablation scan is completed. The patient is then free to move.
- new areas of interest can be designated, which may or may not overlap the previous locations, and the process repeated. This procedure is repeated for as many times as it takes to ablate all of the designated locations of skin to the desired depths. The surgeon is typically making decisions from iteration to iteration.
- the area being treated can require many iterations to attain the full treatment and if the patient moves between iterations, the treatment region must be re-designated by the surgeon. This may become tedious, slow and lead to inaccurate treatment.
- it is desirable to develop a registration, well known in the art, between the area of treatment on the patient and the coordinate frame of the robot see e.g., Computer Surgery, pp. 75-97 ).
- a more detailed example of a registration technique in accordance with the present invention follows in scenario (iii), but briefly, the region can be registered to the patient by determining the three-dimensional (3D) position of the area of skin surface to be treated. This surface area is then tracked when the patient moves.
- a location of treatment designated by the surgeon can be identified by the system, from iteration to iteration, even though the patient moves, without active re-designation by the surgeon.
- This same capability allows the surgeon to build up a complicated pattern of treatment over successive iterations. For example, the surgeon can re-irradiate a region of locations previously irradiated with the additional specification of a region within the larger region that will be "electronically masked off".
- FIG. 5 depicts an example of a computer assisted UV Dermablator system having features of the present invention.
- a surgeon can designate locations of interest on a digital image 500 of a patient 505 on a computer display 510, rather than directly on the patient. This will make the region-editing functions easier to use.
- a camera 515 can be mounted on the system such that the area of skin to be treated is within its field of view.
- the system is preferably configured so that a digital image is available to a computer 525 for display, image processing, and interaction. To maintain a correspondence between the area designated in the camera image 500 and the area that will be scanned 530 by the ablating laser 550, these two areas must be registered with respect to one another. (Registration is described below).
- the surgeon can use a visible alignment light to illuminate the patient and carry out a scan in order to get an appropriate initial placement of the system relative to the patient.
- the surgeon then records ("snaps") an image of the patient.
- an automatic (or semiautomatic) registration can be performed to align the laser system with the camera image.
- the patient must not move until a scan with the ablating uv laser is complete.
- the surgeon designates on the digital image the locations to be treated.
- Working with this digital image makes available the full graphics power of the computer to provide a richer pallet of editing techniques, such as area growing, area shrinking, inversion, outlining, colour discrimination, etc.
- the surgeon can then treat the designated locations using the ablating laser.
- the patient may then move.
- the process is then repeated for additional iterations (snap image, register, designate locations, ablate) until the surgeon determines that treatment is complete.
- Scenarios (ii) and (iii) can call for some sort of registration to relate the coordinates of a point in one coordinate frame of reference to its corresponding position in a different coordinate frame of reference.
- the points corresponding to an area of skin on the patient may need to be related to the area of skin defined earlier (before the patient moved).
- an area of skin defined in a digital image must to be related to an area of skin on the patient, so that the ablating laser beam can be accurately aimed.
- Such registration can be accomplished by attaching several markers, or fiducials 610, to the patient, pointing the tracking laser beam 607 at each fiducial while the tracking laser is in one mounting position, moving the tracking laser to a second mounting position, and repeating the pointing process, thereby establishing the 3D locations of each fiducial in R through triangulation.
- markers or fiducials 610
- the use of robot-assisted surgery and in particular fiducial markers for registration is well known in the art. See e.g., Kazanzides, et al, "An Integrated System for Cementless Hip Replacement," IEEE Engineering in Medicine and Biology Magazine 14, pp. 307-313 (1995 ).
- the patient coordinate frame P is defined in terms of the fiducials 610.
- This reference frame P is an orthonormal basis made up of the vectors x, y and z .
- the x-axis of the patient coordinate frame P might be a vector formed by a line from a first fiducial f 1 to a second fiducial f, with f 1 serving as the origin of frame P. Additional fiducials might be placed at locations f 3 and f 4 .
- Gram -Schmidt orthogonalization may be used to define y and z in terms of x and the coordinates of the fiducials 610 (in R).
- the area of interest in the patient frame of reference is defined by constructing a surface 620 passing through the fiducials (the "fiducial surface").
- this beam will intersect the fiducial surface 620 at a set of locations 625.
- the set of 3D points corresponding to these intersections is fixed in the patient coordinate frame P, even when the patient moves. So, to register an area of interest after the patient moves, only the transformation R T P for the new position of the fiducials need be computed. Registration in scenario (iii) with a camera recording digital images of the patient has many similarities to scenario (ii).
- the area of interest is defined in terms of the patient coordinate frame P by the intersection of the alignment laser and a surface 620 constructed through the known fiducial positions 610 and the locations of intersection 625.
- the main difference is that the positions of the fiducials is determined by triangulation using two cameras 630 instead of using two different positions of a tracking laser.
- the cameras can be mounted at fixed positions relative to the robot/laser frame 660. Their position (the measurement frame "M") relative to the robot/laser frame 660 is known from a calibration transformation M T R determined prior to the medical procedure and does not change in the course of this procedure.
- M T R the calibration transformation
- An accurate camera model has preferably also been built prior to the procedure, so that the relationship is known between each location (pixel) in the 2D camera image and the set of 3D points (within a cone) that map to it. Given this camera model, when the surgeon snaps the images, a pair of stereo images is captured and made accessible to a computer (not shown). Well known image processing techniques can be used to identify the fiducials 610 and to establish the coordinate axes ( x,y,z ) of the patient frame of reference P.
- Ambiguity in establishing the correspondence between fiducial images in the pair of camera images may be resolved by the surgeon based on his visual observation of the patient. (See e.g., D. H. Ballard and C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, NJ, 1982), pp. 88-93 ).
- the surgeon can then designate an area of interest directly on one of the images on a computer screen, as described above.
- the system translates this designation into the area of interest in the patient frame P.
- the system is then capable of following this surgical plan, i.e. determining the set of robot/laser ablation locations that correspond to the region designated on the screen.
- Alternative means to using the cameras 630 for locating the fiducials 610 include the use of a 3D digitizer 640 (an array of cameras that optically tracks light-emitting diode markers affixed to the patient), e.g., an OPTOTRAK TM device (manufactured by Northern Digital, Inc., Canada) (see. e.g. R. H. Taylor et al, "An overview of computer-integrated surgery at the IBM Thomas J. Watson Research Centre", IBM J Research and Development 40 , p.
- a 3D digitizer 640 an array of cameras that optically tracks light-emitting diode markers affixed to the patient
- OPTOTRAK TM device manufactured by Northern Digital, Inc., Canada
- a calibrated pointing device 650 a mechanically manipulated pointer to reach out and point to the fiducials 610
- a calibrated pointing device 650 a mechanically manipulated pointer to reach out and point to the fiducials 610
- VIEWING WAND TM manufactured by ISG Technologies, Inc., Canada
- UV Dermablator The surgeon makes the decision as to which area of skin to treat and how many pulses of light are to fall on each location of tissue. He can then set the robot/laser system on "automatic pilot”. But the surgeon will be watching the procedure and can intervene at any time, taking "manual" control of the system. This is analogous to putting an automobile in cruise control once a cruising speed is selected, but having the ability to instantly take back control by touching the brake pedal.
- each location of skin being irradiated can be labelled and its history recorded by the computer. Then, with a safety threshold set in advance, the system will not deliver pulses in excess of that threshold without an explicit command by the surgeon.
- Figure 7 depicts an example of an alternative system in accordance with the present invention for delivering laser energy to the patient's skin while permitting the patient to move throughout the procedure.
- the system includes an optical fibre bundle 710, one end of which is clamped to a mask 715 worn by the patient while the other end, the input end 720, is scanned by an ablating laser beam 725 in a predetermined manner.
- the fibre bundle 710 is preferably flexible and abuts the patient's skin.
- the surgeon can look at the skin through the input end 720 of the fibre bundle 710, using, for example, a mirror 730 that snaps into position for viewing. This mirror 730 snaps out of the way for ablation, working like the mirror in a single lens reflex (SLR) camera.
- SLR single lens reflex
- a camera 735 can view the patients skin, deliver its image 750 to a computer 740 and computer display 745, and the surgeon can mark the areas to be treated as described in scenario (iii).
- the ablation can proceed, the laser 700 scanning across the input end 720 of the fibre 710 in a predetermined pattern. Successive viewing, marking, and ablation iterations are carried out until the procedure is completed to the surgeon's satisfaction.
- Use of this fibre bundle 710 eliminates the need for re-registration between each iteration, because the output end of the bundle does not move relative to the patient during the procedure.
- the ablation of skin by pulsed uv light in accordance with the present invention can remove epidermal tissue with minimal damage to the underlying dermis and minimal scar tissue and erythema. Since each pulse of uv light removes less than a cellular layer of tissue, it is possible to control the procedure with great precision, ablating the skin to the desired depth and no more .
- the skin is ablated to a depth where bleeding just commences, with no deeper penetration. So a process is needed to stop the ablation as soon as bleeding is detected. Alternatively, the process can be slowed at the first hint of bleeding and brought to a complete halt at an additional, adjustable predetermined depth, depending on the patient's skin condition.
- the dermis which is much thicker than the epidermis (up to 4 mm thick), has fewer cells, and is mostly connective tissue or fibres. Blood vessels course through the dermis. The skin is vastly perfused with blood. The mean blood flow is many times greater than the minimum flow necessary for skin cell nutrition because cutaneous blood flow serves as a heat regulator of the entire organism. Thus blood is plentiful and flowing at depths just below the basement membrane. Once the ablation process perforates a capillary wall, blood will perfuse into the incision.
- the aqueous chlorine ions in blood are a strong absorber of uv radiation at wavelengths below 200 nm, with an absorption maximum at 190 nm. This absorption differs from the absorption of uv light by cells and protein molecules in that the absorbed energy is not quickly degraded into heat. So the "salt water” that is the major component of blood will "block” the incoming uv light and attenuate or completely halt the ablation process, depending on how much blood is pooled in the cavity of the incision (The uv photon energy detaches an electron from the chlorine ion, leaving a chlorine atom and a solvated electron dissolved in the water.
- One way to take advantage of this effect is to horizontally orient the skin surface being treated, and direct uv radiation in the spectral region of the photodetachment energy, e.g., an ArF laser radiation at 193 nm, at the target surface from above.
- the photodetachment energy e.g., an ArF laser radiation at 193 nm
- the patient can sit in a comfortable position and the punctate blood spots that appear when capillary walls are penetrated will serve to block further ablation of tissue under the punctate blood. Since the skin being treated varies in thickness, different regions of the skin will start to bleed at different depths of penetration, but the naturally occurring bleeding will block ablation at an appropriate depth for each region of skin.
- Blood can be washed away with physiologic saline solution, but such solution will continue to act as a block against further ablation by uv radiation in the photodetachment energy spectral region, e.g., the ArF excimer laser at 193 nm.
- the bleeding area can also be washed by deionized water, which is transparent to radiation at the uv wavelengths of the ArF, KrF, XeCl, and XeF excimer lasers.
- Figure 8 depicts a dual laser system having features of the present invention.
- first 193 nm radiation from an ArF laser 810 can be used to ablate the skin 815 until bleeding blocks the ablation.
- the wavelength is changed (by, for example, using a second laser 820 supplied with a gas mixture producing longer wavelength light, such as KrF, XeCl or XeF) so that the radiation at the second wavelength will not be blocked by photodetachment, but will be absorbed by blood protein, heating it sufficiently to coagulate the blood.
- a gas mixture producing longer wavelength light such as KrF, XeCl or XeF
- Figure 9 depicts another example of a system not in accordance with the present invention.
- evidence of bleeding can be detected using a visible illuminating laser 910 that is aimed at the skin to overlap the uv radiation 955, this visible beam 915 scattering from the rough surface of the skin being treated to form a visible "spot" that can be detected by the practitioner's eye or by a photodetector 930 mounted near the tissue being treated.
- a small fraction of the visible laser beam will reflect specularly from the surface of the liquid and a major fraction of the visible laser beam (915) will be absorbed by the pigment (hemoglobin) in the red blood cells in the blood, leading to a great reduction of the light hitting the photodetector.
- This reduction in signal can be fed back to the uv laser 950 power supply or to a beam shutter by a control signal 960 which terminates the surgical procedure.
- the complete ablation of the epidermis can be detected by monitoring for the first appearance of the white dermal boundary 925.
- the dermis is first revealed when the pigmented epidermis and basal cells are totally removed.
- a focused laser beam 955 of small cross section compared to the area of a papillae or rete ridge
- Such colour change can be detected visually by the medical practitioner's eye.
- the colour change can be detected by the photodetector 930 monitoring the amount of scattered light from the visible laser beam 915.
- the photodetector 930 might be equipped with a filter tuned to the colour of the illuminating visible laser beam 915.
- the detection scheme discriminates against ambient light at all other colours, thereby improving the precision with which the appearance of the dermal boundary can be detected and used for feedback to terminate the surgical procedure.
- Figure 10 depicts another example of a laser system having features of the present invention.
- a laser system 1010 can apply a laser beam 1050 over a relatively large area, encompassing many papillary contours.
- An active mask 1060 between the source 1010 of the beam and the skin, can be used to shutter selected areas of the beam (Fig. 10).
- the mask 1060 could be controlled by a detector 1070 or an array of detectors, so that each area of the skin being irradiated can provide a colour-change based feedback signal 1075 to a control system 1080 which then inhibits or shutters a section of the laser beam irradiating that area, in a one-to-one "map".
- the epidermis 1005 contains melanin while the dermal layer 1020 is white.
- This mask could be controlled electro-optically, or even be mechanically shuttered by an array of opaque flaps that rotate into the beam so as to block selected areas.
- the mask 1060 might be placed in the ablating laser beam 1050 at a location where the beam is relatively defocused, covering a large area. At such a location the laser beam 1050 will be of such low intensity and low fluence so as not to damage the mask. At this location, each element of the array can be relatively large. When the beam is focused by projection lenses 1065 to a smaller area 1090 on the skin, the light passing through each element will be correspondingly demagnified as well as intensified.
- the pattern of light transmitted by the mask array may be projected to a correspondingly smaller area on the skin, yielding a transverse precision suitable for following the contours of the epidermal/dermal boundary.
- the focusing increases the fluence of the laser beam, ensuring that it is above threshold for ablation.
- the epidermis 1005 can be controllably ablated right down to the dermal boundary with great depth precision and transverse control, despite the irregular contours of the dermal/epidermal interface 1015.
- the photodetector 1070 could be used in conjunction with and responsive to an illuminating laser 910, as depicted in Figure 9.
- the skin can be modeled macroscopically as a multilayered optical system (see The Science of Photomedicine, edited by James Regan and John Parrish, Plenum Press, NY, (1982), Chapter 6, pp. 147-194 ).
- the relation between sunburn protection and the degree of melanin pigmentation in the skin is well known. This is because melanin, which is present in the epidermis and is most concentrated in the basement membrane, is a strong absorber of both shorter wavelength visible light and UV radiation.
- the epidermis can be modeled generally as an optically absorbing element while the underlying dermis acts as a diffuse reflector whose remittance increases with the wavelength.
- the epidermal remittance in this region is essentially due to the regular reflectance at the surface of the skin (-5% for a normally incident beam).
- a change (as detected by photodetector(s) (930, 1070)) in the remittance of an external (UV, visible or infrared) illuminating laser, resulting from the complete removal of the melanin-containing epidermis, could be fed back to selectively shutter the UV laser or the active mask 1060.
- the illuminating laser might be scanned across the area being ablated through the mask array 1060, illuminating in sequence each area corresponding to the projected image of one of the elements of the mask array.
- Scattered light detected by photodetector 1070 could then provide the feedback signal 1075 to shutter the laser beam selectively at the locations of the mask array that project to the areas of skin that have been ablated to the desired depth.
- the photodetector would be selected to transmit its control signal in response to an increase (or decrease) in remittance for the wavelength of an illuminating laser emitting light in one of these spectral regions.
- Melanin which is the pigment that colours the epidermis, originates from melanocytes in the basal cell layer. Once the basal layer is removed, a new basal layer must be regenerated in order to provide pigment to the overlying epidermis. If the skin is removed to such a depth that the hair follicles included in the region of removal are too badly damaged, they will fail to act as "seeds" for regeneration of a pigmented basal layer, and the healed region will appear to be much whiter (contain less melanin) than the surrounding skin.
- the UV Dermablation method and apparatus of the present invention advantageously provides such fine depth control that the hair follicles will be spared from destruction, remaining viable and capable of acting as a source for regeneration of a fully functional basal layer, including fresh melanocytes capable of providing a pigmentation that matches the surrounding skin.
- the skin to be treated can be first stained by an exogenous agent, a chemical such as those used for histological preparation of biopsy specimens. This will "mark" the lesion with a coloration and darkness that will provide contrast to surrounding healthy tissue. Then the scheme of Fig. 9 can be used to control the dermablation process, with a visible laser beam illuminating the tissue at the point of ablation, the scattered visible light being measured to determine if that point has lesion tissue or healthy tissue at the surface, and this measurement being used to control the shuttering of the uv beam when healthy tissue is at the point of irradiation. A scan can be taken over a designated area containing the basal cell carcinoma, and this scan can be repeated for a sufficient number of iterations until the lesion is entirely removed, as determined by the measurement signal derived from the scattered visible light.
- an exogenous agent a chemical such as those used for histological preparation of biopsy specimens. This will "mark" the lesion with a coloration and darkness that will provide contrast to surrounding healthy tissue.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Gynecology & Obstetrics (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Laser Surgery Devices (AREA)
- Radiation-Therapy Devices (AREA)
Claims (9)
- Système chirurgical pour enlever de la peau, comprenant :une source de lumière pulsée (400, 415, 402, 550, 660, 700, 810, 950, 1110) capable de délivrer une fluence F dépassant une fluence seuil d'ablation Fth, etun mécanisme de commande, couplé à la source de lumière, destiné à diriger la lumière provenant de la source de lumière vers des emplacements sur la peau et à déterminer si un emplacement de peau a subi une ablation à une profondeur souhaitée,caractérisé en ce que la source de lumière pulsée (810) est un laser de type ArF, et en ce qu'il comprend en outre une source de lumière de coagulation (820) présentant une longueur d'onde différente de celle du laser de type ArF,
un moyen destiné à détecter l'aspect du sang à un emplacement de peau donné, et
un moyen destiné à basculer vers la source de lumière de coagulation, en réponse à la détection du sang à un emplacement de peau donné. - Système chirurgical selon la revendication 1, dans lequel le mécanisme de commande comprend un moyen destiné à pratiquer une ablation de manière pouvant être commandée de l'épiderme le long des contours de la limite épiderme/derme.
- Système chirurgical selon la revendication 2, dans lequel ledit moyen destiné à pratiquer une ablation de manière pouvant être commandée comprend en outre un moyen destiné à détecter un changement de couleur près de la limite épiderme/derme ou au niveau de celle-ci.
- Système chirurgical selon la revendication 1, dans lequel le mécanisme de commande comprend en outre :un ou plusieurs miroirs rotatifs (215, 420), les miroirs étant positionnés dans le trajet de la source de lumière afin de faire balayer de manière pouvant être commandée la source de lumière (415),un ou plusieurs moteurs couplés aux miroirs, destinés à faire tourner de manière angulaire les un ou plusieurs miroirs, et à fournir en retour les positions angulaires de ceux-ci, etun calculateur (425) couplé à la source de lumière et aux moteurs, destiné à commander les moteurs et à obturer sélectivement la source de lumière à un emplacement donné sur la peau.
- Système chirurgical selon la revendication 4, dans lequel les miroirs (215, 420) comprennent au moins deux miroirs ayant des axes à des angles droits l'un par rapport à l'autre.
- Système chirurgical selon la revendication 1, comprenant :un réseau de masque actif (1060) couplé au mécanisme de commande, destiné à obturer sélectivement la source de lumière à un emplacement donné qui a subi une ablation à la profondeur souhaitée.
- Système chirurgical selon la revendication 1, dans lequel le système comprend un système de robot/laser, comprenant en outre :un appareil de prise de vues (515, 630, 735) destiné à visualiser une image des emplacements sur la peau,un calculateur (525, 740) couplé à l'appareil de prise de vues, le calculateur ayant une sortie destinée à l'affichage et une entrée destinée à la désignation des emplacements sur la peau vers lesquels le laser est dirigé.
- Système chirurgical selon la revendication 1, dans lequel le système comprend en outre un mécanisme destiné à focaliser le faisceau laser sur un petit point d'un diamètre d'approximativement 25 µm.
- Système chirurgical selon la revendication 1, dans lequel le mécanisme de commande comprend un mécanisme d'alignement, comprenant :un laser visible (412), ledit laser émettant un faisceau illuminant la peau à un emplacement coïncidant avec la lumière d'ablation,un moyen destiné à faire balayer le faisceau sur les emplacements sur la peau, etun moyen destiné à enregistrer les positions du faisceau ayant fait l'objet d'un balayage, couplé audit moyen de balayage, en vue d'un balayage automatique ultérieur de la source de lumière d'ablation sur tous les emplacements (407) sur la peau.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15875 | 1998-01-29 | ||
US09/015,875 US6165170A (en) | 1998-01-29 | 1998-01-29 | Laser dermablator and dermablation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0933096A2 EP0933096A2 (fr) | 1999-08-04 |
EP0933096A3 EP0933096A3 (fr) | 1999-11-03 |
EP0933096B1 true EP0933096B1 (fr) | 2008-01-02 |
Family
ID=21774128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99300177A Expired - Lifetime EP0933096B1 (fr) | 1998-01-29 | 1999-01-12 | Laser pour ablation de la peau |
Country Status (9)
Country | Link |
---|---|
US (2) | US6165170A (fr) |
EP (1) | EP0933096B1 (fr) |
JP (1) | JP3229280B2 (fr) |
KR (1) | KR100454522B1 (fr) |
CN (1) | CN1145460C (fr) |
DE (1) | DE69937850T2 (fr) |
HK (1) | HK1021499A1 (fr) |
SG (1) | SG114454A1 (fr) |
TW (1) | TW403667B (fr) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7724786B2 (en) | 2003-06-06 | 2010-05-25 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US7733497B2 (en) | 2003-10-27 | 2010-06-08 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US7742173B2 (en) | 2006-04-05 | 2010-06-22 | The General Hospital Corporation | Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample |
US7782464B2 (en) | 2006-05-12 | 2010-08-24 | The General Hospital Corporation | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images |
US7796270B2 (en) | 2006-01-10 | 2010-09-14 | The General Hospital Corporation | Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques |
US7797119B2 (en) | 2002-01-24 | 2010-09-14 | The General Hospital Corporation | Apparatus and method for rangings and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US7809225B2 (en) | 2004-07-02 | 2010-10-05 | The General Hospital Corporation | Imaging system and related techniques |
US7843572B2 (en) | 2005-09-29 | 2010-11-30 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US7859679B2 (en) | 2005-05-31 | 2010-12-28 | The General Hospital Corporation | System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging |
US7889348B2 (en) | 2005-10-14 | 2011-02-15 | The General Hospital Corporation | Arrangements and methods for facilitating photoluminescence imaging |
US7920271B2 (en) | 2006-08-25 | 2011-04-05 | The General Hospital Corporation | Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques |
US7933021B2 (en) | 2007-10-30 | 2011-04-26 | The General Hospital Corporation | System and method for cladding mode detection |
US7949019B2 (en) | 2007-01-19 | 2011-05-24 | The General Hospital | Wavelength tuning source based on a rotatable reflector |
US7982879B2 (en) | 2006-02-24 | 2011-07-19 | The General Hospital Corporation | Methods and systems for performing angle-resolved fourier-domain optical coherence tomography |
US7995210B2 (en) | 2004-11-24 | 2011-08-09 | The General Hospital Corporation | Devices and arrangements for performing coherence range imaging using a common path interferometer |
US8018598B2 (en) | 2004-05-29 | 2011-09-13 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging |
US8040608B2 (en) | 2007-08-31 | 2011-10-18 | The General Hospital Corporation | System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith |
US8050747B2 (en) | 2001-05-01 | 2011-11-01 | The General Hospital Corporation | Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties |
US8054468B2 (en) | 2003-01-24 | 2011-11-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US8081316B2 (en) | 2004-08-06 | 2011-12-20 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
US8097864B2 (en) | 2009-01-26 | 2012-01-17 | The General Hospital Corporation | System, method and computer-accessible medium for providing wide-field superresolution microscopy |
US8115919B2 (en) | 2007-05-04 | 2012-02-14 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
US8175685B2 (en) | 2006-05-10 | 2012-05-08 | The General Hospital Corporation | Process, arrangements and systems for providing frequency domain imaging of a sample |
US8174702B2 (en) | 2003-01-24 | 2012-05-08 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
US8208995B2 (en) | 2004-08-24 | 2012-06-26 | The General Hospital Corporation | Method and apparatus for imaging of vessel segments |
US8246611B2 (en) | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
USRE43875E1 (en) | 2004-09-29 | 2012-12-25 | The General Hospital Corporation | System and method for optical coherence imaging |
US8351665B2 (en) | 2005-04-28 | 2013-01-08 | The General Hospital Corporation | Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique |
US8593619B2 (en) | 2008-05-07 | 2013-11-26 | The General Hospital Corporation | System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy |
US8721077B2 (en) | 2011-04-29 | 2014-05-13 | The General Hospital Corporation | Systems, methods and computer-readable medium for determining depth-resolved physical and/or optical properties of scattering media by analyzing measured data over a range of depths |
US8804126B2 (en) | 2010-03-05 | 2014-08-12 | The General Hospital Corporation | Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution |
US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
US8861910B2 (en) | 2008-06-20 | 2014-10-14 | The General Hospital Corporation | Fused fiber optic coupler arrangement and method for use thereof |
US8937724B2 (en) | 2008-12-10 | 2015-01-20 | The General Hospital Corporation | Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling |
US8965487B2 (en) | 2004-08-24 | 2015-02-24 | The General Hospital Corporation | Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample |
US9069130B2 (en) | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
US9087368B2 (en) | 2006-01-19 | 2015-07-21 | The General Hospital Corporation | Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof |
US9176319B2 (en) | 2007-03-23 | 2015-11-03 | The General Hospital Corporation | Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures |
US9178330B2 (en) | 2009-02-04 | 2015-11-03 | The General Hospital Corporation | Apparatus and method for utilization of a high-speed optical wavelength tuning source |
US9186067B2 (en) | 2006-02-01 | 2015-11-17 | The General Hospital Corporation | Apparatus for applying a plurality of electro-magnetic radiations to a sample |
US9254089B2 (en) | 2008-07-14 | 2016-02-09 | The General Hospital Corporation | Apparatus and methods for facilitating at least partial overlap of dispersed ration on at least one sample |
US9330092B2 (en) | 2011-07-19 | 2016-05-03 | The General Hospital Corporation | Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography |
US9332942B2 (en) | 2008-01-28 | 2016-05-10 | The General Hospital Corporation | Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging |
US9341783B2 (en) | 2011-10-18 | 2016-05-17 | The General Hospital Corporation | Apparatus and methods for producing and/or providing recirculating optical delay(s) |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US9375158B2 (en) | 2007-07-31 | 2016-06-28 | The General Hospital Corporation | Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging |
US9415550B2 (en) | 2012-08-22 | 2016-08-16 | The General Hospital Corporation | System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography |
US9441948B2 (en) | 2005-08-09 | 2016-09-13 | The General Hospital Corporation | Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography |
US9510758B2 (en) | 2010-10-27 | 2016-12-06 | The General Hospital Corporation | Apparatus, systems and methods for measuring blood pressure within at least one vessel |
US9557154B2 (en) | 2010-05-25 | 2017-01-31 | The General Hospital Corporation | Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions |
Families Citing this family (299)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6190376B1 (en) | 1996-12-10 | 2001-02-20 | Asah Medico A/S | Apparatus for tissue treatment |
WO2000053261A1 (fr) * | 1999-03-08 | 2000-09-14 | Asah Medico A/S | Appareil de traitement des tissus, pourvu d'un écran affichant des caractéristiques des tissus |
US6074382A (en) | 1997-08-29 | 2000-06-13 | Asah Medico A/S | Apparatus for tissue treatment |
DE69940738D1 (de) * | 1998-07-09 | 2009-05-28 | Curelight Medical Ltd | Vorrichtung und verfahren zur wirkungsvollen hochenergetischen photodynamischen therapie von akne vulgaris und seborrhoe |
US6059820A (en) | 1998-10-16 | 2000-05-09 | Paradigm Medical Corporation | Tissue cooling rod for laser surgery |
US6183773B1 (en) * | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
US6936311B2 (en) * | 1999-01-27 | 2005-08-30 | The United States Of America As Represented By The Secretary Of The Navy | Generation of biomaterial microarrays by laser transfer |
US6905738B2 (en) * | 1999-01-27 | 2005-06-14 | The United States Of America As Represented By The Secretary Of The Navy | Generation of viable cell active biomaterial patterns by laser transfer |
US6663658B1 (en) * | 1999-04-27 | 2003-12-16 | The General Hospital Corporation | Phototherapy method for treatment of acne |
US6413267B1 (en) * | 1999-08-09 | 2002-07-02 | Theralase, Inc. | Therapeutic laser device and method including noninvasive subsurface monitoring and controlling means |
US6438834B1 (en) | 1999-09-21 | 2002-08-27 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method of making a swash plate type compressor piston whose head portion is formed by pore-free die-casting |
JP3730454B2 (ja) * | 1999-09-21 | 2006-01-05 | 株式会社ニデック | レーザ装置 |
BR0014289A (pt) | 1999-09-24 | 2002-07-02 | Ca Nat Research Council | Método e aparelho para realizar angiografia intra-operativa |
AU1085801A (en) * | 1999-10-14 | 2001-04-23 | Iridex Corporation | Therapeutic use of long-pulse laser photocoagulation in combination with other treatment modalities |
US6443976B1 (en) * | 1999-11-30 | 2002-09-03 | Akorn, Inc. | Methods for treating conditions and illnesses associated with abnormal vasculature |
US6502579B2 (en) * | 2000-01-19 | 2003-01-07 | William P. Young | Laser onychectomy by resection of the redundant epithelium of the ungual crest |
EP1274359A1 (fr) * | 2000-02-22 | 2003-01-15 | Gustafsson, Morgan | Procede et appareil destines a un traitement thermique superficiel de la peau |
DE10013910A1 (de) * | 2000-03-21 | 2001-10-04 | Vision Lasertechnik Fuer Forsc | Verfahren zur Haarentfernung mittels gebündeltem Licht und Vorrichtung zur Durchführung des Verfahrens |
JP2002011106A (ja) * | 2000-06-28 | 2002-01-15 | Nidek Co Ltd | レーザ治療装置 |
EP2269645A3 (fr) | 2000-08-16 | 2011-01-12 | The General Hospital Corporation doing business as Massachusetts General Hospital | Thérapie photodynamique par application topique d'acide aminolévulinique pour le traitement de l'acné vulgaire |
US6766187B1 (en) * | 2000-09-18 | 2004-07-20 | Lumenis Inc. | Method for detecting coagulation in laser treatment of blood vessels |
KR20020024830A (ko) * | 2000-09-27 | 2002-04-03 | 이용한 | 레이저 여드름 치료기 |
AU2002210235A1 (en) * | 2000-10-20 | 2002-04-29 | Innovationsagentur Gesellschaft M.B.H. | Method and device for controlling light sources for irradiating a body |
DE10161175B4 (de) * | 2000-12-18 | 2005-01-05 | Thyssen Laser-Technik Gmbh | Laserstrahloptik in einer Roboterachse |
KR20020060020A (ko) * | 2001-01-09 | 2002-07-16 | 박종윤 | 고출력 반도체 레이저 다이오드(high power semiconductorlaser diode)를 이용한 광역동 치료 및 진단(photodynamictreatment / diagnosis)용 의료용 레이저 기구 |
US20040073199A1 (en) * | 2001-02-02 | 2004-04-15 | Homer Gregg S. | Method for alteration of iris pigment |
US8206379B2 (en) * | 2001-02-02 | 2012-06-26 | Homer Gregg S | Techniques for alteration of iris pigment |
WO2002066550A1 (fr) * | 2001-02-20 | 2002-08-29 | The United States Of America, As Represented By The Secretary Of The Navy Naval Research Laboratory | Realisation de microreseaux de matiere biologique par transfert laser |
US7947067B2 (en) * | 2004-02-04 | 2011-05-24 | Erchonia Corporation | Scanning treatment laser with sweep beam spot and universal carriage |
DE10115426C2 (de) * | 2001-03-29 | 2003-03-13 | W & H Dentalwerk Buermoos Ges | Vorrichtung und Verfahrens zur Laser-Ablation von organischem und anorganischem Material |
DE10120787A1 (de) * | 2001-04-25 | 2003-01-09 | Foerderung Von Medizin Bio Und | Anordnung zur remissionsgesteuerten, selektiven Lasertherapie von Blutgefässen und Hautgeweben |
GB0112503D0 (en) * | 2001-05-23 | 2001-07-11 | Tabatabaei Seyed D | Apparatus and method for selectively irradiating a surface |
US6736833B2 (en) * | 2001-06-07 | 2004-05-18 | Hospital For Special Surgery | Application of UV to collagen for altering length and properties of tissue |
CA2358756A1 (fr) * | 2001-10-09 | 2003-04-09 | Robert S. Backstein | Methode et dispositif de traitement de la peau |
DE10152127B4 (de) * | 2001-10-23 | 2004-09-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur kontrollierten Navigation eines medizinischen Instrumentes relativ zu menschlichen oder tierischen Gewebebereichen |
GB2381752A (en) * | 2001-11-06 | 2003-05-14 | Ezio Panzeri | Laser skin treatment device with control means dependent on a sensed property of the skin to be treated |
US7762964B2 (en) * | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for improving safety during exposure to a monochromatic light source |
AU2002321806A1 (en) * | 2001-12-10 | 2003-06-23 | Inolase 2002 Ltd. | Method and apparatus for improving safety during exposure to a monochromatic light source |
US7762965B2 (en) * | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for vacuum-assisted light-based treatments of the skin |
EP1627662B1 (fr) * | 2004-06-10 | 2011-03-02 | Candela Corporation | Appareil pour le traitement de la peau à l'aide d'une source lumineuse assistée par dépression |
US7935139B2 (en) * | 2001-12-10 | 2011-05-03 | Candela Corporation | Eye safe dermatological phototherapy |
US20040082940A1 (en) * | 2002-10-22 | 2004-04-29 | Michael Black | Dermatological apparatus and method |
US6960201B2 (en) * | 2002-02-11 | 2005-11-01 | Quanticum, Llc | Method for the prevention and treatment of skin and nail infections |
US7494502B2 (en) | 2002-02-11 | 2009-02-24 | Keraderm, Llc | Alteration of the skin and nail for the prevention and treatment of skin and nail infections |
DE10220423B4 (de) * | 2002-05-08 | 2005-02-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur kontrollierten Navigation eines medizinischen Instrumentes relativ zu menschlichen oder tierischen Gewebebereichen |
US20030228044A1 (en) * | 2002-06-05 | 2003-12-11 | Canon Kabushiki Kaisha | Radiographic marker location |
JP2005535370A (ja) | 2002-06-19 | 2005-11-24 | パロマー・メディカル・テクノロジーズ・インコーポレイテッド | 皮膚および皮下の症状を治療する方法および装置 |
AUPS313802A0 (en) * | 2002-06-25 | 2002-07-18 | Riancorp Pty Ltd | Laser beam homogenisers in medical applications |
US7740600B2 (en) * | 2002-08-02 | 2010-06-22 | Candela Corporation | Apparatus and method for inhibiting pain signals transmitted during a skin related medical treatment |
KR100508979B1 (ko) * | 2002-09-27 | 2005-08-17 | 주식회사 솔고 바이오메디칼 | 에르븀 야그 레이저 장치 |
CA2500713C (fr) * | 2002-10-04 | 2012-07-03 | Photokinetix, Inc. | Delivrance photocinetique de substances biologiquement actives au moyen d'une lumiere incoherente pulsee |
US6916315B2 (en) * | 2002-10-07 | 2005-07-12 | Kenneth Lawrence Short | Methods of operating a photo-thermal epilation apparatus |
US20040091588A1 (en) * | 2002-10-31 | 2004-05-13 | Xiaochun Li | Food processing apparatus and method |
US7233817B2 (en) * | 2002-11-01 | 2007-06-19 | Brian Yen | Apparatus and method for pattern delivery of radiation and biological characteristic analysis |
ES2570987T3 (es) | 2003-02-25 | 2016-05-23 | Tria Beauty Inc | Aparato de tratamiento dermatológico, basado en láser de diodo y autónomo |
US7981111B2 (en) | 2003-02-25 | 2011-07-19 | Tria Beauty, Inc. | Method and apparatus for the treatment of benign pigmented lesions |
EP2604216B1 (fr) | 2003-02-25 | 2018-08-22 | Tria Beauty, Inc. | Appareil de traitement dermatologique autonome à diode laser |
ES2513401T3 (es) * | 2003-03-27 | 2014-10-27 | The General Hospital Corporation | Aparato para tratamiento dermatológico y rejuvenecimiento cutáneo fraccionado |
US9655676B2 (en) | 2003-05-16 | 2017-05-23 | Trod Medical | Method of percutaneous localized or focal treatment of prostate lesions using radio frequency |
US8317785B2 (en) * | 2003-05-16 | 2012-11-27 | Trod Medical | Medical device using a coiled electrode |
DE10332062A1 (de) * | 2003-07-11 | 2005-01-27 | Carl Zeiss Jena Gmbh | Anordnung im Beleuchtungsstrahlengang eines Laser-Scanning-Mikroskopes |
JP4329431B2 (ja) * | 2003-07-14 | 2009-09-09 | 株式会社日立製作所 | 位置計測装置 |
US9050116B2 (en) * | 2003-10-14 | 2015-06-09 | Gregg S. Homer | Dermal retraction with intersecting electromagnetic radiation pathways |
US7282060B2 (en) | 2003-12-23 | 2007-10-16 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US7507231B2 (en) * | 2003-12-23 | 2009-03-24 | Arthrex, Inc. | Surgical power console with locking speed control |
US7633033B2 (en) | 2004-01-09 | 2009-12-15 | General Lasertronics Corporation | Color sensing for laser decoating |
US7800014B2 (en) * | 2004-01-09 | 2010-09-21 | General Lasertronics Corporation | Color sensing for laser decoating |
US20050256553A1 (en) * | 2004-02-09 | 2005-11-17 | John Strisower | Method and apparatus for the treatment of respiratory and other infections using ultraviolet germicidal irradiation |
US8777935B2 (en) | 2004-02-25 | 2014-07-15 | Tria Beauty, Inc. | Optical sensor and method for identifying the presence of skin |
US7618415B2 (en) * | 2004-04-09 | 2009-11-17 | Technolas Perfect Vision Gmbh | Beam steering system for corneal laser surgery |
US9801527B2 (en) | 2004-04-19 | 2017-10-31 | Gearbox, Llc | Lumen-traveling biological interface device |
US9011329B2 (en) | 2004-04-19 | 2015-04-21 | Searete Llc | Lumenally-active device |
US8353896B2 (en) | 2004-04-19 | 2013-01-15 | The Invention Science Fund I, Llc | Controllable release nasal system |
US7383768B2 (en) * | 2004-05-05 | 2008-06-10 | Awi Licensing Company | Rapid prototyping and filling commercial pipeline |
US7413572B2 (en) | 2004-06-14 | 2008-08-19 | Reliant Technologies, Inc. | Adaptive control of optical pulses for laser medicine |
US7635362B2 (en) * | 2004-12-30 | 2009-12-22 | Lutronic Corporation | Method and apparatus treating area of the skin by using multipulse laser |
WO2007084145A2 (fr) * | 2005-01-31 | 2007-07-26 | Neister S Edward | Procédé et appareil pour la stérilisation et la désinfection de l'air et de surfaces et pour la protection d'une zone contre la contamination microbienne externe |
US11246951B2 (en) * | 2005-01-31 | 2022-02-15 | S. Edward Neister | Method and apparatus for sterilizing and disinfecting air and surfaces and protecting a zone from external microbial contamination |
DE102005010723A1 (de) * | 2005-02-24 | 2006-08-31 | LÜLLAU, Friedrich | Bestrahlungsvorrichtung |
US8157807B2 (en) * | 2005-06-02 | 2012-04-17 | The Invention Science Fund I, Llc | Skin treatment including patterned light |
WO2006111429A1 (fr) * | 2005-04-18 | 2006-10-26 | Pantec Biosolutions Ag | Systeme d'administration transmembranaire d'un infiltrant |
WO2006111201A1 (fr) * | 2005-04-18 | 2006-10-26 | Pantec Biosolutions Ag | Appareil laser de formation de micropores |
US7856985B2 (en) | 2005-04-22 | 2010-12-28 | Cynosure, Inc. | Method of treatment body tissue using a non-uniform laser beam |
US20060241696A1 (en) * | 2005-04-26 | 2006-10-26 | Stjepan Krco | Method of limiting hair loss and promoting hair growth |
US9055958B2 (en) | 2005-06-29 | 2015-06-16 | The Invention Science Fund I, Llc | Hair modification using converging light |
US20070049996A1 (en) * | 2005-08-29 | 2007-03-01 | Reliant Technologies, Inc. | Monitoring Method and Apparatus for Fractional Photo-Therapy Treatment |
EP1931263A2 (fr) | 2005-08-29 | 2008-06-18 | Reliant Technologies, Inc. | Procede et appareil pour la surveillance et la regulation de traitement tissulaire induit thermiquement |
US7682304B2 (en) * | 2005-09-21 | 2010-03-23 | Medtronic, Inc. | Composite heart valve apparatus manufactured using techniques involving laser machining of tissue |
WO2007064900A2 (fr) * | 2005-12-02 | 2007-06-07 | Xoft, Inc. | Traitement de lesions ou d'imperfections de tissus mammaliens cutanes ou proches de la peau ou dans ou pres d'autres surfaces anatomiques |
CN101400313B (zh) * | 2006-02-01 | 2011-06-08 | 通用医疗公司 | 用于对至少一个光纤的至少两个部分中的至少一个部分进行控制的装置 |
JP5524487B2 (ja) * | 2006-02-01 | 2014-06-18 | ザ ジェネラル ホスピタル コーポレイション | コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。 |
JP5361396B2 (ja) * | 2006-02-01 | 2013-12-04 | ザ ジェネラル ホスピタル コーポレイション | コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分の情報をモニタ及び取得し、電磁放射を放射する方法及びシステム |
EP3143926B1 (fr) | 2006-02-08 | 2020-07-01 | The General Hospital Corporation | Procédés, agencements et systèmes pour obtenir des informations associées à un prélèvement anatomique utilisant la microscopie optique |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US20080058785A1 (en) * | 2006-04-12 | 2008-03-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Autofluorescent imaging and target ablation |
US20120035437A1 (en) | 2006-04-12 | 2012-02-09 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Navigation of a lumen traveling device toward a target |
EP2008610A4 (fr) * | 2006-04-14 | 2012-03-07 | Sumitomo Electric Industries | Dispositif de traitement et procédé de traitement |
US7916282B2 (en) | 2006-06-29 | 2011-03-29 | Koninklijke Philips Electronics N.V. | Surface detection system for use with a droplet spray oral cleaning device |
US9084622B2 (en) * | 2006-08-02 | 2015-07-21 | Omnitek Partners Llc | Automated laser-treatment system with real-time integrated 3D vision system for laser debridement and the like |
US7586957B2 (en) | 2006-08-02 | 2009-09-08 | Cynosure, Inc | Picosecond laser apparatus and methods for its operation and use |
US20100004582A1 (en) * | 2006-10-25 | 2010-01-07 | Pantec Biosolutions Ag | Wide-Area Parasystemic Treatment of Skin Related Conditions |
WO2008052198A2 (fr) * | 2006-10-26 | 2008-05-02 | Reliant Technologies, Inc. | Procédés d'augmentation de la perméabilité cutanée par un traitement par rayonnement électromagnétique |
US20080221014A1 (en) * | 2006-11-29 | 2008-09-11 | Genentech, Inc. | Method of Diagnosing and Treating Glioma |
US20080208295A1 (en) * | 2007-02-28 | 2008-08-28 | Cumbie William E | Phototherapy Treatment and Device to Improve the Appearance of Nails and skin |
ES2636973T3 (es) | 2007-03-02 | 2017-10-10 | Candela Corporation | Calentamiento de la piel a profundidad variable con láseres |
WO2008118365A1 (fr) | 2007-03-22 | 2008-10-02 | General Lasertronics Corporation | Procédés de décapage et de modification de surfaces par ablation induite par laser |
US10534129B2 (en) | 2007-03-30 | 2020-01-14 | The General Hospital Corporation | System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque |
US20090018531A1 (en) * | 2007-06-08 | 2009-01-15 | Cynosure, Inc. | Coaxial suction system for laser lipolysis |
AT505356B1 (de) * | 2007-06-13 | 2009-04-15 | Lechthaler Andreas | Vorrichtung zur bestrahlung eines objektes, insbesondere der menschlichen haut, mit uv-licht |
ES2454974T3 (es) | 2007-06-27 | 2014-04-14 | The General Hospital Corporation | Aparato para la inhibición óptica de la terapia fotodinámica |
EP2020213B1 (fr) * | 2007-07-28 | 2010-09-29 | Fotona d.d. | Système laser pour le retrait médical de tissu corporel |
EP2194899A4 (fr) | 2007-08-08 | 2012-11-28 | Tria Beauty Inc | Procédé et dispositif de détection capacitive permettant de détecter de la peau |
EP2030586B1 (fr) * | 2007-09-01 | 2011-05-11 | Fotona d.d. | Système laser pour applications médicales et cosmétiques |
WO2009036104A2 (fr) * | 2007-09-10 | 2009-03-19 | Lensx Lasers, Inc. | Chirurgie photodisruptive par laser efficace en champ de gravité |
US7740651B2 (en) * | 2007-09-28 | 2010-06-22 | Candela Corporation | Vacuum assisted treatment of the skin |
WO2009052866A1 (fr) * | 2007-10-25 | 2009-04-30 | Pantec Biosolutions Ag | Dispositif laser et procédé pour une ablation de tissu biologique |
US11123047B2 (en) | 2008-01-28 | 2021-09-21 | The General Hospital Corporation | Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood |
RU2497478C2 (ru) * | 2008-03-21 | 2013-11-10 | Конинклейке Филипс Электроникс Н.В. | Система и способ для удаления волос |
US9687671B2 (en) | 2008-04-25 | 2017-06-27 | Channel Investments, Llc | Optical sensor and method for identifying the presence of skin and the pigmentation of skin |
US20090275928A1 (en) * | 2008-05-01 | 2009-11-05 | Solomon Mark P | Suture-less laser blepharoplasty with skin tightening |
WO2010014224A2 (fr) * | 2008-07-28 | 2010-02-04 | Xintec Corporation | Laser multilongueur d'onde et procédé d'ablation tissulaire par contact |
WO2010022330A2 (fr) * | 2008-08-21 | 2010-02-25 | University Of Florida Research Foundation, Inc. | Perturbation différentielle induite par laser (dlip) pour bioimagerie et détection chimique |
DE102008048409A1 (de) * | 2008-09-23 | 2010-03-25 | Megasun Invest Ag | Verfahren und Vorrichtung zur Haarentfernung |
KR101135610B1 (ko) * | 2008-10-13 | 2012-04-17 | 한국과학기술원 | 비전 시스템을 이용한 레이저 로봇 |
WO2010144257A1 (fr) | 2009-05-26 | 2010-12-16 | The General Hospital Corporation | Procédé et appareil pour l'administration dermique d'une substance |
US8594383B2 (en) * | 2009-05-27 | 2013-11-26 | Hewlett-Packard Development Company, L.P. | Method and apparatus for evaluating printed images |
BR112012001042A2 (pt) | 2009-07-14 | 2016-11-22 | Gen Hospital Corp | equipamento e método de medição do fluxo de fluído dentro de estrutura anatômica. |
IL207801A (en) * | 2009-08-25 | 2015-11-30 | Stingray Optics Llc | Objective lens for the area between chromatic visible far infrared |
EP3117792B1 (fr) * | 2009-09-22 | 2019-07-31 | Advanced Osteotomy Tools - AOT AG | Ostéotome laser guidé par robot et assisté par ordinateur |
JP5608871B2 (ja) * | 2010-03-09 | 2014-10-15 | 学校法人慶應義塾 | レーザカテーテル出射部の血液焦げ付き防止システム |
WO2011130231A1 (fr) * | 2010-04-13 | 2011-10-20 | International Business Machines Corporation | Système et procédé de modification et/ou de lissage de tissu avec ablation par laser |
US9795301B2 (en) | 2010-05-25 | 2017-10-24 | The General Hospital Corporation | Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images |
US10285568B2 (en) | 2010-06-03 | 2019-05-14 | The General Hospital Corporation | Apparatus and method for devices for imaging structures in or at one or more luminal organs |
US10112257B1 (en) | 2010-07-09 | 2018-10-30 | General Lasertronics Corporation | Coating ablating apparatus with coating removal detection |
WO2012131660A1 (fr) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Système robotisé et procédé pour chirurgie rachidienne et autre |
US8936366B2 (en) | 2011-06-17 | 2015-01-20 | Microsoft Corporation | Illuminated skin robot display |
DE102011052002B4 (de) * | 2011-07-20 | 2013-04-11 | Telesto GmbH | Lasertherapiesystem mit UVA- und IR-Laser-Licht zur gerichteten Erzeugung einer dermalen Kollagen-Matrix |
WO2013029047A1 (fr) | 2011-08-25 | 2013-02-28 | The General Hospital Corporation | Procédés, systèmes, configurations et support accessible par ordinateur permettant de mettre en œuvre des procédures de tomographie par cohérence micro-optique |
KR20130095555A (ko) * | 2012-02-20 | 2013-08-28 | 삼성전자주식회사 | 조명 광학계 |
US9895771B2 (en) | 2012-02-28 | 2018-02-20 | General Lasertronics Corporation | Laser ablation for the environmentally beneficial removal of surface coatings |
US9788730B2 (en) * | 2012-03-08 | 2017-10-17 | Dermasensor, Inc. | Optical process and apparatus for non-invasive detection of melanoma |
WO2013148306A1 (fr) | 2012-03-30 | 2013-10-03 | The General Hospital Corporation | Système d'imagerie, procédé et fixation distale permettant une endoscopie à champ de vision multidirectionnel |
KR102183581B1 (ko) | 2012-04-18 | 2020-11-27 | 싸이노슈어, 엘엘씨 | 피코초 레이저 장치 및 그를 사용한 표적 조직의 치료 방법 |
WO2013177154A1 (fr) | 2012-05-21 | 2013-11-28 | The General Hospital Corporation | Appareil, dispositif et procédé pour microscopie par capsule |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
WO2013192598A1 (fr) | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Plateforme de robot chirurgical |
US10463361B2 (en) * | 2012-07-13 | 2019-11-05 | The University Of North Carolina At Charlotte | Selective laser vaporization of materials |
US10893806B2 (en) | 2013-01-29 | 2021-01-19 | The General Hospital Corporation | Apparatus, systems and methods for providing information regarding the aortic valve |
US11179028B2 (en) | 2013-02-01 | 2021-11-23 | The General Hospital Corporation | Objective lens arrangement for confocal endomicroscopy |
US20150366611A1 (en) * | 2013-03-14 | 2015-12-24 | Syneron Medical Ltd | Skin treatment apparatus |
EP2973894A2 (fr) | 2013-03-15 | 2016-01-20 | Cynosure, Inc. | Systèmes de rayonnement optique picoseconde et procédés d'utilisation |
JP6378311B2 (ja) | 2013-03-15 | 2018-08-22 | ザ ジェネラル ホスピタル コーポレイション | 物体を特徴付ける方法とシステム |
EP2967745B1 (fr) | 2013-03-15 | 2020-09-23 | Hipsley, AnnMarie | Systèmes permettant d'influer sur les propriétés biomécaniques du tissu conjonctif |
US11129675B2 (en) | 2013-04-25 | 2021-09-28 | Koninklijke Philips N.V. | Non-invasive device for treatment of the skin using laser light |
EP2997354A4 (fr) | 2013-05-13 | 2017-01-18 | The General Hospital Corporation | Détection de la phase et de l'amplitude d'une fluorescence auto-interférente |
US10295823B2 (en) * | 2013-07-02 | 2019-05-21 | Pine Development Corporation | Systems and methods for eliciting cutaneous sensations using electromagnetic radiation |
US10413359B2 (en) * | 2013-07-18 | 2019-09-17 | International Business Machines Corporation | Laser-assisted transdermal delivery of nanoparticulates and hydrogels |
US10117576B2 (en) | 2013-07-19 | 2018-11-06 | The General Hospital Corporation | System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina |
WO2015009932A1 (fr) | 2013-07-19 | 2015-01-22 | The General Hospital Corporation | Appareil d'imagerie et procédé utilisant une endoscopie à champ de vision multidirectionnel |
EP3910282B1 (fr) | 2013-07-26 | 2024-01-17 | The General Hospital Corporation | Procédé de génération d'un rayonnement laser avec un dispositif laser utilisant de la dispersion optique pour applications en tomographie en cohérence optique dans le domaine de fourier |
CN105530886B (zh) * | 2013-08-09 | 2019-11-26 | 通用医疗公司 | 用于治疗真皮黄褐斑的方法和设备 |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
US9282985B2 (en) * | 2013-11-11 | 2016-03-15 | Gyrus Acmi, Inc. | Aiming beam detection for safe laser lithotripsy |
WO2015105870A1 (fr) | 2014-01-08 | 2015-07-16 | The General Hospital Corporation | Procédé et appareil pour imagerie microscopique |
US9241771B2 (en) | 2014-01-15 | 2016-01-26 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
US10086597B2 (en) | 2014-01-21 | 2018-10-02 | General Lasertronics Corporation | Laser film debonding method |
US10736494B2 (en) | 2014-01-31 | 2020-08-11 | The General Hospital Corporation | System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device |
WO2015114631A1 (fr) * | 2014-02-01 | 2015-08-06 | Shimon Mizrahi | Détection et traitement de caractéristiques de surface de la peau |
US10039605B2 (en) | 2014-02-11 | 2018-08-07 | Globus Medical, Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
KR101437540B1 (ko) * | 2014-03-31 | 2014-09-05 | (주)라메디텍 | 멀티 기능의 의료용 레이저 조사 장치 |
US11559353B1 (en) * | 2014-04-01 | 2023-01-24 | Gregg S. Homer | Ablative skin resurfacing with topical radiation block |
WO2015153982A1 (fr) | 2014-04-04 | 2015-10-08 | The General Hospital Corporation | Appareil et procédé de commande de la propagation et/ou de la transmission d'un rayonnement électromagnétique dans un ou des guides d'ondes flexibles |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
US9254075B2 (en) | 2014-05-04 | 2016-02-09 | Gyrus Acmi, Inc. | Location of fragments during lithotripsy |
US10420608B2 (en) * | 2014-05-20 | 2019-09-24 | Verily Life Sciences Llc | System for laser ablation surgery |
US10507059B2 (en) | 2014-07-03 | 2019-12-17 | Zhenhua LAI | Melanin ablation guided by stepwise multi-photon activated fluorescence |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
KR102513779B1 (ko) | 2014-07-25 | 2023-03-24 | 더 제너럴 하스피탈 코포레이션 | 생체 내 이미징 및 진단을 위한 장치, 디바이스 및 방법 |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
WO2016131903A1 (fr) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systèmes et procédés pour effectuer une intervention chirurgicale rachidienne minimalement invasive avec un système chirurgical robotisé à l'aide d'une technique percutanée |
EP3262454A4 (fr) * | 2015-02-23 | 2019-02-27 | Li-Cor, Inc. | Imageur d'échantillon de biopsie par fluorescence et procédés |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
WO2016210340A1 (fr) | 2015-06-26 | 2016-12-29 | Li-Cor, Inc. | Imageur d'échantillon de biopsie par fluorescence et procédés |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
EP3344179B1 (fr) | 2015-08-31 | 2021-06-30 | KB Medical SA | Systèmes de chirurgie robotique |
DE102015216891A1 (de) * | 2015-09-03 | 2017-03-09 | Vimecon Gmbh | Ablationskatheter mit Sensorik zur Erfassung des Ablationserfolges |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
FI20155784A (fi) | 2015-11-02 | 2017-05-03 | Cryotech Nordic Oü | Automatisoitu järjestelmä laser-avusteiseen dermatologiseen hoitoon ja ohjausmenetelmä |
FR3046546B1 (fr) * | 2016-01-07 | 2020-12-25 | Urgo Rech Innovation Et Developpement | Dispositif de traitement dermatologique |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
EP3241518B1 (fr) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Systèmes d'outil chirurgical |
KR102594430B1 (ko) | 2016-04-19 | 2023-10-26 | 주식회사 레인보우로보틱스 | 로봇암을 이용한 레이저 조사 장치 및 방법 |
WO2017184940A1 (fr) | 2016-04-21 | 2017-10-26 | Li-Cor, Inc. | Imagerie 3d à modalités et axes multiples |
EP3475919A1 (fr) | 2016-06-23 | 2019-05-01 | Li-Cor, Inc. | Clignotement de couleur complémentaire pour présentation d'image multicanal |
WO2018098162A1 (fr) | 2016-11-23 | 2018-05-31 | Li-Cor, Inc. | Procédé d'imagerie interactive adaptatif au mouvement |
EP3360502A3 (fr) | 2017-01-18 | 2018-10-31 | KB Medical SA | Navigation robotique de systèmes chirurgicaux robotiques |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
US20180289432A1 (en) | 2017-04-05 | 2018-10-11 | Kb Medical, Sa | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
US10386301B2 (en) | 2017-04-25 | 2019-08-20 | Li-Cor, Inc. | Top-down and rotational side view biopsy specimen imager and methods |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
EP3492032B1 (fr) | 2017-11-09 | 2023-01-04 | Globus Medical, Inc. | Systèmes de robot chirurgical de cintrage de tiges chirurgicales |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
WO2019165426A1 (fr) | 2018-02-26 | 2019-08-29 | Cynosure, Inc. | Laser à décharge à cavité à commutation q d'ordre inférieur à la nanoseconde |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
WO2019211741A1 (fr) | 2018-05-02 | 2019-11-07 | Augmedics Ltd. | Enregistrement d'un marqueur fiduciel pour un système de réalité augmentée |
TWI714859B (zh) * | 2018-06-13 | 2021-01-01 | 睿新醫電股份有限公司 | 穿戴式雷射舒緩輔助裝置 |
CN112584896B (zh) | 2018-06-22 | 2022-11-08 | 阿瓦瓦公司 | 用于治疗设备的反馈检测 |
WO2020075162A1 (fr) * | 2018-10-11 | 2020-04-16 | Lumenis Ltd | Surveillance en temps réel de procédures de traitement esthétique de la peau par laser cosmétique |
US11439462B2 (en) | 2018-10-16 | 2022-09-13 | Simon Ourian | System and method for laser skin resurfacing |
CN118438439A (zh) * | 2018-10-22 | 2024-08-06 | 直观外科手术操作公司 | 用于主机/工具配准和控制以进行直观运动的系统和方法 |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
DE102020201884B4 (de) | 2019-02-15 | 2021-12-23 | Virtek Vision International Ulc | Verfahren von detektieren richtiger orientierung von materialapplikation |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US10667855B1 (en) | 2019-05-10 | 2020-06-02 | Trod Medical Us, Llc | Dual coil ablation devices |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
WO2021072253A1 (fr) * | 2019-10-11 | 2021-04-15 | Becc Applied Sciences, L.L.C. | Promotion in situ de structure cellulaire par application sélective d'ondes électromagnétiques |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US12035966B2 (en) | 2020-05-30 | 2024-07-16 | International Business Machines Corporation | Laser-assisted treatment of Pachyonychia Congenita |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
CN111803208B (zh) * | 2020-08-04 | 2022-08-19 | 吉林省科英激光股份有限公司 | 一种适用于显微手术适配器的激光扫描控制系统 |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US12053263B2 (en) | 2021-05-21 | 2024-08-06 | Dermasensor, Inc. | Dynamic calibration of light intensity in a system for non-invasive detection of skin cancer using elastic scattering spectroscopy |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
EP4391924A1 (fr) * | 2021-08-26 | 2024-07-03 | Augmedics Ltd. | Enregistrement et validation d'enregistrement dans une chirurgie guidée par image |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
CN114832228A (zh) * | 2022-07-04 | 2022-08-02 | 中国科学院长春光学精密机械与物理研究所 | 一种多波长激光促进透皮给药装置 |
WO2024057210A1 (fr) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Lunettes à réalité augmentée pour intervention médicale guidée par image |
CN115944383B (zh) * | 2023-03-13 | 2023-06-13 | 武汉诺伊激光科技有限公司 | 用于激光医疗的光学耦合装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999011324A1 (fr) * | 1997-08-29 | 1999-03-11 | Asah Medico A/S | Appareil de traitement de tissu |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902036A (en) * | 1974-05-02 | 1975-08-26 | Western Electric Co | Control system using multiplexed laser beams |
US4215694A (en) * | 1978-06-01 | 1980-08-05 | Isakov Viktor L | Laser therapy apparatus |
US4420812A (en) * | 1979-09-14 | 1983-12-13 | Tokico, Ltd. | Teaching- playback robot |
US4316467A (en) * | 1980-06-23 | 1982-02-23 | Lorenzo P. Maun | Control for laser hemangioma treatment system |
SE436848B (sv) * | 1982-06-28 | 1985-01-28 | Asea Ab | Styrsystem for industrirobot |
DE3373055D1 (en) * | 1982-12-09 | 1987-09-24 | Ibm | Ablative photodecomposition of organic biological material |
US4784135A (en) * | 1982-12-09 | 1988-11-15 | International Business Machines Corporation | Far ultraviolet surgical and dental procedures |
US5409479A (en) * | 1983-10-06 | 1995-04-25 | Premier Laser Systems, Inc. | Method for closing tissue wounds using radiative energy beams |
US5108388B1 (en) * | 1983-12-15 | 2000-09-19 | Visx Inc | Laser surgery method |
CA1262757A (fr) * | 1985-04-25 | 1989-11-07 | Richard M. Dwyer | Methode et appareil de chirurgie au laser |
JPS6238413A (ja) * | 1985-08-13 | 1987-02-19 | Toshiba Corp | 光走査機構 |
US4791927A (en) * | 1985-12-26 | 1988-12-20 | Allied Corporation | Dual-wavelength laser scalpel background of the invention |
US5336217A (en) * | 1986-04-24 | 1994-08-09 | Institut National De La Sante Et De La Recherche Medicale (Insepm) | Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias |
DE3831141A1 (de) * | 1988-09-13 | 1990-03-22 | Zeiss Carl Fa | Verfahren und vorrichtung zur mikrochirurgie am auge mittels laserstrahlung |
US5207576A (en) * | 1989-04-07 | 1993-05-04 | American Dental Laser, Inc. | Dental laser assembly with dual lasers |
US4973848A (en) * | 1989-07-28 | 1990-11-27 | J. Mccaughan | Laser apparatus for concurrent analysis and treatment |
DE4026240A1 (de) * | 1990-08-18 | 1992-02-20 | Koenig Hermann J Dr Med | Verfahren zur gewebsabtragung mittels gepulster fokussierter laserstrahlung, insbesondere zur verwendung in der neurochirurgie, sowie vorrichtung zur durchfuehrung des verfahrens |
US5312396A (en) * | 1990-09-06 | 1994-05-17 | Massachusetts Institute Of Technology | Pulsed laser system for the surgical removal of tissue |
US5163933A (en) * | 1990-10-22 | 1992-11-17 | Cedars-Sinai Medical Center | Prosthetic joint replacement procedure using excimer laser |
JPH053927A (ja) * | 1991-06-28 | 1993-01-14 | Topcon Corp | レーザ照射装置 |
JPH0515546A (ja) * | 1991-07-15 | 1993-01-26 | Nidek Co Ltd | 光凝固装置 |
US5217455A (en) * | 1991-08-12 | 1993-06-08 | Tan Oon T | Laser treatment method for removing pigmentations, lesions, and abnormalities from the skin of a living human |
US5532416A (en) * | 1994-07-20 | 1996-07-02 | Monsanto Company | Benzoyl derivatives and synthesis thereof |
US5423803A (en) * | 1991-10-29 | 1995-06-13 | Thermotrex Corporation | Skin surface peeling process using laser |
IL100664A0 (en) * | 1992-01-15 | 1992-09-06 | Laser Ind Ltd | Method and apparatus for controlling a laser beam |
US5405368A (en) * | 1992-10-20 | 1995-04-11 | Esc Inc. | Method and apparatus for therapeutic electromagnetic treatment |
US5643252A (en) * | 1992-10-28 | 1997-07-01 | Venisect, Inc. | Laser perforator |
US5527350A (en) * | 1993-02-24 | 1996-06-18 | Star Medical Technologies, Inc. | Pulsed infrared laser treatment of psoriasis |
CA2102884A1 (fr) * | 1993-03-04 | 1994-09-05 | James J. Wynne | Procedes et dispositifs dentaires utilisant les rayons ultraviolets |
US5387211B1 (en) * | 1993-03-10 | 1996-12-31 | Trimedyne Inc | Multi-head laser assembly |
JPH06277227A (ja) * | 1993-03-26 | 1994-10-04 | Toshiba Medical Eng Co Ltd | レーザ治療装置 |
US5350376A (en) * | 1993-04-16 | 1994-09-27 | Ceramoptec, Inc. | Optical controller device |
US5860967A (en) * | 1993-07-21 | 1999-01-19 | Lucid, Inc. | Dermatological laser treatment system with electronic visualization of the area being treated |
IL108059A (en) * | 1993-12-17 | 1998-02-22 | Laser Ind Ltd | Method and device for placing a laser beam on a work surface, especially for tissue ablation |
US5558666A (en) * | 1994-01-14 | 1996-09-24 | Coherent, Inc. | Handpiece for producing highly collimated laser beam for dermatological procedures |
JP2862202B2 (ja) * | 1994-04-28 | 1999-03-03 | 株式会社ニデック | 角膜レ−ザ手術装置 |
US5554153A (en) * | 1994-08-29 | 1996-09-10 | Cell Robotics, Inc. | Laser skin perforator |
US5531740A (en) * | 1994-09-06 | 1996-07-02 | Rapistan Demag Corporation | Automatic color-activated scanning treatment of dermatological conditions by laser |
US5522813A (en) * | 1994-09-23 | 1996-06-04 | Coherent, Inc. | Method of treating veins |
US5571151A (en) * | 1994-10-25 | 1996-11-05 | Gregory; Kenton W. | Method for contemporaneous application of laser energy and localized pharmacologic therapy |
US5611795A (en) * | 1995-02-03 | 1997-03-18 | Laser Industries, Ltd. | Laser facial rejuvenation |
WO1996028212A1 (fr) * | 1995-03-09 | 1996-09-19 | Innotech Usa, Inc. | Instrument de chirurgie au laser et procede d'utilisation correspondant |
DE19521003C1 (de) * | 1995-06-08 | 1996-08-14 | Baasel Carl Lasertech | Gepulste Lichtquelle zum Abtragen von biologischem Gewebe |
US5820627A (en) * | 1996-03-28 | 1998-10-13 | Physical Sciences, Inc. | Real-time optical feedback control of laser lithotripsy |
US5843072A (en) * | 1996-11-07 | 1998-12-01 | Cynosure, Inc. | Method for treatment of unwanted veins and device therefor |
US5655547A (en) * | 1996-05-15 | 1997-08-12 | Esc Medical Systems Ltd. | Method for laser surgery |
US6190376B1 (en) * | 1996-12-10 | 2001-02-20 | Asah Medico A/S | Apparatus for tissue treatment |
US6027496A (en) * | 1997-03-25 | 2000-02-22 | Abbott Laboratories | Removal of stratum corneum by means of light |
-
1998
- 1998-01-29 US US09/015,875 patent/US6165170A/en not_active Expired - Lifetime
-
1999
- 1999-01-12 EP EP99300177A patent/EP0933096B1/fr not_active Expired - Lifetime
- 1999-01-12 DE DE69937850T patent/DE69937850T2/de not_active Expired - Lifetime
- 1999-01-15 KR KR10-1999-0001058A patent/KR100454522B1/ko not_active IP Right Cessation
- 1999-01-22 SG SG9900147A patent/SG114454A1/en unknown
- 1999-01-26 JP JP01674799A patent/JP3229280B2/ja not_active Expired - Fee Related
- 1999-01-28 CN CNB991016092A patent/CN1145460C/zh not_active Expired - Lifetime
- 1999-07-06 TW TW088101161A patent/TW403667B/zh not_active IP Right Cessation
-
2000
- 2000-01-28 HK HK00100521A patent/HK1021499A1/xx not_active IP Right Cessation
- 2000-11-01 US US09/606,351 patent/US6447503B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999011324A1 (fr) * | 1997-08-29 | 1999-03-11 | Asah Medico A/S | Appareil de traitement de tissu |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8050747B2 (en) | 2001-05-01 | 2011-11-01 | The General Hospital Corporation | Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties |
US8150496B2 (en) | 2001-05-01 | 2012-04-03 | The General Hospital Corporation | Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties |
US7797119B2 (en) | 2002-01-24 | 2010-09-14 | The General Hospital Corporation | Apparatus and method for rangings and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US8559012B2 (en) | 2003-01-24 | 2013-10-15 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
US8054468B2 (en) | 2003-01-24 | 2011-11-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US9226665B2 (en) | 2003-01-24 | 2016-01-05 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
US8174702B2 (en) | 2003-01-24 | 2012-05-08 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
US8416818B2 (en) | 2003-06-06 | 2013-04-09 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US7995627B2 (en) | 2003-06-06 | 2011-08-09 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US7724786B2 (en) | 2003-06-06 | 2010-05-25 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US8384909B2 (en) | 2003-10-27 | 2013-02-26 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US8355138B2 (en) | 2003-10-27 | 2013-01-15 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US8705046B2 (en) | 2003-10-27 | 2014-04-22 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US9377290B2 (en) | 2003-10-27 | 2016-06-28 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US7969578B2 (en) | 2003-10-27 | 2011-06-28 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US7733497B2 (en) | 2003-10-27 | 2010-06-08 | The General Hospital Corporation | Method and apparatus for performing optical imaging using frequency-domain interferometry |
US8018598B2 (en) | 2004-05-29 | 2011-09-13 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging |
US8676013B2 (en) | 2004-07-02 | 2014-03-18 | The General Hospital Corporation | Imaging system using and related techniques |
US7809225B2 (en) | 2004-07-02 | 2010-10-05 | The General Hospital Corporation | Imaging system and related techniques |
US8369669B2 (en) | 2004-07-02 | 2013-02-05 | The General Hospital Corporation | Imaging system and related techniques |
US9226660B2 (en) | 2004-08-06 | 2016-01-05 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
US8081316B2 (en) | 2004-08-06 | 2011-12-20 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
US9254102B2 (en) | 2004-08-24 | 2016-02-09 | The General Hospital Corporation | Method and apparatus for imaging of vessel segments |
US8965487B2 (en) | 2004-08-24 | 2015-02-24 | The General Hospital Corporation | Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample |
US8208995B2 (en) | 2004-08-24 | 2012-06-26 | The General Hospital Corporation | Method and apparatus for imaging of vessel segments |
USRE43875E1 (en) | 2004-09-29 | 2012-12-25 | The General Hospital Corporation | System and method for optical coherence imaging |
USRE45512E1 (en) | 2004-09-29 | 2015-05-12 | The General Hospital Corporation | System and method for optical coherence imaging |
US7995210B2 (en) | 2004-11-24 | 2011-08-09 | The General Hospital Corporation | Devices and arrangements for performing coherence range imaging using a common path interferometer |
US9326682B2 (en) | 2005-04-28 | 2016-05-03 | The General Hospital Corporation | Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique |
US8351665B2 (en) | 2005-04-28 | 2013-01-08 | The General Hospital Corporation | Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique |
US7859679B2 (en) | 2005-05-31 | 2010-12-28 | The General Hospital Corporation | System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging |
US9441948B2 (en) | 2005-08-09 | 2016-09-13 | The General Hospital Corporation | Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography |
US9304121B2 (en) | 2005-09-29 | 2016-04-05 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US9513276B2 (en) | 2005-09-29 | 2016-12-06 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US8289522B2 (en) | 2005-09-29 | 2012-10-16 | The General Hospital Corporation | Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures |
US8760663B2 (en) | 2005-09-29 | 2014-06-24 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US8384907B2 (en) | 2005-09-29 | 2013-02-26 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US7847949B2 (en) | 2005-09-29 | 2010-12-07 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US7843572B2 (en) | 2005-09-29 | 2010-11-30 | The General Hospital Corporation | Method and apparatus for optical imaging via spectral encoding |
US8928889B2 (en) | 2005-09-29 | 2015-01-06 | The General Hospital Corporation | Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures |
US7889348B2 (en) | 2005-10-14 | 2011-02-15 | The General Hospital Corporation | Arrangements and methods for facilitating photoluminescence imaging |
US7796270B2 (en) | 2006-01-10 | 2010-09-14 | The General Hospital Corporation | Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques |
US8818149B2 (en) | 2006-01-19 | 2014-08-26 | The General Hospital Corporation | Spectrally-encoded endoscopy techniques, apparatus and methods |
US9516997B2 (en) | 2006-01-19 | 2016-12-13 | The General Hospital Corporation | Spectrally-encoded endoscopy techniques, apparatus and methods |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
US9087368B2 (en) | 2006-01-19 | 2015-07-21 | The General Hospital Corporation | Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof |
US9186066B2 (en) | 2006-02-01 | 2015-11-17 | The General Hospital Corporation | Apparatus for applying a plurality of electro-magnetic radiations to a sample |
US9186067B2 (en) | 2006-02-01 | 2015-11-17 | The General Hospital Corporation | Apparatus for applying a plurality of electro-magnetic radiations to a sample |
US7982879B2 (en) | 2006-02-24 | 2011-07-19 | The General Hospital Corporation | Methods and systems for performing angle-resolved fourier-domain optical coherence tomography |
US7742173B2 (en) | 2006-04-05 | 2010-06-22 | The General Hospital Corporation | Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample |
US8175685B2 (en) | 2006-05-10 | 2012-05-08 | The General Hospital Corporation | Process, arrangements and systems for providing frequency domain imaging of a sample |
US9364143B2 (en) | 2006-05-10 | 2016-06-14 | The General Hospital Corporation | Process, arrangements and systems for providing frequency domain imaging of a sample |
US7782464B2 (en) | 2006-05-12 | 2010-08-24 | The General Hospital Corporation | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images |
US8246611B2 (en) | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
US9486285B2 (en) | 2006-06-14 | 2016-11-08 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
US7920271B2 (en) | 2006-08-25 | 2011-04-05 | The General Hospital Corporation | Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques |
US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
US7949019B2 (en) | 2007-01-19 | 2011-05-24 | The General Hospital | Wavelength tuning source based on a rotatable reflector |
US9176319B2 (en) | 2007-03-23 | 2015-11-03 | The General Hospital Corporation | Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures |
US8115919B2 (en) | 2007-05-04 | 2012-02-14 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy |
US9375158B2 (en) | 2007-07-31 | 2016-06-28 | The General Hospital Corporation | Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging |
US8040608B2 (en) | 2007-08-31 | 2011-10-18 | The General Hospital Corporation | System and method for self-interference fluorescence microscopy, and computer-accessible medium associated therewith |
US7933021B2 (en) | 2007-10-30 | 2011-04-26 | The General Hospital Corporation | System and method for cladding mode detection |
US9332942B2 (en) | 2008-01-28 | 2016-05-10 | The General Hospital Corporation | Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging |
US8593619B2 (en) | 2008-05-07 | 2013-11-26 | The General Hospital Corporation | System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy |
US8861910B2 (en) | 2008-06-20 | 2014-10-14 | The General Hospital Corporation | Fused fiber optic coupler arrangement and method for use thereof |
US9254089B2 (en) | 2008-07-14 | 2016-02-09 | The General Hospital Corporation | Apparatus and methods for facilitating at least partial overlap of dispersed ration on at least one sample |
US8937724B2 (en) | 2008-12-10 | 2015-01-20 | The General Hospital Corporation | Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling |
US8097864B2 (en) | 2009-01-26 | 2012-01-17 | The General Hospital Corporation | System, method and computer-accessible medium for providing wide-field superresolution microscopy |
US9178330B2 (en) | 2009-02-04 | 2015-11-03 | The General Hospital Corporation | Apparatus and method for utilization of a high-speed optical wavelength tuning source |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US8804126B2 (en) | 2010-03-05 | 2014-08-12 | The General Hospital Corporation | Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution |
US9408539B2 (en) | 2010-03-05 | 2016-08-09 | The General Hospital Corporation | Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution |
US9081148B2 (en) | 2010-03-05 | 2015-07-14 | The General Hospital Corporation | Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution |
US8896838B2 (en) | 2010-03-05 | 2014-11-25 | The General Hospital Corporation | Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution |
US9069130B2 (en) | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
US9557154B2 (en) | 2010-05-25 | 2017-01-31 | The General Hospital Corporation | Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions |
US9510758B2 (en) | 2010-10-27 | 2016-12-06 | The General Hospital Corporation | Apparatus, systems and methods for measuring blood pressure within at least one vessel |
US8721077B2 (en) | 2011-04-29 | 2014-05-13 | The General Hospital Corporation | Systems, methods and computer-readable medium for determining depth-resolved physical and/or optical properties of scattering media by analyzing measured data over a range of depths |
US9330092B2 (en) | 2011-07-19 | 2016-05-03 | The General Hospital Corporation | Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography |
US9341783B2 (en) | 2011-10-18 | 2016-05-17 | The General Hospital Corporation | Apparatus and methods for producing and/or providing recirculating optical delay(s) |
US9415550B2 (en) | 2012-08-22 | 2016-08-16 | The General Hospital Corporation | System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography |
Also Published As
Publication number | Publication date |
---|---|
EP0933096A3 (fr) | 1999-11-03 |
DE69937850T2 (de) | 2008-12-18 |
CN1233454A (zh) | 1999-11-03 |
HK1021499A1 (en) | 2000-06-16 |
KR100454522B1 (ko) | 2004-11-03 |
US6447503B1 (en) | 2002-09-10 |
KR19990067923A (ko) | 1999-08-25 |
US6165170A (en) | 2000-12-26 |
JP3229280B2 (ja) | 2001-11-19 |
JPH11267131A (ja) | 1999-10-05 |
TW403667B (en) | 2000-09-01 |
SG114454A1 (en) | 2005-09-28 |
CN1145460C (zh) | 2004-04-14 |
EP0933096A2 (fr) | 1999-08-04 |
DE69937850D1 (de) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0933096B1 (fr) | Laser pour ablation de la peau | |
JP7111693B2 (ja) | 脱毛用の自動システムおよび方法 | |
US7083611B2 (en) | Method and apparatus for providing facial rejuvenation treatments | |
US10299871B2 (en) | Automated system and method for hair removal | |
US6676654B1 (en) | Apparatus for tissue treatment and having a monitor for display of tissue features | |
EP2316373B1 (fr) | Appareil pour le traitement dermatologique et le resurfaçage fractionnaire de la peau | |
AU2002227447C1 (en) | Method and apparatus for therapeutic EMR treatment of the skin | |
US20060253176A1 (en) | Dermatological treatment device with deflector optic | |
JP6095013B2 (ja) | レーザ・アブレーションにより組織を変化させるもしくは平滑化するまたはその両方を行うシステムおよび方法 | |
AU2002227447A1 (en) | Method and apparatus for therapeutic EMR treatment of the skin | |
KR20240063888A (ko) | 영상 안내식 레이저 치료 | |
Smithies et al. | A computer controlled scanner for the laser treatment of vascular lesions and hyperpigmentation | |
AU2019252443A1 (en) | Diffractive optics for EMR-based tissue treatment | |
Neev et al. | Thermo-optical skin conditioning: a new method for thermally modifying skin conditions | |
Butler et al. | Treatment of Port-Wine Stains with the 578 NM Light from a Copper Vapour Laser and an Automated Scanning Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RTI1 | Title (correction) |
Free format text: LASER FOR DERMAL ABLATION |
|
17P | Request for examination filed |
Effective date: 20000128 |
|
AKX | Designation fees paid |
Free format text: DE GB IT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 20030606 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61N 5/067 20060101AFI20070529BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69937850 Country of ref document: DE Date of ref document: 20080214 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081003 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20081215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180119 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180130 Year of fee payment: 20 Ref country code: DE Payment date: 20171227 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180112 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69937850 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20190111 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20190111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20190111 |