EP0918097B1 - Alliage fritte dur - Google Patents
Alliage fritte dur Download PDFInfo
- Publication number
- EP0918097B1 EP0918097B1 EP97933912A EP97933912A EP0918097B1 EP 0918097 B1 EP0918097 B1 EP 0918097B1 EP 97933912 A EP97933912 A EP 97933912A EP 97933912 A EP97933912 A EP 97933912A EP 0918097 B1 EP0918097 B1 EP 0918097B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rest
- hard alloy
- content
- substituted
- sintered hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0073—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/14—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
Definitions
- the present invention relates to a sintered hard alloy with superior corrosion resistance and wear resistance and also having high strength, hardness, fracture toughness, and corrosion resistance in a wide temperature range from room temperature to high temperature, which comprises a hard phase consisting mainly of the Mo 2 NiB 2 type complex boride and a binding phase of Ni-base metallic matrix which binds the hard phase.
- a Mo 2 FeB 2 type hard alloy comprising a binding phase of a Fe-base matrix
- Japanese Patent Publications Hei 3-38328, Hei 5-5889, and Hei 7-68600 which was invented for the purpose of improvement of corrosion resistance of the Mo 2 FeB 2 type hard alloy has superior corrosion resistance and heat resistance but has insufficient strength at room temperature.
- a Mo 2 NiB 2 type hard alloy which is disclosed in laid-open Japanese Patent Publication Hei 5-214479 has accomplished high strength while maintaining superior corrosion resistance and heat resistance by controlling the crystal structure of the boride constituting a hard phase as the tetragonal structure.
- the wear resistance of this hard alloy mainly depends on hardness, that is to say, the amount of the hard phase comprising the boride. Therefore, increasing the amount of the hard phase for the purpose of improving wear resistance leads to the tendency of decreasing strength and fracture toughness.
- the objective of the present invention is to develop an alloy having the characteristics of Mo 2 NiB 2 type hard alloy as mentioned above, especially, high hardness, strength, and fracture toughness and the challenge of the present invention is to provide a sintered hard alloy having not only wear resistance, corrosion resistance, and heat resistance but also sufficient strength and toughness in a wide temperature range from room temperature to high temperature, high strength, high toughness and high corrosion resistance.
- the present invention relates to a sintered hard alloy with high strength, high toughness, and high corrosion resistance, wherein the sintered alloy comprises a hard phase containing 35-95 % of the Mo 2 NiB 2 type complex boride and a binding phase of a Ni-base matrix which binds the hard phase mentioned above and also contains 0.1-8 % of Mn with respect to the whole composition, wherein said sintered hard alloy comprises 3-7.5 % of B, 21.3-68.3 % of Mo, 0.1-8 % of Mn, and 10 % or more of Ni as the rest.
- a sintered hard alloy with high strength, high toughness, and high corrosion resistance which is characterized that optionally a part of the content of Mo comprised in the said sintered hard alloy is substituted by .3-40 % of W and Nb and a part of the content of Ni is substituted by 0.3-15 % of Cu and Co, is provided.
- the present invention also relates to a sintered hard alloy with high strength, high toughness, and high corrosion resistance, which is characterized that optionally a part or whole of Nb comprised in the said sintered hard alloy is substituted by one or two or more elements selected in Zr, Ti, Ta, and Hf.
- the ratio of Ni in the binding phase of the said sintered hard alloy is 40 % or more.
- the present invention provides a sintered hard alloy with high corrosion resistance containing Mn, wherein the sintered hard alloy comprising a hard phase containing mainly the Mo 2 NiB 2 type complex boride and a binding phase of a Ni-base matrix which binds the hard phase, and the sintered hard alloy with high strength, high toughness, and high corrosion resistance mainly comprising two phases of the fine complex boride and the binding phase of a Ni-base matrix is obtained by limiting the contents of B and Mo within a constant range and controlling the content of Ni in the binding phase of a Ni-base matrix.
- the wear resistance and the mechanical properties are also improved by an addition of W in the sintered hard alloy.
- the corrosion resistance and the mechanical properties of the sintered hard alloy of the present invention are further improved by additions of Cr and/or V, the corrosion resistance is improved by an addition of Cu, the oxidation resistance and the high temperature characteristics are improved by an addition of Co, and the mechanical properties and the corrosion resistance are improved by additions of Nb, Zr, Ti, Ta and Hf.
- the present invention will be explained in further detail by examples mentioned below.
- the inventors proposed the sintered hard alloy with high strength, superior corrosion resistance and heat resistance produced by additions of Cr and V, which caused the changing of crystal structure of complex boride from ordinary orthorhombic to tetragonal, to Mo 2 NiB 2 type sintered hard alloys having superior corrosion resistance as described in laid-open Japanese patent publication Hei 5-214479. From further various studies of Mo 2 NiB 2 type sintered hard alloys possibly maintaining high hardness and having high strength and toughness, the possibility of increment of strength and hardness is found for any complex boride with orthorhombic and tetragonal structure while maintaining corrosion resistance and heat resistance without decrement of fracture toughness by containing Mn in the hard alloy.
- the microstructure is significantly changed by an addition of Mn and especially suppression of grain growth of the boride is achieved contributing to the improvement of strength and hardness.
- Mn the sintering temperature range where high strength is obtained is expanded and well shaped sintered bodies with little distortion are obtained, and therefore processing toward near net shaping is possible.
- containing 0.1-8% of Mn is needed in order to improve mechanical properties. Sufficient improvement of mechanical properties is not recognized in the case of less than 0.1 % of Mn.
- a hard phase contributes to mainly the hardness of the present hard alloy, namely, wear resistance.
- the amount of the Mo 2 NiB 2 type complex boride comprised in the hard phase is favorably 35-95 % in any case of orthorhombic and tetragonal structure.
- the hardness of the present hard alloy is 75 or less in Rockwell A scale and the wear resistance decreases.
- the dispersivity of the boride decreases and the decrement of strength is remarkable. Accordingly, a ratio of complex boride in the present hard alloy is limited to 35-95 %.
- B is an essential element in order to produce the complex boride as a hard phase in the present hard alloy and 3-7.5 % is contained in the hard alloy.
- 3-7.5 % is contained in the hard alloy.
- the amount of the complex boride decreases, and the wear resistance decreases, because the ratio of the hard phase in the structure falls short of 35%.
- the amount of the hard phase exceeds 95 % and the strength decreases. Accordingly, the content of B in the present hard alloy is limited to 3-7.5 %.
- Mo as in the case of B is an essential element in order to produce the complex boride as the hard phase.
- a part of Mo dissolves in the binding phase and it improves not only the wear resistance of the alloy but also the corrosion resistance against a reducing environment such as hydrofluoric acid.
- the wear resistance and the corrosion resistance decrease and the strength also decreases because of the formation of a Ni boride and so on.
- excess of 68.3 % of Mo content the strength decreases due to the formation of a brittle intermetallic compound of the Mo-Ni system. Accordingly, the content of Mo is limited to 21.3-68.3 % in order to maintain corrosion resistance, wear resistance, and strength of the alloy
- Ni as in the cases of B and Mo is an essential element in order to produce the complex boride.
- the strength remarkably decreases, because an insufficient amount of a liquid phase appears during sintering so that a dense sintered body cannot be obtained.
- the rest except for additional components mentioned above of the composition of the alloy is 10 % or more of Ni.
- the total amount of the additional components except for Ni exceeds 90 % and it is impossible to contain 10 % of Ni, it is needless to say that the amount of each component decreases within each permissible percent range by weight and the rest maintains 10 % or more of Ni.
- Ni is also the main element composing the binding phase.
- the binding phase of the sintered hard alloy of the present invention is an alloy comprising Ni, Mn which is essential to achieve the purpose of the sintered hard alloy of the present invention, and one or two or more elements of Mo, W, Cu, Co, Nb, Zr, Ti, Ta, Hf, Cr, and V, wherein the amount of Ni content is favorably 40 % or more and it is desirably 50 % or more. That is because of decrease in the binding force of the complex boride, the strength of the Ni binding phase, and finally the strength of the sintered hard alloy, if the Ni content in the binding phase is lower than the above values. Accordingly, the content of Ni in the binding phase of Ni-base matrix is limited to 40 % or more.
- W is substituted for Mo and partitions primarily in the complex boride, and it improves the wear resistance of the alloy. Furthermore, a part of W dissolves in the binding phase and improves the strength due to suppression of grain growth of the complex boride but less than 0.1 % ofW cannot recognize these effects. On the other hand, excess of 30 % of W cannot provide further improvement of the properties compared with the proper additional amount and leads to increase in the specific gravity and the weight of products. Aocordingly, the content of W is limited to 0.1-30 %.
- Cu dissolves mainly in the binding phase of Ni-base matrix and it shows further improvement of corrosion resistance of the hard alloy of the present invention.
- the effect cannot be observed in the case of less than 0.1 % Cu but the mechanical property deteriorates in the case of excess of 5 %. Therefore, in the case of an addition of Cu in the present hard alloy, the content is limited to 0.1-5 %.
- Co dissolves in both phases such as the boride of the hard alloy of the present invention and the binding phase of the Ni-base matrix and it shows improving of strength at high temperatures and oxidation resistance of the present hard alloy.
- the effect cannot be observed in the case of less than 0.2 % of Co.
- further improvement of the properties cannot be observed in the case of excess of 10 % of Co compared with the proper additional amount and the excessive addition causes increase in material cost. Therefore, the additional amount of Co is limited to 0.2-10 %.
- Nb dissolves in the complex boride and a part of Nb forms borides and so on, which brings increase in hardness. Moreover, Nb dissolves in the binding phase and suppresses coarsening of boride size during sintering, and then affects the improvement of strength as well as corrosion resistance of the alloy. The effect cannot be observed in the case of less than 0.2 % of Nb. On the other hand, further improvement of the properties cannot be observed in the case of excess of 10 % of Nb addition compared with the proper additional amount and the excessive addition causes increase in materials cost. The strength also decreases because of the increment of the amount of other borides and so on.
- the additional amount of Nb is limited to 0.2-10 %.
- the addition of Zr, Ti, Ta, and Hf to the hard alloy of the present invention shows the similar effect to Nb.
- Zr and Ti especially affect the improvement of corrosion resistance against molten metals (zinc and aluminum and so on)
- Ta affects the improvement of corrosion resistance against oxidizing environments such as nitric acid and so on
- Hf affects the improvement of properties at high temperatures.
- these elements are expensive so that the usage of them causes the rise of the cost.
- These elements can be added not only each of them separately but also two or more simultaneously Accordingly, the additional amount of the elements is limited to 0.2-10 % of the total of one or two or more of Nb, Zr, Ti, Ta, and Hf
- Cr and V are substituted for Ni and dissolve in the complex boride and they have the effect to stabilize the crystal structure of the complex boride as tetragonal structure. Additional Cr and V also dissolve in the binding phase of the Ni-base matrix and extensively improve corrosion resistance, wear resistance, high temperature properties, and mechanical properties of the hard alloy. In the case of less than 0.1 % of the total content of either Cr or V or both of them, the effect is hardly observed. On the other hand, in the case of excess of 35 %, borides such as Cr 5 B 3 and so on are formed so that the strength decreases. Accordingly, the total amount of the content of either Cr or V or both of them is limited to 0.1-35 %.
- the sintered hard alloy of the present invention is produced by liquid phase sintering in non-oxidation atmospheres such as vacuum, reducing gases, or inert gases and so on, after the metal and/or alloy powders are mixed and comminuted in an organic solvent with a vibration ball mill and so on and then dried, granulated, and formed into shapes to obtain the purpose and the effect of the sintered hard alloy, wherein the metal and/or alloy powders comprise metal powders of three essential elements of Ni, Mo, and Mn or alloy powders composed of two or more of these three elements, and simple substance powder of B or the B containing alloy powders with one or two or more selected essential elements.
- non-oxidation atmospheres such as vacuum, reducing gases, or inert gases and so on
- the complex boride as the hard phase of the hard alloy of the present invention is formed by a reaction of the powder of the raw materials mentioned above during sintering, it is also possible to produce the Mo 2 NiB 2 type complex boride by a prior reaction with borides of Mo and Ni or simple substance powder of B and metal powders of Mo and Ni in a furnace and then to add metal powders of Ni and Mo as the composition of the binding phase and a proper amount of metal powder of Mn.
- the average particle size of the powders comminuted by a vibration ball mill is preferably 0.2-5 ⁇ m in order to conduct the forming reaction of boride during sintering smoothly and sufficiently.
- the improvement effect by size refinement is small and prolonged comminuting time is required.
- excess of 5 ⁇ m the forming reaction of the boride cannot proceed smoothly, the grain size of the hard phase in the sintered body is larger, and the transverse rupture strength decreases.
- Liquid phase sintering of the present hard alloy that varies with the compositions of the alloys is carried out generally at 1423-1673 K for 5-90 minutes.
- the final sintering temperature is limited to 1423-1673 K.
- the heating rate during sintering is 0.5-60 K/minute and in the case of slower than 0.5 K/minute, prolonged time is needed to reach the proper heating temperature.
- the temperature control of a sintering furnace is significantly difficult. Accordingly, the heating rate during sintering is limited to 0.5-60 K/minute, and preferably it is 1-30 K/minute.
- the sintered hard alloy of the present invention can be also produced by not only a normal sintering method but also other sintering methods such as hot press sintering, hot isostatic pressing, and resistant heating sintering and so on.
- the powders ofborides as shown in Table 1 and pure metal powders as shown in Table 2 were used as raw materials, and these powders were mixed at the ratio of the compounds as shown in Tables 18-32 as the composition shown in Tables 3-17, and then the mixing and comminuting were carried out in acetone for 30 hours with a vibration ball mill.
- the powders after ball milling were dried and granulated, and then the obtained fine powders were pressed into green compacts prior to sintered at 1473-1633 K for 30 minutes.
- the heating rate during sintering was 10 K/minute.
- Tables 33-47 show the measurement results of percent by weight of hard phase (complex boride) in the structure, transverse rupture strength, hardness, and fracture toughness by the SEPB method as the mechanical properties about test samples after sintering of the sintered hard alloy with the composition of the present invention shown in the Examples and the Comparative ones.
- the percentage of the hard phase in the structure is measured by an image analyzer quantitatively.
- Examples 1-10 are the alloys combined variously with essential four elements such as B, Mo, Mn, and Ni in order to produce the sintered hard alloy of the present invention within the claimed range in claim 2. Since all of Examples 1 and 2 are the in the lower limit of the content of B and Mo, respectively, the hardness shows slightly lower values but they are alloys having the advantage of cutting possibility, extremely high fracture toughness, and superior impact resistance. Since Examples 7 and 8 are also in the higher limit of the contents of B and Mo, respectively, they are alloys having high hardness and superior wear resistance.
- Examples 11-15 are alloys having 5.5 % B-50 % Mo-4.5 % Mn-40 % Ni (%: percent by weight) as a basic composition with additions of W and Nb substituted for Mo and Cu and Co substituted for Ni separately and simultaneously within the described range in claims 3-17.
- W and Nb increase strength of the alloy, especially, hardness and improve wear resistance as shown in Examples 11-13 and 14-16.
- Cu increases fracture toughness as shown in Examples 20-22 and Co increases transverse rupture strength and improves quality and life-time of the alloy as shown in Examples 23-25. It is found that an additional effect of each element can be maintained by complex addition of the elements mentioned above from the results of Examples 17-19 or 26-28 and so on.
- additional alloying of W, Nb, and Cu also resulted in the improvement of corrosion resistance and additional alloying of Co was resulted in the improvement of transverse rupture strength at high temperatures and oxidation resistance.
- Examples 56-62 are alloys with addition of one or two or more of elements such as Ta, Ti, Zr, and Hf described in claim 18 within the claimed range. Any of the elements shows the effect of increment of hardness of the alloy.
- Ta showed improvement of corrosion resistance against nitric acid solution
- Ti and Zr showed improvement of corrosion resistance against molten aluminum
- Hf was recognized the improvement of transverse rupture strength at high temperatures, respectively.
- Examples 63-81 are alloys with additions of Cr and V described in claims 21-23.
- the alloys with Cr and V show significant improvement of hardness and transverse rupture strength as shown in Examples 63-66 and 75-78, because a part or whole of the complex boride changes the crystal structure from orthorhombic to tetragonal.
- Cr also showed improvement of corrosion resistance and oxidation resistance and V showed improvement of hardness at high temperatures.
- Examples 82-84 are alloys where the ratio of Ni in the binding phase described in claim 24 is 40 % as the lowest limit of the claimed range. It shows superior mechanical properties, because any brittle intermetallic compound such as Ni-Mo does not precipitate.
- Comparative example 1 is an alloy having less than the lowest limit of the content of B described in claim 2, and the wear resistance is low because of lower hardness such as 732 HRA. Since the amount of the metal binding phase is large, distortion of the sintered body causes a difficulty in sintering a near net shape.
- Comparative example 2 is an alloy having excess of the highest limit of the content of B described in claim 2. Although the hardness of the alloy is high, pores remain in the sintered body because of small amount of the metal binding phase and both of transverse rupture strength and fracture toughness show lower values.
- Comparative examples 3 and 4 are alloys having out of the range of the content of Mo described in claim 2. In the case of a lower amount of Mo as shown in Comparative example 3, an excessive amount of boride between Ni-B precipitates and in the case of a higher amount of Mo as shown in Comparative example 4, large amount of intermetallic compound between Ni-Mo precipitates, therefore, transverse rupture strength and fracture toughness decrease.
- Comparative examples 5 and 6 have compositions out of the range of the content of Mn described in claim 2. In the case of a lower amount of Mn of Comparative example 5, the improvement of hardness and transverse rupture strength is not observed and in the case of a higher amount of Mn of Comparative example 6, the mechanical properties decreases due to coarsening of complex boride and formation of an intermetallic compound between Ni-Mn.
- Comparative examples 7-36 are alloys having compositions of W, Nb, Cu, and Co out of the claimed range described in claims 3-17.
- the improvement effect of hardness and transverse rupture strength as expected by additions of W and Nb, the improvement of transverse rupture strength expected by an addition of Co, and the improvement of fracture toughness as expected by an addition of Cu are not observed.
- the improvement of the mechanical properties cannot be observed by adding two or more elements simultaneously which are less than the claimed additional amount of each element as shown in Comparative examples 11, 17, and 23.
- Comparative examples 37-42 are alloys having out of the claimed range of Cr and V described in claims 21-23. In the case of alloys less than the lowest limit of the claimed additional amount of the elements added separately and simultaneously as shown in Comparative examples 37, 39, and 41, the improvement of hardness and transverse rupture strength can not be observed. In the case of excess of the highest limit of the claimed additional amount of the elements as shown in Comparative examples 38, 40, and 42, the decrement of transverse rupture strength can be observed.
- Comparative examples 43 and 44 are alloys that the ratio of Ni in the binding phase described in claim 24 is less than 40 %. Both examples cause decrease in transverse rupture strength and fracture toughness, because a large amount of a brittle intermetallic compound precipitates in the structure.
- a sintered hard alloy containing the Mo 2 NiB 2 type complex boride and a binding phase of a Ni-base matrix of the present invention is an alloy maintaining superior corrosion resistance and properties at high temperatures and showing high hardness and extremely high transverse rupture strength and fracture toughness because of containing Mn. It can be applied for wide uses as high strength wear resistant materials such as cutting tools, cutter, forging dies, hot and warm forming tools, roll materials, pump parts such as mechanical seals and so on.
- compositions of boride powders Powder name Cemical composition of compound powder (percent by weight) B Fe Al Si C N 2 O 2 Other element NiB 16.1 0.6 0.03 0.16 0.06 - - Ni (rest) MoB 9.7 0.04 - - 0.1 0.18 0.23 Mo (rest) CrB 17.4 - - - 0.2 0.04 0.18 Cr (rest) WB 5.7 - - - 0.01 0.08 0.08 W (rest) VB 2 29.6 - - - 0.03 0.1 0.22 V (rest) NbB 2 18.7 0.02 - - 0.03 0.05 0.1 Nb (rest) ZrB 2 19.0 0.02 - - 0.06 0.03 0.4 Zr (rest) TiB 2 30.5 0.1 - - 0.14 0.2 0.3 Ti (rest) TaB 2 10.3 0.1 - - 0.05 0.05 0.1 Ta (rest) HfB 2 10.8 0.01 - - 0.09 0.08 0.25 Hf (rest) Purity of pure metal powders
- a numeric value in Ni column of Examples 82-84 indicates amount of Ni (percent by weight) in the binding phase.
- Chemical compositions of samples of Comparative examples (1) Comparative example Chemical composition (percent by weight) Corresponding claim No. B Mo Mn W Nb Ni 1 2.5 37.7 4.5 - - rest 1 2 7.8 58.9 4.5 - - rest 1 3 6.0 20.0 1.5 - - rest 1 4 6.0 69.5 1.5 - - rest 1 5 6.0 58.6 0.05 - - rest 1 6 6.0 58.6 10.0 - - rest 1 7 5.5 50.0 4.5 0 - rest 2 8 5.5 15.0 4.5 35.0 - rest 2 9 5.5 49.9 4.5 - 0.1 rest 3 10 5.5 38.0 4.5 - 12.0 rest 3 Chemical compositions of samples of Comparative examples (2) Comparative example Chemical composition (percent by weight) Corresponding claim No.
- Ni column of Comparative examples 43-44 indicate the amounts of Ni (percent by weight) in the binding phase.
- Mixing ratio of raw material powders of Examples (1) Example Mixing ratio of raw material powders (percent by weight) Corresponding claim No. MoB Mo Mn NiB Ni 1 14.3 8.4 0.1 10.0 rest 1 2 14.3 8.4 8.0 10.0 rest 1 3 29.9 18.4 0.1 - rest 1 4 29.9 18.4 8.0 - rest 1 5 52.4 5.9 0.1 15.0 rest 1 6 52.4 5.9 8.0 15.0 rest 1 7 74.6 1.1 0.1 - rest 1 8 74.6 1.1 8.0 - rest 1 9 46.4 17.0 4.5 - rest 1 10 61.9 10.7 1.5 - rest 1 Mixing ratio of raw material powders of Examples (2) Example Mixing ratio of raw material powders (percent by weight) Corresponding claim No.
- Comparative example Sintering temperature K Amount of hard phase % Hardness HRA Deflective strength GPa Fracture toughness MPa ⁇ m 1/2 Corresponding claim No.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Claims (23)
- Alliage fritté dur ayant une résistance mécanique élevée, une ténacité élevée, et une résistance élevée à la corrosion, l'alliage fritté dur comprenant une phase dure constituée de 35-95 % en poids (ci-après, % signifie pour-cent en poids) du borure complexe de type Mo2NiB2 et, pour le reste, une phase liante de matrice à base de Ni, qui lie ladite phase dure, et contenant 0,1-8 % de Mn par rapport à la composition totale, ledit alliage fritté dur comprenant 3-7,5 % de B, 21,3-68,3 % de Mo, 0,1-8 % de Mn, et, pour le reste, 10 % ou plus de Ni,
dans lequel éventuellement une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W, 0,2-10 % de Nb, ou 0,3-40 % de W et Nb,
dans lequel éventuellement une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par 0,1-5 % de Cu, 0,2-10 % de Co, ou 0,3-15 % de Cu et Co,
dans lequel éventuellement une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W et une partie de la teneur en Ni est remplacé par 0,1-5 % de Cu, 0,2-10 % de Co, ou 0,3-15 % de Cu et Co,
dans lequel éventuellement une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Nb et une partie de la teneur en Ni est remplacée par 0,1-5 % de Cu, 0,2-10 % de Co, ou 0,3-15 % de Cu et Co,
dans lequel éventuellement une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,3-40 % de W et Nb et une partie de la teneur en Ni est remplacée par 0,1-5 % de Cu, 0,2-10 % de Co, ou 0,3-15 % de Cu et Co,
dans lequel éventuellement tout ou partie du Nb se trouvant dans ledit alliage fritté dur est remplacé par un ou deux ou plusieurs types choisis parmi Zr, Ti, Ta et Hf,
dans lequel éventuellement une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par Cr, ou
dans lequel éventuellement tout ou partie du Cr se trouvant dans ledit alliage fritté dur est remplacé par V. - Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Nb.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,3-40 % de W et Nb.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par 0,1-5 % de Cu.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par 0,3-15 % de Cu et Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W et une partie de la teneur en Ni est remplacée par 0,1-5 % de Cu.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W et une partie de la teneur en Ni est remplacée par 0,2-10 % de Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,1-30 % de W et une partie de la teneur en Ni est remplacée par 0,3-15 % de Cu et Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Nb et une partie de la teneur en Ni est remplacée par 0,1-5 % de Cu.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Nb et une partie de la teneur en Ni est remplacée par 0,2-10 % de Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,2-10 % de Nb et une partie de la teneur en Ni est remplacée par 0,3-15 % de Cu et Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,3-40 % de W et Nb et une partie de la teneur en Ni est remplacée par 0,1-5 % de Cu.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,3-40 % de W et Nb et une partie de la teneur en Ni est remplacée par 0,2-10 % de Co.
- Alliage fritté dur selon la revendication 1, dans lequel une partie de la teneur en Mo se trouvant dans ledit alliage fritté dur est remplacée par 0,3-40 % de W et Nb et une partie de la teneur en Ni est remplacée par 0,3-15 % de Cu et Co.
- Alliage fritté dur selon l'une quelconque des revendications 3, 4 ou 11-16, dans lequel tout ou partie du Nb se trouvant dans ledit alliage fritté dur est remplacé par un ou deux ou plusieurs types choisis parmi Zr, Ti, Ta et Hf.
- Alliage fritté dur selon l'une quelconque des revendications 1-17, dans lequel une partie de la teneur en Ni se trouvant dans ledit alliage fritté dur est remplacée par Cr.
- Alliage fritté dur selon la revendication 18, dans lequel tout ou partie du Cr se trouvant dans ledit alliage fritté dur est remplacé par V.
- Alliage fritté dur selon la revendication 18 ou 19, dans lequel la teneur en Cr est de 0,1-35 %.
- Alliage fritté dur selon la revendication 19, dans lequel la teneur en V est de 0,1-35 %.
- Alliage fritté dur selon la revendication 20, dans lequel la teneur totale en Cr et V est de 0,1-35 %.
- Alliage fritté dur selon l'une quelconque des revendications 1-22, dans lequel la proportion de Ni dans la phase liante dudit alliage dur fritté est de 40 % ou plus.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22182596 | 1996-08-06 | ||
JP221825/96 | 1996-08-06 | ||
JP22182596 | 1996-08-06 | ||
PCT/JP1997/002722 WO1998005802A1 (fr) | 1996-08-06 | 1997-08-05 | Alliage fritte dur |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0918097A1 EP0918097A1 (fr) | 1999-05-26 |
EP0918097A4 EP0918097A4 (fr) | 2004-04-21 |
EP0918097B1 true EP0918097B1 (fr) | 2005-11-02 |
Family
ID=16772787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97933912A Expired - Lifetime EP0918097B1 (fr) | 1996-08-06 | 1997-08-05 | Alliage fritte dur |
Country Status (9)
Country | Link |
---|---|
US (1) | US6030429A (fr) |
EP (1) | EP0918097B1 (fr) |
JP (1) | JP3717525B2 (fr) |
KR (1) | KR100436327B1 (fr) |
CN (1) | CN1076053C (fr) |
AU (1) | AU3709497A (fr) |
CA (1) | CA2263173C (fr) |
DE (1) | DE69734515T2 (fr) |
WO (1) | WO1998005802A1 (fr) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1085846A2 (fr) * | 1998-06-08 | 2001-03-28 | Advanced Medicine, Inc. | Inhibiteurs multiliaison de proteine triglyceride transferase microsomique |
DE10117657B4 (de) * | 2001-04-09 | 2011-06-09 | Widia Gmbh | Komplex-Borid-Cermet-Körper und Verwendung dieses Körpers |
JP4976626B2 (ja) * | 2001-08-16 | 2012-07-18 | 東洋鋼鈑株式会社 | 焼結合金材料、その製造方法、およびそれらを用いた機械構造部材 |
US6921422B2 (en) * | 2002-10-29 | 2005-07-26 | Iowa State University Research Foundation, Inc. | Ductile binder phase for use with A1MgB14 and other hard materials |
US20040110867A1 (en) * | 2002-12-06 | 2004-06-10 | Eastman Kodak Company | Aqueous pigmented ink formulation containing polymer-encapsulated pigments, binder and smectite clay particles |
CN100427245C (zh) * | 2006-08-28 | 2008-10-22 | 苏州江钻新锐硬质合金有限公司 | 超细硬质合金制造过程中粉料氧含量的控制方法 |
WO2010103563A1 (fr) * | 2009-03-10 | 2010-09-16 | 東洋鋼鈑株式会社 | Élément hautement résistant à la corrosion et résistant à l'usure comportant un dépôt de pulvérisation thermique et poudre pour la formation d'un dépôt de pulvérisation thermique pour former ledit élément |
CN102191393A (zh) * | 2010-03-18 | 2011-09-21 | 中国科学院上海硅酸盐研究所 | 一种钼镍硼三元硼化物基硬质合金的制备方法 |
WO2012023265A1 (fr) * | 2010-08-18 | 2012-02-23 | 東洋鋼鈑株式会社 | Matériau bloquant les neutrons thermiques et son procédé de production |
CN102061419B (zh) * | 2010-12-20 | 2012-10-17 | 中南大学 | 一种采用Co-Cu作为粘结相的硬质合金材料及其制备方法 |
JP2014141691A (ja) * | 2011-03-30 | 2014-08-07 | Toyo Kohan Co Ltd | 硬質焼結合金 |
CN102534335A (zh) * | 2012-01-17 | 2012-07-04 | 四川大学 | 稀土合金粉末改性的Ti(C,N)基金属陶瓷及其制备方法 |
CN103866173B (zh) * | 2014-03-06 | 2016-08-17 | 西安交通大学 | 一种用于采煤机的截齿刀头的硬质合金材料及其制备方法 |
CN105296835B (zh) * | 2014-06-06 | 2017-07-28 | 安泰科技股份有限公司 | 一种镍基合金作粘结相的Mo2NiB2基金属陶瓷及其制备方法 |
CN104451323A (zh) * | 2014-11-04 | 2015-03-25 | 无锡贺邦金属制品有限公司 | 一种硬质合金冲压件 |
MX2017006100A (es) * | 2014-12-17 | 2017-09-19 | Uddeholms Ab | Una aleacion resistente al desgaste. |
CN104630591B (zh) * | 2015-01-29 | 2016-12-07 | 南京航空航天大学 | 一种长条状三元硼化物增强增韧的Ti(C,N)基金属陶瓷及其制备方法 |
CN106399799B (zh) * | 2016-11-28 | 2018-01-12 | 郝家怡 | 数学高精度量具加工装置 |
CN106868377B (zh) * | 2017-03-08 | 2018-08-28 | 广东博杰特新材料科技有限公司 | 高强度钼镍硼三元硼化物材料及其制作制备方法 |
CN112080678B (zh) * | 2020-09-15 | 2021-12-21 | 广东博杰特新材料科技有限公司 | 三元硼化物合金螺杆材料及其生产工艺 |
CN112111684B (zh) * | 2020-10-10 | 2021-11-30 | 广东博杰特新材料科技有限公司 | 3D打印三元硼化物Mo2NiB2合金粉末及其生产工艺 |
CN112195389B (zh) * | 2020-10-10 | 2021-12-17 | 广东博杰特新材料科技有限公司 | 3D打印三元硼化物Mo2FeB2合金粉及其生产工艺 |
CN112893842B (zh) * | 2021-01-15 | 2022-08-30 | 中国矿业大学 | 一种钢基MoFeB金属陶瓷螺杆的制备方法 |
CN112893844B (zh) * | 2021-01-15 | 2022-08-30 | 中国矿业大学 | 一种钢基MoNiB金属陶瓷螺杆的制备方法 |
CN113005319B (zh) * | 2021-02-22 | 2023-01-20 | 深圳羽动创新科技有限公司 | 一种金属陶瓷耐磨材料及其制备方法 |
CN114318060A (zh) * | 2021-03-22 | 2022-04-12 | 武汉钜能科技有限责任公司 | 耐腐蚀金属陶瓷粉及应用和耐腐蚀金属陶瓷 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6057499A (ja) * | 1983-09-07 | 1985-04-03 | 松下電器産業株式会社 | 路線バス車輌内運行表示方法 |
JP2668955B2 (ja) * | 1988-07-08 | 1997-10-27 | 旭硝子株式会社 | 複硼化物基焼結体及びその製造方法 |
JPH0338328A (ja) * | 1989-07-05 | 1991-02-19 | Toagosei Chem Ind Co Ltd | 建築用ハニカムパネル |
JP2660455B2 (ja) * | 1991-02-08 | 1997-10-08 | 東洋鋼鈑株式会社 | 耐熱硬質焼結合金 |
JPH055889A (ja) * | 1991-06-27 | 1993-01-14 | Showa Denko Kk | 液晶素子 |
JP2631791B2 (ja) * | 1992-01-30 | 1997-07-16 | 東洋鋼鈑株式会社 | 高耐食性高強度硬質焼結合金 |
JPH05320816A (ja) * | 1992-05-19 | 1993-12-07 | Asahi Glass Co Ltd | 複合材料 |
JP3025601B2 (ja) * | 1993-04-28 | 2000-03-27 | 旭硝子株式会社 | 鍛造加工用金型およびその製造方法 |
JPH0768600A (ja) * | 1993-09-03 | 1995-03-14 | Three Bond Co Ltd | 射出成形用金型 |
JP3603318B2 (ja) * | 1993-12-10 | 2004-12-22 | 旭硝子株式会社 | 複硼化物系焼結合金 |
-
1997
- 1997-05-05 US US09/242,065 patent/US6030429A/en not_active Expired - Lifetime
- 1997-08-05 DE DE69734515T patent/DE69734515T2/de not_active Expired - Lifetime
- 1997-08-05 CA CA002263173A patent/CA2263173C/fr not_active Expired - Fee Related
- 1997-08-05 JP JP50781498A patent/JP3717525B2/ja not_active Expired - Lifetime
- 1997-08-05 CN CN97197067A patent/CN1076053C/zh not_active Expired - Lifetime
- 1997-08-05 EP EP97933912A patent/EP0918097B1/fr not_active Expired - Lifetime
- 1997-08-05 AU AU37094/97A patent/AU3709497A/en not_active Abandoned
- 1997-08-05 KR KR10-1999-7000932A patent/KR100436327B1/ko not_active IP Right Cessation
- 1997-08-05 WO PCT/JP1997/002722 patent/WO1998005802A1/fr active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
WO1998005802A1 (fr) | 1998-02-12 |
EP0918097A4 (fr) | 2004-04-21 |
DE69734515D1 (de) | 2005-12-08 |
US6030429A (en) | 2000-02-29 |
JP3717525B2 (ja) | 2005-11-16 |
AU3709497A (en) | 1998-02-25 |
KR20000029801A (ko) | 2000-05-25 |
EP0918097A1 (fr) | 1999-05-26 |
CA2263173A1 (fr) | 1998-02-12 |
CN1227612A (zh) | 1999-09-01 |
CN1076053C (zh) | 2001-12-12 |
CA2263173C (fr) | 2004-11-02 |
KR100436327B1 (ko) | 2004-06-18 |
DE69734515T2 (de) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0918097B1 (fr) | Alliage fritte dur | |
US4022584A (en) | Sintered cermets for tool and wear applications | |
EP0559901B1 (fr) | Alliage dur et production de cet alliage | |
US20040187639A1 (en) | Compositionally graded sintered alloy and method of producing the same | |
JP5152770B1 (ja) | 強靭超硬合金の製造方法 | |
JP2668955B2 (ja) | 複硼化物基焼結体及びその製造方法 | |
JPH055152A (ja) | 耐熱硬質焼結合金 | |
US5470372A (en) | Sintered extremely fine-grained titanium-based carbonitride alloy with improved toughness and/or wear resistance | |
US11008639B2 (en) | Powder metallurgy titanium alloys | |
EP0214944A2 (fr) | Particules pour alliages de matériau dur à grain fin et procédé de fabrication de ces particules | |
JP2001089823A (ja) | 複硼化物系硬質焼結合金及びその合金を用いた樹脂加工機械用スクリュー | |
US4370299A (en) | Molybdenum-based alloy | |
KR920001612B1 (ko) | 고온가공에 적합한 알루미늄-기초 합금 | |
EP3814542B1 (fr) | Carbure cémenté avec liant alternatif | |
KR101014350B1 (ko) | 고순도 티타늄 합금 분말의 제조방법 및 이에 의하여 제조되는 고순도 티타늄 합금 분말 | |
JPH073357A (ja) | 高硬度で耐酸化性に優れた超硬合金 | |
JPH0598384A (ja) | 高強度および高硬度を有する炭化タングステン基超硬合金 | |
JPH0450373B2 (fr) | ||
JP2502322B2 (ja) | 高靭性サ―メット | |
JP2631791B2 (ja) | 高耐食性高強度硬質焼結合金 | |
JPH10324943A (ja) | 微粒超硬合金及びその製造方法 | |
JP3232599B2 (ja) | 高硬度超硬合金 | |
JPH0121857B2 (fr) | ||
JP2013170315A (ja) | 強靱超硬合金及び被覆超硬合金 | |
JPH0768600B2 (ja) | 複硼化物焼結体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990226 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040308 |
|
17Q | First examination report despatched |
Effective date: 20040608 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69734515 Country of ref document: DE Date of ref document: 20051208 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060803 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120831 Year of fee payment: 16 Ref country code: SE Payment date: 20120822 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120903 Year of fee payment: 16 Ref country code: DE Payment date: 20120928 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130806 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69734515 Country of ref document: DE Effective date: 20140301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130902 |