EP0898678B1 - Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens - Google Patents

Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens Download PDF

Info

Publication number
EP0898678B1
EP0898678B1 EP98923988A EP98923988A EP0898678B1 EP 0898678 B1 EP0898678 B1 EP 0898678B1 EP 98923988 A EP98923988 A EP 98923988A EP 98923988 A EP98923988 A EP 98923988A EP 0898678 B1 EP0898678 B1 EP 0898678B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
common rail
shutoff valve
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98923988A
Other languages
English (en)
French (fr)
Other versions
EP0898678A2 (de
Inventor
Cornel Stan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungs- und Transferzentrum Ev An Der Westsachsischen Hochschule Zwickau
Original Assignee
Forschungs- und Transferzentrum Ev An Der Westsachsischen Hochschule Zwickau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19715355A external-priority patent/DE19715355A1/de
Application filed by Forschungs- und Transferzentrum Ev An Der Westsachsischen Hochschule Zwickau filed Critical Forschungs- und Transferzentrum Ev An Der Westsachsischen Hochschule Zwickau
Publication of EP0898678A2 publication Critical patent/EP0898678A2/de
Application granted granted Critical
Publication of EP0898678B1 publication Critical patent/EP0898678B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/08Injectors with heating, cooling, or thermally-insulating means with air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/06Use of pressure wave generated by fuel inertia to open injection valves

Definitions

  • the invention relates to a method for fuel injection in multi-cylinder engines by generating a fuel admission pressure to deliver the fuel in a flywheel line for the purpose of using the pressure surge principle by means of a shutoff valve in the flywheel line, each injection nozzle assigned to a shutoff valve being supplied with the pressure surge and the fuel not passing the injection nozzle is fed back through the return line in front of the fuel pump via a return line, and a device for carrying out the method.
  • Technical solutions of this type are required above all for fuel injection in internal combustion engines.
  • Preferred areas of application are multi-cylinder gas engines with diesel pilot injection, multi-cylinder diesel engines, multi-cylinder gasoline engines and multi-cylinder engines for the use of alternative power.
  • Multi-cylinder engines are predominantly equipped with fuel pumps that are driven by camshafts.
  • the fuel dose supplied to the working cylinders has a marked speed dependency with regard to the droplet size and the length of the fuel jet.
  • the required maximum pressure is always present in the rail or in the overall system up to the injection nozzles, but this pressure is only required temporarily when fuel is injected due to the opening of one or more electromagnetically controlled injection nozzles.
  • the droplet size and the properties of the fuel jet remain the same regardless of the engine speed.
  • the fuel pre-pressure realized by the pump or pumps with the corresponding adverse energy effects is only used to a small extent.
  • the injection period 40 ms.
  • the injection duration is only a maximum of 2 ms per injection period, which corresponds to an energetic utilization rate of at most 5%.
  • the object of the invention is therefore to overcome the disadvantages of to overcome known prior art.
  • One is aimed for technical solution with high energy efficiency and a low mechanical engineering requirements for a Improvement of the mass / performance and the price / performance ratio in the manufacture of multi-cylinder engines.
  • the object is essentially achieved by the protective features of claims 1 and 10.
  • the method for fuel injection in multi-cylinder engines is characterized in that essentially a single fuel pump delivers the fuel with a pre-pressure into a pre-pressure railchamber common to several engine cylinders, the pre-pressure corresponding to only a fraction of the required injection pressure. If the pre-pressure is exceeded, the fuel is transferred from the pre-pressure railchamber via pressure relief valves to the return railchamber common to several engine cylinders.
  • each Shut-off valve a swing line between the pre-pressure Railchamber and Return railchamber is used.
  • Each shut-off valve is in the each swing line actuated at least one injector.
  • the pressure surge occurring when a shut-off valve is closed is used for the Dosing of the fuel used through the respective injection nozzle.
  • the pressure conditions in the pre-pressure railchamber and in the return railchamber are kept constant with simple means, so that in the swing lines over the entire speed range optimal Flow conditions can be guaranteed. On this The basis is when the shut-off valves are actuated in the respective The pressure surge required for fuel injection via the injection nozzles connected to the respective swing line generated.
  • the method is thereby characterized in that the energy of the in the return railchamber stored fuel is used for the fuel delivery system. This leads to an additional favorable influence on the Energy expenditure for providing the required fuel pressure in the pre-printed Railchamber.
  • the flywheel can be used in conjunction with devices for Vibration damping are operated. This prevents unwanted ones Impairments to the fuel delivery system.
  • swing line, Shut-off valve, vibration damper and injector in one High pressure unit can be summarized per cylinder.
  • This High pressure unit can be covered with a jacket if necessary Engine operated thermally insulated and or by a in the jacket integrated cooling medium can be cooled.
  • the technical solution is also characterized by a device consisting of fuel pumps, flywheel lines with shut-off valves and return lines to the fuel supply system.
  • a pre-pressure railchamber common to at least one fuel pump and at least one flywheel line is arranged for a cylinder group or for all cylinders of the multi-cylinder engine.
  • a return railchamber common to a cylinder group or to all cylinders of the multi-cylinder engine is arranged between the upstream and the return railchamber.
  • each high pressure module you can choose between the pre-pressure Railchamber and Return railchamber one or more injection nozzles can be arranged.
  • shut-off valve and the injection nozzles of a high-pressure unit can constructively in a common component or in several Lines connected components can be arranged.
  • an embodiment of the device is thereby characterized in that one or more on the pre-printed Railchamber Fuel pumps are arranged.
  • a cylinder group or for all cylinders of the multi-cylinder engine common pre-printed Railchamber and one for one Cylinder group or for all cylinders of the multi-cylinder engine common return railchamber as two chambers in one execute common structural unit. If necessary, the Execution of pre-pressure and return railchambers as two chambers a common railchamber in the partition between the Chamber one or more of the hysteresis and vibration free Pressure relief valves ensuring constant upstream pressure arranged.
  • the arrangement of the high-pressure module in a thermal is advantageous insulating sleeve.
  • This sleeve can also be used with a Coolant are operated and has a coolant inlet and a cooling medium drain.
  • the invention makes it possible to combine the design and control of the fuel injection system according to the invention with the advantageous properties of a modern common rail.
  • a common pre-pressure railchamber for all or for individual groups of working cylinders of a multi-cylinder engine as well as controlled valves are operated in a direct functional connection with injection nozzles.
  • a decisive advantage of the solution found is that only a part of about a tenth of the required maximum pressure has to be constantly provided in the pre-pressure railchamber and that the maximum pressure is only a short-term pressure wave immediately before fuel metering via the injection nozzle by controlling the respective shut-off valve in front of one individual or a group of injection nozzles.
  • the system is composed of a pre-pressure module, the pressure supply system, and high pressure modules.
  • the high pressure required is generally 8 to 10 times the pre-pressure.
  • the technical solution according to the invention is implemented in that a pressure accumulator is loaded by the admission pressure generated by a fuel pump, which prevents disruptive pressure fluctuations when the fuel is drawn from this pressure accumulator.
  • the memory is designed as a common component in the form of a pre-pressure railchamber for several high-pressure modules connected to it. Defined opening of the controlled shut-off valves in one high-pressure module causes an acceleration of the fuel in the associated flywheel, which is returned to the return railchamber. The fuel is withdrawn from the fuel pump (s) primarily from the respective return railchamber using the available residual pressure, only the amount of fuel withdrawn from the system via the injection nozzles being withdrawn from the fuel tank. The abrupt closing of the shut-off valves in the respective high-pressure module results in a conversion of the predominant part of the kinetic energy of the fuel in the flow into pressure energy.
  • the pressure increase brought about reaches a multiple of the static admission pressure in the admission pressure railchamber and propagates in the form of a pressure wave in the direction of the individual or more injection nozzles connected to the flywheel of the respective high pressure module, where it can be used for fuel injection.
  • the pressure wave generated is reduced to the level of the pre-pressure generated in order to avoid undesirable reflections and impair the function of the injection system.
  • This form arrives via a supply line in one for all cylinders of the machine common form Railchamber 4, which with an integrated additional fuel fine filter.
  • the pre-pressure Railchamber 4 feeds the high pressure modules for the single working cylinder consisting of the flywheel 11, shut-off valve 10, Vibration damper 9, inclusion of the flywheel 12 and injection nozzle 13 exist.
  • the pre-printed Railchamber 4 not only functions as a Fuel distribution system but because of its dimensions at the same time as Pressure fluctuations reducing pressure accumulator. When open Shut-off valves 10 in the high pressure modules will be under pressure standing fuel in the flywheel 11 accelerates and over a common return Railchamber 6 for all working cylinders Fuel pump 3 returned.
  • the kinetic energy of the river located fuel is by suddenly closing the Electromagnetically operated shut-off valve 10 predominantly in Converted pressure energy, which takes the form of a pressure wave Injection nozzle 13 and the vibration damper 9 to the end of Flywheel 11 continues.
  • Pressure of the pressure wave to avoid unwanted reflections steamed at least to the level of the form.
  • the one in the blast The pressure level to be recorded is average or depends on the injection quantity is approximately 10 times the pre-set pressure and is used for fuel metering in the respective working cylinder the flywheel 11 connected injector 13 used.
  • Between the pre-pressure railchamber 4 and the return railchamber 6 are one Short-circuit line arranged to keep constant vibration of the admission pressure is equipped with a pressure relief valve 5.
  • the in the return railchamber 6 available fuel pressure directly to the fuel pump 3 to the pre-pressure system.
  • an insulating sleeve 7 is arranged, which via a cooling medium inlet 8a and a cooling medium outlet 8b is flowed through with cooling liquid.

Description

Die Erfindung betrifft ein Verfahren zur Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen durch Erzeugen eines Kraftstoffvordruckes zur Förderung des Kraftstoffes in einer Schwungleitung zwecks Nutzung des Druckstoßprinzips mittels Absperrventil in der Schwungleitung, wobei jede einem Absperrventil zugeordnete Einspritzdüse mit dem Druckstoß versorgt wird und der nicht die Einspritzdüse passierende Kraftstoff durch das geöffnete Absperrventil über eine Rücklaufleitung vor die Kraftstoffpumpe zurückgefördert wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.
Derartige technische Lösungen werden vor allem bei der Kraftstoffeinspritzung in Verbrennungskraftmaschinen benötigt. Bevorzugte Anwendungsgebiete sind Mehrzylinder-Gasmotoren mit Diesel-Piloteinspritzung, Mehrzylinder-Dieselmotoren, Mehrzylinder-Ottomotoren und Mehrzylinder-Motoren für den Einsatz von Alternativ-Kraftstorfen.
Mehrzylinder-Kraftmaschinen sind überwiegend mit Kraftstoffpumpen ausgestattet, die von Nockenwellen angetrieben werden. Die den Arbeitszylindern zugeführte Kraftstoffdosis weist dabei bezüglich der Tröpfchengröße und der Länge des Kraftstoffstrahls eine markante Drehzahlabhängigkeit auf.
Bei sogenannten Common-Rail-Systemen herrscht im Rail bzw. im Gesamtsystem bis zu den Einspritzdüsen stehts der erforderliche Maximaldruck, der jedoch nur zeitweise beim Kraftstoffeinspritzen infolge der Öffnung einer oder mehrerer elektromagnetisch gesteuerter Einspritzdüsen benötigt wird.
In diesem Falle bleiben die Tröpfchengröße sowie die Eigenschaften des Kraftstoffstrahles unabhängig von der Motordrehzahl gleich. Allerdings wird der von der oder den Pumpen realisierte Kraftstoffvordruck mit den entsprechend nachteiligen energetischen Auswirkungen nur zu einem geringen Teil genutzt.
So beträgt beispielsweise bei einem Vierzylinder-Viertaktmotor mit einer Drehzahl von 3000 1/Min. die Einspritzperiode 40 ms. Die Einspritzdauer beträgt je Einspritzperiode dagegen lediglich maximal 2 ms, was einer energetischen Nutzungsrate von höchstens 5 % entspricht.
Bekannt sind technische Lösungsvorschläge, die das Nutzen des Druckstoßprinzips für die Bereitstellung des beim Vorgang des Kraftstoffeinspritzens bei Einzylinder-Arbeitsmaschinen in den Arbeitszylinder benötigten Drucks vorsehen. Hierbei kann der durch die Kraftstoffpumpe bereitgestellte Vordruck auf einen Bruchteil des benötigten Kraftstoffdrucks an der jeweiligen Einspritzdüse beschränkt bleiben. Eine solche Lösung ist aus der WO-A-92/14925 bekannt.
Für die Nutzung dieses Prinzips bei Mehrzylinder-Arbeitsmaschinen vervielfachen sich dabei die Anforderungen an Kraftstoffpumpen-Antriebe, an die Kraftstoffpumpen sowie an die Kraftstoff-Vordruck- und Kraftstoff-Rücklaufförderleitungen.
Die Nachteile der bekannten Lösungen für die Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen bestehen im wesentlichen im Falle des Einsatzes von üblichen nocken- oder nockenwellenbetriebener Kraftstoffpumpen in der Drehzahlabhängigkeit von Tröpfchengröße und Eigenschaften des eingespritzten Kraftstoffstrahls.
Im Falle der Anwendung von Common-Rail-Systemen wird die Drehzahlabhängigkeit der Qualität des Kraftstoffeinspritzens zwar vermieden, jedoch um den Preis eines inakzeptablen energetischen Wirkungsgrades, da der über die gesamte Einspritzperiode bereitgestellte Vordruck nur während des unmittelbaren Einspritzvorgangs tatsächlich benötigt wird.
Im Falle der Nutzung des für Einzylinder-Kraftmaschinen bekannten Druckstoßprinzips an Mehrzylinder-Kraftmaschinen würden sich die maschinentechnischen und steuerungstechnischen Anforderungen wegen der erforderlichen Vielzahl der einzusetzenden Kraftstoffpumpen einschließlich Pumpenantriebe sowie der benötigten Kraftstoffzu- und -rückleitungen zu den Hochdruckeinheiten vervielfachen, was zu kostenseitigen Nachteilen sowie zu einer Beeinträchtigung des Masse-/Leistungsverhältnisses führt.
Die Aufgabe der Erfindung besteht deshalb darin, die Nachteile des bekannten Standes der Technik zu überwinden. Angestrebt wird eine technische Lösung, die mit hohem energetischen Wirkungsgrad und einem geringen maschinentechnischen Aufwand Voraussetzungen für eine Verbesserung des Masse-/Leistungs- und des Preis-/ Leistungsverhältnisses bei der Herstellung von Mehrzylinder-Kraftmaschinen bietet.
Die Aufgabe wird erfindungsgemäß im wesentlichen durch die schutzbegründenden Merkmale der Ansprüche 1 und 10 gelöst.
Das Verfahren zur Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen ist dabei dadurch gekennzeichnet, daß im wesentlichen eine einzige Kraftstoffpumpe den Kraftstoff mit einem Vordruck in eine für mehrere Motorzylinder gemeinsame Vordruck-Railchamber fördert, wobei der Vordruck lediglich einem Bruchteil des benötigten Einspritzdrucks entspricht. Der Kraftstoff wird bei Überschreiten des eingestellten Vordruckes aus der Vordruck-Railchamber über Druckbegrenzungsventile in die für mehrere Motorzylinder gemeinsame Rücklauf-Railchamber überführt.
Zwischen Vordruck-Railchamber und Rücklauf-Railchamber werden sogenannte Schwungleitungen mit Absperrventilen vorgesehen, wobei je Absperrventil eine Schwungleitung zwischen Vordruck-Railchamber und Rücklauf-Railchamber genutzt wird. Je Absperrventil wird in der jeweiligen Schwungleitung mindestens eine Einspritzdüse betätigt. Der beim Schließen eines Absperrventils entstehende Druckstoß wird für das Dosieren des Kraftstoffs über die jeweilige Einspritzdüse verwendet. Der bei geöffnetern Absperrventil rückströmende Kraftstoff wird in die für mehrere Motorzylinder gemeinsame Rücklauf-Railchamber gefördert. Die Druckverhältnisse in der Vordruck-Railchamber und in der Rücklauf-Railchamber werden mit einfachen Mitteln konstant gehalten, so daß in den Schwungleitungen über den gesamten Drehzahlbereich optimale Strömungsbedingungen gewährleistet werden können. Auf dieser Grundlage wird bei Betätigung der Absperrventile in den jeweiligen Schwungleitungen der benötigte Druckstoß für das Kraftstoffeinspritzen über die mit der jeweiligen Schwungleitung verbundenen Einspritzdüsen erzeugt.
In einer besonderen Ausführungsform ist das Verfahren dadurch gekennzeichnet, daß die Energie des in der Rücklauf-Railchamber gespeicherten Kraftstoffs für das Kraftstoffördersystem genutzt wird. Dies führt zu einer zusätzlichen günstigen Beeinflussung des Energieaufwandes für das Bereitstellen des benötigten Kraftstoffvordrucks in der Vordruck-Railchamber.
Die Schwungleitung kann in Verbindung mit Vorrichtungen zur Schwingungstilgung betrieben werden. Dies verhindert unerwünschte Beeinträchtigungen des Kraftstoffördersystems.
Es ist auch möglich, für die Herstellung des Vordrucks in der Vordruck-Railchamber mehrere Kraftstoffpumpen zu nutzen. Dabei kann die Anzahl der zu betreibenden Kraftstoffpumpen entsprechend der jeweiligen Motorlastanforderungen gewählt werden.
In einer weiteren Ausführungsform der Erfindung können Schwungleitung, Absperrventil, Schwingungstilger und Einspritzdüse in einer Hochdruckeinheit je Arbeitszylinder zusammengefaßt sein. Diese Hochdruckeinheit kann bedarfsweise mit einem Mantel gegenüber der Kraftmaschine thermisch isoliert betrieben und oder durch ein im Mantel integriertes Kühlmedium gekühlt werden.
Weiterhin ist es möglich, die Absperrventile in den Schwungleitungen des Einspritzsystems für Mehrzylinder-Kraftmaschinen elektro-magnetisch zu betreiben.
Die technische Lösung ist aufgabengemäß auch durch eine Vorrichtung gekennzeichnet, die aus Kraftstoffpumpen, Schwungleitungen mit Absperrventilen und Rücklaufleitungen zum Kraftstoffvorratssystem besteht. In dieser Vorrichtung ist zwischen zumindest einer Kraftstoffpumpe und zumindest einer Schwungleitung eine für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Vordruck-Railchamber angeordnet.
Zwischen der zumindest einen Schwungleitung und dem Kraftstoffvorratssystem ist eine für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Rücklauf-Railchamber angeordnet. Außerdem sind ein oder mehrere Druckbegrenzungsventile zwischen Vordruck- und Rücklauf-Railchamber angeordnet.
In einer besonderen Ausführungsform der Vorrichtung sind Schwungleitung, Absperrventil, Einspritzdüse und bedarfsweise Schwingungstilger in einem gemeinsamen Hochdruckmodul angeordnet.
In jedem Hochdruckmodul können zwischen Vordruck-Railchamber und Rücklauf-Railchamber eine oder mehrere Einspritzdüsen angeordnet sein.
Das Absperrventil und die Einspritzdüsen einer Hochdruckeinheit können konstruktiv in einem gemeinsamen Bauteil oder in mehreren durch Leitungen verbundenen Bauteilen angeordnet sein.
Weiterhin ist eine Ausführungsform der Vorrichtung dadurch gekennzeichnet, daß an der Vordruck-Railchamber eine oder mehrere Kraftstoffpumpen angeordnet sind.
Ebenso ist es möglich, an jedem Arbeitszylinder ein oder mehrere Hochdruckmodule anzuordnen.
In einer weiteren Ausführungsform der Vorrichtung ist vorgesehen, die für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Vordruck-Railchamber und die für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Rücklauf-Railchamber als zwei Kammern in einer gemeinsamen Baueinheit auszuführen. Dabei werden bedarfsweise bei der Ausführung von Vordruck- und Rücklauf-Railchamber als zwei Kammern einer gemeinsamen Railchamber in der Trennwand zwischen den Kammern eine oder mehrere das hysterese- und schwingungsfreie Konstanthalten des Vordrucks sichernde Druckbegrenzungsventile angeordnet.
Vorteilhaft ist die Anordnung des Hochdruckmoduls in einer thermisch isolierenden Hülse. Diese Hülse kann bei Erfordernis auch mit einem Kühlmedium betrieben werden und weist dazu einen Kühlmediumzulauf und einen Kühlmediumablauf auf.
Die Vorteile der Erfindung bestehen darin, daß mit ihr ein drehzahlunabhängiger Hochdruck verfügbar ist, der jedoch nicht ständig sondern nur in Verbindung mit einem unmittelbaren Kraftstoffeinspritzvorgang erzeugt wird.
Die Erfindung erlaubt es, die konstruktive Ausführung und Steuerung des erfindungsgemäßen Kraftstoffeinspritzsystems mit den vorteilhaften Eigenschaften eines modernen Common-Rails zu verbinden. Dabei werden ein gemeinsamer Vordruck-Railchamber für alle oder für einzelne Gruppen von Arbeitszylindern einer Mehrzylinder-Kraftmaschine sowie gesteuerte Ventile in direktem funktionalem Zusammenhang mit Einspritzdüsen betrieben. Ein entscheidender Vorteil der gefundenen Lösung besteht darin, daß in der Vordruck-Railchamber nur ein Teil von etwa einem Zehntel des benötigten Maximaldruckes ständig bereitzustellen ist und daß der Maximaldruck lediglich als kurzzeitige Druckwelle unmittelbar vor dem Kraftstoffdosieren über die Einspritzdüse mittels Steuerung des jeweiligen Absperrventils vor einer einzelnen oder einer Gruppe von Einspritzdüsen entsteht. Dazu wird das System aus einem Vordruckmodul, der Druckversorgungsanlage, und aus Hochdruckmodulen zusammengesetzt. Der benötigte Hochdruck beträgt im allgemeinem das 8-bis 10-fache des Vordruckes. Praktisch wird die erfindungsgemäße technische Lösung dadurch umgesetzt, daß durch den von einer Kraftstoffpumpe erzeugten Vordruck ein Druckspeicher geladen wird, der störende Druckschwankungen bei der aus diesem Druckspeicher erfolgenden Kraftstoffentnahme verhindert. Der Speicher ist als gemeinsames Bauteil in Form einer Vordruck-Railchamber für mehrere daran angeschlossene Hochdruckmodule ausgeführt. Durch definiertes Öffnen der gesteuerten Absperrventile in jeweils einem Hochdruckmodul wird eine Beschleunigung des in der zugehörigen Schwungleitung befindlichen Kraftstoffs bewirkt, der in die Rücklauf-Railchamber zurückgeführt wird. Von der oder den Kraftstoffpumpen wird der Kraftstoff in erster Linie der jeweiligen Rücklauf-Railchamber unter Nutzung des verfügbaren Restdrucks entnommen, wobei dem Kraftstofftank lediglich die dem System über die Einspritzdüsen entzogene Kraftstoffmenge entnommen wird.
Durch schlagartiges Schließen der Absperrventile im jeweiligen Hochdruckmodul erfolgt eine Umwandlung des überwiegenden Teils der kinetischen Energie des im Fluß befindlichen Kraftstoffs in Druckenergie.
Die bewirkte Druckerhöhung erreicht ein Vielfaches des statischen Vordrucks im Vordruck-Railchamber und pflanzt sich in Form einer Druckwelle in Richtung der einzelnen oder mehrerer an die Schwungleitung des jeweiligen Hochdruckmoduls angeschlossenen Einspritzdüsen fort, wo diese zur Kraftstoffeinspritzung genutzt werden kann.
Bei Einsatz von Schwingungstilgern wird durch diese die erzeugte Druckwelle etwa auf das Niveau des erzeugten Vordrucks abgebaut, um unerwünschte und die Funktion des Einspritzsystems beeinträchtigende Reflexionen zu vermeiden.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden.
In der beiliegenden Zeichnung zeigt die
Fig. 1:
die schematische Darstellung eines Krafstoffeinspritzsystems für eine Vierzylinder-Kraftmaschine.
Ausführungsbeispiel:
Für ein Kraftstoffeinspritzsystem für eine Mehrzylinder-Kraftmaschine wird gemäß Fig. 1 der bereitzustellende Vordruck in Abhängigkeit vom Bedarfskennfeld der betreffenden Arbeitsmaschine über eine Kraftstoffpumpe 3 realisiert, wobei im Kraftstoffbehälter 1 zum Schutz vor Verunreinigungen ein Vorfilter 2 installiert ist. Dieser Vordruck gelangt über eine Zuleitung in eine für alle Zylinder der Arbeitsmaschine gemeinsame Vordruck-Railchamber 4, die mit einem integrierten zusätzlichen Kraftstoff-Feinfilter ausgestattet ist.
Die Vordruck-Railchamber 4 speist die Hochdruckmodule für die einzelnen Arbeitszylinder, die aus Schwungleitung 11, Absperrventil 10, Schwingungstilger 9, Aufnahme der Schwungleitung 12 und Einspritzdüse 13 bestehen. Der Vordruck-Railchamber 4 fungiert nicht nur als Kraftstoffverteilsystem sondern durch seine Dimensionierung zugleich als Druckschwankungen vermindernder Druckspeicher. Bei geöffneten Absperrventilen 10 in den Hochdruckmodulen wird der unter Vordruck stehende Kraftstoff in der Schwungleitung 11 beschleunigt und über eine für alle Arbeitszylinder gemeinsame Rücklauf-Railchamber 6 zur Kraftstoffpumpe 3 zurückgeführt. Die kinetische Energie des sich im Fluß befindlichen Kraftstoffs wird durch schlagartiges Schließen des elektromagnetisch betätigten Absperrventils 10 überwiegend in Druckenergie umgewandelt, die sich in Form einer Druckwelle zur Einspritzdüse 13 sowie zum Schwingungstilger 9 bis an das Ende der Schwungleitung 11 fortsetzt. Durch den Schwingungstilger 9 wird der Druck der Druckwelle zur Vermeidung von unerwünschten Reflexionen zumindest auf das Niveau des Vordrucks gedämpft. Die in der Druckwelle zu verzeichnende Druckhöhe beträgt durchschnittlich bzw. abhängig von der Einspritzmenge etwa das 10-fache des eingestellten Vordrucks und wird zur Kraftstoffdosierung in den jeweiligen Arbeitszylinder über die mit der Schwungleitung 11 verbundene Einspritzdüse 13 genutzt. Zwischen der Vordruck-Railchamber 4 und der Rücklauf-Railchamber 6 ist eine Kurzschlußleitung angeordnet, die zum schwingungsannen Konstanthalten des Vordrucks mit einem Druckbegrenzungsventils 5 ausgestattet ist. Der in der Rücklauf-Railchamber 6 verfügbare Kraftstoffüberdruck wird unmittelbar an der Kraftstoffpumpe 3 dem Vordrucksystem zugeführt. Um das Hochdruckmodul ist zur Geräuschdämmung und zum Wärmeschutz eine Isolierhülse 7 angeordnet, die über einen Kühlmediumzulauf 8a und einen Kühlmediumablauf 8b mit Kühlflüssigkeit durchströmt wird.
Bezugszeichenliste
1 -
Kraftstoffbehälter
2 -
Vorfilter
3 -
Kraftstoffpumpe
4 -
Vordruck-Railchamber
5 -
Druckbegrenzungsventil
6 -
Rücklauf-Railchamber
7 -
Isolierhülse
8a -
Kühlmedium-Zulauf
8b -
Kühlmedium-Ablauf
9 -
Schwingungstilger
10 -
Absperrventil
11 -
Schwungleitung
12 -
Aufnahme der Schwungleitung
13 -
Einspritzdüse

Claims (19)

  1. Verfahren zur Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen durch Erzeugen eines Kraftstoffvordruckes zur Förderung des Kraftstoffes in einer Schwungleitung zwecks Nutzung des Druckstoßprinzips mittels Absperrventil in der Schwungleitung, wobei jede einem Absperrventil zugeordnete Einspritzdüse mit dem Druckstoß versorgt wird und der nicht die Einspritzdüse passierende Kraftstoff durch das geöffnete Absperrventil über eine Rücklaufleitung vor die Kraftstoffpumpe zurückgefördert wird, dadurch gekennzeichnet, daß die Kraftstoffpumpe (3) den Kraftstoff mit einem Vordruck in eine für mehrere Motorzylinder gemeinsame Vordruck-Railchamber (4) fördert, der lediglich einem Bruchteil des benötigten Einspritzdrucks entspricht,
    daß der Kraftstoff bei Überschreiten des eingestellten Vordruckes aus der Vordruck-Railchamber (4) über Druckbegrenzungsventile (5) in die für mehrere Motorzylinder gemeinsame Rücklauf-Railchamber (6) überführt wird,
    daß je Absperrventil (10) eine Schwungleitung (11) zwischen Vordruck-Railchamber (4) und Rücklauf-Railchamber (6) genutzt wird,
    daß je Absperrventil (10) in der jeweiligen Schwungleitung (11) mindestens eine Einspritzdüse (13) betätigt wird,
    daß der beim Schließen eines Absperrventils (10) entstehende Druckstoß für das Dosieren des Kraftstoffs über die jeweilige Einspritzdüse (13) verwendet wird und
    daß der bei geöffnetem Absperrventil (10) rückströmende Kraftstoff in die für mehrere Motorzylinder gemeinsame Rücklauf-Railchamber (6) gefördert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Energie des in der Rücklauf-Railchamber (6) gespeicherten Kranstoffs für das Kraftstoffördersystem genutzt wird.
  3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Schwungleitung (11) in Verbindung mit Vorrichtungen zur Schwingungstilgung (9) betrieben wird.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß für die Herstellung des Vordrucks in der Vordruck-Railchamber (4) mehrere Kraftstoffpumpen (3) genutzt werden.
  5. Verfahren nach dem Anspruch 4, dadurch gekennzeichnet, daß die Anzahl der zu betreibenden Kraftstoffpumpen (3) entsprechend der Motorlastanforderungen gewählt wird.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß Schwungleitung (11), Absperrventil (10), Schwingungstilger (9) und Einspritzdüse (13) in einer Hochdruckeinheit zusammengefaßt werden.
  7. Verfahren nach dem Anspruch 6, dadurch gekennzeichnet, daß die Hochdruckeinheit mit einem Mantel gegenüber der Kraftmaschine thermisch isoliert betrieben und/oder durch ein Kühlmedium gekühlt wird.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das Absperrventil (10) elektromagnetisch betrieben wird.
  9. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das Absperrventil (10) mechanisch betrieben wird.
  10. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 9, bestehend aus Kraftstoffpumpen, Schwungleitung mit Absperrventil und Rücklaufleitung zum Kraftstofrvorratssystem, dadurch gekennzeichnet, daß zwischen einer Kraftstoffpumpe (3) und einer Schwungleitung (11) eine für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Vordruck-Railchamber (4) angeordnet ist,
    daß zwischen Schwungleitung (11) und Kraftstoffvorratssystem eine für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Rücklauf-Railchamber (6) angeordnet ist und
    daß ein oder mehrere Druckbegrenzungsventile (5) zwischen Vordruck- und Rücklauf-Railchamber (4,6) angeordnet sind.
  11. Vorrichtung nach dem Anspruch 10, dadurch gekennzeichnet, daß Schwungleitung (11), Abspeirventil (10), Schwingungstilger (9) und Einspritzdüse (13) in einem gemeinsamen Hochdruckmodul angeordnet sind.
  12. Vorrichtung nach den Ansprüchen 10 und 11, dadurch gekennzeichnet, daß in jedem Hochdruckmodul zwischen Vordruck-Railchamber (4) und Rücklauf-Railchamber (6) eine oder mehrere Einspritzdüsen angeordnet sind.
  13. Vorrichtung nach den Ansprüchen 10 bis 12, dadurch gekennzeichnet, daß das Absperrventil (10) und die Einspritzdüsen (13) einer Hochdruckeinheit konstruktiv in einem gemeinsamen Bauteil oder in mehreren durch Leitungen verbundenen Bauteilen angeordnet sind.
  14. Vorrichtung nach den Ansprüchen 10 bis 13, dadurch gekennzeichnet, daß an der Vordruck-Railchamber (4) eine oder mehrere Kraftstoffpumpen (3) angeordnet sind.
  15. Vorrichtung nach den Ansprüchen 10 bis 14, dadurch gekennzeichnet, daß je Arbeitszylinder ein oder mehrere Hochdruckmodule angeordnet sind.
  16. Vorrichtung nach den Ansprüchen 10 bis 15, dadurch gekennzeichnet, daß die für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Vordruck-Railchamber (4) und die für eine Zylindergruppe oder für alle Zylinder der Mehrzylinder-Kraftmaschine gemeinsame Rücklauf-Railchamber (6) als zwei Kammern in einer gemeinsamen Baueinheit angeordnet sind.
  17. Vorrichtung nach dem Anspruch 16, dadurch gekennzeichnet, daß bei Ausführung von Vordruck- und Rücklauf-Railchamber (4 und 6) als zwei Kammern einer gemeinsamen Railchamber in der Trennwand zwischen den Kammern eine oder mehrere das hysterese- und schwingungsfreie Konstanthalten des Vordrucks sichernde Druckbegrenzungsventile (5) angeordnet sind.
  18. Vorrichtung nach dem Anspruch 11, dadurch gekennzeichnet, daß das Hochdruckmodul in einer thermisch isolierenden Hülse (7) angeordnet ist.
  19. Vorrichtung nach dem Anspruch 11 und 18, dadurch gekennzeichnet, daß das Hochdruckmodul in einer mit Kühlmedium betriebenen Hülse mit Kühlmediumzulauf (8a) und Kühlmediumablauf (8b) angeordnet ist.
EP98923988A 1997-03-12 1998-03-09 Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens Expired - Lifetime EP0898678B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19710128 1997-03-12
DE19710128 1997-03-12
DE19715355 1997-04-12
DE19715355A DE19715355A1 (de) 1997-03-12 1997-04-12 Verfahren zur Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen und Vorrichtung zur Durchführung des Verfahrens
PCT/DE1998/000716 WO1998040658A2 (de) 1997-03-12 1998-03-09 Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens

Publications (2)

Publication Number Publication Date
EP0898678A2 EP0898678A2 (de) 1999-03-03
EP0898678B1 true EP0898678B1 (de) 2003-01-15

Family

ID=26034760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98923988A Expired - Lifetime EP0898678B1 (de) 1997-03-12 1998-03-09 Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens

Country Status (6)

Country Link
US (1) US6189508B1 (de)
EP (1) EP0898678B1 (de)
JP (1) JP2000516684A (de)
AT (1) ATE231227T1 (de)
DE (1) DE59806913D1 (de)
WO (1) WO1998040658A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269804B1 (en) * 2000-04-26 2001-08-07 Delphi Technologies, Inc. Coaxial liquid cooled fuel rail assembly
US6591812B2 (en) * 2000-12-14 2003-07-15 Siemens Diesel Systems Technology Rail connection with rate shaping behavior for a hydraulically actuated fuel injector
DE102004055266A1 (de) * 2004-11-17 2006-05-18 Robert Bosch Gmbh Kraftstoffeinspritzanlage mit mehreren Druckspeichern
JP2016114012A (ja) * 2014-12-17 2016-06-23 愛三工業株式会社 燃料供給ユニット

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014925A2 (de) * 1991-02-26 1992-09-03 Ficht Gmbh Kraftstoff-einspritzvorrichtung für brennkraftmaschinen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1046949B (de) 1954-02-01 1958-12-18 Modag Motorenfabrik Darmstadt Brennstoffeinspritzanlage mit Pumpe und gekuehltem Einspritzventil
US3945353A (en) * 1974-11-29 1976-03-23 Allis-Chalmers Corporation Two phase nozzle cooling system
US4539959A (en) * 1984-02-27 1985-09-10 General Motors Corporation Fuel injection system with fuel flow limiting valve assembly
US4860700A (en) * 1988-10-20 1989-08-29 General Motors Corporation Tangent flow cylinder head
US5035221A (en) * 1989-01-11 1991-07-30 Martin Tiby M High pressure electronic common-rail fuel injection system for diesel engines
JPH04113778U (ja) * 1991-03-22 1992-10-06 本田技研工業株式会社 車両の燃料冷却装置
US5423303A (en) * 1993-05-28 1995-06-13 Bennett; David E. Fuel rail for internal combustion engine
JP3293269B2 (ja) * 1993-10-06 2002-06-17 株式会社デンソー 圧力供給装置
DE4344777C2 (de) * 1993-12-28 1998-06-04 Technoflow Tube Systems Gmbh Kraftstoff-Versorgungssystem für ein Kraftfahrzeug mit Ottomotor
DE4445586A1 (de) * 1994-12-20 1996-06-27 Bosch Gmbh Robert Verfahren zur Reduzierung des Kraftstoffdruckes in einer Kraftstoffeinspritzeinrichtung
ES2135815T3 (es) * 1995-05-03 1999-11-01 Daimler Chrysler Ag Tobera de inyeccion.
US5752486A (en) * 1995-12-19 1998-05-19 Nippon Soken Inc. Accumulator fuel injection device
JP3228497B2 (ja) * 1996-03-27 2001-11-12 株式会社豊田中央研究所 燃料噴射弁のデポジット低減法およびデポジット低減式燃料噴射弁
JPH09324712A (ja) * 1996-06-07 1997-12-16 Sanshin Ind Co Ltd 船外機の電子制御式燃料供給装置
GB9614822D0 (en) * 1996-07-13 1996-09-04 Lucas Ind Plc Injector
GB9616521D0 (en) * 1996-08-06 1996-09-25 Lucas Ind Plc Injector
DE19639149C1 (de) 1996-09-24 1998-02-19 Daimler Benz Ag Kraftstoffeinspritzdüse
US5852997A (en) * 1997-05-20 1998-12-29 Stanadyne Automotive Corp. Common rail injector
US5887555A (en) * 1998-06-23 1999-03-30 Thermo Power Corporation Cooling device for a fuel pump and fuel in a marine combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014925A2 (de) * 1991-02-26 1992-09-03 Ficht Gmbh Kraftstoff-einspritzvorrichtung für brennkraftmaschinen

Also Published As

Publication number Publication date
WO1998040658A2 (de) 1998-09-17
US6189508B1 (en) 2001-02-20
DE59806913D1 (de) 2003-02-20
JP2000516684A (ja) 2000-12-12
EP0898678A2 (de) 1999-03-03
WO1998040658A3 (de) 1999-07-08
ATE231227T1 (de) 2003-02-15

Similar Documents

Publication Publication Date Title
WO2016177554A1 (de) Vorrichtung und verfahren zur einspritzung von wasser für eine brennkraftmaschine
DE10065103C1 (de) Kraftstoffeinspritzeinrichtung
DE3907972A1 (de) Kraftstoffeinspritzsystem fuer brennkraftmaschinen
DE3141154A1 (de) Kraftstoffeinspritzanlage
WO2018233992A1 (de) Wassereinspritzvorrichtung einer brennkraftmaschine
DE2365106A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmotoren
EP1123463B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
DE112007000797T5 (de) Gemeinsames Brennstoffsystem für Motor und Abgasbehandlung
EP0925436B1 (de) ANTRIEBSEINRICHTUNG UND VERFAHREN ZUR REDUKTION DER MENGE NOx IN DEN ABGASEN EINES VERBRENNUNGSMOTORS
EP0898678B1 (de) Verfahren zur kraftstoffeinspritzung in mehrzylinder-kraftmaschinen und vorrichtung zur durchführung des verfahrens
DE102008007349A1 (de) Kompakte Einspritzvorrichtung mit reduzierter Dampfblasenneigung
DE2424800A1 (de) Einspritzgeraet zum einspritzen einer zusaetzlichen, geringen kraftstoffmenge in eine nach dem schichtladungsprinzip arbeitende fremdgezuendete verbrennungskraftmaschine
DE19823639A1 (de) Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE4016055A1 (de) Kraftstoffversorgungssystem fuer eine brennkraftmaschine
DE102016203027A1 (de) Brennkraftmaschine
WO2012089371A1 (de) Einspritzpumpe für ein kraftstoffeinspritzsystem
WO2002055868A1 (de) Common-rail einheit
DE19715355A1 (de) Verfahren zur Kraftstoffeinspritzung in Mehrzylinder-Kraftmaschinen und Vorrichtung zur Durchführung des Verfahrens
DE10057683B4 (de) Kraftstoffeinspritzeinrichtung
DE2713831A1 (de) Arbeitsverfahren fuer verbrennungskraftmaschinen mit zusatz von wasserdampf und verbrennungskraftmaschine fuer die durchfuehrung des verfahrens
DE102008038448B4 (de) Vorrichtung und Verfahren zum Einleiten von Kraftstoff in ein Abgassystem
DE3630439A1 (de) Doppel-einspritzverfahren fuer selbstzuendende brennkraftmaschinen
DE636045C (de) Vorrichtung zum Einspritzen von Wasser in die Abgase einer Brennkraftmaschine zwecksErzeugung eines Gas-Dampf-Gemisches zum Betriebe einer Abgasturbine
DE102008044243A1 (de) Brennkraftmaschine
DE3516984C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE DK ES FI FR GB IT SE

17P Request for examination filed

Effective date: 19991217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020417

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE DK ES FI FR GB IT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK ES FI FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59806913

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030730

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100325

Year of fee payment: 13

Ref country code: FR

Payment date: 20100331

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 13

Ref country code: AT

Payment date: 20100322

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120228

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806913

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001