EP0881955B1 - Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack - Google Patents

Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack Download PDF

Info

Publication number
EP0881955B1
EP0881955B1 EP97903348A EP97903348A EP0881955B1 EP 0881955 B1 EP0881955 B1 EP 0881955B1 EP 97903348 A EP97903348 A EP 97903348A EP 97903348 A EP97903348 A EP 97903348A EP 0881955 B1 EP0881955 B1 EP 0881955B1
Authority
EP
European Patent Office
Prior art keywords
coating material
powder coating
electrodeposition
acid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP97903348A
Other languages
English (en)
French (fr)
Other versions
EP0881955A1 (de
Inventor
Udo Reiter
Rolf Boysen
Josef Rademacher
Thomas BRÜCKEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7786165&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0881955(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Publication of EP0881955A1 publication Critical patent/EP0881955A1/de
Application granted granted Critical
Publication of EP0881955B1 publication Critical patent/EP0881955B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)

Definitions

  • the present invention relates to a method for multilayer Coating of substrates with a primer layer Electrocoat and a top coat of powder paint.
  • Electro dip coating has been a common process for many years.
  • the Electrodeposition paint is an (aqueous) dispersion in one Bath.
  • the substrate to be coated is one of two electrodes switched and immersed in this bath. Then it comes to electrophoretic deposition of the electrocoat on the Substrate. After reaching a sufficiently thick layer of lacquer the coating process ended and the paint layer dried and in usually branded.
  • Resins that can be electrodeposited on the cathode are e.g. in the U.S. Patent 3,617,458. It is cross-linkable Coating masses that are deposited on the cathode. This Coating compositions are derived from an unsaturated polymer, the Contains amine groups and carboxyl groups, and an epoxidized Material off.
  • cationic-electrical deposits are made Compositions described, the mixtures of certain Amine-aldehyde condensates and a variety of cationic are resinous materials, one of these materials being through Reaction of an organic polyepoxide with a secondary amine and solubilization can be made with acid.
  • Aqueous dispersions are known from US Pat. No. 3,640,926 let the cathode deposit electrically and from an epoxy resin ester, Water and tertiary amino acids exist.
  • the epoxy is that Reaction product of. a glycidyl polyether and a basic unsaturated oleic acid.
  • the amine salt is the reaction product of one aliphatic carboxylic acid and a tertiary amine.
  • Epoxy and polyurethane based binders for the use of Binder dispersions and pigment pastes are also in numerous configurations known. For example, be on the DE-27 01 002, EP-A-261 385, EP-A-004 090 and DE-PS 36 30 667.
  • the coating of fabrics with powder coatings is also common Method.
  • the powdery dry paint is evenly applied the substrate to be coated is then applied by Heating the substrate melted and baked the paint.
  • the Special advantages of powder coatings include that they are solvent-free get along and that the losses occurring with conventional paints through Overspray can be avoided, since non-stick powder coating is almost can be completely recycled.
  • the application of the powder coating the substrate is preferably made by electrostatic adhesion by applying high voltage or by friction charging is produced.
  • the combination of the coating is also state of the art known with electrocoat and with powder coating.
  • a powder coating layer is first sintered on and then applied an electrocoat.
  • From the JP 63274800 is also known to apply an electrocoat and at Dry at 110 ° C, apply a powder coating and finally both Burn layers together.
  • Priming with electrocoat may also be required are used for substrates that are made of material technology or geometrical Reasons for powder coating are difficult to access.
  • a typical one The application of this multi-layer coating is the coating of Heating radiators. The procedure is such that after the Coating of the substrate with the electro-dip lacquer only in this lacquer burned in a dryer.
  • the method according to the invention accordingly dispenses with one separate drying and baking step for the electrocoat, before the powder coating is applied. Instead, both paints branded in a common step. This procedure means a considerable simplification of the coating process. By the Omitting a burn-in process reduces both Investment and operating costs. Only one is needed Baking oven provided and operated. hereby there is also a saving in heating energy. In addition, the total processing time for the coating process is shorter, so that the productivity of the system is increased.
  • Electrocoating is pre-primed primarily around an electrically conductive substrate.
  • it can is a metal, preferably iron or zinc.
  • step a the substrate described is treated according to the invention Liquid paint applied. All are state of the art for this known coating methods can be used.
  • Electrodeposition paints are one example usable, the epoxy resins, which are preferably amine-modified, and / or blocked aliphatic polyisocyanate, pigment paste and possibly contain further additives.
  • the process is the electrocoat after the removal of the Substrate from the bath, preferably by air drying, e.g. with help of a blower pre-dried. It can preferably be in the air dry air, e.g. Compressed air, act.
  • the Substrate made, however, a bleeding or baking of the lacquer is to be avoided. Rather, its purpose is primarily at Use of the usual aqueous electrodeposition paints on these remove any remaining water film. Therefore temperatures of ⁇ 100 ° C preferred. Temperatures of ⁇ 80 ° C, particularly preferably ⁇ 60 ° C, most preferably ⁇ 40 ° C be respected.
  • the drying process does not extend over a period of time more than 60 min.
  • the drying time is preferably ⁇ 40 min., particularly preferred at ⁇ 30 min., most preferred at ⁇ 20 min ..
  • the pre-drying of the electrocoat layer is carried out until their solvent content has decreased in such a way that in the subsequent stoving the substance of the layer around less than 20%, preferably less than 13%. Because with Burning in of an electrocoat layer always occurs Substance loss due to evaporation of residual solvents and through the release of fission products during the crosslinking of the paint arise. By outgassing these substances it can be too Bubbles form, so that the lacquer layer is destroyed as a whole becomes. However, if the predrying is up to the above Maximum limits of the solvent content is carried out, that leads Outgassing the remaining solvents and the fission products to none Deterioration in product quality.
  • the aforementioned electrocoating paint is used Powder paint applied.
  • the crosslinking temperatures of the powder coating are higher lie than those of the electrocoat.
  • the Temperature difference at 5 to 60 ° C, particularly preferably at 10 to 40 ° C, very particularly preferably at 10 to 30 ° C, most preferably at 10 up to 20 ° C.
  • all known paint formulations are suitable, e.g. those described in EP-509 392, EP-509 393, EP-322 827, EP-517 536, U.S. 5,055,524 and U.S. 4,849,283.
  • the powder coating consist of epoxy resins, also epoxidized Novolaks, from crosslinking agents, preferably phenolic or amine hardeners or bicyclic guanidines, catalysts, Fillers and, if necessary, auxiliaries and additives.
  • the powder coatings used according to the invention preferably contain Epoxy resins, phenolic crosslinking agents, catalysts, auxiliaries as well as auxiliaries and typical powder additives, flow aids.
  • Suitable solid epoxy resins are all solid epoxy resins with one Epoxy equivalent weight between 400 and 3,000, preferably 600 to 2000. These are mainly epoxy resins based on Bisphenol A and Bisphenol F. Expoxidized are preferred Novolak. These preferably have an epoxy equivalent weight from 500 to 1,000.
  • the epoxy resins based on bisphenol A and bisphenol F have in generally a functionality of less than 2 that epoxidized Novolac resins have a functionality greater than 2. Particularly preferred are epoxidized in the powder coatings according to the invention Novolac resins with an average functionality in the range from 2.4 to 2.8 and with an epoxy equivalent weight in the range of 600 to 850.
  • Novolac resins with an average functionality in the range from 2.4 to 2.8 and with an epoxy equivalent weight in the range of 600 to 850.
  • the epoxidized novolac resins are the phenolic Hydroxyl groups etherified with alkyl, acrylic or similar groups. By reacting the phenolic hydroxyl groups with Epichlorohydrides are introduced into the molecule by epoxy groups. Starting from novolaks, the so-called epoxy novolak is formed.
  • Epoxidized novolaks are structurally related to bisphenol A resins.
  • Epoxidized novolac resins can be made by Epoxidation of novolaks, e.g. from 3 to 4 phenol cores, which are connected to each other via methylene bridges.
  • Novolak resins can also be alkyl-substituted phenols Formaldehyde can be used.
  • Suitable epoxy resins are, for example, those under the following names commercially available products:
  • suitable epoxy group-containing polyacrylate resins which by Copolymerization of at least one ethylenically unsaturated Monomer containing at least one epoxy group in the molecule with at least one other ethylenically unsaturated monomer, the contains no epoxy group in the molecule, can be produced, wherein at least one of the monomers is an ester of acrylic acid or Is methacrylic acid.
  • Polyacrylate resins containing epoxy groups are known (cf. e.g. EP-A-299 420, DE-B-22 14 650, DE-B-27 49 576, US-A-4, 091,048 and US-A-3, 781, 379).
  • glycidyl acrylate As examples of the ethylenically unsaturated monomers that are at least contain an epoxy group in the molecule, glycidyl acrylate, Glycidyl methacrylate and allyl glycidyl ether called.
  • alkyl esters of acrylic and Methacrylic acid which contain 1 to 20 carbon atoms in the alkyl radical, in particular methyl acrylate, methyl methacrylate, ethyl acrylate, Ethyl methacrylate, butyl acrylate, butyl methyl acrylate, 2-ethylhexyl acrylate and Called 2-ethylhexyl methacrylate.
  • acids e.g. Acrylic acid and methacrylic acid.
  • Acid amides such as e.g.
  • Acrylic acid and methacrylic acid amide vinyl aromatic compounds, such as styrene, methyl styrene and vinyl toluene, nitriles such as acrylonitrile and methacrylonitrile, vinyl and vinylidene halides such as vinyl chloride and Vinylidene fluoride, vinyl esters, e.g. Vinyl acetate and hydroxyl groups Monomers such as Hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • vinyl aromatic compounds such as styrene, methyl styrene and vinyl toluene
  • nitriles such as acrylonitrile and methacrylonitrile
  • vinyl and vinylidene halides such as vinyl chloride and Vinylidene fluoride
  • vinyl esters e.g. Vinyl acetate and hydroxyl groups
  • Monomers such as Hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • the epoxy group-containing polyacrylate resin usually has Epoxy equivalent weight of 400 to 2,500, preferably 500 to 1,500, particularly preferably 600 to 1,200, a number average molecular weight (Gel permeation chromatography using a Polystyrene standards determined) from 1,000 to 15,000, preferably from 1,200 to 7,000, particularly preferably from 1,500 to 5,000 and one Glass transition temperature (TG) from 30 to 80, preferably from 40 to 70, particularly preferably from 50 to 70 ° C (measured using the differential scanning calometry (DSC)).
  • Epoxy equivalent weight 400 to 2,500, preferably 500 to 1,500, particularly preferably 600 to 1,200, a number average molecular weight (Gel permeation chromatography using a Polystyrene standards determined) from 1,000 to 15,000, preferably from 1,200 to 7,000, particularly preferably from 1,500 to 5,000 and one Glass transition temperature (TG) from 30 to 80, preferably from 40 to 70, particularly preferably from 50 to 70 ° C (measured using the differential scanning
  • the epoxy group-containing polyacrylate resin is generally good known methods prepared by radical polymerization become.
  • hardeners for the epoxy group-containing polyacrylate resin for example polyanhydrides of polycarboxylic acids or of Mixtures of polycarboxylic acids, especially polyanhydrides from Dicarboxylic acids or mixtures of dicarboxylic acids.
  • Such polyanhydrides can be produced by the polycarboxylic acid or water is withdrawn from the mixture of polycarboxylic acids, where implemented two carboxyl groups to form an anhydride group become. Such manufacturing processes are well known and need therefore not to be explained in more detail.
  • the invention contains Powder coating phenolic or amine hardener. Are used can also use bicyclic guanidines.
  • phenolic resin can be used, for example, as long as it has the methylol functionality required for reactivity having.
  • Preferred phenolic resins are under alkaline conditions reaction products of phenol, substituted phenols and Bisphenol A with formaldehyde. Under such conditions, the Methylol group either ortho or para with the aromatic Ring linked.
  • Such phenolic Crosslinking agents are produced by reacting bisphenol-A or bisphenol-F with components containing glycidyl groups, e.g.
  • Phenolic crosslinking agents of this type are available, for example, under the trade name DEH 81, DEH 82 and DEH 87 from Dow DX 171 from Shell-Chemie and XB 3082 from Ciba Geigy.
  • the epoxy resins and the phenolic crosslinking agents are in such a ratio that the number of epoxy groups the number of phenolic OH groups is approximately 1: 1.
  • the powder coatings according to the invention contain one or more suitable catalysts for epoxy resin curing.
  • suitable Catalysts are phosphonium salts of organic or inorganic Acids, imidazole and imidazole derivatives, quaternary ammonium compounds as well as amines.
  • the catalysts are generally in proportions of 0.001% by weight to about 10% by weight, based on the total weight of the Epoxy resin and the phenolic crosslinking agent used.
  • Suitable phosphonium salt catalysts are Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium chloride, Ethyltriphenylphosphonium thiocyanate, ethyltriphenylphosphonium acetate-acetic acid complex, Tetrabutylphosphonium iodide, tetrabutylphosphonium bromide and tetrabutylphosphonium acetate-acetic acid complex.
  • This and other suitable phosphonium Catalysts are e.g. described in U.S. Patent Nos. 3,477,990 and U.S. Patent 3,341,580.
  • Suitable imidazole catalysts are, for example, 2-styrylimidazole, 1-benzyl-2-methylimidazole, 2-methylimidazole and 2-butylimidazole. This and further imidazole catalysts are e.g. described in the Belgian Patent No. 756,693.
  • Powder coatings based on polyesters containing carboxyl groups and Low molecular weight crosslinking agents containing epoxy groups are in a large number are known and are described, for example, in EP-A-389 926, EP-A-371 522, EP-A-326 230, EP-B-110 450, EP-A-110 451, EP-B-107 888, US 4,340,698, EP-B-119 164, WO 87/02043 and EP-B-10 805.
  • the carboxyl groups used as component A) Polyesters have an acid number in the range of 10-150 mg KOH / g, preferably in the range of 30-100 mg KOH / g.
  • the hydroxyl number of the Polyester resins should be ⁇ 30 mg KOH / g.
  • To be favoured Polyester with a carboxy functionality of ⁇ 2 is used.
  • the Polyesters are made according to the usual methods (compare e.g. Houben Weyl, Methods of Organic Chemistry, 4th Edition, Volume 14/2, Georg Thieme Verlag, Stuttgart 1961).
  • polyester aliphatic, cycloaliphatic and aromatic di- and Suitable polycarboxylic acids e.g. Phthalic acid, terephthalic acid, Isophthalic acid, trimellitic acid, pyromellitic acid, adipic acid, Succinic acid, glutaric acid, pimelic acid, suberic acid, Cyclohexanedicarboxylic acid,ginaic acid, sebacic acid and the like.
  • This Acids can also be in the form of their esterifiable derivatives (e.g. anhydrides) or their transesterifiable derivatives (e.g. Dimethyl ester) can be used.
  • an alcohol component for the production of the carboxyl groups Containing polyester A are the usually used di and / or Suitable polyols, e.g. Ethylene glycol, 1,2-propanediol and 1,3-propanediol, butanediols, diethylene glycol, triethylene glycol, Tetraethylene glycol, 1,6-hexanediol, neopentyl glycol, 1,4-dimethylolcyclohexane, Glycerin, trimethylolethane, trimethylolpropane, Pentaerythritol, ditrimethylolpropane, dipentaerythritol, diglycerin and the like
  • di and / or Suitable polyols e.g. Ethylene glycol, 1,2-propanediol and 1,3-propanediol, butanediols, diethylene glycol, triethylene glycol, Tetraethylene glyco
  • polyesters thus obtained can be used individually or as a mixture different polyester can be used.
  • the as component A) suitable polyesters generally have a Glass transition temperature above 30 ° C.
  • polyesters examples include those under following brand names commercially available products: Crylcoat 314, 340, 344, 2680, 316, 2625, 320, 342 and 2532 from UCB, Drug bos, Belgium; Grilesta 7205, 7215, 72-06, 72-08, 72-13, 72-14, 73-72, 73-93 and 7401 from Ems-Chemie; Neocrest P670, P671, P672, P678, P662 from ICI and Uralac P2400, P2450, P5980, PS 998, P 3561 Uralac P3400 and Uralac P5000 from DSM.
  • the acidic polyester component A) also includes unsaturated, Polyester resins containing carboxyl groups in question. These will obtained by polycondensation, for example of maleic acid, Fumaric acid or other aliphatic or cycloaliphatic Dicarboxylic acids with an ethylenically unsaturated double bond, optionally together with saturated polycarboxylic acids, as Polycarboxylic.
  • the unsaturated groups can also by the alcohol component, e.g. by Trimethylolpropane monoallyl ether, into which polyester is introduced.
  • the powder coatings according to the invention contain 0.8 - as component B) 20.1% by weight of low molecular weight epoxy groups Curing agent.
  • a particularly suitable one is a low molecular weight curing agent containing epoxy groups Triglycidyl isocyanurate (TGIC).
  • TGIC is commercially available at, for example the name Araldit PT 810 (manufacturer: Ciba Geigy).
  • Other suitable low molecular weight epoxy groups are 1,2,4-triglycidyltriazolin-3,5-dione, diglycidyl phthalate and the diglycidyl ester of hexahydrophthalic acid.
  • Polyacrylate Resins Containing Epoxy Groups are understood to be polymers which are obtained by copolymerization of at least one ethylenically unsaturated monomer, the at least contains an epoxy group in the molecule, with at least one other ethylenically unsaturated monomer that does not contain an epoxy group, can be produced, at least one of the monomers being an ester of Acrylic acid or methacrylic acid.
  • Polyacrylate resins containing epoxy groups are known (cf. e.g. EP-A-299 420, DE-B-22 14 650, US-A-4,091,048 and US-A-3,781,379).
  • the at least one Epoxy group in the molecule glycidyl acrylate, Glycidyl methacrylate and allyl glycidyl ether called.
  • alkyl esters of acrylic and Methacrylic acid which contain 1 to 20 carbon atoms in the alkyl radical, in particular methyl acrylate, methyl methacrylate, ethyl acrylate, Ethyl methacrylate, n-butyl acrylate, iso-butyl acrylate, t-butyl acrylate and the corresponding methacrylates, 2-ethylhexyl acrylate and 2-ethylhexyl methacrylate called.
  • More examples of ethylenic unsaturated monomers that do not contain epoxy groups in the molecule are acids, e.g.
  • Acrylic acid and methacrylic acid acid amides, such as e.g. Acrylic acid and methacrylic acid amide, vinyl aromatic Compounds such as styrene, methyl styrene and vinyl toluene, nitriles such as Acrylonitrile and methacrylonitrile, vinyl and vinylidene halides, such as Vinyl chloride and vinylidene fluoride, vinyl esters such as e.g. Vinyl acetate and Vinyl propionate, and monomers containing hydroxyl groups, e.g. Hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • vinyl aromatic Compounds such as styrene, methyl styrene and vinyl toluene
  • nitriles such as Acrylonitrile and methacrylonitrile
  • vinyl and vinylidene halides such as Vinyl chloride and vinylidene fluoride
  • vinyl esters such as e.g. Vinyl acetate and
  • the polyacrylate resin (component C) containing epoxy groups has an epoxy equivalent weight of 350 to 2000.
  • the polyacrylate resins containing epoxy groups usually have a number average molecular weight (determined by gel permeation chromatography using a polystyrene standard) from 1000 to 15000 and a glass transition temperature (T G ) from 30 to 80 (measured using differential scanning calorimetry (DSC)).
  • the acrylic resin containing epoxy groups is generally good known methods prepared by radical polymerization become.
  • epoxy groups are commercially available Polyacrylate resins, for example, are available under the name Almatex PD 7610 and Almatex PD 7690 (manufacturer: Mitsui Toatsu).
  • the powder coatings according to the invention contain as binders as Component D) 0.5-13.6% by weight of low molecular weight di- and / or Polycarboxylic acids and / or di- and / or polyanhydrides.
  • Prefers are as component D) saturated, aliphatic and / or cycloaliphatic dicarboxylic acids used, e.g. glutaric, Adipic acid, pimelic acid, suberic acid,fugic acid, Cyclohexanedicarboxylic acid, sebacic acid, malonic acid, dodecanedioic acid and succinic acid.
  • too aromatic di- and polycarboxylic acids are suitable, e.g.
  • phthalic acid Terephthalic acid, isophthalic acid, trimellitic acid and pyromellitic acid, of course also in the form of their anhydrides, insofar as they exist.
  • the amounts of the powder coating components A) to D) are such chosen that the ratio of the epoxy groups from B) and C) to the Sum of the carboxyl and anhydride groups from A) and D) 0.75-1.25: 1 is. This ratio is preferably 0.9-1, 1: 1.
  • the Puiverlacke contain 50 to 90%, preferably 60 to 80 wt .-% Binder and 10 to 50 wt .-%, preferably 20 to 40 wt .-% fillers.
  • Glycidyl group-functionalized crystalline fillers are used Silicic acid modifications into consideration. Usually they are in the mentioned range from 10 to 50 wt .-%, based on the Total weight of the powder coating used. In some cases, however filler contents of more than 50% by weight are also possible.
  • the crystalline silica modifications include quartz, cristobalite, tridymite, keatite, stishovite, melanophlogite, coesite and fibrous silica.
  • the crystalline silica modifications are glycidyl group functionalized, the glycidyl group functionalization being achieved by a surface treatment. These are, for example, silica modifications based on quartz, cristobalite and fused silica, which are produced by treating the crystalline silica modifications with epoxysilanes.
  • the glycidyl group-functionalized silica modifications are available on the market, for example, under the names Silbond R 600 EST and Silbond R 6000 EST (manufacturer: Quarzwerke GmbH) and are produced by reacting crystalline silica modifications with epoxysilanes.
  • the powder coatings advantageously contain 10 to 40% by weight, based on on the total weight of the powder coating glycidyl group functionalized crystalline silica modifications.
  • the powder coatings can also contain other inorganic fillers, for example titanium oxide, barium sulfate and fillers based on silicate, such as e.g. Talc, kaolin, magnesium, aluminum silicates, mica and similar included.
  • silicate such as e.g. Talc, kaolin, magnesium, aluminum silicates, mica and similar included.
  • the powder coatings may still Tools and additives included. Examples of these are leveling agents, Trickle aids and degassing agents, such as benzoin.
  • degassing agents are added to powder coating.
  • concentrations of this degassing agent are ⁇ 2% by weight, particularly preferably 0.1 to 0.8% by weight, very particularly preferably at 0.2 to 0.5% by weight, most preferably at ⁇ 0.4% by weight.
  • R is an alkanol with 1-6 C atoms.
  • R 1 and R 2 are benzoyl or phenyl groups.
  • R 1 and R 2 can also be the same or different. That is, R 1 and R 2 can equally be benzoyl or phenyl groups.
  • one residue can be a benzoyl group, while the other residue is a phenyl group.
  • Examples of a compound which can preferably be used is benzoylphenylmethanol (benzoin).
  • the powder coatings are produced by known methods (cf. e.g. Product information from BASF Lacke + Maschinen AG, "Powder coatings", 1990) by homogenization and dispersion, for example by means of an extruder, screw kneader, etc. After The powder coatings are produced by grinding and, if necessary, by sifting and sieving to the desired grain size distribution set.
  • the powder coatings described are following the order baked together with the electrocoat.
  • the electrocoating and powder coating layers are baked on melting of the powder coating and thus its uniform distribution, and to harden the binders.
  • the burn-in process lasts 10 to 40 minutes, preferably 15 to 30 minutes.
  • the method according to the invention finds a preferred use the coating of radiators, car bodies and Ruto accessories, machine parts, compressors, shelves, Office furniture and comparable industrial products.
  • the subject of the invention also includes a multi-layer coating Substrate which is characterized in that it is manufactured by first coating a layer on the substrate in an electrodeposition bath Electrocoating applied and then dried, then a layer of powder paint is applied and finally electrocoat and powder coating are baked together in one step.
  • the electrocoat layer of the multi-coated The substrate according to the invention preferably has a thickness of 5 to 35 ⁇ m, very particularly preferably 10 to 25 ⁇ m.
  • the powder coating layer has preferably a thickness of 30 to 200 microns, very particularly preferred 50 to 120 ⁇ m.
  • Figure 1 shows schematically the layer structure of the invention Substrate.
  • the layer is initially on the substrate 1 itself 2 made of electro dipping paint, which is usually 10 times thicker Layer 3 of powder coating is covered.
  • the substrate In the manufacture of the substrate according to the invention, the substrate first coated in an electro-dip bath 4. Then it will Electrodeposition bath removed and in a drying plant 5 Blow dry with air. Then e.g. creating one High voltage in a cabin 6 powder coating finely distributed on the Sprayed surface of the substrate. This powder paint is then in the furnace 7 together with the electrocoat layer at temperatures baked from approx. 150 to 220 ° C.
  • reaction mixture is then left on Cool to 90 ° C and add 183 g of butyl glycol and for further dilution 293 g of isobutanol.
  • temperature has dropped to 70 ° C, there is 41 g of N, N, -dimethylaminopropylamine are added, this temperature is kept for 3 h and carries out.
  • the resin has a solids content of 70.2% and a base content of 0.97 milliequivalents / gram.
  • 1120 g of the resin solution prepared according to point 1 are mixed with 420 g of the blocked solution prepared according to point 2 Polyisocyanate mixed at room temperature with stirring.
  • 2.2 g of a 50th % By weight solution of a commercially available defoaming agent (Surfynol; commercial product of Air Chemicals) in Ethylene glycol monobutyl ether and 18 g of glacial acetic acid are stirred in. After that 678 g of deionized water are added over 4 portions. It is then mixed with a further 1154 g of deionized water in small amounts Portions diluted.
  • the resulting aqueous dispersion is in a Vacuum distillation freed from low-boiling solvents and then with deionized water to a solids content of 33 Diluted wt%.
  • 2200 parts by weight of the dispersion prepared according to point 3 are made with 810 parts by weight of those according to item 5 Pigment paste added and with deionized water to 5000 Parts by weight filled up.
  • Parameters voltage between 100 and 400 V, preferably 150 to 300 V Temperature 24 to 35 ° C, preferably 28 to 32 ° C Time 120 to 300s, preferably 150 to 240s.
  • the radiator is rinsed and air so far blown off so that no more liquid drips off.
  • the resulting powder coating film does not show any malfunctions, as few fission products and Escape solvent from the KTL.
  • the Branding losses of KTL at most 15%, preferably at most 13% be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur mehrlagigen Beschichtung von Substraten mit einer Grundierungsschicht aus Elektrotauchlack und einer Decklackschicht aus Pulverlack.
Die Beschichtung von vornehmlich elektrisch leitfähigen Substraten mit einem Elektrotauchlack ist ein seit vielen Jahren gängiges Verfahren. Der Elektrotauchlack befindet sich dabei als (wäßrige) Dispersion in einem Bad. Das zu beschichtende Substrat wird als eine von zwei Elektroden geschaltet und in dieses Bad getaucht. Daraufhin kommt es zur elektrophoretischen Abscheidung des Elektrotauchlackes auf dem Substrat. Nach dem Erreichen einer hinreichend dicken Lackschicht wird der Beschichtungsvorgang beendet und die Lackschicht getrocknet und in der Regel eingebrannt.
An der Kathode elektrisch abscheidbare Harze sind z.B. in der US-PS 3,617,458 beschrieben. Es handelt sich um vemetzbare Überzugsmassen, die sich auf der Kathode ablagern. Diese Überzugsmassen leiten sich von einem ungesättigten Polymerisat, das Amingruppen und Carboxylgruppen enthält, und einem epoxidierten Material ab.
In der US-PS 3,663,389 werden kationisch-elektrisch ablagerbare Zusammensetzungen beschrieben, die Mischungen von bestimmten Amin-Aldehyd-Kondensaten und einer Vielzahl von kationischen harzartigen Materialien sind, wobei eines dieser Materialien durch Umsetzung eines organischen Polyepoxids mit einem sekundären Amin und Solubilisieren mit Säure hergestellt werden kann.
Aus der US-PS 3,640,926 sind wäßrige Dispersionen bekannt, die sich an der Kathode elektrisch ablagern lassen und aus einem Epoxiharzester, Wasser und tertiären Aminosaizen bestehen. Der Epoxiester ist das Reaktionsprodukt von. einem Glycidylpolyether und einer basischen ungesättigten Ölsäure. Das Aminsalz ist das Reaktionsprodukt von einer aliphatischen Carbonsäure und einem tertiären Amin.
Bindemittel auf Epoxid- und Polyurethanbasis zur Verwendung von Bindemitteldispersionen und Pigmentpasten sind darüber hinaus in zahlreichen Ausgestaltungen bekannt. Beispielsweise sei auf die DE-27 01 002, die EP-A-261 385, die EP-A-004 090 und die DE-PS 36 30 667 verwiesen.
Aus EP 0 646 420 A1, EP 0 525 867 A1 sowie der US 3,998,716 sind Verfahren bekannt, bei denen ein Elektrotauchlack mit Pulverlack überschichtet wird. Aus diesem Stand der Technik ist jedoch keine teilweise oder ganze Trocknung des Elektrotauchlacks vor der Pulverlackapplikation zu entnehmen, so daß der Substanzverlust beim Einbrennen der Elektrotauchlackschicht durch Ausgasen von Lösemitteln und flüchtigen Spaltprodukten weniger als 20 % beträgt.
Auch die Beschichtung von Stoffen mit Pulverlacken ist ein gängiges Verfahren. Hierbei wird der pulverförmige trockene Lack gleichmäßig auf das zu beschichtende Substrat aufgebracht Anschließend wird durch Erhitzen des Substrates der Lack geschmolzen und eingebrannt. Die besonderen Vorteile der Pulverlacke sind u.a, daß sie ohne Lösemittel auskommen und daß die bei üblichen Lacken auftretenden Verluste durch Overspray vermieden werden, da nicht haftender Pulverlack nahezu komplett rückgeführt werden kann. Die Aufbringung des Pulverlackes auf das Substrat erfolgt vorzugsweise durch elektrostatische Haftung, die durch das Anlegen von Hochspannung oder durch Reibungsaufladung erzeugt wird.
Nach dem Stand der Technik ist auch die Kombination der Beschichtung mit Elektrotauchlack und mit Pulverlack bekannt. So wird beispielsweise gemäß der DE-PS 4313762 zunächst eine Pulverlackschicht aufgesintert und anschließend ein Elektrotauchlack aufgebracht. Aus der JP 63274800 ist ferner bekannt, einen Elektrotauchlack aufzubringen und bei 110 °C zu trocknen, einen Pulverlack aufzubringen und schließlich beide Schichten gemeinsam einzubrennen. Durch diese zwei- oder mehrschichtige Lackierung können die Produkteigenschaften optimiert werden. Eine Grundierung mit Elektrotauchlack kann auch erforderlich werden bei Substraten, die aus werkstofftechnischen oder geometrischen Gründen für Pulverlack schwer zugänglich sind. Eine typische Anwendung dieser mehrschichtigen Lackierung ist die Beschichtung von Heizkörperradiatoren. Dabei wird so vorgegangen, daß nach der Beschichtung des Substrates mit dem Elektrotauchlack dieser Lack erst in einem Trockner eingebrannt wird. Dabei werden Temperaturen von typischerweise über 100 °C erreicht, und der Elektrotauchlack bindet ab. Nach diesem Einbrennvorgang wird das grundierte Substrat wieder abgekühlt, um anschließend mit der Pulverlackschicht versehen zu werden. Für die Aushärtung des aufgebrachten Pulverlackes ist dann ein zweiter Einbrennvorgang erforderlich. Der Nachteil dieser Verfahrensweise ist, daß das Substrat während des Beschichtungsvorganges zweimal getrocknet und erhitzt werden muß. Dies ist sehr energieaufwendig, und es entstehen erhebliche Investitionsund Betriebskosten.
Die Erfindung hat sich demgegenüber die Aufgabe gestellt, ein Verfahren zur mehrlagigen Beschichtung von Substraten mit Elektrotauchlack und Pulverlack zu entwickeln, das bei gleichen Produktqualitäten vereinfacht, energiesparsamer und kostengüstiger arbeitet. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem
  • a) auf ein Substrat (1) vorzugsweise aus Metall, insbesondere Eisen oder Zink mindestens eine Schicht (2) aus Flüssiglack, vorzugsweise aus Elektrotauchlack aufgebracht wird,
  • b) das Substrat (1) nach dem Tauchen ganz oder teilweise getrocknet wird,
  • c) mindestens eine Schicht Pulverlack (3) aufgebracht wird und
  • d) Elektrotauchlack und Pulverlack gemeinsam eingebrannt werden,wobei das Trocknen bei Temperaturen von ≤ 100 °C, vorzugsweise ≤ 40 °C erfolgt, und dadurch der Gehalt an Lösemitteln derart gesenkt wird, daß der Substanzverlust beim Einbrennen der Elektrotauchlackschicht durch Ausgasen von Lösemitteln und flüchtigen Spaltprodukten weniger als 20 %, vorzugsweise 13 %, beträgt.
  • Das erfindungsgemäße Verfahren verzichtet demgemäß auf einen separaten Trocknungs- und Einbrennschritt für den Elektrotauchlack, bevor der Pulverlack aufgebracht wird. Stattdessen werden beide Lacke in einem gemeinsamen Schritt eingebrannt. Dieses Vorgehen bedeutet eine erhebliche Vereinfachung des Beschichtungsvorganges. Durch das Weglassen eines Einbrennvorganges verringern sich sowohl die Investitions- als auch Betriebskosten. Es braucht nur ein einziger Einbrennofen zur Verfügung gestellt und betrieben werden. Hierdurch kommt es auch zu einer Einsparung von Heizenergie. Zudem ist die gesamte Bearbeitungszeit für den Beschichtungsvorgang kürzer, so daß die Produktivität der Anlage gesteigert wird.
    Da das zu beschichtende Substrat die vorzugsweise mit einer Elektrotauchlackierung vorgrundiert wird, handelt es sich hierbei vornehmlich um ein elektrisch leitfähiges Substrat. Insbesondere kann es sich um ein Metall handeln, vorzugsweise Eisen oder Zink.
    In Schritt a) wird wird erfindungsgemäß auf das beschriebene Substrat ein Flüssiglack aufgebracht. Hierfür sind alle nach dem Stand der Technik bekannten Beschichtungsverfahren einsetzbar.
    Als Beschichtungsmaterial sind alle in der Fachweit bekannten Flüssiglacke verwendbar. Insbesondere kommen alle üblichen wässrigen Elektrotauchlacke in Betracht. Beispielsweise sind Elektrotauchlacke verwendbar, die Epoxidharze, die vorzugsweise aminmodifiziert sind, und/oder blockiertes aliphatisches Polyisocyanat, Pigmentpaste sowie ggf. weitere Additive enthalten.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Elektrotauchlackschicht nach der Entnahme des Substrates aus dem Bad vorzugsweise durch Lufttrocknung, z.B. mit Hilfe eines Gebläses vorgetrocknet. Vorzugsweise kann es sich bei der Luft um trockene Luft, z.B. Druckluft, handeln.
    Zugleich mit dem Trocknungsvorgang wird eine leichte Erwärmung des Substrates vorgenommen, wobei jedoch ein Verlaufen oder Einbrennen des Lackes zu vermeiden ist. Zweck ist es vielmehr in erster Linie, bei Einsatz der üblichen wäßrigen Elektrotauchlacke den auf diesen verbliebenen Wasserfilm zu entfernen. Daher werden Temperaturen von ≤ 100 °C bevorzugt. Vorzugsweise sollten Temperaturen von ≤ 80 °C, insbesondere bevorzugt ≤ 60 °C, höchst bevorzugt von ≤ 40 °C eingehalten werden.
    Der Trocknungsvorgang erstreckt sich über einen Zeitraum von nicht mehr als 60 min.. Vorzugsweise liegt die Trocknungszeit bei ≤ 40 min., besonders bevorzugt bei ≤ 30 min., höchst bevorzugt bei ≤ 20 min..
    Die Vortrocknung der Elektrotauchlackschicht wird vorgenommen, bis deren Gehalt an Lösemitteln derart abgenommen hat, daß beim nachfolgenden Einbrennen die Substanz der Schicht um weniger als 20 %, vorzugsweise weniger als 13 %, abnimmt. Denn beim Einbrennen einer Elektrotauchlackschicht entsteht immer ein Substanzverlust durch das Verdampfen restlicher Lösemittel und durch die Abgabe von Spaltprodukten, die während des Vemetzens des Lackes entstehen. Durch das Ausgasen dieser Stoffe kann es zu Blasenbildungen kommen, so daß die Lackschicht insgesamt zerstört wird. Wenn die Vortrocknung jedoch bis zu den oben angegebenen Maximalgrenzen des Lösemittelgehaltes durchgeführt wird, führt das Ausgasen der restlichen Lösemittel und der Spaltprodukte zu keiner Verschlechterung der Produktqualität.
    Nach dem bisherigen Stand der Technik wurde das Einbrennen der Elektrotauchlackschicht vor Aufbringen des Pulverlackes durchgeführt, um die beschriebenen Entgasungsphänomene zu vermeiden. Nach Ansicht der Fachwelt wurde es nicht für möglich gehalten, den Pulverlack auf eine nicht eingebrannte Elektrotauchlackschicht aufzubringen, ohne daß beide Schichten durch den Entgasungsvorgang zerstört würden. Dieses Vorurteil konnte mit dem erfindungsgemäßen Verfahren überwunden werden.
    Auf den vorgenannten Elektrotauchlack wird erfindungsgemäß ein Pulverlack aufgetragen.
    Wesentlich ist, daß die Vemetzungstemperaturen des Pulverlacks höher liegen als diejenigen des Elektrotauchlacks. Vorzugsweise liegt die Temperaturdifferenz bei 5 bis 60 °C, besonders bevorzugt bei10 bis 40 °C, ganz besonders bevorzugt bei 10 bis 30 °C, höchst bevorzugt bei 10 bis 20 °C.
    Erfindungsgemäß kommen alle bekannten Lackformulierungen in Frage, z.B. jene, die in der EP-509 392, EP-509 393, EP-322 827, EP-517 536, US-5,055,524 und US-4,849,283 beschrieben sind. Insbesondere kann der Pulverlack bestehen aus Epoxidharzen, auch epoxidierten Novolacken, aus Vernetzungsmitteln, vorzugsweise phenolischen oder aminischen Härtern oder bicyclischen Guanidinen, Katalysatoren, Füllstoffen sowie ggf. Hilfsmitteln und Additiven.
    Die erfindungsgemäß eingesetzten Pulverlacke enthalten vorzugsweise Epoxidharze, phenolische Vernetzungsmittel, Katalysatoren, Hilfsstoffe sowie ggf. Hilfsmittel und pulvertypischen Additive, Rieselhilfen.
    Geeignete Epoxidharze sind alle festen Epoxidharze mit einem Epoxiäquivalentgewicht zwischen 400 und 3.000 vorzugsweise 600 bis 2.000. Dabei handelt es sich hauptsächlich um Epoxidharze auf Basis von Bisphenol A und Bisphenol F. Bevorzugt werden expoxidierte Novolackharze. Diese weisen vorzugsweise ein Epoxidäquivalentgewicht von 500 bis 1.000 auf.
    Die Epoxidharze auf Basis von Bisphenol A und Bisphenol F weisen im allgemeinen eine Funktionalität von kleiner 2, die epoxidierten Novolackharze eine Funktionalität von größer 2 auf. Besonders bevorzugt werden in den erfindungsgemäßen Pulverlacken epoxidierte Novolackharze mit einem mittleren Funktionalität im Bereich von 2,4 bis 2,8 und mit einem Epoxidäquivalentgewicht im Bereich von 600 bis 850. Bei den epoxidierten Novolackharzen sind die phenolischen Hydroxylgruppen mit Alkyl-, Acryl- oder ähnlichen Gruppen verethert. Durch Umsetzung der phenolischen Hydroxylgruppen mit Epichlorhydriden werden Epoxidgruppen in das Molekül eingebracht. Ausgehend von Novolacken bildet sich dabei der sog. Epoxid-Novolack. Die epoxidierten Novolacke sind strukturverwandt mit Bisphenol A-Harzen. Epoxidierte Novolackharze können hergestellt werden durch Epoxidierung von Novolacken, die z.B. aus 3 bis 4 Phenolkernen, welche über Methylenbrücken miteinander verbunden sind, bestehen. Als Novolackharze können auch alkylsubstituierte Phenole, welche mit Formaldehyd umgesetzt werden, verwendet werden.
    Geeignete Epoxidharze sind beispielsweise die unter folgenden Namen im Handel erhältlichen Produkte:
    Epikote 1004, 1055, 3003, 3004, 2017 der Firma Shell-Chemie, DER 640, 671, 662, 663U, 664, 667 der Firma Dow sowie Araldit GT 6063, 6064, 6084, 6097, 7004, 7220, 7225 der Firma Ciba Geigy.
    Als epoxifunktionelles Bindemittel für die Pulverklarlacke sind beispielsweise epoxidgruppenhaltige Polyacrylatharze geeignet, die durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Epoxidgruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Epoxidgruppe im Molekül enthält, herstellbar sind, wobei mindestens eines der Monomere ein Ester der Acrylsäure oder Methacrylsäure ist.
    Epoxidgruppenhaltige Polyacrylatharze sind bekannt (vgl. z.B. EP-A-299 420, DE-B-22 14 650, DE-B-27 49 576, US-A-4, 091,048 und US-A-3, 781, 379).
    Als Beispiele für die ethylenisch ungesättigte Monomere, die mindestens eine Epoxidgruppe im Molekül enthalten, werden Glycidylacrylat, Glycidylmethacrylat und Allylglycidylether genannt.
    Als Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppe im Molekül enthalten, werden Alkylester der Acryl- und Methacrylsäure, die 1 bis 20 Kohlenstoffatome im Alkylrest enthalten, insbesondere Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Butylacrylat, Butylmethylacrylat, 2-Ethylhexylacrylat und 2-Ethylhexylmethacrylat genannt. Weitere Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppen im Molekül enthalten, sind Säuren, wie z.B. Acrylsäure und Methacrylsäure. Säureamide, wie z.B. Acrylsäure- und Methacrylsäureamid, vinylaromatische Verbindungen, wie Styrol, Methylstyrol und Vinyltoluol, Nitrile, wie Acrylnitril und Methacrylnitril, Vinyl- und Vinylidenhalogenide, wie Vinylchlorid und Vinylidenfluorid, Vinylester, wie z.B. Vinylacetat und hydroxylgruppenhaltige Monomere, wie z.B. Hydroxyethylacrylat und Hydroxyethylmethacrylat.
    Das epoxidgruppenhaltige Polyacrylatharz weist üblicherweise ein Epoxidäquivalentgewicht von 400 bis 2.500, vorzugsweise 500 bis 1.500, besonders bevorzugt 600 bis 1.200, ein zahlenmittleres Molekulargewicht (gelpermeationschromatographisch unter Verwendung eines Polystyrolstandards bestimmt) von 1.000 bis 15.000, vorzugsweise von 1.200 bis 7.000, besonders bevorzugt von 1.500 bis 5.000 und eine Glasübergangstemperatur (TG) von 30 bis 80, vorzugsweise von 40 bis 70, besonders bevorzugt von 50 bis 70°C auf (gemessen mit Hilfe der differential scanning calometrie (DSC)).
    Das epoxidgruppenhaltige Polyacrylatharz kann nach allgemein gut bekannten Methoden durch radikalische Polymerisation hergestellt werden.
    Als Härter für das epoxidgruppenhaltige Polyacrylatharz geeignet sind beispielsweise Polyanhydride von Polycarbonsäuren oder von Mischungen aus Polycarbonsäuren, insbesondere Polyanhydride von Dicarbonsäuren oder von Mischungen aus Dicarbonsäuren.
    Derartige Polyanhydride sind herstellbar, indem der Polycarbonsäure bzw. der Mischung aus Polycarbonsäuren Wasser entzogen wird, wobei jeweils zwei Carboxylgruppen zu einer Anhydridgruppe umgesetzt werden. Derartige Herstellungsverfahren sind gut bekannt und brauchen daher nicht näher erläutert zu werden.
    Zur Aushärtung der Epoxidharze enthält der erfindungsgemäße Pulverlack phenolische oder aminische Härter. Zum Einsatz kommen können auch bicyclische Guanidine.
    Dabei kann beispielsweise jedes beliebige Phenolharz verwendet werden, solange es die für Reaktivität erforderliche Methylol-Funktionalität aufweist. Bevorzugte Phenolharze sind unter alkalischen Bedingungen hergestellte Reaktionsprodukte von Phenol, substituierten Phenolen und Bisphenol A mit Formaldehyd. Unter derartigen Bedingungen wird die Methylolgruppe entweder ortho- oder para-ständig mit dem aromatischen Ring verknüpft. Besonders bevorzugt werden gemäß der vorliegenden Erfindung als phenolische Vernetzungsmittel hydroxylgruppenhaltige Bisphenol-A- oder Bisphenol-F-Harze mit einem Hydroxyäquivalentgewicht im Bereich von 180 bis 600, besonders bevorzugt im Bereich von 180 bis 300 eingesetzt. Derartige phenolische Vernetzungsmittel werden hergestellt durch Umsetzung von Bisphenol-A oder Bisphenol-F mit glycidylgruppenhaltigen Komponenten, wie z.B. dem Diglycidylether von Bisphenol-A. Derartige phenolische Vemetzungsmittel sind beispielsweise erhältlich unter der Handelsbezeichnung DEH 81, DEH 82 und DEH 87 der Firma Dow DX 171 der Firma Shell-Chemie und XB 3082 der Firma Ciba Geigy.
    Die Epoxidharze und die phenolischen Vemetzungsmittel werden dabei in einem derartigen Verhältnis eingesetzt, daß die Zahl der Epoxidgruppen zur Zahl der phenolischen OH-Gruppen in etwa 1 : 1 beträgt.
    Die erfindungsgemäßen Pulverlacke enthalten einen oder mehrere geeignete Katalysatoren für die Epoxidharz-Aushärtung. Geeignete Katalysatoren sind Phosphoniumsalze organischer oder anorganischer Säuren, Imidazol und Imidazolderivate, quartäre Ammoniumverbindungen sowie Amine. Die Katalysatoren werden im allgemeinen in Anteilen von 0,001 Gew.-% bis etwa 10 Gew.-%, bezogen auf das Gesamtgewicht des Epoxidharzes und des phenolischen Vernetzungsmittels, eingesetzt.
    Beispiele für geeignete Phosphoniumsalz-Katalysatoren sind Ethyltriphenylphosphoniumiodid, Ethyltriphenylphosphoniumchlorid, Ethyltriphenylphosphoniumthiocyanat, Ethyltriphenylphosphonium-Acetat-Essigsäurekomplex, Tetrabutylphosphoniumiodid, Tetrabutylphosphoniumbromid und Tetrabutylphosphonium-Acetat-Essigsäurekomplex. Diese sowie weitere geeignete Phosphonium Katalysatoren sind z.B. beschrieben in US-PS 3, 477,990 und US-PS 3,341,580.
    Geeignete Imidazol-Katalysatoren sind beispielsweise 2-Styrylimidazol, 1-Benzyl-2-methylimidazol, 2-Methylimidazol und 2-Butylimidazol. Diese sowie weitere Imidazol-Katalysatoren sind z.B. beschrieben in dem belgischen Patent Nr. 756,693.
    Zum Teil enthalten handelsübliche phenolische Vernetzungsmittel bereits Katalysatoren für die Epoxidharz-Vernetzung.
    Pulverlacke auf Basis Carboxylgruppen enthaltender Polyester und niedermolekularer, Epoxidgruppen enthaltender Vernetzungsmittel sind in großer Zahl bekannt und beispielsweise beschrieben in EP-A-389 926, EP-A-371 522, EP-A-326 230, EP-B-110 450, EP-A-110 451, EP-B-107 888, US 4,340,698, EP-B-119 164, WO 87/02043 und EP-B-10 805.
    Insbesondere geeignet sind Pulverlacke nach DE 43 30 404.4, die dadurch gekennzeichnet sind, daß sie als filmbildendes Material
  • A) 35,0 - 92,2 Gew.-% Carboxylgruppen enthaltende Polyester mit einer Säurezahl von 10 - 150 mg KOH/g,
  • B) 0,8 - 20,1 Gew.-% niedermolekulare, Epoxidgruppen enthaltende Härtungsmittel,
  • C) 3,7 - 49,3 Gew.-% Epoxidgruppen enthaltende Polyacrylatharze mit einem Epoxidäquivalentgewicht von 350 - 2000 und
  • D) 0,5 - 13,6 Gew.-% niedermalekulare Di- und/oder Polycarbonsäuren und/oder Di- und/oder Polyanhydride
  • enthalten, wobei die Summe der Gew.ichtsanteile von A), B), C) und D) jeweils 100 Gew.-% und das Verhältnis de Epoxidgruppen der Pulverlacke zu der Summe der Carboxyl- und Anhydridgruppen der Pulverlacke 0,75 -1,25:1 beträgt.
    Die als Komponente A) verwendeten Carboxylgruppen enthaltenden Polyester weisen eine Säurezahl im Bereich von 10 - 150 mg KOH/g, bevorzugt im Bereich von 30 - 100 mg KOH/g, auf. Die Hydroxylzahl der Polyesterharze sollte ≤ 30 mg KOH/g betragen. Bevorzugt werden Polyester mit einer Carboxi-Funktionalität von ≥ 2 eingesetzt. Die Polyester werden nach den üblichen Methoden (vergleiche z.B. Houben Weyl, Methoden der Organischen Chemie, 4. Auflage, Band 14/2, Georg Thieme Verlag, Stuttgart 1961) hergestellt.
    Als Carbonsäurekomponente zur Herstellung der Polyester sind aliphatische, cycloaliphatische und aromatische Di- und Polycarbonsäuren geeignet, wie z.B. Phthalsäure, Terephthalsäure, Isophthalsäure, Trimellitsäure, Pyromellitsäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Pimelinsäure, Suberinsäure, Cyclohexandicarbonsäure, Acelainsäure, Sebacinsäure u.ä.. Diese Säuren können dabei auch in Form ihrer veresterungsfähigen Derivate (z.B. Anhydride) oder ihrer umesterungsfähigen Derivate (z.B. Dimethylester) eingesetzt werden.
    Als Alkoholkomponente zur Herstellung der Carboxylgruppen enthaltenden Polyester A) sind die üblicherweise eingesetzten Diund/oder Polyole geeignet, z.B. Ethylenglykol, Propandiol-1,2 und Propandiol-1,3, Butandiole, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Hexandiol-1,6, Neopentylglykol, 1,4-Dimethylolcyclohexan, Glycerin, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Ditrimethylolpropan, Dipentaerythrit, Diglycerin u.ä.
    Die so erhaltenen Polyester können dabei einzeln oder als Mischung verschiedener Polyester eingesetzt werden. Die als Komponente A) geeigneten Polyester haben im allgemeinen eine Glasübergangstemperatur oberhalb von 30 °C.
    Beispiele für geeignete handelsübliche Polyester sind die unter den folgenden Markennamen im Handel erhältlichen Produkte: Crylcoat 314, 340, 344, 2680, 316, 2625, 320, 342 und 2532 der Firma UCB, Drogenbos, Belgien; Grilesta 7205, 7215, 72-06, 72-08, 72-13, 72-14, 73-72, 73-93 und 7401 der Firma Ems-Chemie; Neocrest P670, P671, P672, P678, P662 der Firma ICI sowie Uralac P2400, P2450, P5980, PS 998, P 3561 Uralac P3400 und Uralac P5000 der Firma DSM.
    Als saure Polyesterkomponente A) kommen auch ungesättigte, Carboxylgruppen enthaltende Polyesterharze in Frage. Diese werden erhalten durch Polykondensation, beispielsweise von Maleinsäure, Fumarsäure oder anderen aliphatischen oder cycloaliphatischen Dicarbonsäuren mit einer ethylenisch ungesättigten Doppelbindung, ggf. zusammen mit gesättigten Polycarbonsäuren, als Polycarbonsäurekomponente. Die ungesättigten Gruppen können auch durch die Alkoholkomponente, z.B. durch Trimethylolpropanmonoallylether, in den Polyester eingeführt werden.
    Die erfindungsgemäßen Pulverlacke enthalten als Komponente B) 0,8 - 20,1 Gew.-% niedermolekulare, Epoxidgruppen enthaltende Härtungsmittel. Ein Beispiel für ein besonders geeignetes niedermolekulares, Epoxidgruppen enthaltendes Härtungsmittel ist Triglycidylisocyanurat (TGIC). TGIC ist im Handel beispielsweise unter der Bezeichnung Araldit PT 810 (Hersteller: Ciba Geigy) erhältlich. Weitere geeignete niedermolekulare Epoxidgruppen enthaltende Härtungsmittel sind 1,2,4-Triglycidyltriazolin-3,5-dion, Diglycidylphthalat und der Diglycidylester von Hexahydrophthalsäure.
    Unter Epoxidgruppen enthaltenden Polyacrylatharzen (Komponente C) werden Polymere verstanden, die durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Epoxidgruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Epoxidgruppe enthält, herstellbar sind, wobei mindestens eines der Monomere ein Ester der Acrylsäure oder der Methacrylsäure ist.
    Epoxidgruppenhaltige Polyacrylatharze sind bekannt (vgl. z.B. EP-A-299 420, DE-B-22 14 650, US-A-4,091,048 und US-A-3,781,379).
    Als Beispiele für ethylenisch ungesättigte Monomere, die mindestens eine Epoxidgruppe im Molekül enthalten, werden Glycidylacrylat, Glycidylmethacrylat und Allylglycidylether genannt.
    Als Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppe im Molekül enthalten, werden Alkylester der Acryl- und Methacrylsäure, die 1 bis 20 Kohlenstoffatome im Alkylrest enthalten, insbesondere Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Butylacrylat, iso-Butylacrylat, t-Butylacrylat und die entsprechende Methacrylate, 2-Ethylhexylacrylat und 2-Ethylhexylmethacrylat genannt. Weitere Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppen im Molekül enthalten, sind Säuren, wie z.B. Acrylsäure und Methacrylsäure, Säureamide, wie z.B. Acrytsäure- und Methacrylsäureamid, vinylaromatische Verbindungen, wie Styrol, Methylstyrol und Vinyltoluol, Nitrile, wie Acrylnitril und Methacrylnitril, Vinyl- und Vinylidenhalogenide, wie Vinylchlorid und Vinylidenfluorid, Vinylester, wie z.B. Vinylacetat und Vinylpropionat, und hydroxylgruppenhaltige Monomere, wie z.B. Hydroxyethylacrylat und Hydroxyethylmethacrylat.
    Das Epoxidgruppen enthaltende Polyacrylatharz (Komponente C) weist ein Epoxidäquivalentgewicht von 350 bis 2000 auf. Üblicherweise haben die Epoxidgruppen enthaltenden Polyacrylatharze ein zahlenmittleres Molekulargewicht (gelpermeationschromatographisch unter Verwendung eines Polystyrolstandards bestimmt) von 1000 bis 15000 und eine Glasübergangstemperatur (TG) von 30 - 80 (gemessen mit Hilfe der Differential Scanning Calorimetry (DSC).
    Das Epoxidgruppen enthaltende Acrylatharz kann nach allgemein gut bekannten Methoden durch radikalische Polymerisation hergestellt werden. Im Handel sind derartige Epoxidgruppen enthaltende Polyacrylatharze beispielsweise erhältlich unter der Bezeichnung Almatex PD 7610 und Almatex PD 7690 (Hersteller: Mitsui Toatsu).
    Als Bindemittel enthalten die erfindungsgemäßen Pulverlacke als Komponente D) 0,5 - 13,6 Gew.-% niedermolekulare Di- und/oder Polycarbonsäuren und/oder Di- und/oder Polyanhydride. Bevorzugt werden als Komponente D) gesättigte, aliphatische und/oder cycloaliphatische Dicarbonsäuren verwendet, wie z.B. Glutarsäure, Adipinsäure, Pimelinsäure, Suberinsäure, Acelainsäure, Cyclohexandicarbonsäure, Sebacinsäure, Malonsäure, Dodecandisäure und Bemsteinsäure. Darüber hinaus sind als Komponente D) auch aromatische Di- und Polycarbonsäuren geeignet, wie z.B. Phthalsäure, Terephthalsäure, isophthalsäure, Trimellitsäure und Pyromellitsäure, selbstverständlich auch in Form ihrer Anhydride, soweit sie existieren. Besonders bevorzugt wird als Komponente D) Dodecandisäure (=1,10-Decandicarbonsäure) verwendet.
    Die Mengen an den Pulverlackkomponenten A) bis D) werden derart gewählt, daß das Verhältnis der Epoxidgruppen aus B) und C) zu der Summe der Carboxyl- und Anhydridgruppen aus A) und D) 0,75-1,25:1 beträgt. Bevorzugt beträgt dieses Verhältnis 0, 9-1, 1: 1.
    Die Puiverlacke enthalten 50 bis 90 %, vorzugsweise 60 bis 80 Gew.-% Bindemittel und 10 bis 50 Gew.-%, vorzugsweise 20 bis 40 Gew.-% Füllstoffe.
    Als Füllstoffe kommen glycidylgruppenfunktionalisierte kristalline Kieselsäuremodifikationen in Betracht. Üblicherweise werden sie in dem genannten Bereich von 10 bis 50 Gew.-%, bezogen auf das Gesamtgewicht des Pulverlackes eingesetzt. In einigen Fällen sind jedoch auch Füllstoffanteile von mehr als 50 Gew.-% möglich.
    Zu den kristallinen Kieselsäure-Modifikationen zählen Quarz, Cristobalit, Tridymit, Keatit, Stishovit, Melanophlogit, Coesit und faserige Kieselsäure. Die kristallinen Kieselsäure-Modifikationen sind glycidylgruppenfunktionalisiert, wobei die Glycidylgruppenfunktionalisierung durch eine Oberflächenbehandlung erzielt wird. Es handelt sich dabei beispielsweise um Kieselsäure-Modifikationen auf der Basis von Quarz, Cristobalit und Quarzgut, die hergestellt werden durch Behandlung der kristallinen Kieselsäure-Modifikationen mit Epoxisilanen. Die glycidylgruppenfunktionalisierten Kieselsäure-Modifikationen sind auf dem Markt beispielsweise erhältlich unter der Bezeichnung SilbondR 600 EST und SilbondR 6000 EST (Hersteller: Quarzwerke GmbH) und werden hergestellt durch Umsetzung von kristallinen Kieselsäure-Modifikationen mit Epoxisilanen.
    Vorteilhafterweise enthalten die Pulverlacke 10 bis 40 Gew.-%, bezogen auf das Gesamtgewicht des Pulverlackes, an glycidylgrppenfunktionalisierten kristallinen Kieselsäuremodifikationen.
    Die Pulverlacke können noch weitere anorganische Füllstoffe, beispielsweise Titanoxid, Bariumsulfat und Füllstoffe auf Silikatbasis, wie z.B. Talkum, Kaolin, Magnesium-, Aluminiumsilikate, Glimmer und ähnliche enthalten. Außerdem können die Pulverlacke ggf, noch Hilfsmittel und Additive enthalten. Beispiele hierfür sind Verlaufsmittel, Rieselhilfen und Entgasungsmittel, wie beispielsweise Benzoin.
    Zur Unterstützung eines zerstörungsfreien Ausgasens können dem Pulverlack schließlich Entgasungsmittel zugesetzt werden. Vorzugsweise liegen die Konzentrationen dieses Entgasungsmittels bei ≤ 2 Gew.-%,besonders bevorzugt bei 0, 1 bis 0,8 Gew.%, ganz besonders bevorzugt bei 0, 2 bis 0, 5 Gew.%, höchst bevorzugt bei ≤ 0, 4 Gew.%.
    Als Entgasungsmittel kommen insbesondere Verbindungen der Formel
    Figure 00160001
    in Betracht,wobei R ein Alkanol mit 1 - 6 C-Atomen ist. Hierbei sind R1 sowie R2 Benzoyl - oder Phenylgruppen. R1 sowie R2 können darüber hinaus gleich oder verschieden sein. D.h. R1 und R2 können gleichermaßen Benzoyl - bzw. Phenylgruppen sein. Ebenso kann der eine Rest eine Benzoylgruppe sein, während der andere Rest eine Phenylgruppe ist. Beispiele für bevorzugt einsetzbare Verbindung ist Benzoylphenylmethanol (Benzoin).
    Die Herstellung der Pulverlacke erfolgt nach bekannten Methoden (vgl. z.B. Produkt-Information der Firma BASF Lacke + Farben AG, "Pulverlacke", 1990) durch Homogenisieren und Dispergieren, beispielsweise mittels eines Extruders, Schneckenkneters u.ä.. Nach Herstellung der Pulverlacke werden diese durch Vermahlen und ggf. durch Sichten und Sieben auf die gewünschte Komgrößenverteilung eingestellt.
    Die beschriebenen Pulverlacke werden im Anschluß an den Auftrag gemeinsam mit der Elektrotauchlackschicht eingebrannt. Während des Einbrennens der Elektrotauchlack- und Pulverlackschichten kommt es zu einem Schmelzen des Pulverlackes und damit zu seiner Gleichverteilung, sowie zu einer Aushärtung der Bindemittel. Vorzugsweise wird das Einbrennen bei Temperaturen von 150 bis 220 °C, ganz besonders bevorzugt bei 160 bis 200°C durchgeführt. Der Einbrennvorgang dauert dabei 10 bis 40 min., vorzugsweise 15 bis 30 min..
    Für das Aufbringen des Pulverlackes kommen alle gängigen Methoden nach dem Stand der Technik in Frage. Besonders bevorzugt wird ein Aufbringen durch elektrostatische Haftung, vorzugsweise durch Anlegen einer Hochspannung oder durch Reibungsaufladung.
    Eine bevorzugte Verwendung findet das erfindungsgemäße Verfahren bei der Beschichtung von Heizkörpern, Autokarosserien und Rutozubehörteilen, Maschinenteilen, Kompressoren, Regalen, Büromöbeln und vergleichbaren industriellen Produkten.
    Zum Gegenstand der Erfindung gehört auch ein mehriagig beschichtetes Substrat, welches dadurch gekennzeichnet ist, daß es hergestellt wird, indem auf dem Substrat zuerst in einem Elektrotauchbad eine Schicht aus Elektrotauchlack aufgebracht und anschließend getrocknet, sodann eine Schicht Pulverlack aufgebracht wird und schließlich Elektrotauchlack und Pulverlack in einem Schritt gemeinsam eingebrannt werden.
    Die Elektrotauchlackschicht des mehrfach beschichteten erfindungsgemäßen Substrates hat vorzugsweise eine Dicke von 5 bis 35 µm, ganz besonders bevorzugt 10 bis 25 µm. Die Pulverlackschicht hat vorzugsweise eine Dicke von 30 bis 200 µm, ganz besonders bevorzugt 50 bis 120 µm.
    Die Durchführung des erfindungsgemäßen Verfahrens und die Herstellung des erfindungsgemäßen Substrates ist in den Figuren 1 und 2 schematisch dargestellt.
    Figur 1
    zeigt den Schichtaufbau des Substrates.
    Figur 2
    zeigt die Herstellungsschritte.
    Figur 1 zeigt schematisch den Schichtaufbau des erfindungsgemäßen Substrates. Auf dem Substrat 1 selbst befindet sich zunächst die Schicht 2 aus Elektrotauchlack, die von einer in der Regel 10-fach dickeren Schicht 3 aus Pulverlack überdeckt wird.
    Bei der Herstellung des erfindungsgemäßen Substrates wird das Substrat zunächst in einem Elektrotauchbad 4 beschichtet. Sodann wird es dem Elektrotauchbad entnommen und in einer Trocknungsanlage 5 durch Anblasen mit Luft getrocknet. Anschließend wird z.B. unter Anlegen einer Hochspannung in einer Kabine 6 Pulverlack fein verteilt auf die Oberfläche des Substrates aufgesprüht. Dieser Pulverlack wird dann in dem Ofen 7 gemeinsam mit der Elektrotauchlackschicht bei Temperaturen von ca. 150 bis 220 °C eingebrannt.
    Im folgenden wird das erfindungsgemäße Verfahren anhand eines Beispiels näher erläutert.
    1. Herstellung eines aktive Wasserstoffatome aufweisenden, aminmodifizierten Epoxidharzes
    In einem Reaktionsgefäß werden 1780 g Epikote 1001 (Epoxidharz der Fa. Shell mit einem Epoxidäquivalentgewicht von 500), 280 g Dodecylphenol und 105 g Xylol vorgelegt und unter Stickstoffatmosphäre bei 120 °C aufgeschmolzen. Anschließend werden unter leichtem Vakuum Wasserspuren durch Auskreisen entfernt. Dann gibt man 3 g N,N-Dimethylbenzylamin zu, erwärmt die Reaktionsmischung auf 180 °C und hält diese Temperatur für ca. 3 h, bis das Epoxidäquivalentgewicht (EEW) auf 1162 angestiegen ist. Sodann kühlt man und gibt in rascher Abfolge 131 g Hexylglykol, 131 g Diethanolamin und 241 g Xylol zu. Dabei steigt die Temperatur leicht an. Danach läßt man das Reaktionsgemisch auf 90 °C abkühlen und gibt zur weiteren Verdünnung 183 g Butylglykol und 293 g Isobutanol zu. Wenn die Temperatur auf 70 °C gefallen ist, gibt man 41 g N,N,-Dimethylaminopropylamin zu, hält diese Temperatur für 3 h und trägt aus.
    Das Harz hat einen Festgehalt von 70,2 % und einen Basengehalt von 0,97 Milliäquivalenten/Gramm.
    2. Herstellung eines blockierten aliphatischen Polyisocyanats
    In einem Reaktionsgefäß werden unter Stickstoffatmosphäre 488 g über Isocyanuratbildung trimerisiertes Hexamethylendiisocyanat (Handelsprodukt der BASF AG mit einem Isocyanatäquivalentgewicht von 193) und 170 g Methylisobutylketon vorgelegt und auf 50 °C erwärmt. Sodann läßt man 312 g Di-n-butylamin so zutropfen, daß die Innentemperatur bei 60 bis 70 °C gehalten wird. Nach Ende der Zugabe wird noch 1 h bei 75 °C gerührt und anschließend mit 30 g n-Butanol verdünnt und abgekühlt. Das Reaktionsprodukt hat einen Feststoffgehalt von 79,6 % (1 h bei 130 °C) und eine Aminzahl von kleiner als 5 mg KOH/g.
    3. Herstellung einer wäßrigen Dispersion, die ein aktive Wasserstoffatome aufweisendes, kationisches aminmodifiziertes Epoxidharz und ein blockiertes aliphatisches Polyisocyanat als separate Komponente enthält
    1120 g der gemäß Punkt 1. hergestellten Harzlösung werden mit 420 g der gemäß Punkt 2. hergestellten Lösung des blockierten Polyisocyanats bei Raumtemperatur unter Rühren gemischt. Sobald die Mischung homogen ist (nach etwa 15 Minuten) werden 2,2 g einer 50 Gew.-%-igen Lösung eines handelsüblichen Entschäumungsmittels (Surfynol; Handelsprodukt der Air Chemicals) in Ethylenglykolmonobutylether und 18 g Eisessig eingerührt. Danach werden 678 g entionisiertes Wasser über 4 Portionen verteilt zugegeben. Anschließend wird mit weiteren 1154 g entionisiertem Wasser in kleinen Portionen verdünnt.
    Die resultierende wäßrige Dispersion wird in einer Vakuumdestillation von niedrigsiedenden Lösemitteln befreit und anschließend mit entionisiertem Wasser auf einen Feststoffgehalt von 33 Gew.-% verdünnt.
    4. Herstellung eines Reibharzes gemäß DE-OS-34 22 457
    640 Teile eines Diglycidylethers auf Basis von Bisphenol A und Epichlorhydrin mit einem Epoxid-Äquivalentgewicht von 485 und 160 Teile eines solchen mit einem Epoxid-Äquivalentgewicht von 189 werden bei 100 °C gemischt. In einem weiteren Gefäß werden 452 Teile Hexamethylendiamin vorgelegt, auf 100 °C erhitzt und 720 Teile der obigen heißen Epoxidharzmischung innerhalb einer Stunde zugegeben, wobei leicht gekühlt werden muß, um die Temperatur bei 100 °C zu halten. Nach weiteren 30 Min. wird unter Temperaturerhöhung und vermindertem Druck das überschüssige Hexamethylendiamin abgezogen, wobei zum Schluß eine Temperatur von 205 °C und ein Druck von 30 mbar erreicht wird. Anschließend werden 57,6 Teile Stearinsäure, 172,7 Teile Dimerfettsäure und 115 Teile Xylol zugesetzt. Dann wird innerhalb von 90 min bei 175 bis 180 °C das gebildete Wasser azeotrop abdestilliert. Anschließend werden 58 Teile Butylglykol und 322 Teile Isobutanol zugefügt. Das Produkt hat einen Feststoffgehalt von 70 Gew.-% und eine Viskosität, gemessen bei 75 °C mit einem Platten-Kegel-Viskosimeter, von 2240 mPas.
    5. Hetstellung einer Pigmentpaste
    586 Teile des gemäß Punkt 4. hergestellten Reibharzes werden mit 990 Teilen entionisiertem Wasser und 22 Teilen Eisessig intensiv vermischt. Anschließend wird mit 1129 Teilen TiO2 und 146 Teilen eines Extenders auf Basis Aluminiumsilikat vermengt. Diese Mischung wird in einem Mahlaggregat auf eine Hegman-Feinheit von kleiner 12 µm zerkleinert. Danach wird entionisiertes Wasser zugegeben, bis ein Feststoffgehalt von 48 bis 52 Gew.-% (1/2 h, 180 °C ) erreicht worden ist.
    6. Herstellung eines erfindungsgemäß eingesetzten Elektrotauchlackbades
    2200 Gewichtsteile der gemäß Punkt 3. hergestellten Dispersion werden mit 810 Gewichtsteilen der gemäß Punkt 5. hergestellten Pigmentpaste versetzt und mit entionisiertem Wasser auf 5000 Gewichtsteile aufgefüllt.
    7. Herstellung eines Erfindungsgemäßen eingesetzen Pulverlacks (21 a weitere) 8. Erfindungsgemäßes Beschichtungsverfahren
    Ein Flachheizkörper Bauhöhe 600mm Baulänge 1000 mm mit 2 Platten, auf die innen jeweils 1 Konvektorblech geschweißt ist, wird entfettet und phosphatiert, dann in ein Elektrotauchlackbad getaucht und als Kathode geschaltet.
    Parameter: Spannung zw. 100 und 400 V vorzugsweise 150 bis 300 V
       Temperatur 24 bis 35 °C, vorzugsweise 28 bis 32 °C
       Zeit 120 bis 300s, vorzugsweise 150 bis 240s.
    Anschließend wird der Heizkörper gespült und mit Luft so weit abgeblasen, daß keine Flüssigkeit mehr abtropft. Dann wird der Heizkörper von außen mit Pulver beschichtet und in einen Trockenofen bei 150 bis 220 °C, vorzugsweise bei 160 bis 200 °C für 10 bis 40 min, vorzugsweise 15 bis 30 min eingebrannt.
    Damit der so entstandene Pulverlackfilm keine Störungen aufweist, sollten bei diesem Einbrennvorgang möglichst wenige Spaltprodukte und Lösemittel aus der KTL entweichen. Vorzugsweise sollten die Einbrennverluste der KTL höchstens 15 % vorzugsweise höchstens 13 % betragen.
    Pulverbeispiel: Herstellung eines Epoxy-Polyester-Pulverlackes
    In einen Vormischer werden 30 Teile Polyesterharz Uralac P 5980 (Polyesterharz der Fa. DSM mit einer Säurezahl von 70-85), 24 Teile Epoxidharz Epikote 1055 (Epoxidharz der Fa. Shell mit einem Epoxyäquivalentgewicht von 850), 6 Teile eines Verlaufmittelmasterbatch Epikote 3003 FCA-10, 0,2 Teile eines Polypropylenwachses Lancowaehs PP1362, 0,4 Teile Diphenoxy-2-Propanol (Entgasungsmittel), 30 Teile Titandioxid und 10 Teile Calciumcarbonat gegeben und vorgemischt. Im Extruder wird diese Vormischung bei Betriebstemperaturen zwischen 100 und 130°C dispergiert und nach dem Austrag aus der Extruderdüse schnellstmöglich über Quetschwalzen abgekühlt. Die Vermahlung wird in Sichtermühlen vorgenommen. Als besonders günstig hat sich eine klassifizierte Komgrößeneinstellung gezeigt.
    Zeile 22
    Dann wird der Heizkörper von außen mit Pulverlack elektrostatisch beschichtet Parameter: Pistolenspannung 50 bis 90 Kilovolt, Abstand Pistole/Radiator 15 bis 45 cm.

    Claims (10)

    1. Verfahren zur mehrlagigen Beschichtung von Substraten mit Elektrotauchlack und Pulverlack, bei dem
      a) auf ein Substrat (1) vorzugsweise aus Metall, insbesondere Eisen oder Zink mindestens eine Schicht (2) aus einem Flüssiglack, vorzugsweise aus einem Elektrotauchlack aufgebracht wird,
      b) das Substrat (1) nach dem Tauchen ganz oder teilweise getrocknet wird,
      c) mindestens eine Schicht Pulverlack (3) aufgebracht wird und
      d) Elektrotauchlack und Pulverlack gemeinsam eingebrannt werden,
      dadurch gekennzeichnet, daß
      das Trocknen bei Temperaturen von ≤ 100 °C, vorzugsweise ≤ 40 °C erfolgt, und dadurch der Gehalt an Lösemitteln derart gesenkt wird, daß der Substanzverlust beim Einbrennen der Elektrotauchlackschicht durch Ausgasen von Lösemitteln und flüchtigen Spaltprodukten weniger als 20 %, vorzugsweise 13 %, beträgt.
    2. Verfahren nach Anspruch 1,
      dadurch gekennzeichnet, daß
      das Vortrocknen der Elektrotauchlackschicht durch Anblasen mit Luft und/oder bei erhöhten Temperaturen, vorzugsweise bis 40°C, erfolgt.
    3. Verfahren nach einem der Ansprüche 1 oder 2,
      dadurch gekennzeichnet, daß
      das Trocknen ≤ 60 min., vorzugsweise ≤ 30 min. dauert.
    4. Verfahren nach einem der Ansprüche 1 bis 3,
      dadurch gekennzeichnet, daß
      das gemeinsame Einbrennen von Elektrotauchlack und Pulverlack bei Temperaturen von 150 bis 220°C, vorzugsweise 160 bis 200°C erfolgt.
    5. Verfahren nach Anspruch 4,
      dadurch gekennzeichnet, daß
      das gemeinsame Einbrennen für eine Dauer von 10 bis 40 min, vorzugsweise 15 bis 30 min, erfolgt.
    6. Verfahren nach einem der Ansprüche 1 bis 5,
      dadurch gekennzeichnet, daß
      die Aufbringung des Pulverlackes durch elektrostatische Haftung, vorzugsweise durch Hochspannung oder Reibungsaufladung erfolgt.
    7. Verfahren nach einem der Ansprüche 1 bis 6,
      dadurch gekennzeichnet, daß in Schritt a) ein Elektrotauchlack eingesetzt wird, der bei weniger als 170 °C, vorzugsweise 140 °C bis 160 °C vernetzt.
    8. Verfahren nach einem der Ansprüche 1 bis 7,
      dadurch gekennzeichnet, daß ein Pulverlack eingesetzt wird, dessen Vernetzungstemperatur 10 bis 60 °C, vorzugsweise 10 bis 40 °C über der Vernetzungstemperatur des Elektrotauchlacks liegt.
    9. Verfahren nach einem der Ansprüche 1 bis 8,
      dadurch gekennzeichnet, daß ein Pulverlack eingesetzt wird, der Entgasungsmittel in einer Konzentration von bis zu 2 Gew.-%, ganz besonders bevorzugt 0,4 Gew.-% enthält.
    10. Verfahren nach einem der Ansprüche 1 bis 9,
      dadurch gekennzeichnet, daß der Pulverlack als Entgasungsmittel Verbindungen der Formel
      Figure 00240001
      enthält, wobei R ein Alkanol mit 1 - 6 C-Atomen ist und R1 sowie R2 Benzoyloder Phenylgruppen sind und wobei R1 sowie R2 gleich oder verschieden sein können.
    EP97903348A 1996-02-23 1997-02-21 Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack Revoked EP0881955B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19606706 1996-02-23
    DE19606706A DE19606706A1 (de) 1996-02-23 1996-02-23 Verfahren zur mehrlagigen Beschichtung von Substraten mit Elektrotauchlack und Pulverlack
    PCT/EP1997/000831 WO1997030796A1 (de) 1996-02-23 1997-02-21 Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack

    Publications (2)

    Publication Number Publication Date
    EP0881955A1 EP0881955A1 (de) 1998-12-09
    EP0881955B1 true EP0881955B1 (de) 2004-04-21

    Family

    ID=7786165

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97903348A Revoked EP0881955B1 (de) 1996-02-23 1997-02-21 Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack

    Country Status (6)

    Country Link
    US (2) US6254751B1 (de)
    EP (1) EP0881955B1 (de)
    JP (1) JP2000505718A (de)
    AT (1) ATE264720T1 (de)
    DE (2) DE19606706A1 (de)
    WO (1) WO1997030796A1 (de)

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19824468B4 (de) * 1997-06-06 2007-04-12 Volkswagen Ag Verfahren zum Beschichten einer Kraftfahrzeugkarosserie und Kraftfahrzeugkarosserie
    EP0994141B1 (de) * 1998-10-15 2004-12-22 Morton International, Inc. Gegen Korrosion und Abschiefern geschützte Beschichtungen für hochzugfesten Stahl
    DE19962020A1 (de) * 1999-12-22 2001-07-05 Volkswagen Ag Verfahren zur Erzeugung einer Schutzbeschichtung auf einem Bauteil
    DE10009913B4 (de) * 2000-03-01 2004-12-23 Basf Coatings Ag Verfahren zur Herstellung von Mehrschichtlackierungen auf elektrisch leitfähigen Substraten und deren Verwendung
    DE10018582B4 (de) * 2000-04-14 2007-03-15 Basf Coatings Ag Verfahren zur Herstellung von farb- und/oder effektgebenden Mehrschichtlackierungen auf Kraftfahrzeugkarosserien oder Teilen hiervon
    US6620463B2 (en) 2001-09-13 2003-09-16 Matthews, Inc. Method and compositions for electrostatic painting, and articles made therefrom
    TW575646B (en) * 2002-09-04 2004-02-11 Sipix Imaging Inc Novel adhesive and sealing layers for electrophoretic displays
    US7616374B2 (en) * 2002-09-23 2009-11-10 Sipix Imaging, Inc. Electrophoretic displays with improved high temperature performance
    US7572491B2 (en) * 2003-01-24 2009-08-11 Sipix Imaging, Inc. Adhesive and sealing layers for electrophoretic displays
    US9346987B2 (en) * 2003-01-24 2016-05-24 E Ink California, Llc Adhesive and sealing layers for electrophoretic displays
    CA2486049A1 (en) * 2003-10-27 2005-04-27 Alcan International Limited Coated aluminum separator plates for fuel cells
    DE102004027650A1 (de) * 2004-06-05 2006-01-05 Basf Coatings Ag Verfahren zum Beschichten elektrisch leitfähiger Substrate
    JP5162097B2 (ja) * 2005-01-27 2013-03-13 関西ペイント株式会社 複層塗膜形成方法
    JP5420212B2 (ja) * 2007-10-31 2014-02-19 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ スチール用耐薄チップパウダートップコート
    WO2009092773A1 (en) * 2008-01-25 2009-07-30 Akzo Nobel Coatings International B.V. Powder coating compositions having a substantially non-zinc containing primer
    PL2565240T3 (pl) 2009-04-03 2015-11-30 Akzo Nobel Coatings Int Bv Powłoka proszkowa odporna na korozję i odpryskiwanie
    US20100266782A1 (en) * 2009-04-15 2010-10-21 Robert Langlois Method of powder coating-multiple layer powder applications of thermoset powder in a single booth for conductive and non-conductive substrates
    CN102471615B (zh) 2009-07-29 2015-08-19 阿克佐诺贝尔国际涂料股份有限公司 能够具有基本不含锌底漆的粉末涂料组合物
    ITPD20100018A1 (it) * 2010-01-28 2011-07-29 Matteo Pisano Impianto per il trattamento superficiale del metallo e leghe in due fasi, mediante un processo chimico-fisico-elettrolitico, con ciclo di lavoro combinato a piu' sezioni di cataforesi e verniciatura a polveri.
    DE112011104974T5 (de) * 2011-02-28 2014-01-16 Hewlett-Packard Development Company, L.P. Systeme und Verfahren zur simulierten Anodisierung
    TWI435689B (zh) * 2011-12-28 2014-04-21 Chenming Mold Ind Corp 複合式絕緣層及其製造方法
    US9701847B2 (en) 2012-12-21 2017-07-11 Mcp Ip, Llc Reinforced powder paint for composites
    EP2757123A3 (de) * 2013-01-18 2017-11-01 PPG Industries Ohio Inc. Klarer elektroabscheidbarer Primer für Heizkörperbeschichtungen
    CA3031188A1 (en) * 2016-07-19 2018-01-25 Ppc Broadband, Inc. Quad-shield coaxial cable
    CN112824565B (zh) * 2019-11-21 2022-06-21 上海海立电器有限公司 压缩机的电泳涂装工艺

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3640926A (en) 1965-03-19 1972-02-08 Celanese Coatings Co Aqueous dispersions of epoxy resin esters and method of preparing same
    GB1235293A (en) 1967-12-12 1971-06-09 Canadian Ind Cationic electrodeposition systems
    US3663389A (en) 1970-04-17 1972-05-16 American Cyanamid Co Method of electrodepositing novel coating
    US3998716A (en) * 1974-06-03 1976-12-21 Inmont Corporation Method of applying coatings
    CA1111598A (en) 1976-01-14 1981-10-27 Joseph R. Marchetti Amine acide salt-containing polymers for cationic electrodeposition
    AT356779B (de) 1978-03-13 1980-05-27 Herberts & Co Gmbh Kathodisch abscheidbares waesseriges elektro- tauchlack-ueberzugsmittel
    JPH0626708B2 (ja) 1985-09-10 1994-04-13 関西ペイント株式会社 複合塗膜形成法
    US4847337A (en) * 1985-10-24 1989-07-11 The Dow Chemical Company Polystyrene modified advanced epoxy resin and polyester copolymers
    JPS62262777A (ja) * 1986-05-09 1987-11-14 Kansai Paint Co Ltd 防食塗膜形成法
    DE3628121A1 (de) 1986-08-19 1988-03-03 Herberts Gmbh Fremdvernetzende bindemittelkombination fuer mit wasser verduennbare lacke, kathodisch abscheidbares elektrotauchlackueberzugsmittel und dessen verwendung
    JPS63274800A (ja) 1987-05-06 1988-11-11 Toshiyuki Ota 塗装品の製造法
    ES2080432T3 (es) 1991-07-26 1996-02-01 Akzo Nobel Nv Sistemas de revestimiento de dos capas para ruedas y aplicaciones arquitectonicas.
    DE4313762C1 (de) * 1993-04-27 1994-04-28 Ppg Ind Deutschland Gmbh Verfahren zur Beschichtung eines metallischen Trägermaterials, um dessen Steinschlagbeständigkeit zu verbessern
    DE4331673A1 (de) * 1993-09-17 1995-05-11 Herberts Gmbh Verfahren zur Herstellung von Mehrschichtlackierungen
    US5508349A (en) 1994-05-09 1996-04-16 Basf Corporation Reactive flow agent for powder coatings

    Also Published As

    Publication number Publication date
    ATE264720T1 (de) 2004-05-15
    WO1997030796A1 (de) 1997-08-28
    US6254751B1 (en) 2001-07-03
    DE19606706A1 (de) 1997-08-28
    JP2000505718A (ja) 2000-05-16
    US20010011639A1 (en) 2001-08-09
    EP0881955A1 (de) 1998-12-09
    DE59711545D1 (de) 2004-05-27

    Similar Documents

    Publication Publication Date Title
    EP0881955B1 (de) Verfahren zur mehrlagigen beschichtung von substraten mit elektrotauchlack und pulverlack
    DE19622921C2 (de) Verfahren zur Herstellung eines Schichtstoffes und dessen Verwendung
    DE2248836A1 (de) Verfahren zum elektrolytischen auftrag von anstrichmitteln
    EP0646420B1 (de) Verfahren zur Herstellung von Mehrschichtlackierungen
    DE3702503C2 (de)
    DE2658839B2 (de) Verfahren zum Herstellen eines zwei- oder mehrschichtigen Überzugs auf einem Substrat
    DE4038681A1 (de) Pulverlack und dessen verwendung zur innenbeschichtung von verpackungsbehaeltern und zur schweissnahtabdeckung
    EP0036471B1 (de) Verfahren zur elektrophoretischen Abscheidung eines Überzuges auf ein als Kathode geschaltetes, elektrisch leitfähiges Werkstück
    EP1009546B1 (de) Mit einem mehrschichtüberzug versehenes substrat und verfahren zu dessen herstellung
    EP1755792A1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate
    CA2306007A1 (en) Method for forming multi-layer paint film
    DE19850211C1 (de) Pulverlacke und ihre Verwendung zur Herstellung geräuscharmer Pulverlackbeschichtungen
    EP0857195B1 (de) Verlaufmittel für pulverlacke
    WO1995007322A1 (de) Pulverlacke, verfahren zu deren herstellung sowie verwendung der pulverlacke zur beschichtung von metallblechen
    JP2000189891A (ja) 複層塗膜形成方法、多層塗膜形成方法およびそれによって得られた多層塗膜
    EP0925334A1 (de) Wässrige elektrotauchlacke, ihre verwendung in verfahren zur beschichtung elektrisch leitfähiger substrate sowie die verwendung von silberionen und/oder von elementarem silber in wässrigen elektrotauchlacken
    JP4309017B2 (ja) 塗膜形成方法
    EP0925389B1 (de) Porenfreie beschichtung von metallbehältern
    JP2011021261A (ja) 電着塗膜形成方法および多層塗膜の形成方法
    DE3421294A1 (de) Feinteiliges ueberzugsmittel und dessen verwendung
    JPH0311822B2 (de)
    WO1998027167A1 (de) Elektrotauchlack und additiv für die kathodische elektrotauchlackierung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980813

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    17Q First examination report despatched

    Effective date: 20011122

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040421

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20040421

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040421

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59711545

    Country of ref document: DE

    Date of ref document: 20040527

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040801

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040421

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20050204

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050208

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20050217

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050221

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050228

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050228

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050228

    26 Opposition filed

    Opponent name: DUPONT PERFORMANCE COATINGS GMBH & CO.KG

    Effective date: 20050117

    26 Opposition filed

    Opponent name: PPG INDUSTRIES, INC.PATENTANWAELTE

    Effective date: 20050120

    Opponent name: DUPONT PERFORMANCE COATINGS GMBH & CO.KG

    Effective date: 20050117

    R26 Opposition filed (corrected)

    Opponent name: PPG INDUSTRIES, INC.PATENTANWAELTE

    Effective date: 20050120

    Opponent name: DUPONT PERFORMANCE COATINGS GMBH & CO.KG

    Effective date: 20050117

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    BERE Be: lapsed

    Owner name: *BASF COATINGS A.G.

    Effective date: 20050228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060222

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060901

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20061031

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    BERE Be: lapsed

    Owner name: *BASF COATINGS A.G.

    Effective date: 20050228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20080107