EP0880430A1 - Holzfaserdämmplatte - Google Patents

Holzfaserdämmplatte

Info

Publication number
EP0880430A1
EP0880430A1 EP97950187A EP97950187A EP0880430A1 EP 0880430 A1 EP0880430 A1 EP 0880430A1 EP 97950187 A EP97950187 A EP 97950187A EP 97950187 A EP97950187 A EP 97950187A EP 0880430 A1 EP0880430 A1 EP 0880430A1
Authority
EP
European Patent Office
Prior art keywords
wood fiber
insulation board
fiber insulation
binder
board according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97950187A
Other languages
English (en)
French (fr)
Inventor
Matthias TRÖGER
Ulrich SCHÖPF
Uwe Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Homann & Co KG GmbH
Original Assignee
Hofa Homann & Co KG GmbH
Hofa Homann & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hofa Homann & Co KG GmbH, Hofa Homann & Co KG GmbH filed Critical Hofa Homann & Co KG GmbH
Priority to DE29724768U priority Critical patent/DE29724768U1/de
Publication of EP0880430A1 publication Critical patent/EP0880430A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres

Definitions

  • the invention relates to an insulation board made of wood fibers, in particular for thermal insulation, whereby mats are also to be understood.
  • Wood fiber boards are currently manufactured using two fundamentally different processes. On the one hand, this is the so-called wet process, according to which soft wood fiber boards and hardboard (HDF) are produced, and on the other hand, a wood fiber drying process, according to which so-called MDF or HDF boards are manufactured.
  • wet process according to which soft wood fiber boards and hardboard (HDF) are produced
  • HDF hardboard
  • MDF or HDF boards are manufactured.
  • the wood fiber board production process has in common the production of wood fibers. This is usually done in such a way that wood chips are first defibrated into wood fibers using a defibration system.
  • One speaks of thermal-mechanical digestion whereby after thermal digestion the wood chips are mechanically defibrated under pressure under the influence of temperature.
  • the cooked or steamed wood chips are fed to a pair of grinding disks via a screw and released after they have been shredded.
  • Steam and wood fibers are usually separated in a cyclone, which come out of the refiner as a mixture due to the thermal-mechanical digestion.
  • the wood fibers are mixed with liquid, usually water, glue and the like to a pulp.
  • This slurry is spread out in shaping stations, usually with a long screen dewatering device, shaped and compacted and dried in a press.
  • the water is partly squeezed out with ironing rollers and the remaining water is evaporated with overflow or nozzle dryers.
  • the press for the production of hardboard has at least one of the press surfaces with sieve-like openings for the steam outlet.
  • the moisture in the wet pulp can escape over the surface and the edges.
  • the nonwoven fabric to be dried must of course remain in the press for a certain time, so that the production process is lengthy.
  • the dwell time in the dryers used in the manufacture of soft wood fiber boards is very long due to the low heat transfer into the board.
  • the addition of liquid the need to apply a great deal of energy to evaporate the liquid and the long residence time in the drying phase make the wet production processes for wood fiber boards comparatively uneconomical.
  • the dry process has been developed. This differs from the wet process in that the fibers are glued and dried before being used for shaping. After drying, the fibers are sprinkled and, after being shaped, cured in a press which no longer has to have the evaporation openings in the press surface. The low residual moisture is evaporated here via the side edges. The dwell time of the fiber material in the drying press is therefore considerably shorter. This significantly reduces the production time after spreading. However, pre-drying of the fibers before curing is still required.
  • a disadvantage of both methods described is the large amount of energy required for fiber drying, be it in the dry process after defibrating or in the wet process after shaping.
  • Another disadvantage is the unfavorable water balance, especially in the wet process.
  • the pulpy consistency inevitably results in a lower one in the wet process Limit for the bulk density, which cannot be undercut.
  • there is an upper limit with regard to the thickness of the plates produced by the wet process since the heat is supplied only via the surfaces of the plates and from a certain thickness, at least with reasonable energy expenditure, complete drying would no longer be possible. Due to the boundary conditions, the thermal conductivity is also limited, i.e. ⁇ values> 0.045 W / mK result.
  • the degree of moisture of the boards produced by the drying process must be set very precisely, otherwise tears or bursts occur on the board due to the drying process.
  • Dehumidification can only take place by evaporation, so that the water in the plate is heated by the high temperature and the high pressure to a temperature above the boiling point at atmospheric pressure.
  • Another disadvantage of the boards produced in the dry process is the unfavorable distribution of the binder, which usually has to be done after blower tube gluing, since otherwise an adequate board bond can no longer be guaranteed.
  • only water-soluble binders can be used in both processes.
  • the wood fiber boards produced according to the described and previously implemented processes are, due to the described limits, lower bulk density limit and upper thickness limit on the one hand and lower limit of the thermal conductivity on the other hand, solid boards for interior construction, furniture construction, mold construction and the like in a manner known per se.
  • the known panels are unsuitable for use as a thermal insulation element.
  • the present invention is based on the object of specifying a wood fiber board which is economical in terms of the parameters of energy expenditure, water consumption and time control during manufacture and in terms of density and the resulting technical properties such as thermal insulation,
  • the invention proposes a wood fiber insulation board containing at least one binder mixed with wood fibers, which are applied to a molding station, shaped in terms of width and basis weight and shaped and cured after activation of the binder to form a board , wherein the plate has a bulk density ⁇ 1 50 kg / m 3 with a thermal conductivity ⁇ 0.045 W / (mx K).
  • the wood fiber insulation board according to the invention falls below any lower density previously known for wood fiber boards with a massive reduction in thermal conductivity at the same time, so that it can be used excellently as a heat insulation element.
  • the term "board" in connection with the invention does not exclude that the wood fiber insulation board can also have mat properties.
  • Hitherto known wood fiber boards manufactured by conventional methods have a bulk density above 1 70 kg / m 3 and thermal conductivities around 0.05 to 0.06 W / (mx K). Compressive stresses are known to be above 85 kN / m 2 and the modulus of elasticity is above 1 million N / m 2 . Tear strengths are above 20 kN / m 2 .
  • the wood fiber insulation board according to the invention has a bulk density ⁇ 1 50 kg / m 3 with a thermal conductivity ⁇ 0.045 W / (mx K).
  • the tear-off strength is particularly advantageously ⁇ 10 kN / m 2 and the compressive stress ⁇ 65 kN / m 2 , which results in the required softness for thermal insulation elements with sufficient tear-off strength.
  • the pressure modulus is particularly advantageously 650,000 N / m 2 .
  • the thermal insulation board according to the invention can be produced in an extremely economical manner with slight modification of previously known processes and has excellent thermal insulation properties.
  • the fact that the fibers are unchanged in terms of moisture content means that no active measures need to be taken to set a specific moisture level. If the fibers are stored or otherwise kept ready after defibration and there are slight changes in moisture content, this is of no importance for the implementation of the method.
  • the binders be mixed dry with the fibers. This results in a very good distribution.
  • prepresses can be carried out in order to set the desired density ratios with great accuracy.
  • the binding agents are advantageously activated by means of steam which flows through the scattered fiber material strand. This flow ensures complete binder activation.
  • the invention proposes in a particularly advantageous manner that a drying medium flows through the spread and preformed fiber material. It is advantageously proposed to let hot air flow through the main surfaces of the preformed material. During the flow, a pressing process can advantageously be used to calibrate the wood fiber board.
  • the invention provides a simple, economical method which can be controlled very precisely with regard to the attainment of technological properties, with which insulating boards with densities far below 1,50 kg / m 3 can be produced, that is to say up to around 60 kg / m 3 .
  • virtually any thickness can be created if through-flow drying takes place.
  • the board can be produced with natural or near-natural binders such as lignin, damar resins and the like, so that water-insoluble binders can also be used.
  • Thermal conductivities ( ⁇ ) can be set below 0.040 W / mK.
  • the pressure capacities can be set very high, so that the panels produced by the method according to the invention can also be used for insulating walk-in or other load-bearing areas.
  • the process according to the invention is extremely economical compared to the conventionally known wood fiber board production processes, enables the production of a board type which is completely new in terms of thickness, density and technological properties and can be varied from an ecological point of view.
  • the fiberboard produced by the described method differs considerably from previously known fiberboard.
  • This plate can be varied widely in terms of density and can also assume very low densities.
  • very large thicknesses can be set become.
  • the insulation properties can be set very precisely, as can the compressive strength properties.
  • Figure 1 is a flow chart to explain an embodiment of the manufacturing process.
  • Wood chips 1 are subjected to fiberization 2 in a manner known per se, mechanical shredding of the wood chips 1 taking place under pressure and temperature after thermal digestion.
  • refiner 2 the wood chips 1 are fed to a pair of grinding disks via a screw and are applied after the defibrating.
  • the steam is then discharged in station 3, which can usually be done using a cyclone in which the steam and wood fibers are separated.
  • the fibers are then stored in a fiber storage 4.
  • a belt scale 5 By means of a belt scale 5, the required amounts of wood fiber are recorded, which are fed from the fiber storage 4 to a mixer 1 1.
  • binders A, B and C are fed from stocks 6, 7 and 8.
  • the binder quantities are recorded by means of belt scales 9; if necessary, individual binders can also be processed further, for example within a fine mill 10.
  • the number of binders and the type of further processing are given only by way of example and can be varied as required. Other additives can also be added at this point.
  • the refiner-moist wood fibers are mixed with the necessary binders.
  • the material is scattered and shaped in a spreading and forming station 12. Forming is understood to mean, among other things, the formation of side edges, uniform spreading and, if necessary, pre-pressing.
  • the binder is activated by means of steam, hot air or other activation media. This is preferably done by means of flow.
  • the dryer zone 14 there is a pre-pressing and a drying of the plates formed. This can be done, for example, by means of hot air flow, for which purpose a press can be used at this point, which has at least one of the press surfaces in the form of a screen.
  • the dried plate is then formatted or assembled in a station 1 5.

Abstract

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine neuartige Holzfaserdämmplatte anzugeben, welche hinsichtlich der Parameter Energieaufwand, Wasserverbrauch und Zeitsteuerung bei der Herstellung wirtschaftlich ist und sich hinsichtlich der Dichte und der sich daraus ergebenden technischen Eigenschaften wie Wärmedämmung, Druckbelastbarkeit und dergleichen sehr genau einstellen läßt. Zur technischen Lösung dieser Aufgabe wird mit der Erfindung eine Holzfaserdämmplatte angegeben, wobei nach einem einen Zerfaserungsprozeß abschließenden Refiner-Verfahren hinsichtlich des Feuchtigkeitsgehalts unveränderte Holzfasern mit einem Bindemittel vermischt, mit einer Streuvorrichtung auf einer Formstation ausgebracht, hinsichtlich Breite und Dicke geformt und nach Aktivierung des Bindemittels zur Bildung einer Platte getrocknet werden, wobei die Holzfaserdämmplatte eine Rohdichte < 150 kg/m3 bei einer Wärmeleitfähigkeit « 0,045 W/(m x K) aufweist.

Description

Holzfaserdämmplatte
Die Erfindung betrifft eine Dämmplatte aus Holzfasern insbesondere zur Wärmedämmung, wobei auch Matten darunter zu verstehen sind.
Bei der Herstellung von Faserplatten unterscheidet man grundsätzlich zwischen Papierfaser- bzw. Zellulosefaser-, Mineralfaser- und Holzfaser-Ausgangsmaterialien.
Holzfaserplatten werden zur Zeit nach zwei grundsätzlich verschiedenen Verfahren hergestellt. Dabei handelt es sich zum einen um das sogenannte Naßverfahren, nach welchem Holzweichfaserplatten und Holzhartfaserplatten (HDF) hergestellt werden, zum anderen um ein Holzfasertrockenverfahren, nach welchem sogenannte MDF- bzw. HDF-Platten gefertigt werden.
Gemeinsam ist den Holzfaserplattenherstellungsverfahren die Herstellung der Holzfasern. Dies erfolgt üblicherweise derart, daß zunächst Holzhackschnitzel mit einer Zerfaserungsanlage zu Holzfasern zerfasert werden. Man spricht von thermisch-mechanischem Aufschluß, wobei nach thermischem Aufschluß eine mechanische Zerfaserung der Holzhackschnitzel unter Druck unter Temperatureinwirkung erfolgt. In einem sogenannten Refiner werden die gekochten bzw. gedämpften Hackschnitzel über eine Schnecke einem Mahlscheibenpaar zugeführt und nach dem Zerfasern ausgebracht. Üblicherweise erfolgt in einem Zyklon die Trennung von Dampf und Holzfasern, die aufgrund des thermisch-mechanischen Aufschlusses als Mischung aus dem Refiner heraustreten. Bei dem inzwischen klassischen Naßverfahren werden die Holzfasern mit Flüssigkeit, üblicherweise Wasser, Leim und dergleichen zu einem Brei vermengt. Dieser Brei wird in Formstationen, üblicherweise mit einer Lang- siebentwässerungsvorrichtung, ausgebracht, geformt und in einer Presse verdichtet und getrocknet. Bei der Herstellung von Holzweichfaserplatten wird das Wasser mit Mangelwalzen teilweise ausgepreßt und das restliche Wasser mit Überström- oder Düsentrocknern verdunstet. Die Presse für das Herstellen von Holzhartfaserplatten weist zumindest in einer der Pressenflächen siebartige Öffnungen für den Dampfaustritt auf. Somit kann die in dem Naßfaserbrei befindliche Feuchtigkeit über die Oberfläche und die Kanten entweichen. Zu diesem Zweck muß das zu trocknende Faservlies selbstverständlich eine gewisse Zeit in der Presse verweilen, so daß das Herstellungsverfahren langwierig wird. Die Verweildauer in den bei der Holzweichfaserplattenherstellung verwendeten Trocknern ist aufgrund der geringen Wärmeübergänge in die Platte sehr hoch. Durch den Zusatz von Flüssigkeit, dem Erfordernis der Aufbringung von sehr viel Energie zum Ausdampfen der Flüssigkeit und der langen Verweildauer in der Trocknungsphase werden die Naßherstellungsverfahren für Holzfaserplatten vergleichsweise unwirtschaftlich.
Aus diesem Grunde wurde, zumindest um den Zeitfaktor beträchtlich zu reduzieren und ein kontinuierliches Plattenherstellungsverfahren bereitzustellen, das Trockenverfahren entwickelt. Dieses unterscheidet sich von den Naßverfahren dadurch, daß die Fasern vor der Ausbringung zur Formung beleimt und getrocknet werden. Nach der Trocknung werden die Fasern ausgestreut und nach der Formung in einer Presse ausgehärtet, die nun nicht mehr die Ausdampföffnungen in der Pressenfläche aufweisen muß. Die Ausdampfung der geringen Restfeuchte erfolgt hier über die Seitenkanten. Die Verweildauer des Fasermaterials in der Trocknungspresse ist folglich erheblich kürzer. Somit reduziert sich die Produktionszeit ab dem Ausstreuen beträchtlich. Jedoch ist die Vortrocknung der Fasern vor dem Aushärten nach wie vor erforderlich.
Ein Nachteil beider beschriebener Verfahren besteht in dem großen erforderlichen Energieaufwand zur Fasertrocknung, sei es im Trockenverfahren nach dem Zerfasern oder im Naßverfahren nach dem Formen. Ein weiterer Nachteil ist der ungünstige Wasserhaushalt, insbesondere beim Naßverfahren. Durch die breiige Konsistenz ergibt sich beim Naßverfahren zwangsläufig eine untere Grenze für die Rohdichte, die nicht unterschreitbar ist. Darüber hinaus ergibt sich eine obere Grenze hinsichtlich der Dicke der im Naßverfahren hergestellten Platten, da die Wärmezufuhr nur über die Oberflächen der Platten erfolgt und ab einer bestimmten Dicke somit, zumindest bei vernünftigem Energieaufwand, keine vollständige Durchtrocknung mehr möglich wäre. Aufgrund der Randbedingungen ist die Wärmeleitfähigkeit auch begrenzt, das heißt es ergeben sich λ-Werte > 0,045 W/mK. Bei den nach dem Trockenverfahren hergestellten Platten muß der Feuchtegrad sehr exakt eingestellt werden, da ansonsten bedingt durch das Trocknungsverfahren Reißer oder Platzer an der Platte auftreten. Die Entfeuchtung kann nur durch Verdampfen erfolgen, so daß das in der Platte befindliche Wasser durch die hohe Temperatur und den hohen Druck bis auf eine über der Siedetemperatur bei atmosphärischem Druck liegende Temperatur erhitzt wird. Ein weiterer Nachteil der im Trockenverfahren hergestellten Platten besteht in der ungünstigen Bindemittelverteilung, die üblicherweise nach einer Blasrohrbeleimung erfolgen muß, da ansonsten ein ausreichender Plattenverbund nicht mehr gewährleistet werden kann. Darüber hinaus können bei beiden Verfahren nur wasserlösliche Bindemittel verwendet werden.
Die nach den beschriebenen und bisher realisierten Verfahren hergestellten Holzfaserplatten sind aufgrund der beschriebenen Begrenzungen, untere Rohdichtegrenze und obere Dickegrenze einerseits sowie untere Begrenzung der Wärmeleitfähigkeit andererseits, in an sich bekannter Weise feste Platten für Innenausbau, Möbelbau, Formenbau und dergleichen. Die vorbekannten Platten sind für die Verwendung als Wärmedämmelement ungeeignet.
Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die A u f g a b e zugrunde, eine Holzfaserplatte anzugeben, welche hinsichtlich der Parameter Energieaufwand, Wasserverbrauch und Zeitsteuerung bei der Herstellung wirtschaftlich und hinsichtlich der Dichte und der sich daraus ergebenden technischen Eigenschaften wie Wärmedämmung,
Druckbelastbarkeit und dergleichen sehr genau einstellbar sind, auch unter Verwendung nicht wasserlöslicher Bindemittel erzeugt werden können, und als Dämmplatte einsetzbar sind. Zur technischen L ö s u n g dieser Aufgabe wird mit der Erfindung vorgeschlagen eine Holzfaserdämmplatte enthaltend wenigstens mit einem Bindemittel vermischte Holzfasern, die auf einer Formstation ausgebracht, hinsichtlich Breite und des Flächengewichtes geformt und nach Aktivierung des Bindemittels zur Bildung einer Platte in der Dicke geformt und ausgehärtet werden, wobei die Platte eine Rohdichte < 1 50 kg/m3 bei einer Wärmeleitfähigkeit < 0,045 W/(m x K) aufweist.
Die erfindungsgemäße Holzfaserdämmplatte unterschreitet jegliche bei Holzfaserplatten bisher bekannte Rohdichteuntergrenze bei einer gleichzeitig massiven Verringerung der Wärmeleitfähigkeit, so daß sie als Wärmedämmelement hervorragend einsetzbar ist. Die Bezeichnung "Platte" im Zusammenhang mit der Erfindung schließt nicht aus, daß die Holzfaserdämmplatte auch Matteneigenschaften aufweisen kann.
Bisher bekannte nach herkömmlichen Verfahren hergestellte Holzfaserplatten haben Rohdichte oberhalb 1 70 kg/m3 und Wärmeleitfähigkeiten um 0,05 bis 0,06 W/(m x K) . Druckspannungen liegen bekanntermaßen oberhalb 85 kN/m2 und das Druck-E-Modul liegt bei oberhalb 1 Mio. N/m2. Abreißfestigkeiten liegen oberhalb 20 kN/m2.
In vorteilhafter Weise hat die erfindungsgemäße Holzfaserdämmplatte eine Rohdichte < 1 50 kg/m3 bei einer Wärmeleitfähigkeit < 0,045 W/(m x K) . Die Abreißfestigkeit liegt in besonders vorteilhafter Weise < 10 kN/m2 und die Druckspannung < 65 kN/m2, woraus sich bei ausreichender Abreißfestigkeit die für Wärmedämmelemente erforderliche Weichheit ergibt. Das Druck-E- Modul liegt in besonders vorteilhafter Weise 650.000 N/m2.
Die erfindungsgemäße Wärmedämmplatte ist in äußerst wirtschaftlicher Weise unter geringfügiger Modifikation vorbekannter Verfahren herstellbar und weist hervorragende Wärmedämmeigenschaften auf.
Es hat sich überraschend herausgestellt, daß bei Anpassung anderer Verfahrensschritte weder eine Faserbefeuchtung zur Einstellung eines Naßverfahrens noch eine Fasertrocknung nach der Dampftrennphase im Anschluß an das Re- finer-Verfahren erforderlich sind. Die wie aus dem Refiner erhaltenen Fasern, wobei sich von selbst versteht, daß diese vom Dampf getrennt sind, können nach Mischung mit einem Bindemittel ausgestreut, geformt und getrocknet werden. Der Wasserhaushalt wird praktisch nicht belastet, da keine weitere Feuchtigkeit zugeführt werden muß. Unter dem Energiegesichtspunkt muß weder ein künstlich zugeführtes Feuchtigkeitsniveau getrocknet werden, noch muß die in den Fasern enthaltene Restfeuchte vor dem Aushärten ausgetrocknet werden. Unter dem Gesichtspunkt der Zeitsteuerung bei der Fertigung ergeben sich erhebliche Vorteile gegenüber den Naßverfahren, die nahe an den Bereich der Trockenverfahren heranreichen, so daß kontinuierliche Fertigungen möglich sind.
Daß die Fasern hinsichtlich des Feuchtigkeitsgehalts unverändert sind, heißt im Sinne der vorliegenden Erfindung, daß keine aktiven Maßnahmen zur Einstellung eines bestimmten Feuchtigkeitsniveaus durchgeführt werden müssen. Sofern die Fasern nach der Zerfaserung gelagert oder sonstwie bereitgehalten werden, und dabei geringfügige Feuchtigkeitsgehaltsveränderungen auftreten, ist das für die Durchführung des Verfahrens ohne Bedeutung.
Mit Vorteil wird vorgeschlagen, daß die Bindemittel mit den Fasern trocken vermischt werden. Hierdurch ergibt sich eine sehr gute Verteilung. Alternativ ist es auch möglich, feuchte Bindemittel einzubringen und zu verteilen. Mit ganz besonderem Vorteil wird unter ökologischen Gesichtspunkten vorgeschlagen, natürliche bzw. naturnahe Bindemittel zu verwenden. Das Verfahren läßt sich sehr exakt steuern und erheblich beschleunigen, wenn gemäß einem vorteilhaften Vorschlag der Erfindung dampfaktivierbare Bindemittel verwendet werden.
Während des Formvorgangs nach dem Ausstreuen des Faser- /Bindemittelgemisches können Vorpressungen erfolgen, um in großer Exaktheit die gewünschten Dichteverhältnisse einzustellen.
Die Aktivierung der Bindemittel erfolgt in vorteilhafter Weise mittels Dampf, der den ausgestreuten Fasermaterialstrang durchströmt. Diese Durchströmung gewährleistet eine vollständige Bindemittelaktivierung. Bezüglich der Aushärtung bzw. Trocknung wird mit der Erfindung in besonders vorteilhafter Weise vorgeschlagen, daß das ausgestreute und vorgeformte Fasermaterial von einem Trocknungsmedium durchströmt wird. Mit Vorteil wird vorgeschlagen, Heißluft quer zu den Hauptoberflächen des vorgeformten Materials durchströmen zu lassen. Mit Vorteil kann während des Durchströmens ein Preßvorgang erfolgen, der der Kalibrierung der Holzfaserplatte dient.
Mit der Erfindung wird ein einfaches, wirtschaftliches und hinsichtlich der Erlangung technologischer Eigenschaften sehr exakt steuerbares Verfahren bereitgestellt, mit welchem Dämmplatten mit Dichten weit unter 1 50 kg/m3 herstellbar sind, das heißt bis um 60 kg/m3. Darüber hinaus lassen sich geradezu beliebige Dicken erstellen, wenn eine Durchströmtrocknung erfolgt. Die Platte kann mit natürlichen bzw. naturnahen Bindemitteln wie Lignin, Damarharzen und dergleichen hergestellt werden, so daß auch wasserunlösliche Bindemittel verwendbar sind. Es lassen sich Wärmeleitfähigkeiten (λ) unter 0,040 W/mK einstellen. Die Druckbelastbarkeiten können sehr hoch gesetzt werden, so daß die nach dem erfindungsgemäßen Verfahren hergestellten Platten auch zur Dämmung begehbarer oder sonstwie lasttragender Bereiche eingesetzt werden können.
Darüber hinaus besteht die Möglichkeit, während unterschiedlicher Verfahrensstufen Additive einzumischen, um beispielsweise Brandklassenerfordernisse erfüllen zu können.
Das erfindungsgemäße Verfahren ist gegenüber den herkömmlich bekannten Holzfaserplatten-Herstellungsverfahren äußerst wirtschaftlich, ermöglicht die Herstellung eines hinsichtlich Dicke, Dichte und technologischer Eigenschaften völlig neuen Plattentyps und läßt sich unter ökologischen Gesichtspunkten variieren.
Die nach dem beschriebenen Verfahren hergestellte Holzfaserplatte unterscheidet sich von bisher bekannten Holzfaserplatten erheblich. Diese Platte kann hinsichtlich der Dichte stark variiert werden und auch sehr geringe Dichten annehmen. Darüber hinaus können sehr große Dicken eingestellt werden. Die Dämmeigenschaften lassen sich sehr exakt einstellen, ebenso wie die Druckbelastbarkeitseigenschaften.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung anhand der Figuren. Dabei zeigen:
Figur 1 ein Flußdiagramm zur Erläuterung eines Ausführungsbeispieles des Herstellungsverfahrens.
Holzhackschnitzel 1 werden in an sich bekannter Weise einer Zerfaserung 2 unterworfen, wobei nach thermischen Aufschluß eine mechanische Zerfaserung der Holzhackschnitzel 1 unter Druck und Temperatureinwirkung erfolgt. In dem sogenannten Refiner 2 werden die Hackschnitzel 1 über eine Schnecke einem Mahlscheibenpaar zugeführt und nach dem Zerfasern ausgebracht. Anschließend erfolgt der Dampfaustrag in der Station 3, was üblicherweise durch einen Zyklon erfolgen kann, in welchen die Trennung von Dampf und Holzfasern erfolgt. Die Fasern werden dann in einem Faserspeicher 4 bevorratet.
Es ist wichtig, festzustellen, daß weder eine Fasertrocknung noch eine Anfeuchtung erfolgt. Die Fasern werden gelagert und weiterverarbeitet, wie sie aus dem Refiner kommen, ohne daß Maßnahmen zur Veränderung oder Beeinflussung des Feuchtegehalts erfolgen.
Mittels einer Bandwaage 5 werden die erforderlichen Holzfasermengen erfaßt, die vom Faserspeicher 4 einem Mischer 1 1 zugeführt werden. Gleichzeitig werden aus den Vorräten 6, 7 und 8 die Bindemittel A, B und C zugeführt. Die Bindemittelmengen werden mittels Bandwaagen 9 erfaßt, ggf. können einzelne Bindemittel auch weiterverarbeitet werden, beispielsweise innerhalb einer Feinmühle 10. Die Angabe der Anzahl von Bindemitteln und der Art der Weiterverarbeitung erfolgt nur beispielhaft und kann beliebig bedarfsgemäß variiert werden. Auch weitere Additive können an dieser Stelle beigemischt werden.
In dem Mischer 1 1 erfolgt die Mischung der refinerfeuchten Holzfasern mit den erforderlichen Bindemitteln. In einer Streu- und Formstation 12 erfolgt die Materialstreuung und -formung. Unter Formung versteht sich unter anderem eine Seitenkantenbildung, eine gleichförmige Ausbreitung und ggf. eine Vorpressung.
In einer darauffolgenden Stufe 1 3, beispielsweise einem Dämpfer, erfolgt die Bindemittelaktivierung mittels Dampf, Heißluft oder sonstigen Aktivierungsmedien. Dies geschieht vorzugsweise mittels Durchströmung.
In der Trocknerzone 14 erfolgt eine Vorpressung und eine Druchtrocknung der gebildeten Platten. Dies kann beispielsweise mittels Heißluftdurchströmung erfolgen, wozu beispielsweise an dieser Stelle eine Presse verwandt werden kann, die wenigstens eine der Preßoberflächen in Form eines Siebes aufweist.
Die fertiggetrocknete Platte wird anschließend in einer Station 1 5 formatiert bzw. konfektioniert.
Bezuqszeichenliste
1 Hackschnitzel
2 Zerfaserung, Refiner
3 Dampfaustrag
4 Faserspeicher
5 Bandwaage Holzfasern
6 Bindemittel A
7 Bindemittel B
Bindemittel C
Bandwaagen
10 Feinmühle
1 1 Mischer
12 Materialstreuung und -formung
1 3 Dämpfer
14 Trocknerzone 5 Plattenformatierung

Claims

Patentansprüche:
1 . Holzfaserdämmplatte enthaltend wenigstens mit einem Bindemittel vermischte Holzfasern, die auf einer Formstation ausgebracht, hinsichtlich Breite und des Flächengewichtes geformt und nach Aktivierung des Bindemittels zur Bildung einer Platte in der Dicke geformt und ausgehärtet werden, wobei die Platte eine Rohdichte < 1 50 kg/m3 bei einer Wärmeleitfähigkeit ≤ 0,045 W/(m x K) aufweist.
2. Holzfaserdämmplatte nach Anspruch 1 , dadurch gekennzeichnet, daß diese eine Abreißfestigkeit ≤ 1 0 kN/m2 aufweist.
3. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese eine Druckspannung ≤ 65 kN/m2 aufweist.
4. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese ein Druck-E-Modul < 650.000 N/m2 aufweist.
5. Holzfaserdämmplatte nach Anspruch 1 , dadurch gekennzeichnet, daß das Bindemittel in trockenem Zustand eingemischt ist
6. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese natürliche bzw. naturnahe Bindemittel enthält.
7. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese dampfaktivierbare Bindemittel enthält.
8. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese während des Formvorgangs wenigstens eine Vorpressung unterworfen ist.
9. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese zur Bindemittelaktivierung mit Dampf durchströmt ist.
10. Holzfaserdämmplatte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das ausgebrachte und geformte Fasermaterial zur Trocknung mit Heißluft durchströmt ist.
EP97950187A 1996-11-15 1997-11-13 Holzfaserdämmplatte Ceased EP0880430A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29724768U DE29724768U1 (de) 1996-11-15 1997-11-13 Holzfaserdämmplatte

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1996147240 DE19647240B4 (de) 1996-11-15 1996-11-15 Holzfaserplatte und Verfahren zu ihrer Herstellung
DE19647240 1996-11-15
PCT/EP1997/006338 WO1998022267A1 (de) 1996-11-15 1997-11-13 Holzfaserdämmplatte

Publications (1)

Publication Number Publication Date
EP0880430A1 true EP0880430A1 (de) 1998-12-02

Family

ID=7811754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97950187A Ceased EP0880430A1 (de) 1996-11-15 1997-11-13 Holzfaserdämmplatte

Country Status (4)

Country Link
EP (1) EP0880430A1 (de)
JP (1) JP2001506549A (de)
DE (1) DE19647240B4 (de)
WO (1) WO1998022267A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949975B4 (de) * 1999-10-08 2005-04-28 Univ Dresden Tech Verfahren zur Herstellung von biologisch abbaubaren, plattenförmigen Werkstoffen und Formteilen
DE19963096C1 (de) 1999-12-24 2001-05-03 Glunz Ag Verfahren zur Herstellung Polyurethan-gebundener Formkörper aus Lignocellulose-haltigen Partikeln
DE10056829C2 (de) * 2000-06-02 2003-09-25 Steico Ag Verfahren zur Herstellung einer Dämmstoffplatte bzw. -matte aus Holzfasern und nach diesem Verfahren hergestellte Dämmstoffplatte bzw. -matte
DE10042534A1 (de) * 2000-08-30 2002-03-28 Kronotec Ag Faserplatte
JP4203317B2 (ja) 2000-09-13 2008-12-24 ホマターム アクチェンゲゼルシャフト 天然繊維からなる成形要素からマットを製造する方法及びその方法により製造されたマット
DE10315997A1 (de) * 2003-04-07 2004-12-02 Fritz Egger Ges. m.b.H. & Co. Spanplatte sowie Verfahren zur Herstellung einer Spanplatte

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1089540B (de) * 1956-06-28 1960-09-22 Weyerhaeuser Timber Company Verfahren zur Gewinnung einer Matte aus gegebenenfalls mit Binde-mitteln versetzten Lignozellulosefasern fuer die Herstellung von Holzfaserplatten od. dgl.
DE1212297B (de) * 1961-04-29 1966-03-10 Max Himmelheber Dipl Ing Verfahren zur Herstellung von Holzwerkstoffplatten und -formkoerpern
DE2201459A1 (de) * 1972-01-13 1973-07-19 Homann Gmbh Fritz Verfahren zum herstellen von platten aus holzfasern
SE442724B (sv) * 1982-06-07 1986-01-27 Sunds Defibrator Sett vid tillverkning av fiberskivor enligt den torra metoden
SE455001B (sv) * 1986-10-03 1988-06-13 Rune Simonson Forfarande vid tillverkning av produkter innehallande trefibrer
DE3641464A1 (de) * 1986-12-04 1988-06-16 Uwe Welteke Naturfasern enthaltende waermedaemmplatte sowie verfahren und vorrichtung fuer ihre herstellung
DE3641465C2 (de) * 1986-12-04 1995-08-03 Uwe Welteke Verfahren zur Herstellung von Wärmedämmplatten aus Fasermaterialien
DE3641466C2 (de) * 1986-12-04 1994-06-01 Uwe Welteke Vorrichtung zur Herstellung von Faserplatten
AT396137B (de) * 1991-05-06 1993-06-25 Leitgeb Ag Holzfaserdaemmplatte
DE4211888A1 (de) * 1992-04-09 1993-10-14 Wulf V Dr Bonin Ganzpflanzen-Formteile
DE4322907A1 (de) * 1993-07-09 1995-01-12 Udar Ges Fuer Umweltengineerin Verfahren zur Herstellung von Platten und Formkörpern mit hohem Wärmedämm- und Feuerhemmwert und Vorrichtung zur Durchführung
DE4423632A1 (de) * 1994-07-06 1996-01-11 Siempelkamp Gmbh & Co Verfahren zum Vorwärmen von Streugut auf eine vorgebbare Vorwärmtemperatur im Zuge der Herstellung von Holzwerkstoffplatten
DE4436981A1 (de) * 1994-10-06 1996-04-11 Hartmut Faerber Leichtbaukörper geringer Wärmeleitfähigkeit
FI98502C (fi) * 1994-11-11 1997-07-10 Valtion Teknillinen Puuperäiset muotokappaleet ja menetelmä niiden valmistamiseksi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9822267A1 *

Also Published As

Publication number Publication date
JP2001506549A (ja) 2001-05-22
DE19647240B4 (de) 2005-06-09
WO1998022267A1 (de) 1998-05-28
DE19647240A1 (de) 1998-05-28

Similar Documents

Publication Publication Date Title
EP0344231B1 (de) Verfahren zum herstellen eines gegebenenfalls plattenförmigen kunstharz-druckformkörpers sowie vorprodukt zum einsatz bei einem solchen verfahren
DE3420195A1 (de) Verfahren zum herstellen von daemmaterial aus altpapier und/oder pappe
DE19635410A1 (de) Verfahren und Vorrichtung zur Herstellung biologisch abbaubarer Dämmplatten
DE1053388B (de) Feuerbestaendiges Mineralfaser-Erzeugnis
DE10242770B4 (de) Verfahren zur Herstellung von Holzfaser-Dämmplatten
EP1110687B1 (de) Verfahren zur Herstellung einer leichten Faserplatte und leichte Faserplatte mit geschlossener Oberfläche
DE19647240B4 (de) Holzfaserplatte und Verfahren zu ihrer Herstellung
DE102006062285B4 (de) Faserplatte und Verfahren zu deren Herstellung
EP0839616B1 (de) Verfahren zur Herstellung organischgebundener Holzwerkstoffe
EP2355965A1 (de) Zusammensetzung und verfahren zur herstellung einer holz- oder holzfaserplatte
DE2120936C3 (de) Verfahren zur Herstellung und Aufbereitung von Fasern aus lignozellulosehaltigem Material
DE29724768U1 (de) Holzfaserdämmplatte
DE19949975A1 (de) Verfahren zur Herstellung von plattenförmigen Dämm- und Konstruktionswerkstoffen sowie Formkörpern
DE19606262C1 (de) Verfahren und Vorrichtung zur Herstellung einer mitteldichten Faserplatte
EP0182949B1 (de) Verfahren zur Herstellung von Platten oder Formteilen aus lignozellulosehaltigen Fasern
AT230078B (de) Verfahren zur Herstellung von Hartfaserplatten
DE898964C (de) Verfahren zur Herstellung von Leichtbaustoffen aus Holzabfaellen
DE807193C (de) Bauplatten
DE967989C (de) Verfahren zur Herstellung von kunstholzartigen Formkoerpern, insbesondere Hartplatten, aus einem Faser-Span-Gemisch
DE102010056491A1 (de) Formkörper aus Pflanzenmaterial und Verfahren zu dessen Herstellung
DE1084017B (de) Verfahren zur Herstellung von Form-koerpern, wie Behaelter, Moebelteile u. dgl. aus einer Mischung einer im Trocken-verfahren gewonnenen Holzfasermasse mit einem beschraenkten Bindemittelanteil
EP2786849B1 (de) Verfahren zur Herstellung einer Sandwich-Faserplatte, sowie Sandwich-Faserplatte
EP1059152B1 (de) Verfahren zur Herstellung eines Formkörpers auf der Basis von lignocellulosehaltigen Fasern, insbesondere einer Faserplatte
DE873376C (de) Verfahren zur Herstellung von Formlingen, insbesondere von Platten
WO1992013688A1 (de) Verfahren zur herstellung von holzfaserplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR IT LI LU NL SE

17Q First examination report despatched

Effective date: 20010313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ HOMANN GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20030711