EP0877816A1 - Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines - Google Patents
Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccinesInfo
- Publication number
- EP0877816A1 EP0877816A1 EP97906470A EP97906470A EP0877816A1 EP 0877816 A1 EP0877816 A1 EP 0877816A1 EP 97906470 A EP97906470 A EP 97906470A EP 97906470 A EP97906470 A EP 97906470A EP 0877816 A1 EP0877816 A1 EP 0877816A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protein
- yeast
- group
- porin
- meningococcal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 335
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 240
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 120
- 230000014509 gene expression Effects 0.000 title claims abstract description 104
- 229960005486 vaccine Drugs 0.000 title claims abstract description 62
- 239000012528 membrane Substances 0.000 title claims description 64
- 241000588650 Neisseria meningitidis Species 0.000 title claims description 38
- 108010013381 Porins Proteins 0.000 claims abstract description 201
- 150000004676 glycans Chemical class 0.000 claims abstract description 128
- 239000005017 polysaccharide Substances 0.000 claims abstract description 126
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims abstract description 107
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 55
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 54
- 108091007433 antigens Proteins 0.000 claims abstract description 36
- 102000036639 antigens Human genes 0.000 claims abstract description 36
- 239000000427 antigen Substances 0.000 claims abstract description 35
- 239000002773 nucleotide Substances 0.000 claims abstract description 33
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 32
- 230000001939 inductive effect Effects 0.000 claims abstract description 19
- 230000028993 immune response Effects 0.000 claims abstract description 18
- 108700010070 Codon Usage Proteins 0.000 claims abstract description 16
- 241000124008 Mammalia Species 0.000 claims abstract description 11
- 239000003937 drug carrier Substances 0.000 claims abstract description 6
- 102000007739 porin activity proteins Human genes 0.000 claims abstract 14
- 239000013612 plasmid Substances 0.000 claims description 62
- 239000000872 buffer Substances 0.000 claims description 49
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 241000235058 Komagataella pastoris Species 0.000 claims description 33
- 230000028327 secretion Effects 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 27
- 241000282414 Homo sapiens Species 0.000 claims description 24
- 108020004705 Codon Proteins 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 19
- 238000005406 washing Methods 0.000 claims description 16
- 239000003599 detergent Substances 0.000 claims description 15
- 101710167885 Major outer membrane protein P.IB Proteins 0.000 claims description 14
- 239000001963 growth medium Substances 0.000 claims description 12
- 229960000814 tetanus toxoid Drugs 0.000 claims description 12
- 239000003550 marker Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 230000001413 cellular effect Effects 0.000 claims description 9
- 238000001641 gel filtration chromatography Methods 0.000 claims description 7
- 238000004255 ion exchange chromatography Methods 0.000 claims description 7
- 108010051457 Acid Phosphatase Proteins 0.000 claims description 5
- 108010038049 Mating Factor Proteins 0.000 claims description 5
- 239000003398 denaturant Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 230000002934 lysing effect Effects 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 5
- SBKVPJHMSUXZTA-MEJXFZFPSA-N (2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-5-amino-2-[[2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoic acid Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 SBKVPJHMSUXZTA-MEJXFZFPSA-N 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 101710194180 Alcohol oxidase 1 Proteins 0.000 claims description 3
- 101710116435 Outer membrane protein Proteins 0.000 abstract description 4
- 235000018102 proteins Nutrition 0.000 description 196
- 102000017033 Porins Human genes 0.000 description 177
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 90
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 85
- 241000588724 Escherichia coli Species 0.000 description 61
- 241000235648 Pichia Species 0.000 description 59
- 210000004027 cell Anatomy 0.000 description 59
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 45
- 108020004414 DNA Proteins 0.000 description 39
- 239000013598 vector Substances 0.000 description 34
- 239000000047 product Substances 0.000 description 32
- 238000010367 cloning Methods 0.000 description 31
- 239000013604 expression vector Substances 0.000 description 27
- 239000002609 medium Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 26
- 150000001413 amino acids Chemical group 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 24
- 239000012634 fragment Substances 0.000 description 24
- 239000011780 sodium chloride Substances 0.000 description 23
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 22
- 101150015673 porin gene Proteins 0.000 description 22
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 20
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 18
- 239000008188 pellet Substances 0.000 description 17
- 238000000746 purification Methods 0.000 description 17
- 230000004927 fusion Effects 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 15
- 238000002965 ELISA Methods 0.000 description 14
- 241001212279 Neisseriales Species 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- 238000005119 centrifugation Methods 0.000 description 14
- 239000013613 expression plasmid Substances 0.000 description 14
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 13
- 108010060123 Conjugate Vaccines Proteins 0.000 description 13
- 229940031670 conjugate vaccine Drugs 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000013615 primer Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000004098 Tetracycline Substances 0.000 description 12
- 239000007983 Tris buffer Substances 0.000 description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 239000004202 carbamide Substances 0.000 description 12
- 108091008146 restriction endonucleases Proteins 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 229960002180 tetracycline Drugs 0.000 description 12
- 229930101283 tetracycline Natural products 0.000 description 12
- 235000019364 tetracycline Nutrition 0.000 description 12
- 150000003522 tetracyclines Chemical class 0.000 description 12
- 230000009466 transformation Effects 0.000 description 12
- 230000014616 translation Effects 0.000 description 12
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 12
- 238000001262 western blot Methods 0.000 description 12
- 241000588653 Neisseria Species 0.000 description 11
- 238000010828 elution Methods 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 11
- 239000000499 gel Substances 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 10
- 241000282412 Homo Species 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 10
- 210000003000 inclusion body Anatomy 0.000 description 10
- 230000003834 intracellular effect Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000002523 gelfiltration Methods 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 9
- 239000013638 trimer Substances 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 102000014914 Carrier Proteins Human genes 0.000 description 8
- 108010078791 Carrier Proteins Proteins 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 8
- 239000012506 Sephacryl® Substances 0.000 description 8
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 8
- 229960003669 carbenicillin Drugs 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 238000005457 optimization Methods 0.000 description 8
- 108010085336 phosphoribosyl-AMP cyclohydrolase Proteins 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 239000003053 toxin Substances 0.000 description 8
- 231100000765 toxin Toxicity 0.000 description 8
- 108700012359 toxins Proteins 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 7
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 7
- -1 carrier Substances 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 101150115693 ompA gene Proteins 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 210000005253 yeast cell Anatomy 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000012286 ELISA Assay Methods 0.000 description 6
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000012505 Superdex™ Substances 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 6
- 239000011543 agarose gel Substances 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 238000001542 size-exclusion chromatography Methods 0.000 description 6
- 241000672609 Escherichia coli BL21 Species 0.000 description 5
- 206010027249 Meningitis meningococcal Diseases 0.000 description 5
- 201000010924 Meningococcal meningitis Diseases 0.000 description 5
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 5
- 108010006785 Taq Polymerase Proteins 0.000 description 5
- 241000607479 Yersinia pestis Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000007385 chemical modification Methods 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000001962 electrophoresis Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 5
- 230000004151 fermentation Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 210000004201 immune sera Anatomy 0.000 description 5
- 229940042743 immune sera Drugs 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 5
- 229940033663 thimerosal Drugs 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 108090000565 Capsid Proteins Proteins 0.000 description 4
- 102100023321 Ceruloplasmin Human genes 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 4
- 102000003960 Ligases Human genes 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 239000006142 Luria-Bertani Agar Substances 0.000 description 4
- 239000006137 Luria-Bertani broth Substances 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 150000001540 azides Chemical class 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229940009976 deoxycholate Drugs 0.000 description 4
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- IZWSFJTYBVKZNK-UHFFFAOYSA-N lauryl sulfobetaine Chemical compound CCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O IZWSFJTYBVKZNK-UHFFFAOYSA-N 0.000 description 4
- 230000001665 lethal effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 229940031937 polysaccharide vaccine Drugs 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 239000012130 whole-cell lysate Substances 0.000 description 4
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 3
- 108010025188 Alcohol oxidase Proteins 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 108090000317 Chymotrypsin Proteins 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 101150069554 HIS4 gene Proteins 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 3
- 108010006232 Neuraminidase Proteins 0.000 description 3
- 102000005348 Neuraminidase Human genes 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 3
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000013378 biophysical characterization Methods 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 229960002376 chymotrypsin Drugs 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 239000002198 insoluble material Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 101150031507 porB gene Proteins 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011535 reaction buffer Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000006268 reductive amination reaction Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 125000005629 sialic acid group Chemical group 0.000 description 3
- 230000003381 solubilizing effect Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 101150006240 AOX2 gene Proteins 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000052866 Amino Acyl-tRNA Synthetases Human genes 0.000 description 2
- 108700028939 Amino Acyl-tRNA Synthetases Proteins 0.000 description 2
- 101710191958 Amino-acid acetyltransferase Proteins 0.000 description 2
- 102000009042 Argininosuccinate Lyase Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102000048120 Galactokinases Human genes 0.000 description 2
- 108700023157 Galactokinases Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- 241000235048 Meyerozyma guilliermondii Species 0.000 description 2
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 229910020889 NaBH3 Inorganic materials 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 240000005373 Panax quinquefolius Species 0.000 description 2
- 235000003140 Panax quinquefolius Nutrition 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- 239000008049 TAE buffer Substances 0.000 description 2
- 108010075344 Tryptophan synthase Proteins 0.000 description 2
- 241000235017 Zygosaccharomyces Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 229960001212 bacterial vaccine Drugs 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 238000005515 capillary zone electrophoresis Methods 0.000 description 2
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 230000001320 lysogenic effect Effects 0.000 description 2
- 239000004325 lysozyme Substances 0.000 description 2
- 229960000274 lysozyme Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 208000037941 meningococcal disease Diseases 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 101150047779 ompB gene Proteins 0.000 description 2
- 238000007248 oxidative elimination reaction Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 150000004804 polysaccharides Polymers 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 101150079601 recA gene Proteins 0.000 description 2
- 238000004153 renaturation Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229940031418 trivalent vaccine Drugs 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 229940125575 vaccine candidate Drugs 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- 108010039636 3-isopropylmalate dehydrogenase Proteins 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 240000000073 Achillea millefolium Species 0.000 description 1
- 235000007754 Achillea millefolium Nutrition 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102100036826 Aldehyde oxidase Human genes 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 1
- 101100205030 Caenorhabditis elegans hars-1 gene Proteins 0.000 description 1
- 102000007590 Calpain Human genes 0.000 description 1
- 108010032088 Calpain Proteins 0.000 description 1
- 101100032284 Candida albicans (strain SC5314 / ATCC MYA-2876) URA9 gene Proteins 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 244000089742 Citrus aurantifolia Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000043587 Collimonas fungivorans Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000235646 Cyberlindnera jadinii Species 0.000 description 1
- 241000878745 Cyberlindnera saturnus Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010052167 Dihydroorotate Dehydrogenase Proteins 0.000 description 1
- 102100032823 Dihydroorotate dehydrogenase (quinone), mitochondrial Human genes 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 102000018386 EGF Family of Proteins Human genes 0.000 description 1
- 108010066486 EGF Family of Proteins Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- LLQPHQFNMLZJMP-UHFFFAOYSA-N Fentrazamide Chemical compound N1=NN(C=2C(=CC=CC=2)Cl)C(=O)N1C(=O)N(CC)C1CCCCC1 LLQPHQFNMLZJMP-UHFFFAOYSA-N 0.000 description 1
- 102100024637 Galectin-10 Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 101001011019 Gallus gallus Gallinacin-10 Proteins 0.000 description 1
- 101001011021 Gallus gallus Gallinacin-12 Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010033128 Glucan Endo-1,3-beta-D-Glucosidase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 102000000587 Glycerolphosphate Dehydrogenase Human genes 0.000 description 1
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 206010018612 Gonorrhoea Diseases 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 101000928314 Homo sapiens Aldehyde oxidase Proteins 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101001018100 Homo sapiens Lysozyme C Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 102000012960 Immunoglobulin kappa-Chains Human genes 0.000 description 1
- 108010090227 Immunoglobulin kappa-Chains Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 1
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 241001508784 Kazachstania telluris Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241000235031 Lachancea fermentati Species 0.000 description 1
- 101710164702 Major outer membrane protein Proteins 0.000 description 1
- HACHPVCYFLSKSB-UMJDSZQGSA-N ManNAz-DBCO-Pam3CSK4 Chemical compound CCCCCCCCCCCCCCCC(N[C@H](CSCC(COC(CCCCCCCCCCCCCCC)=O)OC(CCCCCCCCCCCCCCC)=O)C(N[C@H](CO)C(N[C@H](CCCCN)C(N[C@H](CCCCN)C(N[C@H](CCCCN)C(N[C@H](CCCCN)C(NCCC(N(C1)C2=CC=CC=C2C2N(C(N[C@H]([C@H](C3)O)[C@H]([C@@H]([C@@H](CO)O)O)O[C@@]3(C(O)=O)O)=O)N=NC2C2=C1C=CC=C2)=O)=O)=O)=O)=O)=O)=O)=O HACHPVCYFLSKSB-UMJDSZQGSA-N 0.000 description 1
- 108010027796 Membrane Fusion Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000235042 Millerozyma farinosa Species 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- 241000588677 Neisseria meningitidis serogroup B Species 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241000235059 Ogataea pini Species 0.000 description 1
- 108700006385 OmpF Proteins 0.000 description 1
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150023810 PHO1 gene Proteins 0.000 description 1
- 101150012394 PHO5 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 108010010677 Phosphodiesterase I Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000521553 Pichia fermentans Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100037681 Protein FEV Human genes 0.000 description 1
- 101710198166 Protein FEV Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 101100271429 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ATP6 gene Proteins 0.000 description 1
- 235000001006 Saccharomyces cerevisiae var diastaticus Nutrition 0.000 description 1
- 244000206963 Saccharomyces cerevisiae var. diastaticus Species 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241001489223 Saccharomycodes Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000862632 Soja Species 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 241001506047 Tremella Species 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 101100115751 Trypanosoma brucei brucei dnaaf11 gene Proteins 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 101150011703 URA1 gene Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 101100347909 Vibrio cholerae serotype O1 (strain ATCC 39541 / Classical Ogawa 395 / O395) nagZ gene Proteins 0.000 description 1
- HFYBTHCYPKEDQQ-UHFFFAOYSA-N [2,3-dihydroxy-3-(1h-imidazol-5-yl)propyl] dihydrogen phosphate Chemical compound OP(=O)(O)OCC(O)C(O)C1=CN=CN1 HFYBTHCYPKEDQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001948 anti-meningococcal effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 239000007998 bicine buffer Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229940102872 bluemax Drugs 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 101150106284 deoR gene Proteins 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 101150012763 endA gene Proteins 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 101150045500 galK gene Proteins 0.000 description 1
- 101150041954 galU gene Proteins 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 101150096208 gtaB gene Proteins 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical class C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 238000012768 mass vaccination Methods 0.000 description 1
- 101150023497 mcrA gene Proteins 0.000 description 1
- 229940014135 meningitis vaccine Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 101150098466 rpsL gene Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000011451 sequencing strategy Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 108010044241 tetanus toxin fragment C Proteins 0.000 description 1
- 229940031351 tetravalent vaccine Drugs 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- 108010082737 zymolyase Proteins 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/22—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/646—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
Definitions
- the present invention is in the field of recombinant genetics, protein expression, and vaccines.
- the present invention relates to a method of expressing in a recombinant yeast host an outer membrane group B porin protein from Neisseria meningitidis.
- the invention also relates to a vaccine comprising group A meningococcal polysaccharide (GAMP), group B meningococcal polysaccharide (GBMP) and group C meningococcal polysaccharide (GCMP) antigens, together with a pharmaceutically acceptable carrier.
- GAMP group A meningococcal polysaccharide
- GBMP group B meningococcal polysaccharide
- GCMP group C meningococcal polysaccharide
- the invention also relates to a method of inducing an immune response in a mammal, comprising administering the above-mentioned vaccine to a mammal in an amount sufficient to induce an immune response.
- Meningococcal meningitis remains a worldwide problem, and occurs in both endemic and epidemic forms (Peltola, H., Rev. Infect. Dis. 5:71 -91 (1983);
- Neisseria meningitidis is a gram-negative organism that has been classified serologically into groups A, B. 29e, W135, X, Y. and Z (Gotschlich. E.C., "Meningococcal Meningitis.” in Bacterial Vaccines. Germanier, E., ed..
- group A polysaccharide is a partially O-acetylated (1 -6) linked homopolymer of 2-acetamido-2-detoxy-D-mannopyranosyl phosphate, and that both groups B and C polysaccharides are homopolymers of sialic acid.
- meningitidis groups A, B, and C are responsible for approximately 90% of cases of meningococcal meningitis. Success in the prevention of group
- a and C meningococcal meningitis was achieved using a bivalent polysaccharide vaccine (Gotschlich, E.C. et al, J. Exp. Med. 729: 1367-1384 ( 1 69); Artenstein. M.S. et al, N. Engl J. Med. 252:417-420 ( 1970)); this vaccine became a commercial product and has been used successfully in the last decade in the prevention and arrest of major meningitis epidemics in many parts of the world.
- Vaccine 3:340-342 (1985) is the currently used meningococcal meningitis vaccine (Jennings, H.J., "Capsular Polysaccharides as Vaccine Candidates," in Current Topics in Microbiol and Immunol, Jann, D. and Jann, B., eds, Springer- Verlag.
- the outer membranes of Neisseria species much like other Gram negative bacteria are semi -permeable membranes which allow free flow access and escape of small molecular weight substances to and from the periplasmic space of these bacteria but retard molecules of larger size (Heasley, F.A., et al, "Reconstitution and characterization of the N. gonorrhoeae outer membrane permeability barrier," in Genetics and Immunobiology of Neisseria gonorrhoeae, Danielsson and Normark, eds., University of Umea, Umea, pp. 12-1 (1980); Douglas, J.T., et al , FEMS Microbiol. Lett. 72:305-309 (1981)).
- porins proteins which have been collectively named porins.
- These proteins are made up of three identical polypeptide chains (Jones, R.B., et al. Infect. Immun. 30:773-780 (1980); McDade, Jr. and Johnston, J. Bacterial. 14I: ⁇ 183-1 191 (1980)) and in their native trimer conformation, form water filled, voltage-dependent channels within the outer membrane of the bacteria or other membranes to which they have been introduced (Lynch, E.C., et al, Biophys. J. -77:62 (1983); Lynch, E.C., et al, Biophys. J.
- porin proteins were initially co-isolated with lipopolysaccharides (LPS). Consequently, the porin proteins have been termed "endotoxin-associated proteins" (Bjornson et al, Infect. Immun. 56:1602-1607 (1988)). Studies on the wild type porins have reported that full assembly and oligomerization are not achieved unless LPS from the corresponding bacterial strain is present in the protein environment (Holzenburg et al, Biochemistry 25:4187-4193 (1989); Sen and Nikaido, J. Biol. Chem. 266: 1 1295-1 1300 (1991 )).
- meningococcal porins have been subdivided into three major classifications which in antedated nomenclature were known as Class 1 , 2, and 3 (Frasch, C.E., et al, Rev. Infect. Dis. 7:504-510 (1985)). Each meningococcus examined has contained one of the alleles for either a Class 2 porin gene or a Class 3 porin gene but not both (Feavers, I.M., et al . Infect. Immun. 60:3620-
- Class 2 allelic type behave electrophysically somewhat differently than isolated gonococcal porins of the Class 3 type in lipid bilayer studies both in regards to their ion selectivity and voltage-dependence (Lynch. E.C., et al , Biophys. J. 41 :62 ( 1983); Lynch, E.C., et al , Biophys. J. 45: 104- 107 ( 1984)).
- the ability of the different porins to enter these lipid bi layers from intact living bacteria seems to correlate not only with the porin type but also with the neisserial species from which they were donated (Lynch, E.C., et al, Biophys. J. -75:104-107 (1984)). It would seem that at least some of these functional attributes could be related to different areas within the protein sequence of the porin.
- One such functional area previously identified within all gonococcal
- Class 2-like proteins is the site of chymotrypsin cleavage. Upon chymotrypsin digestion, this class of porins lack the ability to respond to a voltage potential and close. Gonococcal Class 3-like porins as well as meningococcal porins lack this sequence and are thus not subject to chymotrypsin cleavage but nonetheless respond by closing to an applied voltage potential (Greco, F.. "The formation of channels in lipid bilayers by gonococcal major outer membrane protein.” thesis. The Rockefeller University, New York ( 1981 ); Greco, F.. et al. Fed. Proc. 39:1813 (1980)).
- Neisseria porins are among the most abundant proteins present in the outer membrane of these organisms, and as they do not undergo antigenic shift during infection (unlike several other major surface antigens), their universal presence in both Neisseria meningitidis and Neisseria gonorrhoea, as well as their exposure at the surface, make them candidates for components of vaccines against these organisms.
- Patients convalescing from meningococcal disease produce anti-porin antibodies, and antibodies elicited by immunization with porin proteins are bactericidal to homologous serotypes.
- the antibody response to a polysaccharide in infants is limited to antibodies of the IgM isotype; the isotype switching necessary for production of non-IgM antibodies requires T-cell involvement.
- Polysaccharide antigens present less of a problem in more mature humans (over age two), as they are able to induce antibodies of the IgG isotype as well as IgM (Yount el al, J. Exp. Med 727:633-646 (1968)).
- the group B meningococcal polysaccharide is even less immunogenic in humans of all ages than other polysaccharides. Two major explanations have been proposed to account for this characteristic (Jennings, II. J., Adv.
- the T-cell independent quality of polysaccharide antigens in infant humans can be overcome by conjugating (covalently coupling) the polysaccharide to a protein carrier.
- the capsular polysaccharides of the bacteria primarily responsible for postneonatal meningitis have been conjugated to protein carriers; these include type b H. influenzae (Schneerson, R. et al, J. Exp. Med. 752:361 - 376 (1980); Anderson, P.W., Infect. Immun. 39:233-238 ( 1983); Marburg, S. et al, J. Am. Chem. Soc. 705:5282-5287 (1986)), group A (Jennings, H.J. and Lugowski. C., J. Immunol. 727:101 1 -1018 (1981 )) ; Beuvery, E.C. et al, Vaccine
- a fusion protein which is a mature porin protein fused to a yeast secretion signal peptide; wherein said gene is operably linked to a yeast promoter; (b) transforming said plasmid containing said gene into a yeast strain;
- MB3 Neisseria meningitidis outer membrane meningococcal group B porin protein
- the yeast secretion signal peptide is selected from the group consisting of the secretion signal of the S. cerevisiae ⁇ -mating factor prepro-peptide and the secretion signal of the P. pastor is acid phosphatase gene (PHO).
- codon changes are selected from the group of changes consisting of: (GTT to GTC at positions 4-6 of the native sequence), (ACC to ACT at positions 7-9 of the native sequence), (CTG to TTG at positions 10-12 of the native sequence), (GGC to GGT at positions 16-18 of the native sequence), (ACC to ACT at positions 19-21 of the native sequence), (ATC to ATT at positions 22-24 of the native sequence), (AAA to AAG at positions 25-27 of the native sequence), (GCC to GCT at positions 28-30 of the native sequence), (GGC to GGT at positions 31 -33 of the native sequence), (GTA to GTT at positions 34-36 of the native sequence), (GAA to GAG at positions 37-39 of the native sequence); wherein said positions are numbered from the first nucleotide of the native nucleotide sequence encoding said protein.
- step (b) washing the insoluble material obtained in step (a) with buffers to remove contaminating yeast cellular proteins;
- step (c) suspending and dissolving said insoluble fraction obtained in step (b) in aqueous solution of denaturant; (d) diluting the solution obtained in step (c) with a detergent, and
- step (b) removing contaminating yeast culture impurities from the soluble secreted mate ⁇ al obtained in step (a) by precipitating said impurities with about 20% ethanol, wherein the soluble secreted mate ⁇ al remains in the soluble fraction, (c) precipitating the secreted mate ⁇ al from the soluble fraction of step (b) with about 80% ethanol,
- step (d) washing the precipitated material obtained in step (c) with a buffer to remove contaminating yeast secreted proteins
- step (e) suspending and dissolving the precipitated material obtained in step (d) in an aqueous solution of detergent
- a yeast host cell that contains a gene coding for a protein selected from the group consisting of (a) a mature po ⁇ n protein (b) a fusion protein which is a mature porin protein fused to a yeast secretion signal peptide, wherein said gene is operably linked to a yeast promoter
- yeast host cell as described above which is capable of expressing the Neisseria meningitidis mature outer membrane class 3 protein of serogroup B (MB3) It is still another specific object of the invention to provide a yeast host cell as described above wherein the yeast promoter is the AO 1 promoter.
- It is another object of the invention to provide a vaccine comprising group A meningococcal polysaccharide (GAMP), group B meningococcal poly- saccharide (GBMP), and group C meningococcal polysaccharide (GCMP) antigens, together with a pharmaceutically acceptable carrier.
- GAMP group A meningococcal polysaccharide
- GBMP group B meningococcal poly- saccharide
- GCMP group C meningococcal polysaccharide
- Figure 1 A diagram showing the sequencing strategy of the PorB gene.
- the PCR product described in Example 1 (Materials and Methods section) was ligated into the BamU ⁇ -Xho ⁇ site of the expression plasmid pET-17b.
- the initial double stranded primer extension sequencing was accomplished using oligonucleotide sequences directly upstream of the BamW ⁇ site and just downstream of the Xhol site within the pET-17b plasmid. Additional sequence data was obtained by making numerous deletions in the 3' end of the gene, using exonuclease IH/mung bean nuclease reactions. After religation and transformation back into E. coli, several clones were selected on size of insert and subsequently sequenced. This sequencing was always from the 3' end of the gene using an oligonucleotide primer just downstream of the Bpu ⁇ 1021 site.
- Figure 2 A gel electrophoresis showing the products of the PCR reaction
- FIG. 3 A SDS-PAGE analysis of whole cell lysates of E. coli hosting the control pET-17b plasmid without inserts and an E coli clone harboring pET-17b plasmid containing an insert from the obtained PCR product described in the materials and methods section. Both cultures were grown to an O.D. of 0.6 at 600 nm, IPTG added, and incubated at 37°C for 2 hrs. 1.5 mis of each of the cultures were removed, centrifuged, and the bacterial pellet solubilized in 100 ⁇ l of SDS-PAGE preparation buffer.
- Lane A shows the protein profile obtained with 10 ⁇ l from the control sample and Lanes B (5 ⁇ l) and C (10 ⁇ l) demonstrate the protein profile of the E. coli host expressing the PorB protein.
- Fig. 3B Western blot analysis of whole cell lysates of £ coli harboring the control pET-17b plasmid without insert after 2 hrs induction with IPTG, Lane A, 20 ⁇ l and a corresponding E. coli clone containing a porB-pET-
- Figure 5 A graph showing the Sephacryl S-300 column elution profile of both the wild type Class 3 protein isolated from the meningococcal strain 8765 and the recombinant Class 3 protein produced by BL21(DE3) -Ao pA E. coli strain hosting the r3pET-17b plasmid as monitored by absorption at 280nm and SDS-PAGE analysis.
- the void volume of the column is indicated by the arrow. Fractions containing the meningococcal porin and recombinant porin as determined by SDS-PAGE are noted by the bar.
- Figure 6 A graph showing the results of the inhibition EL1SA assays showing the ability of the homologous wild type (wt) PorB to compete for reactive antibodies in six human immune sera. The arithmetic mean inhibition is shown by the bold line.
- Figure 7 A graph showing the results of the inhibition ELISA assays showing the ability of the purified recombinant PorB protein to compete for reactive antibodies in six human immune sera. The arithmetic mean inhibition is shown by the bold line.
- Figure 8 A graph showing a comparison of these two mean inhibitions obtained with the wt and recombinant PorB protein.
- Figure 9A and 9B The nucleotide sequence and the translated amino acid sequence of the mature class II porin gene cloned into the expression plasmid
- Figure 10A and 10B The nucleotide sequence and the translated amino acid sequence of the fusion class II porin gene cloned into the expression plasmid pET-17b.
- Figure 1 1 panels A and B: Panel A depicts the restriction map of the pET-17b plasmid. Panel B depicts the nucleotide sequence between the Bglll and Xhol sites of pET-17b. The sequence provided by the plasmid is in normal print while the sequence inserted from the PCR product are identified in bold print.
- the level of MB3 expressed is depicted as mg of insoluble MB3 per gram of cell pellet per unit time.
- Figure 13A The DNA sequence and translated amino acid sequence of pNV15 (MB3 in pET24a) before codon preference optimization.
- Figure 13B The DNA sequence and translated amino acid sequence of
- Figures 14A and 14B Graphs showing the elution of MB3 from a size exclusion column.
- MB3 expressed in an intracellular form was purified by a denaturation/renaturation protocol, followed by gel filtration and ion exchange chromatography.
- the resultant purified protein exhibited by size exclusion chromatography an elution profile which resembles the recombinant class 3 protein overexpressed in E. coli, and both give the same elution profile as the native wild-type counterpart. This indicates that MB3 refolds and oligomerizes, achieving full native conformation.
- 14(A) the elution profile of MB3
- 14(B) the elution profile of class 3 protein expressed and refolded from E. coli inclusion bodies.
- Figure 15 A graph showing the size exclusion chromatography of purified MB3 on a Superose 12 (Pharmacia) column connected to an HPLC (Hewlett Packard model 1090). Based on the comparison of MB3 with the native wild-type counterpart, as well as calibration using molecular weight standards
- the elution profile is indicative of trimeric assembly.
- Figures 16A, 16B and 16C The DNA sequence of clone pnv 322.
- This clone has the MB3 gene inserted into the EcoR ⁇ site of the Invitrogen expression vector pHIL-D2.
- MB3 is thus inserted directly downstream from the AOXI promoter. This construct allows intracellular expression.
- Vector sequences are shown in upper case letters, while the MB3 sequence is given in lower case letters.
- Figures 17A, 17B and 17C The DNA sequence of clone pnv 318.
- This clone has the MB3 gene inserted into the XhoI-BamHI sites of the Invitrogen expression vector pHIL-Sl .
- MB3 is thus inserted directly downstream from the PHOl leader peptide, in frame with the secretion signal open reading frame for secretion of expressed protein.
- Vector sequences are shown in upper case letters, while the MB3 sequence is given in lower case letters.
- Figures 18A, 18B and 18C The DNA sequence of clone pnv 342.
- This clone has the MB3 gene inserted into the EcoRl-Avrll sites of the Invitrogen expression vector pPIC-9.
- MB3 is thus inserted directly downstream from the secretion signal of ⁇ -factor prepro peptide, for secretion of expressed protein.
- Vecior sequences are shown in upper case letters, while the MB3 sequence is given in lower case letters.
- Figures 19A, 19B and 19C The DNA sequence of clone pnv 350. This clone has the MB3 gene inserted into the EcoR ⁇ -Avrll sites of the Invitrogen expression vector pPIC-9K. MB3 is thus inserted directly downstream from the secretion signal of ⁇ -factor prepro peptide. for secretion of expressed protein. Vector sequences are shown in upper case letters, while the MB3 sequence is given in lower case letters.
- Figure 20 A graph showing the absorbance spectra (electropherogram) of GAMP, TT-monomer, and GAMP-TT conjugate.
- Figure 21 A graph showing the absorbance spectra (electropherogram) of GCMP, TT-monomer, and GCMP-TT conjugate.
- Figure 22 A graph showing the A-specific IgG ELISA titer elicited by monovalent (A) and trivalent (A/B/C) meningococcal conjugate vaccines in mice.
- Figure 23 A graph showing the B-specific IgG ELISA titer elicited by monovalent (A) and trivalent (A7B/C) meningococcal conjugate vaccines in mice.
- Figure 24 A graph showing the C-specific IgG ELISA titer elicited by monovalent (C) and trivalent (A/B/C) meningococcal conjugate vaccines in mice.
- Figure 25 A graph showing the A-specific bacteriocidal activity elicited by monovalent (A) and trivalent (A/B/C) meningococcal conjugate vaccines in mice.
- Figure 26 A graph showing the B-specific bacteriocidal activity elicited by monovalent (A) and trivalent (A/B/C) meningococcal conjugate vaccines in mice.
- Figure 27 A graph showing the C-specific bacteriocidal activity elicited by monovalent (A) and trivalent (A/B/C) meningococcal conjugate vaccines in mice. - 1 ⁇
- Meningococcal B Class 3 porin protein may be expressed in yeast.
- a preferred host is the methylotrophic yeast Pichia pastoris. which may be transformed with the Pichia
- Yeasts are attractive hosts for the production of heterologous proteins. Unlike prokaryotic systems, their eukaryotic subcellular organization enables them to carry out many of the post-translational folding, processing and modification events required to produce "authentic" and bioactive proteins.
- a eukaryote Pichia pastor is has many of the advantages of a higher eukaryotic expression system, while being as easy to manipulate as E. coli or Saccharomyces cerevisiae.
- yeast shares the advantages of molecular and genetic manipulations with Saccharomyces, and it has the added advantages of 10- to 100-fold higher heterologous protein expression levels and the protein processing characteristics of higher eukaryotes.
- Pichia also provides advantages compared to expression in other yeast strains because Pichia does not tend to hyperglycosylate proteins as does S. cerevisiae. Further, proteins expressed and modified in Pichia may be more useful therapeutically than those produced by S. cerevisiae, as oligosaccharides added by Pichia lack the ⁇ l ,3 glycan linkages which are believed to be primarily responsible for the hyper-antigenic nature of proteins produced by S. cerevisiae.
- Several vaccine antigens have been produced in yeast cells, including hepatitis B surface antigen which is in clinical use (Cregg et al ,
- Carbonetti et al. were the first to clone an entire gonococcal porin gene into E. coli using a tightly controlled pT7-5 expression plasmid. The results of these studies showed that when the porin gene was induced, very little porin protein accumulated and the expression of this protein was lethal to the E. coli (Carbonetti and Sparling,
- Feavers et al. have described a method to amplify, by PCR, neisserial porin genes from a wide variety of sources using two synthesized oligonucleotides to common domains at the 5' and 3' ends of the porin genes respectively (Feavers, I.M., et al, Infect. Immun. 60:3620-3629 (1992)).
- the oligonucleotides were constructed such that the amplified DNA could be forced cloned into plasmids using the restriction endonucleases BglW and Xho ⁇ .
- PorB protein was expressed, it was easily isolated, purified and appeared to reform into trimers much like the native porin.
- the results of the inhibition ELISA data using human immune sera suggests that the PorB protein obtained in this fashion regains most if not all of the antigenic characteristics of the wild type PorB protein purified from meningococci.
- This expression system lends itself to the easy manipulation of the neisserial porin gene by modern molecular techniques. In addition, this system allows one to obtain large quantities of pure porin protein for characterization. In addition, the present expression system allows the genes from numerous strains of Neisseria, both gonococci and meningococci, to be examined and characterized in a similar manner.
- the Neisseria meningitidis outer membrane class 3 protein from serogroup B was also expressed in the methylotrophic yeast Pichia pastoris by placing the MB3 DNA fragment under the control of the strong P. pastoris alcohol oxidase promoter AOXI .
- strains of P. pastoris transformed with the recombinant plasmids produced either a native or a fusion MB3 protein, which were reactive with mouse polyclonal J
- the vector pHIL-S 1 which carries a native Pichia pastoris signal sequence from the acid phosphatase gene, PHOl
- the vectors pPIC9 and pPIC9K which carry the secretion signal from the 5. cerevisiae ⁇ -mating factor prepro-peptide. Maps of the pHIL-Sl and pPIC9 vectors may be found on pp. 21 -22 of the Invitrogen Instruction Manual for the Pichia Expression Kit, Version E.
- pHIL-Sl/MB3 construct provided the expression of a MB3- PHOl fusion polypeptide with an apparent molecular weight of 36.5 kDa. which was partly processed to generate mature 34 kDa MB3. About 5-10% of expressed MB3 was secreted to the yeast growth medium, and about 40-50% of the 36.5 kDa fusion polypeptide was cleaved (Table 4). Pichia recombinants transformed by pPIC9/MB3 or pPIC9K/MB3 constructs expressed only MB3 fused with ⁇ -factor, yielding a fusion polypeptide of approximately 45 kDa. There was no evidence of any cleavage or processing of that fusion protein.
- An increase in the yield of expressed MB3 may be obtained by using strains of Pichia which contain multiple copies of the MB3 expression cassette.
- strains harboring multiple copies exist naturally within transformed cell populations at ⁇ 10% frequency. These strains may be identified either by directly screening large numbers of transformants for levels of MB 3 expression via SDS- PAGE or immunoblotting, or indirectly screening by "dot blot" hybridization to select for clones containing multiple copies of the MB3 gene (Cregg et aF
- Such multiple integrated clones may be constructed by using a new pAO815 vector (Invitrogen), which allows cloning of multiple copies of the gene of interest via repeated cassette insertion steps (Ibid, at p. 907).
- Scale-up procedures using a fermenter will provide higher yeast cell densities and therefore improve the yields of the expressed proteins by at least 5-10 times. Optimization of protein expression (i.e., growth media composition, buffering capacity, casamino acids supplementation, increase of methanol concentration, etc.) may be carried out with routine experimentation.
- MB3 takes advantage of the fact that the Pichia expression vector pPIC9K carries the kanamycin resistance gene which confers resistance to G418; in other respects, pPIC9K corresponds to pPIC9. Spontaneous generation of multiple insertion events can then be identified by the level of resistance to G418. Pichia transformants are selected on histidine-deficient medium and screened for their level of resistance to G418. An increased level of resistance to G418 indicates multiple copies of the kanamycin resistance gene.
- the present invention relates to a method of expressing an outer membrane meningococcal group B porin protein, in particular, the class 2 and class 3 porin proteins.
- the present invention relates to a method of expressing the outer membrane meningococcal group B porin protein in E. coli comprising:
- a fusion protein comprising a mature porin protein fused to amino acids 1 to 20 or 22 of the T7 gene ⁇ l O capsid protein; wherein said gene is operably linked to the T7 promoter;
- the meningococcal group B porin protein or fusion protein expressed comprises more than about 5% of the total proteins expressed in E. coli. In another preferred embodiment, the meningococcal group B porin protein or fusion protein expressed comprises more than about 10% of the total proteins expressed in E. coli. In yet another preferred embodiment, the meningococcal group B porin protein or fusion protein expressed comprises more than about 30% of the total proteins expressed in E. coli.
- plasmids which contain the T7 inducible promotor include the expression plasmids pET-17b, pET-l la, pET-24a-d(+) and pET-9a, all of which are commercially available from Novagen (565 Science Drive, Madison,
- E coli strain BL21 (DE3) AompA is employed.
- the above mentioned plasmids may be transformed into this strain or the wild-type strain BL21(DE3).
- E. coli strain BL21 (DE3) AompA is preferred as no OmpA protein is produced by this strain which might contaminate the purified porin protein and create undesirable immunogenic side effects.
- the transformed E. coli are grown in a medium containing a selection agent, e.g. any ⁇ -lactam to which E. coli is sensitive such as ampicillin.
- a selection agent e.g. any ⁇ -lactam to which E. coli is sensitive such as ampicillin.
- the pET expression vectors provide selectable markers which confer antibiotic resistance to the transformed organism.
- High level expression of meningococcal group B porin protein can be toxic in E. coli.
- the present invention allows E. coli to express the protein to a level of at least almost 30% and as high as >50% of the total cellular proteins.
- the present invention relates to a method of expressing an outer membrane meningococcal group B porin protein in yeast comprising:
- a mature porin protein and (ii) a fusion protein comprising a mature porin protein fused to a yeast secretion signal peptide; wherein said gene is operably linked to a yeast promoter;
- Transformation of the yeast host may be accomplished by any one of several techniques that are well known by those of ordinary skill in the art. These techniques include direct or hposome-mediated transformation of yeast cells whose cell wall has been partially or completely destroyed to form spheroplasts, treatment of the host with alkali cations and PEG, and freeze-thawing combined with PEG treatment (See Weber et al , Nonconventional ⁇ easts Their Genetics and Biotechnological Applications, CRC Crit Rev Biolechnol 7 281 , 317
- the mature porin protein or fusion protein expressed comprises more than about 2% of the total protein expressed in the yeast host In yet another preferred embodiment, the mature porin protein or fusion protein expressed comprises about 3-5% of the total protein expressed in the yeast host
- the mature porin protein is the Neisseria meningitidis mature outer membrane class 3 protein from serogroup B
- the present invention relates to performing the above method of expressing the outer membrane meningococcal group B porin protein or fusion protein in yeast, wherein said yeast is selected from the group consisting of Saccharomyces cerevisiae Schizosaccharomyces pombe, Saccharomyces uvarum Saccharomyces carhbergensis Saccharomyces diastaticus, Candida tropicalis Candida maltosa, Candida parapsdosis Pichia pastoris, Pichia far inosa, Pichia pinus, Pichia vanrijii Pichia fermentans, Pichia guilliermondii, Pichia st ⁇ itis, Saccharomyces telluris, Candida utilis, Candida guilliermondii, Hansenula henricii Hansenula capsulala Hansenula polymorpha Hansen
- nucleotide sequence of the gene encoding the mature porin protein or fusion protein incorporates codons which are optimized for yeast codon usage.
- nucleotide sequence of the gene encoding the mature porin protein which has been optimized for yeast codon usage is the nucleotide sequence SEQ ID NO: 26.
- the yeast secretion signal peptide is selected from the group consisting of the secretion signal of the S. cerevisiae - mating factor prepro-peptide and the secretion signal of the P. pastoris acid phosphatase gene.
- the yeast secretes the protein or fusion protein.
- the yeast promoter to which the gene is operably linked is selected from a group consisting of the AOXI promoter, the GAPDH promoter, the PHO5 promoter, the glyceraldehyde-3 -phosphate dehydrogenase (TDH3) promoter, the ADHI promoter, the MF ⁇ l promoter, and the GAL 10 promoter.
- plasmids which contain the AOXI promoter include the expression plasmids pHIL-D2, pHIL-S 1 , pPIC9, and pPIC9K.
- Plasmids comprise, in sequence, an AOXI promoter, restriction sites to allow insertion of the structural gene, an AOXI transcription termination fragment, an open reading frame encoding HIS4 (histidinol dehydrogenase), an ampicillin resistance gene, and a ColEl origin.
- plasmids pPIC9 and pPIC9K comprise the ⁇ -factor secretion signal of S. cerevisiae
- plasmid pHIL-S l comprises the PHOl secretion signal of P. pastoris.
- pPIC9K also includes the kanamycin resistance gene, which confers resistance to G418 in Pichia.
- the level of G418 resistance in Pichia transformants can be used to identify cells which have undergone multiple insertion events. This occurs at a frequency of 1 -10%. An increased level of resistance to G418 indicates the presence of multiple copies of the kanamycin resistance gene and of the gene of interest. See the Novagene catalogue, Version E, pp. 19-22 (1995).
- yeast host strains having a mutation in a suitable marker gene which causes the strain to have specific nutritional requirements are employed.
- Expression plasmids carrying a functional copy of the mutated gene as well as a copy of the meningococcal group B porin protein or fusion protein are then transformed into the yeast host strain, and transformants are selected on the basis of their ability to grow on medium lacking the required nutrient.
- marker genes include the genes encoding imidazole glycerol phosphate dehydrogenase (HIS3), beta-isopropylmalate dehydrogenase (LEU2), tryptophan synthase (TRP5), argininosuccinate lyase (ARG4).
- HIS3 imidazole glycerol phosphate dehydrogenase
- LEU2 beta-isopropylmalate dehydrogenase
- TRP5 tryptophan synthase
- ARG4 argininosuccinate lyase
- TRP1 N-(5'-phosphorilosyl) anthranilate isomerase
- HIS4 histidinol dehydrogenase
- UAA3 orotidine-5- phosphate decarboxylase
- UAA1 dihydroorotate dehydrogenase
- GALI galactokinase
- LYS2 alpha-aminodipate reductase
- This screening is performed by methods well known to those of ordinary skill in the art, for example, by selecting for transformants which grow slowly on medium which lacks the nutrient used to confirm transformation and includes methanol in order to induce expression of the outer membrane meningococcal group B porin protein or fusion protein from the AOXI promoter. These transformants are then grown up in glycerol-containing medium, and expression of the meningococcal group B porin protein or fusion protein is then induced by the addition of methanol.
- P. pastoris host strains GS 1 15 or KM71 are employed. These strains have a mutation in the histidinol dehydrogenase gene (his 4) which prevents them from synthesizing histidine.
- the expression plasmids pHIL-D2, pHIL-Sl , pPIC9, and pPIC9K carry the H1S4 gene which complements his4 in the host, allowing selection of transformants on histidine- deficient medium.
- the cells are screened for integration of the meningococcal group B porin protein or fusion protein at the correct loci by selecting for transformants which grow slowly on his , methanoL plates.
- These transformants which become mutated at the AOXI locus when the MB3 gene inserts into the host genome, are only capable of slow growth on methanol, as they are metabolizing methanol with the less efficient AOX2 gene product.
- the transformants are then grown up in glycerol-containing medium, and expression of the meningococcal group B porin protein or fusion protein is then induced by the addition of methanol.
- the present invention relates to performing the above method of expressing the outer membrane meningococcal group B porin protein in yeast, wherein said yeast is Pichia pastoris.
- the present invention relates to a vaccine for inducing an immune response in an animal comprising the outer membrane meningococcal group B porin protein or fusion protein thereof, produced according to the above-described methods, together with a pharmaceutically acceptable diluent, carrier, or excipient.
- the vaccine may be administered in an amount effective to elicit an immune response in an animal to Neisseria meningitidis.
- the animal is selected from the group consisting of humans, cattle, pigs, sheep, and chickens.
- the animal is a human.
- the present invention relates to the above-described vaccine, wherein said outer membrane meningococcal group B porin protein or fusion protein thereof is conjugated to a meningococcal group B capsular polysaccharide (CP).
- capsular polysaccharides may be prepared as described in Ashton, F.E. et al, Microbial Pathog. 6:455-458 ( 1989); Jennings, H.J. et al, J. Immunol 73-7:2651 ( 1985); Jennings. H.J. et al. J. Immunol 737:1708-1713 (1986); Jennings, H.J. et al, J. Immunol.
- the invention also relates to a vaccine capable of simultaneously inducing an immune response against any one of several N meningitidis serogroups
- the invention relates to a trivalent vaccine comprising the capsular polysaccharides from each of three different serogroups of N meningitidis
- the vaccine of the invention comprises group A meningococcal polysaccharide (GAMP), group B meningococcal polysaccharide (GBMP), and group C meningococcal polysaccharide (GCMP) antigens, together with a pharmaceutically acceptable carrier
- GAMP group B meningococcal polysaccharide
- GCMP group C meningococcal polysaccharide
- carrier proteins will be suitable to be used in the polysaccha ⁇ de-protein conjugates included in the vaccine of the invention
- a suitable carrier protein will be one which is safe for administration to mammals, and which is immunologically effective as a carrier Safety includes absence of primary toxicity and minimal risk of allergic complications
- any heterologous protein could serve as a carrier antigen
- the protein may be, for example, native toxin or detoxified toxin (also termed toxoid)
- genetically altered proteins which are antigenically similar to toxins and yet non-toxic may be produced by mutational techniques well-known to those of skill in the art
- Such an altered toxin is termed a "cross reacting material," oi CRM CRM I97 is noteworthy, because it differs from native diphtheria toxin at only one ammo acid residue, and is immunologically indistinguishable from the native toxin (Anderson.
- polysaccharide- protein carrier conjugates of the vaccine may be produced by several different methods.
- the types of covalent bonds which couple a polysaccharide to a protein carrier, and the means of producing them, are well known to those of skill in the art. Details concerning the chemical means by which the two moieties can be linked may be found in U.S. Patent No. 5,371.197, and 4,902.506, the contents of which are herein incorporated by reference in their entirety.
- One such method is the reductive amination process described in Schwartz and Gray (Arch. Biochim. Biophys. 757:542-549 (1977)).
- This process involves reacting the reducing capsular polysaccharide fragment and bacterial toxin or toxoid in the presence of cyanoborohydride ions, or another reducing agent. Such a process will not adversely affect the toxin or toxoid or the capsular polysaccharide (U.S. Patent No. 4,902,506). Such a conjugation process is also described in Examples 12-14, below. While tetanus and diphtheria toxins are the prime candidates for carrier proteins, owing to their history of safety, there may be overwhelming reasons, well known to those of ordinary skill in the art. to use another protein. For example, another protein may be more effective as a carrier, or production economics may be significant.
- a preferred carrier protein to which the group B meningococcal polysaccharide may be conjugated is the class 3 porin protein (PorB) of group B N. meningitidis.
- a preferred protein carrier protein to which GAMP antigen and GCMP antigen may be conjugated is tetanus toxoid.
- N-carbonyl groups (Jennings, H.J. et al, J. Immunol. 737:1708-1713 (1986)).
- the most preferred modification which satisfies the above criteria is a modification wherein the N-acetyl groups of the sialic acid residues of the B polysaccharide are removed by strong base and replaced by N-propionyl groups (see Examples 6 and 14).
- the N-propionylated GBMP is subsequently conjugated to a carrier protein.
- a carrier protein any carrier protein which enhances the immunogenicity of N-propionylated GBMP may be used, a preferred protein carrier is the class 3 outer membrane protein of group B N. meningitidis (MB3, or PorB).
- GBMP antigen is conjugated to PorB after having been ⁇ -propionylated.
- the capsular polysaccharide (CP) which may be group A, B or C meningococcal polysaccharide. is isolated according to Frasch. C.E., "Production and Control of Neisseria meningitidis Vaccines" in Bacterial Vaccines, Alan R. Liss, Inc., pages 123-145 (1990), the contents of which are fully incorporated by reference herein, as follows:
- the crude CP is then further purified by gel filtration chromatography after partial depolymerization with dilute acid, e.g. acetic acid, formic acid, and trifiuoroacetic acid (0.01-0.5 N), to give a mixture of polysaccharides having an average molecular weight of 10,000-20,000.
- dilute acid e.g. acetic acid, formic acid, and trifiuoroacetic acid (0.01-0.5 N
- GBMP purified GBMP is then N-deacetylated with NaOH in the presence of sodium borohydride and N-propionylated to afford N-Pr GBMP.
- the CP that may be employed in the conjugate vaccines of the present invention may be CP fragments, N- deacylated CP and fragments thereof, as well as N-Pr CP and fragments thereof, so long as they induce active immunity when employed as part of a CP-porin protein conjugate (see Examples 6 and 14).
- the present invention relates to a method of preparing a polysaccharide conjugate comprising: obtaining the above-described outer membrane meningococcal group B porin protein or fusion protein thereof; obtaining a CP from a Neisseria meningitidis organism; and conjugating the protein to the CP.
- the conjugates of the invention may be formed by reacting the reducing end groups of the CP to primary amino groups of the porin by reductive amination.
- the reducing groups may be formed by selective hydrolysis or specific oxidative cleavage, or a combination of both.
- the CP is conjugated to the porin protein by the method of Jennings et al, U.S. Patent No.
- the vaccine of the present invention comprises the meningococcal group B porin protein, fusion protein or conjugate vaccine, or the trivalent GAMP.
- the meningococcal group B porin protein, fusion protein or vaccine of the present invention can also be administered by an intraperitoneal or intravenous route.
- the amounts to be administered for any particular treatment protocol can be readily determined without undue experimentation. Suitable amounts might be expected to fall within the range of 2 micrograms of the protein per kg body weight to 100 micrograms per kg body weight.
- the vaccine comprises about 2 ⁇ g of the
- GAMP GAMP, GCMP and GBMP polysaccharide antigen conjugates.
- the vaccine comprises about 5 ⁇ g of the GAMP, GCMP and GBMP polysaccharide antigen conjugates.
- the vaccine comprises about 2 ⁇ g of the GAMP and GCMP polysaccharide antigen conjugates, and about 5 ⁇ g of the
- the vaccine of the present invention may be employed in such forms as capsules, liquid solutions, suspensions or elixirs for oral administration, or sterile liquid forms such as solutions or suspensions.
- Any inert carrier is preferably used, such as saline, phosphate-buffered saline, or any such carrier in which the meningococcal group B porin protein, fusion protein or conjugate vaccine have suitable solubility properties.
- the vaccines may be in the form of single dose preparations or in multi-dose flasks which can be used for mass vaccination programs. Reference is made to Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, Osol (ed.) (1980); and New Trends and
- the vaccines of the present invention may further comprise adjuvants which enhance production of porin-specific antibodies.
- adjuvants include, but are not limited to, various oil formulations such as Freund's complete adjuvant (CFA), stearyl tyrosine (ST, see U.S. Patent No. 4,258,029), the dipeptide known as MDP, saponin, aluminum hydroxide, and lymphatic cytokine.
- Freund's adjuvant is an emulsion of mineral oil and water which is mixed with the immunogenic substance. Although Freund's adjuvant is powerful, it is usually not administered to humans. Instead, the adjuvant alum (aluminum hydroxide) or ST may be used for administration to a human.
- the meningococcal group B porin protein or a conjugate vaccine thereof may be absorbed onto the aluminum hydroxide from which it is slowly released after injection.
- the meningococcal group B porin protein or group A, B and C meningococcal polysaccharide conjugate vaccine may also be encapsulated within liposomes according to Fullerton, U.S. Patent No. 4,235,877.
- the present invention relates to a method of inducing an immune response in an animal comprising administering to the animal the vaccine of the invention, produced according to methods described, in an amount effective to induce an immune response.
- the invention relates to a method of purifying the above-described outer membrane meningococcal group B porin protein or fusion protein comprising: lysing the transformed E. coli to release the meningococcal group B porin protein or fusion protein as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating E. coli cellular proteins; resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; diluting the resultant solution in a detergent; and purifying the solubilized meningococcal group B porin protein by gel filtration.
- the lysing step may be carried out according to any method known to those of ordinary skill in the art, e.g. by sonication, enzyme digestion, osmotic shock, or by passing through a mull press.
- the inclusion bodies may be washed with any buffer which is capable of solubilizing the E. coli cellular proteins without solubilizing the inclusion bodies comprising the meningococcal group B porin protein.
- buffers include but are not limited to TEN buffer (50 mM Tris HC1, 1 mM EDTA. 100 mM NaCl, pH
- Denaturants which may be used in the practice of the invention include 2 to 8 M urea or about 2 to 6 M guanidine HC1, more preferably, 4 to 8 M urea or about 4 to 6 M guanidine HC1, and most preferably, about 8 M urea or about
- detergents which can be used to dilute the solubilized meningococcal group B porin protein include, but are not limited to, ionic detergents such as SDS and cetavlon (Calbiochem); non-ionic detergents such as Tween, Triton X, Brij 35 and octyl glucoside; and zwitterionic detergents such as 3,14-Zwittergent, empigen BB and Champs.
- ionic detergents such as SDS and cetavlon (Calbiochem)
- non-ionic detergents such as Tween, Triton X, Brij 35 and octyl glucoside
- zwitterionic detergents such as 3,14-Zwittergent, empigen BB and Champs.
- the solubilized outer membrane meningococcal group B porin protein may be purified by gel filtration to separate the high and low molecular weight materials.
- Types of filtration gels include but are not limited to Sephacryl-300, Sepharose CL-6B, and Bio-Gel A-l .5m.
- the column is eluted with the buffer used to dilute the solubilized protein.
- the fractions containing the porin or fusion thereof may then be identified by gel electrophoresis, the fractions pooled, dialyzed, and concentrated.
- substantially pure (>95%) porin protein and fusion protein may be obtained by passing the concentrated fractions through a Q sepharose high performance column.
- the present invention relates to expression of the meningococcal group B porin protein gene which is part of a vector which comprises the T7 promoter, which is inducible. If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent.
- the T7 promoter is inducible by the addition of isopropyl ⁇ -D- thiogalactopyranoside (IPTG) to the culture medium.
- IPTG isopropyl ⁇ -D- thiogalactopyranoside
- the Tac promotor or heat shock promotor may be employed.
- the meningococcal group B porin protein gene is expressed from the pET-17 expression vector or the pET-1 1 a expression vector, both of which contain the T7 promoter.
- the cloning of the meningococcal group B porin protein gene or fusion gene into an expression vector may be carried out in accordance with conventional techniques, including blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases.
- blunt-ended or stagger-ended termini for ligation restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases.
- the present invention relates to a method of refolding the above-described outer membrane protein and fusion protein comprising: lysing the transformed cells to release the meningococcal group B porin protein or fusion protein as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating cellular proteins: resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; diluting the resultant solution in a detergent; and purifying the solubilized meningococcal group B porin protein or fusion protein by gel filtration to give the refolded protein in the eluant.
- the present invention relates to a substantially pure refolded outer membrane meningococcal group B porin protein and fusion protein produced according to the above-described methods.
- a substantially pure protein is a protein that is generally lacking in other cellular
- Neisseria meningitidis components as evidenced by, for example, electrophoresis.
- Such substantially pure proteins have a purity of >95%. as measured by densitometry on an electrophoretic gel after staining with Coomassie blue or silver stains.
- the following examples are illustrative, but not limiting, of the method and compositions of the present invention.
- Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in this art which are obvious to those skilled in the art are within the spirit and scope of the present invention.
- Organisms The Group B Neisseria meningitidis strain 8765 (B: 15:P1 ,3) was obtained from Dr. Wendell Zollinger (Walter Reed Army Institute for
- PI Transduction A PI,,,, lysate of E. coli strain DME558 was used to transduce a tetracycline resistance marker to strain BRE51 (Bremer, E., et al , FEMS Microbiol. Lett. 33: 173-178 (1986)) in which the entire ompA gene had been deleted (Silhavy, T.J., et al, Experiments with Gene Fusions, Cold Spring
- 0.5 ml of chloroform was added and the phage culture stored at 4°C. Because typically 1-2% of the E. coli chromosome can be packaged in each phage, the number of phage generated covers the entire bacterial host chromosome, including the tetracycline resistance marker close to the ompA gene.
- strain BRE51 which lacks the ompA gene, was grown in LB medium overnight at 37 °C.
- the overnight culture was diluted 1 :50 into fresh LB and grown for 2 hr.
- the cells were removed by centrifugation and resuspended in MC salts.
- 0.1 ml of the bacterial cells were mixed with 0.05 of the phage lysate described above and incubated for 20 min. at room temperature. Thereafter, an equal volume of 1 M sodium citrate was added and the bacterial cells were plated out onto LB plates containing 12.5 ⁇ g/ml of tetracycline. The plates were incubated overnight at 37°C.
- Tetracycline resistant ( 12 ⁇ g/ml) transductants were screened for lack of OmpA protein expression by SDS-PAGE and Western Blot analysis, as described below.
- the bacteria resistant to the antibiotic have the tetracycline resistance gene integrated into the chromosome very near where the ompA gene had been deleted from this strain.
- One particular strain was designated BRE-T R .
- a second round of phage production was then carried out with the strain
- BRE-T R using the same method as described above. Representatives of this phage population contain both the tetracycline resistance gene and the OmpA deletion. These phage were then collected and stored. These phage were then used to infect E. coli BL21(DE3). After infection, the bacteria contain the tetracycline resistance marker. In addition, there is a high probability that the
- OmpA deletion was selected on the LB plates containing tetracycline.
- Colonies of bacteria which grew on the plates were grown up separately in LB medium and tested for the presence of the OmpA protein. Of those colonies selected for examination, all lacked the OmpA protein as judged by antibody reactivity on SDS-PAGE western blots.
- SDS-PAGE and Western Blot The SDS-PAGE was a variation of Laemmli's method (Laemmli, U.K., Nature 227:680-685 ( 1970)) as described previously (Blake and Gotschlich, J. Exp. Med. 759:452-462 (1984)). Electrophoretic transfer to Immobilon P (Millipore Corp. Bedford, MA) was performed according to the methods of Towbin et al. (Towbin, H., et al , Proc.
- reaction components were as follows: Meningococcal strain 8765 chromosomal DNA ( 100 ng/ ⁇ l), 1 ⁇ l; 5' and 3 ' primers (1 ⁇ M) 2 ⁇ l each; dNTP (10 mM stocks), 4 ⁇ l each; 10 X PCR reaction buffer (100 mM Tris HC1, 500 mM KC1, pH 8.3), 10 ⁇ l; 25 mM MgCl 2 , 6 ⁇ l; double distilled H 2 0, 62 ⁇ l; and Taq polymerase (Cetus Corp., 5 u/ ⁇ l), 1 ⁇ l.
- the reaction was carried out in a GTC-2 Genetic Thermocycler (Precision Inst. Inc,
- the pET-17b plasmid (Novagen, Inc.) was used for subcloning and was prepared by double digesting the plasmid with the restriction endonucleases BamW ⁇ and Xho ⁇ (New England Biolabs, Inc., Beverly, MA). The digested ends were then dephosphorylated with calf intestinal alkaline phosphatase (Boehringer Mannheim, Indianapolis. IN). The digested plasmid was then analyzed on a 1% agarose gel, the cut plasmid removed, and purified using the GeneClean kit (Bio 101 , La Jolla, CA).
- the PCR product was prepared by extraction with phenol-chloroform, chloroform, and finally purified using the GeneClean Kit (Bio 101 ).
- the PCR product was digested with restriction endonucleases Bglll and Xho ⁇ (New England Biolabs, Inc.).
- the DNA was then extracted with phenol-chloroform, precipitated by adding 0.1 volumes of 3 M sodium acetate, 5 ⁇ l glycogen (20 ⁇ g/ ⁇ l), and 2.5 volumes of ethanol. After washing the DNA with 70% ethanol (vol/vol). it was redissolved in TE buffer.
- the digested PCR product was ligated to the double digested pET- 17b plasmid described above using the standard T4 ligase procedure at 16°C overnight (Current Protocols in Molecular Biology, John Wiley & Sons, New York (1993)).
- the ligation product was then transformed into the BL21 (DE3)- ⁇ ompA described above which were made competent by the method of Chung et al (Chung, C.T., et a , Proc. Natl Acad. Sci. USA 56:2172-2175 (1989)).
- the transformants were selected on LB plates containing 50 ⁇ g/ml carbenicillin and 12 ⁇ g/ml tetracycline.
- nucleotide Sequence Analysis The nucleotide sequences of the cloned Class 3 porin gene DNA were determined by the dideoxy method using denatured double-stranded plasmid DNA as the template as described (Current Protocols in Molecular Biology, John Wiley & Sons, New York (1993)). Sequenase II kits (United States Biochemical Corp., Cleveland. OH) were used in accordance with the manufacturer's instructions. The three synthesized oligonucleotide primers (Operon Technologies, Inc., Alameda, CA) were used for these reactions.
- PorB gene product Using a sterile micropipette tip, a single colony of the BL21 (DE3)- ⁇ om/?A containing the PorB- pET-17b plasmid was selected and inoculated into 10 ml of LB broth containing 50 ⁇ g/ml carbenicillin. The culture was incubated overnight at 30 °C while shaking. The 10 ml overnight culture was then sterilely added to 1 liter of LB broth with the same concentration of carbenicillin, and the culture continued in a shaking incubator at 37 °C until the OD 6 reached 0.6-1.0.
- IPTG IPTG
- Rifampicin was then added (5.88 ml of a stock solution; 34 mg/ml in methanol) and the culture continued for an additional 2 hrs.
- the cells were harvested by centrifugation at 10,000 rpm in a GS3 rotor for 10 min and weighed.
- the cells were thoroughly resuspended in 3 ml of TEN buffer (50 mM Tris HC1, 1 mM Tris HC1, 1 mM EDTA, 100 M NaCl, pH 8.0) per gram wet weight of cells.
- the pellet was then resuspended in freshly prepared TEN buffer containing 0.1 mM PMSF and 8 M urea and sonicated in a bath sonicator (Heat Systems, Inc., Plain view. NY).
- the protein concentration was determined using a BCA kit (Pierce, Rockville, IL) and the protein concentration adjusted to less than 10 mg/ml using the TEN-urea buffer.
- the sample was then diluted 1 : 1 with 10%
- the human immune sera was diluted in PBS with 0.5% Brij 35 and added to the plate and incubated for 2 hr at room temperature. The plates were again washed as before and the secondary antibody, alkaline phosphatase conjugated goat anti-human IgG (Tago Inc., Burlingame, CA), was diluted in PBS-Brij, added to the plates and incubated for 1 hr at room temperature. The plates were washed as before and
- the ELISA microtiter plate would be sensitized with purified wild type PorB protein and washed as before. In a separate V-96 polypropylene microtiter plate (Nunc, Inc.). varying amounts of either purified wild type PorB protein or the purified recombinant PorB protein were added in a total volume of 75 ⁇ l. The human sera were diluted in PBS-Brij solution to twice their half maximal titer and 75 ⁇ l added to each of the wells containing the PorB or recombinant PorB proteins.
- This plate was incubated for 2 hr at room temperature and centrifuged in a Sorvall RT6000 refrigerated centrifuge, equipped with microtiter plate carriers (Wilmington, DE) at 3000 rpm for 10 min. Avoiding the V-bottom, 100 ⁇ l from each well was removed and transferred to the sensitized and washed ELISA microtiter plate. The ELISA plates are incubated for an additional 2 hr, washed, and the conjugated second antibody added as before. The plate is then processed and read as described. The percentage of inhibition is then processed and read as described. The percentage of inhibition is calculated as follows:
- coli strain BL21 lysogenic for the DE3 lambda derivative (Studier and Moffatt, J. Mol. Biol. 759: 1 13-130 ( 1986)) was selected as the expression host for the pET-17b plasmid containing the porin gene. But because it was thought that the OmpA protein, originating from the E. coli expression host, might tend to co-purify with the expressed meningococcal porin protein, a modification of this strain was made by PI transduction which eliminated the ompA gene from this strain.
- PorB protein expressed in the E. coli was insoluble in TEN buffer which suggested that when expressed, the PorB protein formed into inclusion bodies. However, washing of the insoluble PorB protein with TEN buffer removed most of the contaminating E. coli proteins. The PorB protein could then be solubilized in freshly prepared 8M urea and diluted into the Zwittergent 3,14 detergent. The final purification was accomplished, using a Sephacryl S-300 molecular sieve column which not only removed the urea but also the remaining contaminating proteins. The majority of the PorB protein eluted from the column having the apparent molecular weight of trimers much like the wild type PorB.
- Inhibition ELISA Assays In order to determine if the purified trimeric recombinant PorB had a similar antigenic conformation as compared to the PorB produced in the wild type meningococcal strain 8765, the sera from six patients which had been vaccinated with the wild type meningococcal Type 15 PorB protein were used in inhibition ELISA assays. In the inhibition assay, antibodies reactive to the native PorB were competitively inhibited with various amounts of either the purified recombinant PorB or the homologous purified wild type PorB.
- reaction conditions were as follows: BNCV M986 genomic DNA 200ng, the two oligonucleotide primers described above at 1 ⁇ M of each, 200 ⁇ M of each dNTP, PCR reaction buffer (10 mM Tris HC1, 50 mM KC1. pH 8.3), 1.5 mM MgC and 2.5 units of Taq polymerase, made up to 100 ⁇ l with distilled H-,0. This reaction mixture was then subjected to 25 cycles of 95°C for 1 min. 50°C for 2 min and 72 °C for 1.5 min.
- the reaction mixture was loaded on a 1% agarose gel and the material was electrophoresed for 2h after which the band at 1.3 kb was removed and the DNA recovered using the Gene Clean kit (Bio 101 ).
- This DNA was then digested with EcoRl, repurified and ligated to EcoRl digested pUCl 9 using T 4 DNA ligase.
- the ligation mixture was used to transform competent E. coli DH5 ⁇ . Recombinant plasmids were selected and sequenced. The insert was found to have a DNA sequence consistent with that of a class 2 porin. See, Murakami, K. et al, Infect. Immun. 57:2318-2323 (1989).
- the plasmid pET-17b (Novagen) was used to express the class 2 porin.
- One plasmid was designed to produce a mature class 2 porin while the other was designed to yield a class 2 porin fused to 20 amino acids from the T7 gene ⁇ l 0 capsid protein.
- the mature class 2 porin was constructed by amplifying the pUC19-class 2 porin construct using the oligonucleotides: 5'-CCT GTT GCA GCA CAT ATG GAC GTT ACC TTG TAC GGT ACA ATT AAA GC-3' and 5 '-CGA CAG GCT TTT TCT CGA GAC CAA TCT TTT CAG -3'.
- This strategy allowed the cloning of the amplified class 2 porin into the Ndel and Xhol sites of the plasmid pET-17b thus producing a mature class 2 porin.
- Standard PCR was conducted using the pUC19-class 2 as the template and the two oligonucleotides described above.
- This PCR reaction yielded a 1.1 kb product when analyzed on a 1.0% agarose gel.
- the D ⁇ A obtained from the PCR reaction was gel purified and digested with the restriction enzymes Nd and Xlio .
- the 1.1 kb D ⁇ A produced was again gel purified and ligated to Ndel and ⁇ 7?ol digested pET-17b using T D ⁇ A ligase.
- This ligation mixture was then used to transform competent E. coli DH5 ⁇ . Colonies that contained the 1.lkb insert were chosen for further analysis.
- the D ⁇ A from the DH5 ⁇ clones was analyzed by restriction mapping and the cloning junctions of the chosen plasmids were sequenced.
- the D ⁇ A obtained from the DH5 ⁇ clones was used to transform E. coli BL21 (DE3)- AompA.
- the transformants were selected to LB-agar containing 100 ⁇ g/ml of carbenicillin.
- the nucleotide sequence and translated amino acid sequence of the mature class II porin gene cloned into pET- 17b are shown in Figures 9 A and 9B.
- the fusion class 2 porin was constructed by amplifying the pUC19-class 2 porin construct using the oligonucleotides: 5 '-CCT GTT GCA GCG GAT CCA
- lkb product when analyzed on a 1.0% agarose gel.
- the DNA obtained from the PCR reaction was gel purified and digested with the reaction enzymes BamWl and Xhol.
- the 1.1 kb product produced was again gel purified and ligated to BamWl and .Y7 ⁇ oI digested pET-17b using T 4 DNA ligase.
- This ligation mixture was then used to transform competent E. coli DH5 ⁇ . Colonies that contained the l .lkb insert were chosen for further analysis.
- the DNA from the DH5 ⁇ clones was analyzed by restriction enzyme mapping and the cloning junctions of the chosen plasmids were sequenced.
- the nucleotide sequence and translated amino acid sequence of the fusion class II porin gene cloned into the expression plasmid pET-17b are shown in Figures 10A and 10B.
- the DNA obtained from the DH5 ⁇ clones was used to transform E. coli BL21 (DE3)-AompA.
- the transformants were selected on LB-agar containing 100 ⁇ g/ml of carbenicillin.
- Example 3 Cloning and Expression of the Mature class 3 porin from Group B Neisseria meningitidis strain 8765 in E. coli
- Genomic DNA was isolated from approximately 0.5 g of Group B Neisseria meningitidis strain 8765 using the method described above (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed.. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press ( 1989)). This DNA then served as the template for two class 3 porin specific oligonucleotides in a standard PCR reaction.
- the mature class 3 porin was constructed by amplifying the genomic DNA from 8765 using the oligonucleotides: 5'-GTT GCA GCA CAT ATG GAC GTT ACC CTG TAC GGC ACC-3' and 5'-GGG GGG ATG GAT CCA GAT TAG AAT TTG TGG CGC AGA CCG ACA CC-3'.
- This strategy allowed the cloning of the amplified class 3 porin into the Ndel and BamHl sites of the plasmid pET-24a+ ( Figures 13A and 13B), thus producing a mature class 3 porin.
- Standard PCR was conducted using the genomic DNA isolated from 8765 as the template and the two oligonucleotides described above.
- the reaction conditions were as follows: 8765 genomic DNA 200 ng, the two oligonucleotide primers described above at 1 ⁇ M of each, 200 ⁇ M of each dNTP, PCR reaction buffer (10 mM Tris HCI. 50 mM KC1, pH 8.3), 1.5 M MgCl 2 , and 2.5 units of Taq polymerase, and made up to 100 ⁇ l with distilled water. This reaction mixture was then subjected to 25 cycles of 95 °C for 1 min. 50 °C for 2 min and 72 °C for 1.5 min.
- This PCR reaction yielded about 930 bp of product, as analyzed on a 1% agarose gel.
- the DNA obtained from the PCR reaction was gel purified and digested with the restriction enzymes Ndel and BamHl.
- the 930 bp product was again gel purified and ligated to Ndel and BamHl digested pET-24a(+) using T4 ligase.
- This ligation mixture was then used to transform competent E. coli DH5 ⁇ . Colonies that contained the 930 bp insert were chosen for further analysis.
- the DNA from the E. coli DH5 ⁇ clones was analyzed by restriction enzyme mapping and cloning junctions of the chosen plasmids were sequenced.
- the DNA obtained from the E. coli DH5 ⁇ clones was used to transform E. coli BL21(DE3)- ⁇ w/ ⁇ 4.
- the transformants were selected on LB-agar containing 50 ⁇ g/ml of kanamycin.
- Several transformants were screened for their ability to make the class 3 porin protein. This was done by growing the clones in LB liquid medium containing 50 ⁇ g/ml of kanamycin and 0.4% of glucose at 30°C to OD WK)
- E coli strain BL21(DE3) ⁇ om/?A [pNV-5] is grown to mid-log phase (OD
- the resultant solution is then centrifuged at 13,000 rpm for 20 min and the supernatant discarded.
- the pellet is then twice suspended in TEN buffer containing 0.5% deoxycholate and the supernatants discarded.
- the pellet is then suspended in TEN buffer containing 8 M deionized urea (electrophoresis grade) and 0.1 mM PMSF (3 g/l Oml).
- the suspension is sonicated for 10 min or until an even suspension is achieved.
- 10 ml of a 10% aqueous solution of 3.14-zwittergen (Calbiochem) is added and the solution thoroughly mixed.
- the solution is again sonicated for 10 min. Any residual insoluble material is removed by centrifugation.
- Lysozyme is added (Sigma, 0.25 mg/ml) deoxycholate (Sigma, 1.3 mg/ml) plus PMSF (Sigma, ⁇ g/ml) and the mixture gently shaken for one hour at room temperature. During this time, the cells lyse and the released DNA causes the solution to become very viscous. DNase is then added (Sigma. 2 ⁇ g/ml) and the solution again mixed for one hour at room temperature. The mixture is then centrifuged at 15K rpm in a S-600 rotor for 30 minutes and the supernatant discarded. The pellet is then twice suspended in 10 ml of TEN buffer and the supernatants discarded. The pellet is then suspended in 10 ml of 8 M urea
- the pooled fractions are precipitated with 80% ethanol and resuspended with the above-mentioned buffer.
- Six to 10 mg of the material is then applied to a monoQ 10/10 column (Pharmacia) equilibrated in the same buffer.
- the porin is eluted from a shallow 0.1 to 0.6 M NaCl gradient with a 1.2% increase per min over a 50 min period.
- the Flow rate is 1 ml/min.
- the peak containing porin is collected and dialyzed against TEN buffer and 0.05% 3,14-zwittergen.
- the porin may be purified further by another S-300 chromatography.
- Example 6 Purification and chemical
- the capsular polysaccharide from both group B Neisseria meningitidis and E. coli Kl consists of ⁇ (2-8) polysialic acid (commonly referred to as GBMP or Kl polysaccharide).
- High molecular weight polysaccharide isolated from growth medium by precipitation was purified and chemically modified before being coupled to the porin protein.
- Example 14 Treatment with NaIO 4 followed by gel filtration column purification gave the oxidized N-Pr GBMP having an average molecular weight of 12,000 daltons.
- Example 7 Coupling of oxidized N-Pr GBMP to the group B meningococcal class 3 porin protein (PP)
- the oxidized N-Pr GBMP (9.5 mg) was added to purified class 3 porin protein (3.4 mg) dissolved in 0.21 ml of 0.2 M phosphate buffer pH 7.5 which also contained 10% octyl glucoside. After the polysaccharide was dissolved, sodium cyanoborohydride (7 mg) was added and the reaction solution was incubated at 37°C for 4 days. The reaction mixture was diluted with 0.15 M sodium chloride solution containing 0.01 % thimerosal and separated by gel filtration column chromatography using Superdex 200 PG. The conjugate (N-Pr GBMP-PP) was obtained as single peak eluting near the void volume.
- the polysaccharide (2 ⁇ g)-conjugate was administered on days 1 , 14 and 28, and the sera collected on day 38.
- the conjugates were administered as saline solutions, adsorbed on aluminum hydroxide, or admixed with stearyl tyrosine.
- the sera ELISA titers against the polysaccharide antigen and bactericidal titers against N. meningitidis group B are summarized in Table 1.
- Example 9 Expression of group B Neisseria meningitidis Outer Membrane (MB 3) Using Yeast Pichia pastoris Expression System
- Pichia pastoris GS 1 15 (provided by Invitrogen) has a defect in the histidinol dehydrogenase gene (his4) which prevents it from synthesizing histidine. All expression plasmids carry the HIS4 gene which complements his4 in the host, so transformants are selected for their ability to grow on histidine- deficient medium. Until transformed, GS 1 15 will not grow on minimal medium alone.
- his4 histidinol dehydrogenase gene
- the vector pHIL-S l carries a native Pichia pastoris signal from the acid phosphatase gene. PHOl .
- the vectors, pPIC9 and pPIC9K both carry the secretion signal from the S. cerevisiae ⁇ -mating factor pre-pro peptide.
- the advantage of expressing secreted proteins is that P. pastoris secretes very low levels of native proteins.
- the secreted heterologous protein comprises the vast majority of the total protein in the media and serves as the first step in purification of the protein (Barr et al, Pharm. Eng. 12(2) -4S-51 (1992)).
- the genomic DNA of Group B Neisseria meningitidis served as the template for the amplification of class 3 porin (MB3) in a standard PCR.
- the amplified DNA fragment (930 b.p. long) of the mature porin protein was ligated in Nde I - BamH I cloning sites of the pET-24a cloning/expression vector, originally constructed by Studier et al, J. Mol. Biol. 759: 1 13-130 (1986); Meth. Enzymol. 755:60-89(1990); J. Mol. Biol 279:37-44 (1991 ), and manufactured by Novagen.
- the pET vectors were developed for cloning and for expressing target DNA fragments under the strong T7 transcription and translation signals. Expression from the T7 promoter is induced by providing the host cell with a source of T7 RNA polymerase. Newer, more convenient vectors utilizing the T7 expression system are now available from Novagen (Madison, WI 5371 1). The T7 expression system was successfully used for the expression of MB3 in E. coli (see Example 3).
- Codon usage is known to affect the translational elongation rate, and therefore it has been considered an important factor in affecting product yields (Romanos et al, Yeast 5:423-488 ( 1992)). There is evidence that codon usage may affect both yield and quality of the expressed protein. A number of highly expressed genes show a strong bias toward a subset of codons (Bennetzen et al. ,
- proteins containing amino acid misincorporations are difficult to purify and may have both impaired activity and antigenicity.
- the presence of several rare codons has been shown to limit the production of tetanus toxin fragment C in E. coli (Makoff et al. Nucleic Acids Res. 77: 10191 -10201 (1989)).
- yeast Hoekema et al. (Mol. Cell Biol. 7: 2914-2924 (1987)) showed that substitution of a large proportion of preferred codons for rare codons in the 5' portion of the PGK (phosphoglycerate kinase) gene caused a decrease in expression levels.
- the expression of an immunoglobulin kappa chain in yeast has been shown to be increased 50-fold when a synthetic codon- optimized gene is used, although the level of kappa chain RNA remains the same.
- Vector pHIL-Sl/MB3 containing the codon-optimized MB3 DNA. served as the template for the amplification of MB3 in a standard PCR. Oligomers were synthesized to serve as PCR primers. The PCR fragments of
- MB3 were inserted into Pichia expression vectors either directly or by using the Original TA Cloning Kit (Invitrogen); details are given below.
- Reverse primer (36 nt, having an engineered Avrll site and stop codon): 5'-CACCCTAGGTTAGAATTTGTGACGCAGACCGACACC-3'
- Venf* DNA polymerase (NEB) was used for PCR amplification of the complete MB3 gene.
- the fidelity of this polymerase is 5-15-fold higher than that observed for Taq DNA polymerase.
- PCR fragments of MB3 full length and truncated fragments
- Pichia expression vectors either directly or using the Original TA Cloning ® Kit (Invitrogen), which includes a pCRTMII vector for subcloning of PCR fragments.
- Direct cloning of DNA amplified by either Vent ® DNA polymerase or Pfu DNA polymerase into the vector pCRTMII is difficult, as the cloning efficiency is often very low.
- the Invitrogen protocol was modified as follows. Following amplification with Vent* or Pfu (see manual for The Original TA Cloning* Kit, protocol for the addition of 3'A-overhangs post amplification, p. 19), rather than placing the vial on ice, as recommended in the kit, the mineral oil in the PCR mixture was immediately removed using ParafilmTM. This was accomplished by pouring the PCR mixture onto the Parafilm, and zigzagging the drop down the surface of the Parafilm with a gentle rocking motion until all of the oil had adhered to the Parafilm surface. The reaction mixture, now free of oil. was then collected into a fresh tube. The Invitrogen protocol was then resumed with the addition of Taq polymerase. This method allowed the difficult cloning of PCR fragments into large expression vectors.
- the expression cassette of the integrating vector contains the methanol-induced AOX I promoter and its terminator, flanked by stretches of nucleotides up- and downstream from the AOX 1 gene.
- the P. pastoris His4 gene served as an auxotrophic marker.
- These vectors do not contain a yeast ori, hence His + colonies must correspond to integration of the expression cassette.
- All PCR fragments of MB3 were inserted in frame with a Pichia Kozak consensus sequence (CAAAAAACAA) (Cavenor et al. Nucleic Acids Res. 19:3185-3192 ( 1991 ); Kozak Nucleic Acids Res. 75:8125-8148 (1987); Kozak Proc. Natl. Acad
- Other strains which may be suitable are DH5 ⁇ F , JM 109, or any other strain that carries a selectable F ' episome and is recA deficient (endA is preferable) (Pichia Expression Kit Instruction Manual, Invitrogen).
- Colonies with an MB3 insert were used for the preparation of CsCl purified maxi-prep of a plasmid DNA for Pichia transformation (Sambrook, J. er al, Eds., Molecular Cloning: A Laboratory Manual. 2nd. Ed., Cold Spring Harbor Press ( 1989), pp. 1.42-1 .43). Restriction analysis and DNA sequencing (DNA Sequencing Kit, Version 2 (USB)) confirmed that these constructs were correct.
- Modification of the starting MB3 sequence was especially useful for intracellular expression of the porin gene (pHIL-D2/MB3 construct). Because the other constructs (pHIL-Sl/MB3 and pPIC9/MB3) used for MB3 secretion contained codons optimal for Pichia in the leader peptide sequence upstream of the MB3 insert, the initiation of translation was not rate-limiting. In contrast, the pHIL-D2 vector does not include any leader sequence and the initiation of translation must be started from the rare codons of the MB3 insert. The optimization of this sequence is believed to be responsible for the fact that pHIL- D2/MB3 constructs gave the highest level of MB3 expression of any of the clones tested (Tables 3, 4).
- Plasmid DNA was linearized with single or double (for higher integration efficiencies) digestion, and P. pastoris strain GS1 15 (his4 ) was transformed to the His + phenotype by the spheroplast method using Zymolyase followed by adsorption of transforming DNA and penetration of this DNA through the spheroplast pores into the Pichia cells in the presence of PEG and Ca " " 2 (Pichia Expression Kit manual, Invitrogen, pp.33-38).
- the cells were harvested by centrifugation (4000 rpm for 10 minutes at room temperature) and were resuspended in methanol-containing Buffered Methanol- complex Medium (BMMY: 1 % yeast extract, 2% peptone. 100 mM potassium phosphate, pH 6.0, 1.34% YNB, 4xl 0 "s % biotin, 0.5% methanol) (Pichia Expression Kit manual, Invitrogen, p. 61 ) for the induction of the AOXI promoter. To replenish exhausted methanol, 0.5% of fresh methanol was added each day to induced cells.
- BMMY 1 % yeast extract, 2% peptone. 100 mM potassium phosphate, pH 6.0, 1.34% YNB, 4xl 0 "s % biotin, 0.5% methanol
- Cells were broken by agitation in breaking buffer (50 mM sodium phosphate, pH 7.4; 1 mM PMSF(phenylmethylsulfonyl fluoride), 1 mM EDTA and 5% glycerol). Equal volumes of acid-washed glass beads (0.5 mm in diameter) were added. The mixture was vortexed for a total of 4 min, 30 sec mixing each, followed by 30 sec on ice. The soluble fraction was recovered by centrifugation for 10 min at 14000 rpm at 4°C.
- breaking buffer 50 mM sodium phosphate, pH 7.4; 1 mM PMSF(phenylmethylsulfonyl fluoride), 1 mM EDTA and 5% glycerol.
- Proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were stained with Coomassie Brilliant Blue R250, or were transferred to polyvinylidene difluoride (PVDF) membrane using a Transblotl apparatus (BioRad Laboratories) according to the company specification.
- Immunostaining of proteins was carried out as follows.
- the transfer membrane was rinsed with TBS ( l OmM Tris-HCl/.09% NaCl, pH 7.2).
- the membrane was then incubated in 1 % non fat dried milk PBS solution (M-PBS) with .02% sodium azide at 37°C for 3 hours (or at 4°C overnight).
- the membrane was then washed 3 times with TBS/0.5% BSA (BS A/TBS) and once with TBS.
- the membrane was then incubated with the primary mouse anti-MB3 antibody (mouse polyclonal antisera against purified OMP class 3) diluted to about 1 :4000 in PBS/1 %BSA (BSA/PBS).
- the strategy used to insert the cDNA encoding the mature MB3 into expression vectors and the steps using this construct for the transformation of P. pastoris are outlined below.
- the MB3 gene is cloned into one of the 4 Pichia expression vectors.
- the resulting construct is linearized by digestion with Notl or Bgl ⁇ l, and his4 Pichia spheroplasts are transformed with the linearized construct.
- a recombination event occurs in vivo between the 5 ' and 3 'AOXI sequences in the vector and in the genome, resulting in replacement of the AOXI gene with the MB3 gene.
- the Pichia transformants are selected on histidine-deficient medium, on which only cells that have undergone gene replacement can grow.
- the one-step gene replacement method described for S. cerevisiae (Rothstein. Meth. Enzymol 707:202-21 1 (1983)) was successfully used by Cregg et al (Biological Research on Industrial Yeast, Vol. II, Stewart et al. eds ,CRC Press. Boca Raton, pp.1-18 (1987)) for the replacement of the P. pastoris AOX I structural gene.
- Transformation of GS1 15 with 10 ⁇ g of linearized expression vectors (pHIL-D2, pHIL-Sl, pPIC9, and pPIC9K) with MB3 insert gave more than 100 colonies in each experiment. Thus, the procedure yielded >10 2 His colonies per ⁇ g DNA. which is comparable to that reported for the best results of P pastoris transformations. These transformants have the ability to grow on histidine- deficient medium (MD-minimal dextrose), and so arc His . About 10-40% of these recombinants were "methanol slow” (Muf — "methanol utilization slow”). i.e., demonstrated impaired growth on media such as MM (minimal methanol). which contains methanol as the sole carbon and energy source.
- HisVMuf transformants are a result of the replacement of the AOXI structural gene with the MB3 expression cassette containing the His' gene via a double crossover event. Recombination events may also occur as integration or insertion (single crossover events) of the expression cassette into the 5' or 3' AOXI region, which leaves the AOXI gene intact.
- His7Mut s clones 25-35% were positive, MB3-expressing transformants (Table 2). The reason that the AOX1- deleted transformants grow at all on methanol medium is due to low-level expression of alcohol oxidase activity by the AOX2 gene product.
- the amount of expressed MB3 was determined by densitometric scanning of the Coomassie brilliant blue stained protein bands fractionated by SDS-PAGE using a Model GDS-7500 scanning densitometer (UVP Life Sci.) or Model IS-1000 densitometer (Alpha Innotech Corp.). Purified OMP class 3 extracted wild type of N. meningitidis was used as a standard. Based on the results (summarized in Table 3), the level of protein expression was estimated to be moderate to high.
- the level of MB3 expression by the best clones was in the range of 0.1-0.6 g per IL of cell suspension, or 1-3 mg per g of cell pellet (Table 3, Fig. 12).
- Such efficiency of expression in yeast has been reported for many of the following manufactured proteins: hepatitis B surface antigen (0.3 g/L), superoxide dismutase (0.75 g/L).
- bovine and human lysozyme (0.3 and 0.7 g/L, respectively), human and mouse epidermal growth factors (0.5 and 0.45 g/L respectively), human insulin-like growth factor (0.5 g/L), human interleukin-2 (1.0 g/L), aprotinin analog (0.8 g/L), Kunitz protease inhibitor (1.0 g/L), etc. (Cregg et al, Biotechnology. 77.903-906, Table 1 ( 1993)). It should be emphasized that all of the previously listed levels of expression for manufactured proteins are the result of production of these proteins during fermentation in high cell density fermentors. MB3 was expressed utilizing only shake flask cultures which, as a rule, provide much lower expression levels than does fermentation.
- PEST sequences contain proline (P), glutamic acid (E), serine (S) and threonine (T), and are found in all rapidly degraded eukaryotic proteins of known sequence; such proteins have been implicated as favored substrates for calcium-activated proteases (Rogers et al, Science 23-7:364-369 (1986)).
- MB3 also does not contain the highly conserved pentapeptide sequences mentioned above.
- the sequence ROSFI (75-79aa) is present in MB3: this sequence displays some homology to the degradation pentapeptide QRXFX. but is not believed to greatly destabilize MB3.
- the nature of the NH 2 -terminal amino acid residue can also be an important factor in the susceptibility of a protein to degradation. Varshavsky el al. have demonstrated that the presence of certain amino acids at the NH 2 - terminus provide a stabilizing effect against rapid degradation by ubiquitin- mediated pathways (the N-end rule pathway) (Varshavsky et al. Yeast Genetic-
- proteins that are expressed at high levels in yeast have a stabilizing amino-terminus amino acid residue (A, C, G, M, S, T or V).
- examples of such proteins include human superoxide dismutase, human tumor necrosis factor, phosphoglycerate kinase from S. cerevisiae, invertase from 5. cerevisiae, alcohol oxidase from P. pastoris, and extracellular alkaline protease from ⁇ '. Hpolytica (Sreekrishna et al, Biochemistry 25:41 17-4125 (1989)).
- MB3 is expressed well in yeast, the NH 2 -terminal aspartic acid (D) of MB3 does not provide a stabilizing effect against rapid degradation by ubiquitin-mediated pathways. It is possible that the NH 2 -terminal aspartic acid of MB3 will play a role in the level of MB3 produced from Pichia in large scale production. Replacing the first amino acid of MB3 with one of the amino acids known to stabilize the NH 2 -terminus of proteins, mentioned above, could improve the level of MB3 production. It was decided to proceed with experiments attempting to express MB3 in yeast, as most of the factors known to reduce expression levels were not present in MB3.
- MB 3 The best expression of MB 3 was provided by Pichia clones transformed with the pHIL-D2/MB3 expression cassette (Tables 3 and 4).
- This pHIL-D2 vector generated intracellular expression of complete, monomeric, non-fusion, non-secreted MB3 with an expected MW of about 34 kDa.
- These clones provided the highest level of expression of MB3. up to 600 mg/L or 3 mg per g of wet cell pellet (Table 4).
- About 90-95% of this product was insoluble, membrane-associated material, i.e., material which sediments upon centri- fugation for 5 min at l O.OOOg, and that can be extracted by treatment with SDS- containing buffer (PAGE sample buffer) followed by boiling.
- the protein can then be renatured to a conformation that can be easily recognized by an anti- meningococcal OMP class 3 antibody.
- the pHIL-D2/MB3-containing Pichia recombinant is the most promising for commercial production.
- This clone provides relatively high levels of expression which could be significantly improved by using multiple-copy recombinants, and by producing the protein in a fermentor.
- the fact that MB3 is rapidly produced also provides an advantage for large scale manufacture.
- MB3 expressed in an intracellular form was purified by a denaturation/renaturation protocol, followed by gel filtration and ion exchange chromatography.
- the resultant purified protein exhibits an elution profile on size exclusion chromatography that resembles the recombinant class 3 protein overexpressed in E. coli.
- MB3 expressed by either E. coli or P. pastoris co-elutes with the native wild-type counte ⁇ art. indicating that MB3 expressed by either E. coli or P. pastoris refolds and oligomerizes, achieving full native conformation (Figs. 14A and 14B).
- the pHIL-S l Pichia transfer vector includes a sequence encoding the 2.5 kDa PHOl leader peptide, a secretion signal peptide of P. pastoris.
- the sequence encoding MB3 was inserted downstream of the PHOl leader sequence.
- the pPIC9 and pPIC9K Pichia transfer vectors include a sequence encoding the 10 kDa alpha-factor leader derived from S. cerevisiae. Pichia clones transformed by pPIC9/MB3 or pPIC9K/MB3 did not secrete porin.
- Example 10 Isolation, purification and characterization of MB3 protein expressed as a secretory protein
- Yeast cells cultures harboring the expression vector containing the gene for MB3 were configured to isolate the protein as soluble secreted material).
- the supernatant was clarified by precipitation with 20% ethanol (v/v) to remove contaminating yeast culture impurities.
- the supernatant was then precipitated with 80% ethanol (v/v).
- the resulting pellet was washed with TEN buffer (Tris HC1, pH 8.0, 100 mM NaCl and 1 mM EDTA), in order to remove other hydrosoluble contaminating secreted proteins.
- the pellet containing MB3 was dissolved in an aqueous solution of detergent (solubilizing buffer), comprised of TEN buffer with 5% Z 3-14.
- Example 11 Isolation, purification and characterization of MB3 protein expressed as an insoluble- membrane bound protein
- Yeast cells cultures harboring the expression vector containing the gene for MB3 (pHILD-2-pNV322) (see Table 3) were resuspended in breaking buffer (i.e., 50 mM sodium phosphate buffer, pH 7.4, 1 mM EDTA, and 5% glycerol), to a concentration equivalent to 50-100 ODs.
- breaking buffer i.e., 50 mM sodium phosphate buffer, pH 7.4, 1 mM EDTA, and 5% glycerol
- the suspension was added to the same volume of acid treated glass beads.
- the suspension was lysed using a Minibead-Beater (Biospec Products, Bartlesville, OK), in 8 consecutive cycles of 1 min each, followed by 1 min on ice, between each cycle.
- the lysis process was facilitated by the addition of Zymolase to the breaking buffer.
- the suspension was transferred to a glass sintered filter to separate the glass beads, and the cell suspension was collected in the filtrate. The beads were further washed and the filtrates combined. The suspension was then centrifuged at 12,000 ⁇ m for 15 min at 4°C. A series of consecutive washing steps was applied to the resultant pellet, consisting of the following: (a) TEN (Tris HC1, pH 8.0, 100 mM NaCl, and 1 mM EDTA) containing 0.5% deoxycholate; (b) TEN containing 0.1% SDS and 1% Nonidet, after which the suspension was rotated for 30 min at 25 °C; (c) washing with TEN buffer; and (d) washing with TEN buffer containing 5% Z 3-14. under rotation overnight at
- each washing step was followed by centrifugation at 12,000 ⁇ m for 10 min at 4°C to collect the pellet for the following step.
- the suspension was passed through an 18 gauge needle in lieu of rotation in steps (b) and (d).
- the MB3 was extracted with 8M urea, or 6M guanadinium HCI, and the extract was sonicated for 10 min, using a water bath sonicator.
- the extract was clarified by centrifugation (12,000 rpm, for 10 min at 4°C), the same volume of a 10% aqueous solution of 3, 14-zwittergen (Calbiochem) was added and the solution thoroughly mixed. The solution was again sonicated for 10 min.
- FIGS. 14A, 14B and 15 depict the elution profile of purified MB3 in a Sepharose 12 (Pharmacia) connected to an HPLC (Hewlett Packard, model 1090). Based on the comparison with the native wild-type class 3 protein, as well as calibration using molecular weight standards, the elution profile is indicative of trimeric assembly.
- NMA polysaccharide for conjugation.
- NMA meningitidis group A
- ethanol for fractional precipitation with ethanol.
- the high molecular weight polysaccharide was further purified by ultra filtration. Partial hydrolysis of the polysaccharide with 100 mM sodium acetate buffer pH 5.0 at 70°C yielded a low molecular weight polysaccharide in the range of 10,000-20,000 daltons. The free reducing terminal residue of the polysaccharide was reduced with
- Tetanus toxoid (Serum Statens Institute, Denmark) was first purified to its monomeric form (mw 150,000) by size exclusion chromatography using a Superdex G-200 column (Pharmacia). Freeze-dried tetanus toxoid monomer ( 1 part by weight) and oxidized GAMP (2.5 part by weight) were dissolved in 0.2 M phosphate buffer pH 7.5. Recrystallized NaBH 3 CN (1 part) was added and the reaction mixture incubated at 37°C for 4 days.
- the conjugate was purified from the free components by size exclusion chromatography using a Superdex G-200 column (Pharmacia), and PBS containing 0.01% thimerosal as an eluent. Purified GAMP-tetanus toxoid conjugate was stored at 4°C in this buffer. The polysaccharide content of the conjugate based on phosphorus analysis (Chen assay) was about 18-20% by weight.
- NMC polysaccharide for conjugation.
- the capsular polysaccharide was isolated from the growth medium of Neisseria meningitidis group C (NMC) strain C 1 1. This strain was grown in modified Franz medium.
- the NMC polysaccharide (group C meningococcal polysaccharide (GCMP)) was isolated from the culture medium by cetavlon precipitation as described for the GAMP.
- Native GCMP was O-deacetylated with base and depolymerized by oxidative cleavage with NaIO 4 to an average molecular weight of 10,000-20,000.
- the cleaved polysaccharide was sized and purified by gel filtration chromatography to provide a highly purified product of average molecular weight about 12,000 daltons and having aldehyde groups at both termini.
- Neisseria rPorB Expression of class 3 N meningitidis porin protein (PorB) in E. coli and purification of porin gene products is described supra.
- the recombinant rPorB protein was purified by using a sephacryl S-300 molecular sieve column equilibrated with 100 mM Tris- HCl, 200 nM ⁇ aCl, 10 mM EDTA, 0.05% Zwittergen 3, 14 (Calbiochem. La Jolla, CA), 0.02% sodium azide pH 8.0.
- the protein fractions as measured by their OD 28(1 eluting with an apparent molecular weight of trimers were pooled and diafiltered against 0.25 M HEPES. 0.25 M ⁇ aCl, 0.05% Zwittergen 3, 14 pH 8.5. to a concentration of 10-12 mg/ml.
- N-Pr-GBMP-rPorB conjugate To 10 mg of oxidized N-Pr-GBMP of average molecular weight 12,000 was added 33 ⁇ l of a 12 mg/ml of rPorB protein in 0.25 M HEPES. 0.25% M NaCl. 0.05% Zwittergen 3. 14, pH 8.5. The solution was mixed until all solid dissolved and 6.5 mg of recrystallized NaBH : ,CN was added. The solution was incubated at 37°C for 4 days and the conjugate was purified from the mixture by using a Superdex G-200 column (Pharmacia) equilibrated with PBS -0.0%) thimerosal. Protein fractions were combined and stored at 4°C. The conjugates were analyzed for their sialic acid content by the resorcinol assay and for protein with the Pierce Coomassie Plus assay. The resulting conjugate had a polysaccharide content of about 20-
- the capillary was conditioned between runs with a high pressure rinse for 2.0 minutes with 0.1 M sodium hydroxide followed by 2.0 minutes with deionized water. All samples were pressure injected. All buffer and sample media were filtered through an appropriate 0.2 ⁇ m membrane filter and degassed prior to use.
- Fig. 20 shows the GAMP-TT conjugate spiked with GAMP and TT-monomer conjugate components
- Fig. 21 shows the GCMP-TT conjugate spiked with GCMP and TT-monomer conjugate components.
- the lower limit of detection (LLD) for the free form polysaccharide and protein components for the method was determined to be in the subnanogram level.
- a lower limit of quantitation (LLQ) of approximately 0.6 ng was obtained for the free form of each component.
- a linear response was obtained for the selected total mass of each component.
- a linear response was obtained for the selected total mass range of 0.6-2.6 ng and 0.6-2.4 ng for the polysaccharide and protein, respectively, with a coefficient of determination of 0.99 for both curves.
- Trivalent conjugate vaccine formulation Each individual conjugate component (A, B, C) was absorbed onto Aluminum hydroxide (Al(OH) 3 ) Alhydrogel (Superfos, Denmark) at a final Al concentration of 1 mg/ml of the trivalent vaccine. Three vaccines were formulated in which the doses of each conjugated polysaccharide varied.
- Formulations had either about 2 ⁇ g of each A, B, and C conjugated polysaccharide; or about 2 ⁇ g A conjugated polysaccharide, about 5 ⁇ g B conjugated polysaccharide and about 2 ⁇ g C conjugated polysaccharide; or about 5 ⁇ g of each A, B, and C conjugated polysaccharide per dose of 0.2 ml of PBS, 0.01 % thimerosal.
- ELISAs Antibody titers to each A, N-propionylated B and C polysaccharides were determined by ELISA using the corresponding HSA conjugates as coating antigen (Figs. 22, 23, and 24). Antibody titer was defined as the x-axis intercept of the linear regression curve of absorbance vs. absorbance x dilution factor.
- Bactericidal Assays Bactericidal assays were performed using baby rabbit serum as a source of complement and N.
- meningitidis strains H 44/76 (Serotype 15), C l l and Al respectively used as group B meningococcal, group C meningococcal, and group A meningococcal organisms in this assay (Figs. 25, 26, and 27).
- Bactericidal titer was defined as the serum dilution producing 50% reduction in viable counts.
- Table 4 The expression of MB3 by recombinant clones with different expression cassettes. The main characteristic of the best clones.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Epidemiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1097296P | 1996-02-01 | 1996-02-01 | |
US10972P | 1996-02-01 | ||
US2044096P | 1996-06-13 | 1996-06-13 | |
US20440P | 1996-06-13 | ||
PCT/US1997/001687 WO1997028273A1 (en) | 1996-02-01 | 1997-01-31 | Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0877816A1 true EP0877816A1 (en) | 1998-11-18 |
Family
ID=26681820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97906470A Ceased EP0877816A1 (en) | 1996-02-01 | 1997-01-31 | Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0877816A1 (no) |
JP (1) | JP2001508758A (no) |
KR (1) | KR19990082265A (no) |
AU (1) | AU2115897A (no) |
HU (1) | HUP9901039A2 (no) |
IL (1) | IL125420A0 (no) |
NO (1) | NO983474L (no) |
PL (1) | PL328096A1 (no) |
WO (1) | WO1997028273A1 (no) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU748973B2 (en) | 1997-07-17 | 2002-06-13 | Baxter Healthcare Sa | Immunogenic conjugates comprising a group B meningococcal porin and an H. influenzae polysaccharide |
DE69938302T2 (de) | 1998-05-01 | 2009-03-12 | J. Craig Venter Institute, Inc. | Neisseria-meningitidis-antigene und zusammensetzungen |
JP4524816B2 (ja) * | 1998-07-06 | 2010-08-18 | 東ソー株式会社 | Il−6レセプター・il−6直結融合蛋白質 |
DE69941406D1 (de) * | 1998-07-06 | 2009-10-22 | Tosoh Corp | IL-6 Rezeptor IL-6-gekoppeltes Fusionsprotein |
GB9818004D0 (en) * | 1998-08-18 | 1998-10-14 | Smithkline Beecham Biolog | Novel compounds |
US7368261B1 (en) | 1999-04-30 | 2008-05-06 | Novartis Vaccines And Diagnostics Srl | Conserved Neisserial antigens |
SK16022001A3 (sk) | 1999-05-13 | 2002-09-10 | American Cyanamid Company | Adjuvantné kombinované prostriedky |
EP2258851A1 (en) * | 1999-05-19 | 2010-12-08 | Novartis Vaccines and Diagnostics S.r.l. | Combination neisserial compositions |
EP1069133A1 (en) * | 1999-07-13 | 2001-01-17 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Neisseria meningitidis compounds and anti-infection applications thereof |
GB9928196D0 (en) * | 1999-11-29 | 2000-01-26 | Chiron Spa | Combinations of B, C and other antigens |
RU2002117308A (ru) | 1999-11-29 | 2004-03-10 | Чирон Спа (It) | 85 кДа АНТИГЕН NEISSERIA |
ATE476988T1 (de) | 2000-01-17 | 2010-08-15 | Novartis Vaccines & Diagnostic | Membranvesikel (omv) impfstoff, der n. meningitidis serogruppe b membranproteine enthält |
AU3947801A (en) * | 2000-02-28 | 2001-09-12 | Chiron Spa | Hybrid expression of neisserial proteins |
GB0115176D0 (en) * | 2001-06-20 | 2001-08-15 | Chiron Spa | Capular polysaccharide solubilisation and combination vaccines |
PT2353608T (pt) | 2002-10-11 | 2020-03-11 | Novartis Vaccines And Diagnostics S R L | Vacinas de polipéptidos para protecção alargada contra linhagens meningocócicas hipervirulentas |
EP1587537B1 (en) | 2003-01-30 | 2012-04-11 | Novartis AG | Injectable vaccines against multiple meningococcal serogroups |
JP2006262846A (ja) * | 2005-03-25 | 2006-10-05 | Niigata Bio Research Park Kk | 酵母による2−デオキシ−シロ−イノソースの合成および精製する方法並びに得られた2−デオキシ−シロ−イノソース |
KR100919704B1 (ko) * | 2007-09-12 | 2009-10-06 | 한국생명공학연구원 | 효모에서 재조합단백질을 고효율로 분비발현시키는 방법 |
JP2011116658A (ja) * | 2008-03-13 | 2011-06-16 | Chemo-Sero-Therapeutic Research Inst | 豚萎縮性鼻炎用薬剤の製造方法 |
US9974848B2 (en) | 2013-11-14 | 2018-05-22 | Duke University | Tetanus toxoid and CCL3 improve DC vaccines |
CN106146679B (zh) * | 2015-04-23 | 2019-02-01 | 中国医学科学院医学生物学研究所 | 一种纯化细菌荚膜多糖的方法 |
PT3294762T (pt) | 2015-05-11 | 2022-03-21 | Impossible Foods Inc | Constructos de expressão e métodos de modificar geneticamente levedura metilotrófica |
BR112018013376A2 (pt) * | 2015-12-30 | 2018-12-18 | Dsm Ip Assets Bv | hidrólise enzimática parcial de triacilgliceróis |
MX2021012671A (es) | 2019-04-17 | 2022-01-24 | Impossible Foods Inc | Métodos y materiales para la producción de proteínas. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356170A (en) * | 1981-05-27 | 1982-10-26 | Canadian Patents & Development Ltd. | Immunogenic polysaccharide-protein conjugates |
NZ239643A (en) * | 1990-09-17 | 1996-05-28 | North American Vaccine Inc | Vaccine containing bacterial polysaccharide protein conjugate and adjuvant (c-nd-che-a-co-b-r) with a long chain alkyl group. |
US5268273A (en) * | 1990-12-14 | 1993-12-07 | Phillips Petroleum Company | Pichia pastoris acid phosphatase gene, gene regions, signal sequence and expression vectors comprising same |
US5439808A (en) * | 1993-07-23 | 1995-08-08 | North American Vaccine, Inc. | Method for the high level expression, purification and refolding of the outer membrane group B porin proteins from Neisseria meningitidis |
-
1997
- 1997-01-31 IL IL12542097A patent/IL125420A0/xx unknown
- 1997-01-31 JP JP52788197A patent/JP2001508758A/ja active Pending
- 1997-01-31 EP EP97906470A patent/EP0877816A1/en not_active Ceased
- 1997-01-31 WO PCT/US1997/001687 patent/WO1997028273A1/en not_active Application Discontinuation
- 1997-01-31 AU AU21158/97A patent/AU2115897A/en not_active Abandoned
- 1997-01-31 KR KR1019980705994A patent/KR19990082265A/ko not_active Application Discontinuation
- 1997-01-31 HU HU9901039A patent/HUP9901039A2/hu unknown
- 1997-01-31 PL PL97328096A patent/PL328096A1/xx unknown
-
1998
- 1998-07-28 NO NO983474A patent/NO983474L/no unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9728273A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1997028273A1 (en) | 1997-08-07 |
IL125420A0 (en) | 1999-03-12 |
HUP9901039A2 (hu) | 1999-07-28 |
JP2001508758A (ja) | 2001-07-03 |
KR19990082265A (ko) | 1999-11-25 |
AU2115897A (en) | 1997-08-22 |
NO983474D0 (no) | 1998-07-28 |
PL328096A1 (en) | 1999-01-04 |
NO983474L (no) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997028273A1 (en) | Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines | |
WO1997028273A9 (en) | Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines | |
US5439808A (en) | Method for the high level expression, purification and refolding of the outer membrane group B porin proteins from Neisseria meningitidis | |
EP1651166B1 (en) | Polypeptides for inducing a protective immune response against staphylococcus aureus | |
JP3253327B2 (ja) | 髄膜炎菌外層膜蛋白質をコードするヌクレオチド配列を有するポリヌクレオチドおよびワクチン組成物 | |
JPH10504717A (ja) | 肺炎双球菌感染症に対する免疫化のための肺炎双球菌多糖−組み換えニューモリシン結合体ワクチン類 | |
JP4091112B2 (ja) | リポタンパク質の発現 | |
US6780420B1 (en) | Carrier protein having an adjuvant effect, immunogenic complex containing it, process for their preparation, nucleotide sequence and vaccine | |
US5747287A (en) | Method for the high level expression, purification and refolding of the outer membrane group B porin proteins from Neisseria meningitidis | |
CA2244989A1 (en) | Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines | |
AU711016B2 (en) | High level expression, purification and refolding of the Neisseria meningitidis outer membrane group B porin proteins | |
EP1688428A1 (en) | Method of antigen incorporation into neisseria bacterial outer membrane vesicles and resulting vaccine formulations | |
AU779056B2 (en) | Recombinant iron uptake proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980827 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19990218 |