EP0848397B1 - Procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline - Google Patents

Procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline Download PDF

Info

Publication number
EP0848397B1
EP0848397B1 EP97402667A EP97402667A EP0848397B1 EP 0848397 B1 EP0848397 B1 EP 0848397B1 EP 97402667 A EP97402667 A EP 97402667A EP 97402667 A EP97402667 A EP 97402667A EP 0848397 B1 EP0848397 B1 EP 0848397B1
Authority
EP
European Patent Office
Prior art keywords
temperature
magnetic
crystallization
heat treatment
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402667A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0848397A1 (fr
Inventor
Georges Couderchon
Philippe Verin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0848397A1 publication Critical patent/EP0848397A1/fr
Application granted granted Critical
Publication of EP0848397B1 publication Critical patent/EP0848397B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Definitions

  • the present invention relates to the manufacture of magnetic components in soft magnetic alloy based on iron having a nanocrystalline structure.
  • Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers.
  • hysteresis (Br / Bm ⁇ 0.5), i.e. a coated hysteresis cycle (Br / Bm ⁇ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction Max.
  • Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature between 500 ° C and 600 ° C.
  • the lying hysteresis cycles are obtained when the treatment thermal includes at least one annealing under magnetic field, this annealing can be the annealing intended to cause the formation of nanocrystals.
  • Nanocrystalline ribbons, or more precisely, magnetic components produced with these ribbons have a drawback which limits their use. This drawback is insufficient stability of the magnetic properties when the temperature rises above room temperature. This stability insufficient results in unreliability of circuit breaker operation differentials fitted with such magnetic cores.
  • the object of the present invention is to remedy this drawback by providing a means for manufacturing magnetic cores from material nanocrystalline having magnetic properties whose temperature stability is significantly improved.
  • the thermal relaxation treatment can be a maintenance for a time between 0.1 and 10 hours, at a temperature between 250 ° C and 480 ° C.
  • the relaxation heat treatment can also consist of a progressive heating from room temperature to a temperature greater than 450 ° C, at a heating rate between 30 ° C / hour and 300 ° C / hour between 250 ° C and 450 ° C.
  • At least one annealing constituting the heat treatment can be carried out under magnetic field.
  • This process applies more particularly to soft magnetic alloys with iron base having a nanocrystalline structure, the chemical composition of which is such that Si ⁇ 14%.
  • the alloy may have low levels of impurities provided by raw materials or resulting from production.
  • the amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy, poured, for example, on a cooled wheel.
  • the magnetic core blanks are also manufactured known in itself, by winding the ribbon on a mandrel, cutting it and fixing its end by a welding point, in order to obtain small toroids of rectangular section.
  • the blanks are first subjected to a so-called "relaxation" annealing, at a temperature below the temperature of onset of crystallization of the amorphous strip, and preferably between 250 ° C and 480 ° C, then an annealing of crystallization which may or may not be carried out under magnetic field, and possibly be followed by annealing at lowest temperature under magnetic field.
  • This annealing of relaxation had for advantage of significantly reducing the sensitivity of magnetic properties nuclei at temperature.
  • the inventors have also found that the annealing of relaxation prior to crystallization annealing had the added benefit of reduce the dispersion of the magnetic properties of the nuclei observed on mass production.
  • the crystallization annealing is intended to precipitate in the matrix amorphous nanocrystals of size less than 100 nanometers, preferably between 10 and 20 nanometers. This very fine crystallization makes it possible to obtain the desired magnetic properties.
  • the crystallization annealing consists of a maintaining at a temperature higher than the temperature at the start of crystallization and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties.
  • the annealing temperature of crystallization is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by tests the temperature which leads to maximum magnetic permeability.
  • the annealing temperature of crystallization can then be chosen equal to this temperature, or, better, be chosen to be about 30 ° C higher.
  • crystallization annealing can be carried out under a transverse magnetic field.
  • the crystallization treatment can also be supplemented by annealing at a temperature below the crystallization start temperature, for example towards 400 ° C, carried out under transverse magnetic field.
  • the heat treatment of the blanks magnetic component include a relaxation annealing, a crystallization possibly carried out under magnetic field, and, possibly, an additional annealing carried out under magnetic field.
  • the relaxation annealing which precedes the crystallization annealing, and which can be performed both on the amorphous tape itself and on the component blank magnetic, can consist in maintaining a constant temperature during a time which preferably should be between 0.1 and 10 hours.
  • This annealing can also consist of a gradual rise in temperature, which precedes, by example, crystallization annealing, and which must be done at a rate of rise in temperature between 30 ° C / h and 300 ° C / h, at least between 250 ° C and 450 ° C; preferably the rate of temperature rise should be around 100 ° C / h.
  • the series of blanks of magnetic cores A2 and B2 have, for comparison, been treated in accordance with the prior art by a single crystallization annealing for 3 hours at 530 ° C.
  • the maximum magnetic permeability at 50 Hz was measured at different temperatures between - 25 ° C and + 100 ° C, and it was expressed as a% of the maximum magnetic permeability at 50 Hz at 20 ° C.
  • the first example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 . After quenching on a wheel, it was checked by X-ray that the ribbon was completely amorphous. The ribbon was then separated into three sections, one, A, remained as it was, the other two, B and C, were subjected to relaxation annealing, for one, B, 1 hour at 400 ° C, for the other, C, 1 hour at 450 ° C.
  • the second example relates to toroidal magnetic cores produced from ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
  • ribbons 20 ⁇ m thick and 10 mm wide obtained by direct quenching on a cooled wheel, of an alloy of composition (in at%) Fe 73 Si 15 B 8 Cu 1 Nb 3 .
  • the ribbon two batches of 300 toroids with an internal diameter of 11 mm and an external diameter of 15 mm were produced using automatic winding machines. The batches were then treated in ovens with neutral atmosphere. A control batch A was only subjected to a 1 hour crystallization annealing at 530 ° C.
  • the second batch was treated in accordance with the invention: a relaxation annealing of 1 hour at 400 ° C. was first carried out, then a crystallization annealing of 1 hour at 530 ° C.
  • the toroids were put in a box

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Powder Metallurgy (AREA)
EP97402667A 1996-12-11 1997-11-07 Procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline Expired - Lifetime EP0848397B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615197 1996-12-11
FR9615197A FR2756966B1 (fr) 1996-12-11 1996-12-11 Procede de fabrication d'un composant magnetique en alliage magnetique doux a base de fer ayant une structure nanocristalline

Publications (2)

Publication Number Publication Date
EP0848397A1 EP0848397A1 (fr) 1998-06-17
EP0848397B1 true EP0848397B1 (fr) 2002-09-18

Family

ID=9498537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402667A Expired - Lifetime EP0848397B1 (fr) 1996-12-11 1997-11-07 Procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline

Country Status (17)

Country Link
US (1) US5911840A (cs)
EP (1) EP0848397B1 (cs)
JP (1) JPH10195528A (cs)
KR (1) KR19980064039A (cs)
CN (1) CN1134034C (cs)
AT (1) ATE224582T1 (cs)
AU (1) AU731520B2 (cs)
CZ (1) CZ293837B6 (cs)
DE (1) DE69715575T2 (cs)
ES (1) ES2184047T3 (cs)
FR (1) FR2756966B1 (cs)
HU (1) HU216168B (cs)
PL (1) PL184208B1 (cs)
SK (1) SK284008B6 (cs)
TR (1) TR199701599A3 (cs)
TW (1) TW561193B (cs)
ZA (1) ZA9710780B (cs)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645314B1 (en) * 2000-10-02 2003-11-11 Vacuumschmelze Gmbh Amorphous alloys for magneto-acoustic markers in electronic article surveillance having reduced, low or zero co-content and method of annealing the same
DE10134056B8 (de) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
EP1601622A4 (en) 2003-02-14 2007-03-21 Nanosteel Co IMPROVED PROPERTIES OF AMORPHES / PARTIAL CRYSTALLINE COATINGS
DE102004024337A1 (de) * 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung nanokristalliner Stromwandlerkerne, nach diesem Verfahren hergestellte Magnetkerne sowie Stromwandler mit denselben
CN1297994C (zh) * 2004-11-26 2007-01-31 中国兵器工业第五二研究所 无须磁场处理获取特殊矩形比纳米晶软磁材料的方法
KR100647150B1 (ko) * 2004-12-22 2006-11-23 (주) 아모센스 자성코어를 갖는 누전차단기
CN1332593C (zh) * 2005-01-19 2007-08-15 华南理工大学 纳米晶软磁合金粉聚合物复合电磁屏蔽磁体的制备方法
EP1724792A1 (fr) * 2005-05-20 2006-11-22 Imphy Alloys Procédé de fabrication d'une bande en matériau nanocristallin et dispositif de fabrication d'un tore enroulé à partir de cette bande
DE102005034486A1 (de) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern
US20070151630A1 (en) * 2005-12-29 2007-07-05 General Electric Company Method for making soft magnetic material having ultra-fine grain structure
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
WO2009038105A1 (ja) * 2007-09-18 2009-03-26 Japan Science And Technology Agency 金属ガラス及びそれを用いた磁気記録媒体並びにその製造方法
CN101853726A (zh) * 2010-05-17 2010-10-06 南京新康达磁业有限公司 一种软磁材料及制备方法
CN101935742B (zh) * 2010-09-21 2013-01-02 中国矿业大学 一种制备优异软磁性能纳米晶合金的退火方法
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN102129907B (zh) * 2010-12-30 2012-05-30 上海世路特种金属材料有限公司 一种具有高初始磁导率和低剩磁的纳米晶软磁合金铁心及其制备方法
CN102254675B (zh) * 2011-07-14 2013-09-11 江西大有科技有限公司 软磁合金铁芯热处理工艺
CN102543347B (zh) * 2011-12-31 2015-10-14 中国科学院宁波材料技术与工程研究所 一种铁基纳米晶软磁合金及其制备方法
CN102856031A (zh) * 2012-09-10 2013-01-02 任静儿 一种磁性粉末合金材料
CN102867604A (zh) * 2012-09-10 2013-01-09 任静儿 一种软磁合金
CN102867605A (zh) * 2012-09-10 2013-01-09 任静儿 一种磁性合金
CN102912257A (zh) * 2012-10-19 2013-02-06 张家港市清大星源微晶有限公司 微晶材料
CN102875024A (zh) * 2012-10-19 2013-01-16 张家港市清大星源微晶有限公司 高导磁率的微晶材料
DE102013103268B4 (de) * 2013-04-02 2016-06-02 Vacuumschmelze Gmbh & Co. Kg Abschirmfolie und Verfahren zum Herstellen einer Abschirmfolie
CN103390492B (zh) * 2013-07-31 2016-08-31 河北申科电子股份有限公司 一种开合式互感器用的超微晶切割铁芯的生产工艺
CN104200982A (zh) * 2014-03-28 2014-12-10 北京冶科磁性材料有限公司 高频静电除尘电源变压器用纳米晶磁芯的制备方法
WO2016104000A1 (ja) 2014-12-22 2016-06-30 日立金属株式会社 Fe基軟磁性合金薄帯およびそれを用いた磁心
CN104485192B (zh) * 2014-12-24 2016-09-07 江苏奥玛德新材料科技有限公司 一种铁基非晶纳米晶软磁合金及其制备方法
US11230754B2 (en) * 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
DE102015211487B4 (de) 2015-06-22 2018-09-20 Vacuumschmelze Gmbh & Co. Kg Verfahren zur herstellung eines nanokristallinen magnetkerns
TWI609972B (zh) * 2015-11-05 2018-01-01 中國鋼鐵股份有限公司 鐵基非晶合金試片的製備方法及其應用
CN105695704B (zh) * 2016-01-19 2017-11-10 兆晶股份有限公司 一种变压器超顺磁性铁芯热处理方法
CN106555047A (zh) * 2016-11-23 2017-04-05 宜春学院 铁基纳米晶合金软磁薄带的热处理方法
CN109837452B (zh) * 2019-01-23 2021-09-21 信维通信(江苏)有限公司 一种高Bs纳米晶材料及其制备方法
CN113990650B (zh) * 2021-10-19 2023-03-31 河北申科磁性材料有限公司 一种高磁导率开口互感器磁芯及其加工工艺和开口互感器
CN115029541A (zh) * 2022-06-20 2022-09-09 浙江晶精新材料科技有限公司 一种基于真空及覆铜纳米晶带材复合热处理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116728B1 (en) * 1976-09-02 1994-05-03 Gen Electric Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties
JPS6047407A (ja) * 1983-08-25 1985-03-14 Matsushita Electric Works Ltd 磁心製造方法
TW226034B (cs) * 1991-03-06 1994-07-01 Allied Signal Inc
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby
EP0637038B1 (en) * 1993-07-30 1998-03-11 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability

Also Published As

Publication number Publication date
HUP9702383A2 (hu) 1998-07-28
TW561193B (en) 2003-11-11
ZA9710780B (en) 1998-06-12
US5911840A (en) 1999-06-15
DE69715575T2 (de) 2003-05-22
AU731520B2 (en) 2001-03-29
EP0848397A1 (fr) 1998-06-17
HU216168B (hu) 1999-04-28
ES2184047T3 (es) 2003-04-01
HUP9702383A3 (en) 1998-08-28
CN1185012A (zh) 1998-06-17
TR199701599A2 (xx) 2000-07-21
PL184208B1 (pl) 2002-09-30
ATE224582T1 (de) 2002-10-15
KR19980064039A (ko) 1998-10-07
AU4519997A (en) 1998-06-18
SK284008B6 (sk) 2004-07-07
CZ293837B6 (cs) 2004-08-18
CZ398397A3 (cs) 1998-07-15
FR2756966A1 (fr) 1998-06-12
TR199701599A3 (tr) 2000-07-21
SK161897A3 (en) 1998-12-02
JPH10195528A (ja) 1998-07-28
HK1010938A1 (en) 1999-07-02
FR2756966B1 (fr) 1998-12-31
CN1134034C (zh) 2004-01-07
DE69715575D1 (de) 2002-10-24
PL323663A1 (en) 1998-06-22

Similar Documents

Publication Publication Date Title
EP0848397B1 (fr) Procédé de fabrication d'un composant magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline
EP0844628B1 (fr) Procédé de fabrication d'un noyau magnétique en matériau magnétique doux nanocristallin
EP2387788B1 (fr) Procédé de fabrication d'un noyau magnétique en alliage magnétique ayant une structure nanocristalline
US6270591B2 (en) Amorphous and nanocrystalline glass-covered wires
FR2459839A1 (fr) Procede de fabrication d'un alliage magnetique amorphe et alliage obtenu
JP3962093B2 (ja) 広帯域コントラスト偏光ガラス
EP0003466B1 (fr) Procédé de traitement thermique des alliages Fe-Co-Cr pour aimants permanents
US4367102A (en) Method for the manufacture of a superconductor containing an intermetallic compounds
EP0921541B1 (fr) Procédé de fabrication d'un noyau magnétique doux nanocristallin utilisable dans un disjoncteur différentiel et noyau magnétique obtenu
EP0921540B1 (fr) Procédé de fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin et utilisation dans un disjoncteur différentiel
EP0408469B1 (fr) Alliage de cuivre-fer-cobalt-titane à hautes caractéristiques mécaniques et électriques et son procédé de fabrication
FR2547927A1 (fr) Sonde a noyau saturable, notamment pour magnetometre
FR2767538A1 (fr) Procede de fabrication d'une bande en alliage du type fer-nickel a partir d'un demi produit de coulee continue
BE371669A (cs)
HK1010938B (en) Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure
JPH0526861B2 (cs)
FR2689300A1 (fr) Procédé d'élaboration de tores en matériau magnétique doux comportant un cycle d'hystérésis couche.
CH278120A (fr) Procédé de fabrication d'un aimant permanent anisotrope et aimant obtenu par ce procédé.
Tiefel et al. Processing for thin strip Fe-Cr-Co magnet alloys
WO2005006354A1 (ja) Ge添加Nb3Al基超伝導線材の製造方法
JPS58224157A (ja) Co−Fe軟磁性合金材料の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981217

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000713

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

REF Corresponds to:

Ref document number: 224582

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69715575

Country of ref document: DE

Date of ref document: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2184047

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031030

Year of fee payment: 7

Ref country code: CH

Payment date: 20031030

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20031031

Year of fee payment: 7

Ref country code: IE

Payment date: 20031031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031107

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031209

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041108

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20041130