EP0842385B1 - Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts - Google Patents

Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts Download PDF

Info

Publication number
EP0842385B1
EP0842385B1 EP96927545A EP96927545A EP0842385B1 EP 0842385 B1 EP0842385 B1 EP 0842385B1 EP 96927545 A EP96927545 A EP 96927545A EP 96927545 A EP96927545 A EP 96927545A EP 0842385 B1 EP0842385 B1 EP 0842385B1
Authority
EP
European Patent Office
Prior art keywords
liquid fraction
heat exchanger
heat
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96927545A
Other languages
English (en)
French (fr)
Other versions
EP0842385A1 (de
EP0842385B2 (de
Inventor
Horst Corduan
Horst Altmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7767507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0842385(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0842385A1 publication Critical patent/EP0842385A1/de
Publication of EP0842385B1 publication Critical patent/EP0842385B1/de
Application granted granted Critical
Publication of EP0842385B2 publication Critical patent/EP0842385B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the invention relates to a method and an apparatus for variable generation of a gaseous printed product by low temperature separation of air by means of Pressure increase in the liquid state and subsequent evaporation.
  • DE-B-1056633, EP-A-422974, EP-A-524785 and EP-A-556861 show processes that combine internal compression and removable storage by both the liquid product to be evaporated and during evaporation liquefied heat transfer media (air or nitrogen) are buffered in storage tanks.
  • the problem of the varying need for heat carriers for the evaporation of the Liquid product is solved in DE-B-1056633 in that the is not for each Evaporation required part of the heat transfer medium to relax and work is discarded.
  • One later deviated from this and instead condensed it variable amounts of heat transfer medium While in the first case a cleaned gas is lost unused, in the second case Large relative fluctuations in the compressor throughput occur. Both types of Systems can only be operated in the respective operating mode.
  • the invention is therefore based on the object of a method and a device specify which can be operated as flexibly as possible and which in particular the Avoid the disadvantages described above.
  • the gaseous print product is obtained in liquid form from the or the rectification columns are withdrawn and buffered in a first storage tank.
  • a first storage tank Each depending on whether it is currently below average or above average
  • the amount of product produced, the liquid level in the tank rises or falls.
  • the amount of liquid produced in the rectification Fraction that is not currently evaporating or otherwise e.g. as Liquid product
  • the entire liquid fraction in the Initiate storage tank and remove the currently required amount and the evaporation can be used, for Understand fluid storage. This can be, for example external tank with its own insulation, but also a different type of Vessel, which is arranged within the cryogenic separation plant and for Buffering of liquid is suitable.
  • any known method can be used to increase the pressure in the liquid state be used, for example pressure build-up evaporation at the storage tank a static height, pumps upstream or downstream of the storage tank, or combinations of these methods.
  • the inventive method also has a refrigeration cycle with a Circuit compressor and a relaxation machine.
  • a Heat carrier in particular a process gas of air separation, compresses, Relieved of work and returned to the circuit compressor. With help this cycle becomes cold to compensate for insulation and exchange losses and possibly generated for product liquefaction.
  • the circuit compressor also serves to compress the heat transfer medium condensed against the product to be evaporated and in a second storage tank is buffered (first partial flow of the heat transfer medium). It compresses the heat transfer medium to a pressure which corresponds to a condensation temperature which is at least approximately is equal to the vaporization temperature of the liquid pressurized fraction. At least part of the heat carrier compressed in the circuit compressor becomes Circulated compressor returned, in particular the second partial flow after it work-related relaxation or part of it. The second part of the im Circulation compressor compressed heat carrier does not need or not to be completely rejected, but is at least partially circulated. Refrigeration cycle and variable product evaporation are integrated in the invention; the same machine is used both for cooling and for the generation of the evaporation of the liquid fraction required pressure.
  • the first partial flow is in accordance with the variable product amount varies.
  • this variation can be found here realized different ways and thus flexible to the current Needs to be adjusted.
  • the amount of heat carrier compressed in the circuit compressor is kept constant when there is an increased need for gaseous pressure product.
  • the variation of the first partial flow is absorbed by a corresponding variation of the second partial flow of the heat transfer medium.
  • the amount of the second partial flow is decreased / increased by the same amount by which the amount of the first partial flow is increased / decreased.
  • Quantity here refers to molar quantities per unit of time, which can be specified, for example, in Nm 3 / h.
  • the circulation compressor can thus be operated constantly, for example with its design capacity, and control depending on the product quantity is not necessary.
  • An increased amount of heat transfer medium liquefied in the second partial flow is temporarily stored in the second tank; an increased amount of gas in the second partial flow can be compensated for by a corresponding removal of gas (for example as a product) from the circuit; Conversely, if production is below average, a correspondingly smaller amount of gas is withdrawn from the cycle.
  • the system can be operated in a second operating mode.
  • the throughput of the second partial flow remains the same, while the variation of the the first partial flow is recirculated by the circuit compressor. If there is an increased need gaseous pressure product, the amount of the second partial stream becomes constant kept and the amount of heat medium compressed in the circuit compressor the same amount as the amount of the first partial stream increased. Nevertheless, the inventive method also in this mode of operation the relative Fluctuations in the compressor throughput are comparatively small because the Circulating amount can remain constant.
  • the constant part of the Compressed gas circuit compressors dampen the relative deflections of the Compressor throughput.
  • the two modes of operation can also be combined by the Partial fluctuations in the first partial flow due to variation of the second Partial flow and to another part by changing the throughput on Circuit compressor can be compensated. If there is an increased need for gaseous The printed product will then both the amount of compressed in the recycle compressor Heat transfer medium increases as well as the amount of the second partial flow is reduced.
  • the rectification system consists of a pressure column and a low pressure column Has double column, for example, liquid oxygen from the bottom of the Low pressure column or liquefied nitrogen from the pressure column as a liquid fraction be used.
  • the work-related relaxation of the further flow for example from the inlet pressure of the circuit compressor (lower level of the refrigeration cycle) to about atmospheric pressure and the work relaxed further electricity is withdrawn as an unpressurized gas product. It can also be used Catch fluctuations in the amount of gas circulating in the circuit.
  • the first mode of operation constant throughput on Circuit compressor
  • a reduction in the amount of the second partial flow by a a corresponding reduction in the amount of work performed and relaxed Electricity are balanced.
  • the second mode of operation constant throughput in the work-relieving relaxation of the second partial flow
  • any process stream available in the process can act as a heat transfer medium be used for the refrigeration cycle and the evaporation of the liquid fraction, for example air or another oxygen-nitrogen mixture.
  • nitrogen from the rectification system is used as a heat carrier, in the case a double column, for example gaseous nitrogen, at the top of the pressure column arises.
  • the entire cycle nitrogen is in the system itself produced.
  • a subset of the heat transfer medium from one external source for example by feeding in liquid nitrogen another system or from a tank truck into the second storage tank.
  • the second storage tank can in addition to its buffering effect for variable print product extraction also as Safety reserve (backup) for a temporary failure of the system and / or as Buffers for liquid product can be used.
  • the use of nitrogen as a heat transfer medium has the advantage that Refrigeration cycle and printed product evaporation have no negative effects on the Rectification has the same effect as the supply of air liquefied against the pressure product and when gaseous air is fed in from a relaxation machine a low pressure column would be the case.
  • the rectification can be done with the Process according to the invention using nitrogen as the heat transfer medium optimally be driven.
  • the process is therefore also suitable for high product purities and exploit suitable, as well as for the production of argon after the Air separation in the narrower sense (e.g. on the low pressure column of a double column connected raw argon column).
  • the main heat exchanger system has a heat exchanger block in which both the cooling of the feed air and also the evaporation of the liquid fraction is carried out under increased pressure become.
  • the main heat exchanger system has a plurality of heat exchanger blocks, in particular a first and a first second heat exchanger block, wherein in the first heat exchanger block Cooling of the feed air and evaporation in the second heat exchanger block the liquid fraction is carried out under increased pressure.
  • the two heat exchanger blocks by a compensating current are coupled, one of the two heat exchanger blocks between the warm and cold end removed and the other of the two heat exchanger blocks between the warm and cold ends.
  • the invention also relates to a device according to claim 8.
  • Compressed and cleaned feed air 10 is at a pressure of 5 to 10 bar, preferably 5.5 to 6.5 bar cooled in the heat exchanger 11, which with the Heat exchanger 12 forms the main heat exchanger system. It is via line 13 introduced into a pressure column 14 at about dew point temperature.
  • the pressure column belongs to the rectification system, which also has a low pressure column 15, which is operated at a pressure of 1.3 to 2 bar, preferably 1.5 to 1.7 bar.
  • Pressure column 14 and low pressure column 15 are via a main condenser 16 thermally coupled.
  • Low pressure nitrogen 27 and impure nitrogen 28 are removed from the Low pressure column 15 in the heat exchangers 18 and 11 to about Ambient temperature warmed up.
  • the impure nitrogen 30 can be used for regeneration a molecular sieve, not shown, can be used for air purification; the Low pressure nitrogen 29 is either discharged as a product or in one Evaporative cooler used to cool cooling water.
  • Oxygen is a liquid fraction via line 31 from the bottom of the Low pressure column 15 withdrawn, supercooled (18) and in a liquid oxygen tank (first storage tank) 33 introduced (32).
  • the liquid oxygen tank 33 is standing preferably below about atmospheric pressure.
  • Liquid oxygen 34 from the first Storage tank 33 is raised to an increased pressure by means of a pump 35 brought, for example, 5 to 80 bar, depending on the product pressure required. (Of course there are also other methods for increasing the pressure in the liquid Phase applicable, for example by using a hydrostatic potential or by pressure build-up evaporation on a storage tank.)
  • the liquid High pressure oxygen 36 is evaporated in the heat exchanger 12 and as withdrawn internally compressed gaseous product 37.
  • the part of the gaseous nitrogen from the pressure column 14 that is not the Main capacitor 16 is supplied, is via lines 38, 39 and 40 through deducted the heat exchanger 11 and as a heat transfer medium a refrigeration cycle supplied, among other things, a two-stage cycle compressor 41, 42 and one Expansion turbine 43 includes.
  • the cycle compressor 41, 42 the nitrogen from about compression pressure compressed to a pressure equal to a nitrogen condensation temperature corresponds, which is at least approximately equal to Evaporation temperature of the liquid pressurized oxygen 36.
  • This pressure is - Depending on the given delivery pressure of the oxygen - for example 15 to 60 bar.
  • a first partial stream 45 of the highly compressed nitrogen 44 is against the evaporating oxygen 36 at least partially, preferably completely or in essentially completely liquefied and fed into a separator 46.
  • the second partial flow 59 of the nitrogen compressed in the circuit compressor is at the high pressure and at a temperature between the temperatures at warm and at the cold end of the heat exchanger 12, the expansion turbine 43 fed and relaxed there to work on pressure column pressure.
  • the relaxed second partial flow 60 is partly through heat exchanger 12 (via 61, 62), on the other hand through heat exchanger 11 (via 63, 64, 39, 40) for entry of the circuit compressor 41, 42 returned.
  • Liquid nitrogen from the separator 46 can be returned via line 47 to the Pressure column 14 abandoned and / or via line 48 in a second storage tank (Liquid nitrogen tank 49) are introduced, which under a pressure of for example 1 to 5 bar, preferably at about atmospheric pressure.
  • the Excess liquid 50 may also be removed from the tank Separators 25 are fed that are not used as return for the low pressure column 15 is needed. If necessary, liquid nitrogen can be pumped into the Separator 46 are pressed (line 52).
  • Part of the nitrogen 53 from line 39 can be released at an intermediate temperature can be removed from the heat exchanger 11.
  • This part partly serves as Equalizing current 54, with the help of the efficiency of the main heat exchanger system 11, 12 can be improved, and partially as a further stream 55 of the Heat transfer medium, which is working on something in a second expansion turbine 56 is relaxed over atmospheric pressure.
  • the work-power relaxed more current 57 is heated in the heat exchanger 12 to about ambient temperature and leaves the plant as a gaseous product 58.
  • Liquid oxygen and / or liquid can be obtained from the storage tanks 33, 49 Nitrogen are withdrawn as products (the corresponding lines are in the Drawing not shown).
  • the removable storage has none in the method according to the invention disruptive influences on the rectification, in particular neither liquid air Rectification supplied, low pressure air is still directly into the low pressure column fed. This makes the process particularly suitable for demanding separation tasks such as the extraction of argon. You can do this at one A conventional argon rectification between intermediate point 66 of low-pressure column 15 be connected as shown in the drawing by the lines shown there is indicated. For this purpose, one of the in EP-B-377117 or in one of the European patent applications 95101844.9 or 95101845.6 with older seniority described methods and devices used.
  • the first stage 41 of the cycle compressor is also called Product compressors are used by inserting between the first and second stages Product stream 65 under a pressure of preferably 8 to 35 bar, for example Is deducted 20 bar.
  • the two basic modes of operation of a method and a device according to the invention are now explained below.
  • the system is designed for a certain average amount of pressurized oxygen product. Production can fluctuate around this average value, between a minimum and a maximum value. To explain how this fluctuation is achieved, the two extreme operating cases ("Max.”, "Min.”) And the operating case of the average pressure oxygen production (“Average”) of a system are presented in the following numerical examples.
  • the pressures are Pressure column 14 5.1 bar Low pressure column 15 1.3 bar Pressurized oxygen 37 26 bar Entry of the circuit compressor 4.8 bar Outlet of the circuit compressor 42 bar Liquid oxygen tank 33 1.1 bar Liquid nitrogen tank 1.1 bar
  • Table 1 relates to the mode of operation in which the expansion turbine 43 for the second partial flow 59 is operated at a constant speed; in the operating mode shown in Table 2, the throughput through the circuit compressor 41, 42 is kept constant. Of course, any transition between these two modes of operation is also possible in the exemplary embodiment.
  • the amounts of the respective flows for the three operating cases mentioned are given in 1000 Nm 3 / h.
  • the reference symbols in the first column of the table refer to the drawing. (Constant throughput by turbine 43) Max. Mean Min.
  • Mean Min. 50 Liquid nitrogen from the main condenser to the liquid nitrogen tank 1.5 1.5 1.5 32 Liquid oxygen from the low pressure column to the liquid oxygen tank 36.5 36.5 36.5 40 Feeding pressure column nitrogen into the circuit 90 90 90 53 Compensating current + additional current (turbine 56) 30th 30th 30th 64 Withdrawal of gaseous nitrogen under pressure from the circuit 15 15 15 47 Liquid nitrogen from the liquid nitrogen tank and from the circuit to the top of the pressure column 54 54 54 36 Liquid oxygen to be evaporated 45 35 25th 37 Gaseous printed product (oxygen) 45 35 25th 44 Outlet of the circuit compressor 83 83 83 45 First partial flow of the heat transfer medium 64 54 44 59 Second partial flow of the heat transfer medium (turbine 43) 18.5 28.5 38.5 60 61 Return from the second partial flow directly through heat exchanger 12 to the circuit compressor 3.5 13.5 23.5 54 Compensating current 25th 15 5 55 Further flow through second turbine 56 5 15 25th 57 48 Liquid nitrogen from the liquefied first partial stream into the
  • the scheme in the drawing is divided in half by a dashed line.
  • the left half essentially contains the refrigeration cycle and the storage tanks; the entire rectification is in the right half.
  • all flows in the right half of the drawing remain completely or essentially unchanged, the fluctuations in the production of pressurized oxygen only affect the circuit and the storage tanks. This is reflected in the first six lines of the two tables, in which all streams are mentioned that cross the dashed line; these have the same throughput in all operating cases, while the amount of evaporation changes (reference symbols 36, 37).
  • the second partial flow 59, 60 becomes constant held.
  • the variation of the first partial stream 45 necessary for the evaporation is changed by the corresponding change in the throughput Circulation compressor (stream 44) causes: For example, the production of the average to the maximum value, the throughput through the Circulation compressors about the same amount as the amount of product.
  • the additional gas is reduced by a corresponding reduction in the amount of gas Provided that as a further stream 55, 57, 58 through the turbine 56 from the Circuit is removed.
  • the fluctuating amounts of liquefied heat transfer medium (first partial flow 45) are buffered by the fact that above-average production via line 48 excess liquid is supplied to the second storage tank 49; vice versa the missing liquid with a small amount of product via line 52 from the Liquid nitrogen tank tracked to the return amount for the pressure column 14th to keep constant.
  • Table 1 The numerical example of Table 1 is designed so that an average excess of liquid of 1500 Nm 3 / h oxygen and nitrogen is generated. This can be removed continuously, intermittently or in variable amounts in the form of liquid products. In addition, it is also possible with the method to change the average cooling capacity of the circuit and thus the average quantity of liquid products during operation by adapting the average speeds of the turbines accordingly. The system can thus be operated particularly flexibly not only with regard to the internally compressed printed product, but also with regard to liquid production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Einsatzluft wird einem Rektifiziersystem (14, 15) zur Tieftemperaturzerlegung zugeführt, aus dem eine flüssige Fraktion (31, 32) entnommen und in einen ersten Speichertank (33) eingeleitet wird. Der Druck einer variablen Menge der flüssigen Fraktion (34) wird erhöht (35). Die flüssige Fraktion (36) wird unter dem erhöhten Druck durch indirekten Wärmeaustausch (12) verdampft und als gasförmiges Druckprodukt (37) gewonnen. In einem Kältekreislauf, der einen Kreislaufverdichter (41, 42) aufweist, zirkuliert ein Wärmeträger. Ein erster Teilstrom (45) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger (44) wird dem indirekten Wärmeaustausch (12) zur Verdampfung der flüssigen Fraktion (36) zugeführt und dabei mindestens teilweise verflüssigt. Ein zweiter Teilstrom (59) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger (44) wird arbeitsleistend entspannt (43). Verflüssigter Wärmeträger (45, 48) wird in einem zweiten Speichertank (49) gepuffert.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft mittels Druckerhöhung im flüssigen Zustand und anschließender Verdampfung.
Die Methode, ein Flüssigprodukt eines Luftzerlegers auf Druck zu bringen und anschließend zu verdampfen, wird häufig auch als "Innenverdichtung" bezeichnet. Derartige Prozesse sind für die Gewinnung einer konstanten Menge eines unter Druck stehenden Gases altbekannt (beispielsweise DE-C-752439) und bieten gegenüber der gasförmigen Produktverdichtung den Vorteil geringerer Apparatekosten.
Ebenfalls bekannt sind "Wechselspeicherverfahren" mit mindestens zwei Speichertanks, bei denen variable Mengen eines Luftgases unter Atmosphärendruck gewonnen werden können und trotzdem ein stationärer Betrieb der Rektifikation möglich ist (siehe beispielsweise W. Rohde, Linde-Berichte aus Technik und Wissenschaft, 54/1984, Seiten 18 bis 20).
Die Druckschriften DE-B-1056633, EP-A-422974, EP-A-524785 und EP-A-556861 zeigen Prozesse, die Innenverdichtung und Wechselspeicherung kombinieren, indem sowohl das zu verdampfende Flüssigprodukt als auch bei der Verdampfung verflüssigter Wärmeträger (Luft oder Stickstoff) in Speichertanks gepuffert werden. Das Problem des variierenden Bedarfs an Wärmeträger für die Verdampfung des Flüssigprodukts wird in DE-B-1056633 dadurch gelöst, daß der jeweils nicht für die Verdampfung benötigte Anteil des Wärmeträgers arbeitsleistend entspannt und verworfen wird. Davon ist man später abgekommen und verdichtet statt dessen variable Mengen an Wärmeträger (EP-A-422974, EP-A-524785 und EP-A-556861). Während im ersten Fall ein gereinigtes Gas ungenutzt verlorengeht, treten im zweiten Fall große relative Schwankungen des Verdichterdurchsatzes auf. Beide Arten von Anlagen können nur in der jeweiligen Betriebsweise gefahren werden.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die möglichst flexibel betrieben werden können und die insbesondere die oben beschriebenen Nachteile vermeiden.
Diese Aufgabe wird durch das Verfahren gemäß Anspruch 1 gelöst.
Das gasförmig zu gewinnende Druckprodukt wird in flüssiger Form aus der oder einer der Rektifiziersäulen abgezogen und in einem ersten Speichertank gepuffert. Je nachdem, ob momentan eine unterdurchschnittliche oder eine überdurchschnittliche Produktmenge erzeugt wird, steigt oder sinkt der Flüssigkeitsstand im Tank. Beispielsweise kann diejenige Menge an in der Rektifikation erzeugter flüssiger Fraktion, die momentan nicht verdampft oder anderweitig (beispielsweise als Flüssigprodukt) verwendet werden kann, in den Tank eingeführt werden; entsprechend wird bei hohem Produktbedarf Flüssigkeit aus dem Tank zur Verdampfung geführt. Es ist aber auch möglich, die gesamte flüssige Fraktion in den Speichertank einzuleiten und jeweils die aktuell benötigte Menge zu entnehmen und der Verdampfung zuzuführen. Unter "Speichertank" ist hier jede Vorrichtung zur Flüssigkeitsspeicherung zu verstehen. Dabei kann es sich beispielsweise um einen externen Tank mit eigener Isolierung handeln, aber auch um eine andere Art von Gefäß, das innerhalb der Tieftemperaturzerlegungsanlage angeordnet und zur Pufferung von Flüssigkeit geeignet ist.
Zur Druckerhöhung im flüssigen Zustand kann jede bekannte Methode angewandt werden, beispielsweise Druckaufbauverdampfung am Speichertank, Ausnutzung einer statischen Höhe, Pumpen stromaufwärts oder stromabwärts des Speichertanks, oder auch Kombinationen dieser Methoden. Vorzugsweise wird die flüssige Fraktion durch eine stromabwärts des Tanks angeordnete Pumpe auf Druck gebracht. Der Durchsatz dieser Pumpe kann gesteuert werden, um die Variation der Produktmenge zu bewirken.
Das erfindungsgemäße Verfahren weist außerdem einen Kältekreislauf mit einem Kreislaufverdichter und einer Entspannungsmaschine auf. Darin wird ein Wärmeträger, insbesondere ein Prozeßgas der Luftzerlegung, verdichtet, arbeitsleistend entspannt und wieder zum Kreislaufverdichter zurückgeführt. Mit Hilfe dieses Kreislaufs wird Kälte zum Ausgleich von Isolations- und Austauschverlusten und gegebenenfalls zur Produktverflüssigung erzeugt.
Der Kreislaufverdichter dient gleichzeitig zur Verdichtung des Wärmeträgers, der gegen das zu verdampfende Produkt kondensiert und in einem zweiten Speichertank gepuffert wird (erster Teilstrom des Wärmeträgers). Er verdichtet den Wärmeträger auf einen Druck, der einer Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur der flüssig auf Druck gebrachten Fraktion ist. Mindestens ein Teil des im Kreislaufverdichter verdichteten Wärmeträgers wird zum Kreislaufverdichter zurückgeleitet, insbesondere der zweite Teilstrom nach seiner arbeitsleistenden Entspannung oder ein Teil davon. Der zweite Teilstrom des im Kreislaufverdichter komprimierten Wärmeträgers braucht also nicht oder nicht vollständig verworfen zu werden, sondern wird mindestens teilweise im Kreis geführt. Kältekreislauf und variable Produktverdampfung sind bei der Erfindung integriert; dieselbe Maschine dient sowohl zur Kälteerzeugung als auch zur Erzeugung des für die Verdampfung der flüssigen Fraktion benötigten Drucks.
Selbstverständlich wird auch bei der Erfindung der erste Teilstrom entsprechend der variablen Produktmenge variiert. Diese Variation kann jedoch hier auf unterschiedliche Weise realisiert und damit flexibel an die jeweils aktuellen Bedürfnisse angepaßt werden.
In einer ersten Betriebsweise wird bei erhöhtem Bedarf an gasförmigem Druckprodukt die Menge des im Kreislaufverdichter verdichteten Wärmeträgers konstant gehalten. Die Variation des ersten Teilstroms wird durch eine entsprechende Variation des zweiten Teilstroms des Wärmeträgers aufgefangen. Bei Erhöhung/Verringerung der Produktion wird die Menge des zweiten Teilstroms um denselben Betrag verringert/erhöht, um den die Menge des ersten Teilstroms erhöht/verringert wird. (Mit "Menge" werden hier molare Mengen pro Zeiteineinheit bezeichnet, die z.B. in Nm3/h angegeben werden können.) Damit kann der Kreislaufverdichter konstant gefahren werden, beispielsweise mit seiner Auslegungskapazität, eine Steuerung in Abhängigkeit von der Produktmenge ist nicht nötig. Eine erhöhte Menge an im zweiten Teilstrom verflüssigtem Wärmeträger wird im zweiten Tank zwischengespeichert; eine erhöhte Gasmenge im zweiten Teilstrom kann durch eine entsprechende Entnahme von Gas (beispielsweise als Produkt) aus dem Kreislauf kompensiert werden; umgekehrt wird bei unterdurchschnittlicher Produktion eine entsprechend geringere Menge an Gas aus dem Kreislauf entnommen.
Alternativ dazu kann die Anlage in einer zweiten Betriebsweise gefahren werden. Dabei bleibt der Durchsatz des zweiten Teilstroms gleich, während die Variation des ersten Teilstroms vom Kreislaufverdichter nachgefahren wird. Bei erhöhtem Bedarf an gasförmigem Druckprodukt wird also die Menge des zweiten Teilstroms konstant gehalten und die Menge des im Kreislaufverdichter verdichteten Wärmeträgers um denselben Betrag wie die Menge des ersten Teilstroms erhöht. Dennoch sind beim erfindungsgemäßen Verfahren auch bei dieser Betriebsweise die relativen Schwankungen des Verdichterdurchsatzes vergleichweise gering, da die Kreislaufmenge konstant bleiben kann. Der gleichbleibende Anteil des im Kreislaufverdichter komprimierten Gases dämpft die relativen Ausschläge des Verdichterdurchsatzes.
Die beiden Betriebsweisen können aber auch kombiniert werden, indem die Schwankungen des ersten Teilstroms zu einem Teil durch Variation des zweiten Teilstroms und zu einem anderen Teil durch Veränderung des Durchsatzes am Kreislaufverdichter kompensiert werden. Bei erhöhtem Bedarf an gasförmigem Druckprodukt werden dann sowohl die Menge des im Kreislaufverdichter verdichteten Wärmeträgers erhöht als auch die Menge des zweiten Teilstroms verringert.
Je nach Bedarf kann zwischen diesen Betriebsweisen gewechselt werden, beispielsweise um Flüssigproduktentnahmen aus dem Tank zu kompensieren oder für bestimmte Zeit eine erhöhte Menge an Flüssigprodukt(en) zu liefern. Je nach Menge des zweiten Teilstroms wird bei dessen arbeitsleistender Entspannung unterschiedlich viel Kälte erzeugt.
In jedem Fall können bei dem erfindungsgemäßen Verfahren sämtliche Ströme, die in die Rektifiziersäule(n) eingespeist oder daraus entnommen werden, konstant bleiben. Schwankungen in der Produktmenge haben damit keinerlei Auswirkungen auf die Rektifikation. Insbesondere können in jedem betriebsfall gleichbleibend hohe Reinheiten und Ausbeuten erzielt werden.
Falls das Rektifiziersystem eine aus Drucksäule und Niederdrucksäule bestehende Doppelsäule aufweist, kann beispielsweise flüssiger Sauerstoff vom Sumpf der Niederdrucksäule oder verflüssigter Stickstoff aus der Drucksäule als flüssige Fraktion verwendet werden.
In einer günstigen Ausführungsform wird weiterer Strom des Wärmeträgers arbeitsleistend entspannt. Dadurch kann einerseits zusätzlich Kälte in dem Kreislauf erzeugt werden, andererseits ist eine weitere Möglichkeit zur genaueren Anpassung der Kälteleistung an den momentanen Bedarf gegeben, die unabhängig von der Regelung des Kreislaufverdichters und des zweiten Teilstroms ist.
Insbesondere kann die Menge des weiteren Stroms, die der arbeitsleistenden Entspannung zugeführt wird, bei erhöhtem Bedarf an gasförmigem Druckprodukt erniedrigt werden und damit ein Überschuß an Kälte mindestens teilweise kompensiert werden. Vorzugsweise führt die arbeitsleistende Entspannung des weiteren Stroms etwa von dem Eintrittsdruck des Kreislaufverdichters (unteres Niveau des Kältekreislaufs) auf etwa Atmosphärendruck und der arbeitsleistend entspannte weitere Strom wird als druckloses Gasprodukt abgezogen. Damit lassen sich auch Schwankungen der im Kreislauf zirkulierenden Gasmenge auffangen. Insbesondere kann beispielsweise bei der ersten Betriebsweise (konstanter Durchsatz am Kreislaufverdichter) eine Verringerung der Menge des zweiten Teilstroms durch eine entsprechende Erniedrigung der Menge des arbeitsleistend entspannten weiteren Stroms ausgeglichen werden. Bei der zweiten Betriebsweise (konstanter Durchsatz bei der arbeitsleistenden Entspannung des zweiten Teilstroms) kann zum Beispiel eine Erhöhung des Kreislaufverdichterdurchsatzes durch eine Veringerung der Gasmenge kompensiert werden, die als weiterer Strom den Kreislauf verläßt.
Grundsätzlich kann jeder in dem Verfahren verfügbare Prozeßstrom als Wärmeträger für den Kältekreislauf und die Verdampfung der flüssigen Fraktion verwendet werden, beispielsweise Luft oder auch ein anderes Sauerstoff-Stickstoff-Gemisch. Bevorzugt wird jedoch Stickstoff aus dem Rektifiziersystem als Wärmeträger eingesetzt, im Falle einer Doppelsäule beispielsweise gasförmiger Stickstoff, der am Kopf der Drucksäule anfällt. In der Regel wird der gesamte Kreislaufstickstoff in der Anlage selbst produziert. Zusätzlich kann jedoch eine Teilmenge des Wärmeträgers aus einer äußeren Quelle stammen, beispielsweise durch Einspeisung von Flüssigstickstoff aus einer anderen Anlage oder aus einem Tankwagen in den zweiten Speichertank.
Wenn Stickstoff als Produkt gewonnen wird, kann somit der zweite Speichertank neben seiner Pufferwirkung für die variable Druckproduktgewinnung auch als Sicherheitsreserve (Backup) für einen zeitweisen Ausfall der Anlage und/oder als Puffer für Flüssigprodukt eingesetzt werden.
Außerdem hat die Verwendung von Stickstoff als Wärmeträger den Vorteil, daß Kältekreislauf und Druckproduktverdampfung keinerlei negative Auswirkungen auf die Rektifikation hat, wie es bei der Zuspeisung von gegen Druckprodukt verflüssigter Luft und bei der Einspeisung von gasförmiger Luft aus einer Entspannungsmaschine in eine Niederdrucksäule der Fall wäre. Die Rektifikation kann also bei dem erfindungsgemäßen Verfahren mit Einsatz von Stickstoff als Wärmeträger optimal gefahren werden. Das Verfahren ist damit auch für hohe Produktreinheiten und - ausbeuten geeignet, ebenso wie für die Gewinnung von Argon im Anschluß an die Luftzerlegung im engeren Sinne (z.B. an die Niederdrucksäule einer Doppelsäule angeschlossene Rohargonsäule).
Es ist günstig, wenn die Einsatzluft für das Rektifiziersystem in einem Hauptwärmetauschersystem abgekühlt wird, in dem auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt wird. Durch diese Integraton der Wärmeaustauschvorgänge können die Austauschverluste gering gehalten werden.
Dies kann zum einen dadurch realisiert werden, daß das Hauptwärmetauschersystem einen Wärmetauscherblock aufweist, in dem sowohl die Abkühlung der Einsatzluft als auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt werden.
Apparativ weniger aufwendig ist es jedoch, wenn das Hauptwärmetauschersystem mehrere Waärmetauscherblöcke aufweist, insbesondere einen ersten und einen zweiten Wärmetauscherblock, wobei in dem ersten Wärmetauscherblock die Abkühlung der Einsatzluft und in dem zweiten Wärmetauscherblock die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt wird. In diesem Fall ist es günstig, wenn die beiden Wärmetauscherblöcke durch einen Ausgleichsstrom gekoppelt sind, der einem der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende entnommen und dem anderen der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende zugeführt wird.
Die Erfindung betrifft außerdem eine Vorrichtung gemäß Anspruch 8.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand des Ausführungsbeispiels des Linde-VARIPOX®-Verfahrens (VARiable Internal Pressurization of OXygen) und der entsprechenden Anlage näher erläutert, die in den Zeichnungen schematisch dargestellt sind.
Verdichtete und gereinigte Einsatzluft 10 wird unter einem Druck von 5 bis 10 bar, vorzugsweise 5,5 bis 6,5 bar im Wärmetauscher 11 abgekühlt, der mit dem Wärmetauscher 12 das Hauptwärmetauschersystem bildet. Über Leitung 13 wird sie bei etwa Taupunktstemperatur in eine Drucksäule 14 eingeleitet. Die Drucksäule gehört zu dem Rektifiziersystem, das außerdem eine Niederdrucksäule 15 aufweist, die bei einem Druck von 1,3 bis 2 bar, vorzugsweise 1,5 bis 1,7 bar betrieben wird. Drucksäule 14 und Niederdrucksäule 15 sind über einen Hauptkondensator 16 thermisch gekoppelt.
Sumpfflüssigkeit 17 aus der Drucksäule 14 wird in einem Gegenströmer 18 gegen Produktströme der Niederdrucksäule unterkühlt und in die Niederdrucksäule 15 eingespeist (Leitung 19). Gasförmiger Stickstoff 20 vom Kopf der Drucksäule 14 wird im Hauptkondensator 16 gegen verdampfende Flüssigkeit im Sumpf der Niederdrucksäule 15 verflüssigt. Das Kondensat 21 wird zu einem Teil als Rücklauf auf die Drucksäule 14 aufgegeben (Leitung 22) und zu einem anderen Teil 23 nach Unterkühlung 18 in einen Abscheider 25 eingeführt (24). Die Niederdrucksäule 15 wird aus dem Abscheider 25 mit Rücklaufflüssigkeit versorgt (Leitung 26).
Niederdruckstickstoff 27 und unreiner Stickstoff 28 werden nach Entnahme aus der Niederdrucksäule 15 in den Wärmetauschern 18 und 11 auf etwa Umgebungstemperatur angewärmt. Der unreine Stickstoff 30 kann zur Regenerierung eines nicht dargestellten Molekularsiebs für die Luftreinigung eingesetzt werden; der Niederdruckstickstoff 29 wird entweder als Produkt abgeführt oder in einem Verdunstungskühler zur Abkühlung von Kühlwasser verwendet.
Sauerstoff wird als flüssige Fraktion über Leitung 31 aus dem Sumpf der Niederdrucksäule 15 abgezogen, unterkühlt (18) und in einen Flüssigsauerstofftank (ersten Speichertank) 33 eingeführt (32). Der Flüssigsauerstofftank 33 steht vorzugsweise unter etwa Atmosphärendruck . Flüssiger Sauerstoff 34 aus dem ersten Speichertank 33 wird mittels einer Pumpe 35 auf einen erhöhten Druck von beispielsweise 5 bis 80 bar gebracht, je nach benötigtem Produktdruck . (Selbstverständlich sind auch andere Methoden zur Druckerhöhung in der flüssigen Phase anwendbar, beispielsweise durch Ausnutzung eines hydrostatischen Potentials oder durch Druckaufbauverdampfung an einem Speichertank.) Der flüssige Hochdrucksauerstoff 36 wird im Wärmetauscher 12 verdampft und als innenverdichtetes gasförmiges Produkt 37 abgezogen.
Der Teil des gasförmigen Stickstoffs aus der Drucksäule 14, der nicht dem Hauptkondensator 16 zugeführt wird, wird über die Leitungen 38, 39 und 40 durch den Wärmetauscher 11 abgezogen und als Wärmeträger einem Kältekreislauf zugeführt, der unter anderem einen zweistufigen Kreislaufverdichter 41, 42 und eine Entspannungsturbine 43 umfaßt. Im Kreislaufverdichter 41, 42 wird der Stickstoff von etwa Druckstufendruck auf einen Druck komprimiert, der einer Stickstoff-Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur des flüssigen Drucksauerstoffs 36 ist. Dieser Druck beträgt - je nach vorgegebenem Abgabedruck des Sauerstoffs - beispielsweise 15 bis 60 bar. Ein erster Teilstrom 45 des hochverdichteten Stickstoffs 44 wird gegen den verdampfenden Sauerstoff 36 mindestens teilweise, vorzugsweise vollständig oder im wesentlichen vollständig verflüssigt und in einen Abscheider 46 eingespeist.
Der zweite Teilstrom 59 des im Kreislaufverdichter komprimierten Stickstoffs wird bei dem hohen Druck und bei einer Temperatur, die zwischen den Temperaturen am warmen und am kalten Ende des Wärmetauschers 12 liegt, der Entspannungsturbine 43 zugeleitet und dort auf etwa Drucksäulendruck arbeitsleistend entspannt. Der entspannte zweite Teilstrom 60 wird zum einen Teil durch Wärmetauscher 12 (über 61, 62), zum anderen Teil durch Wärmetauscher 11 (über 63, 64, 39, 40) zum Eintritt des Kreislaufverdichters 41, 42 zurückgeführt.
Flüssiger Stickstoff aus dem Abscheider 46 kann über Leitung 47 als Rücklauf auf die Drucksäule 14 aufgegeben und/oder über Leitung 48 in einen zweiten Speichertank (Flüssigstickstofftank 49) eingeführt werden, der unter einem Druck von beispielsweise 1 bis 5 bar, vorzugsweise unter etwa Atmosphärendruck steht. Der Tank kann außerdem gegebenenfalls von überschüssiger Flüssigkeit 50 aus dem Abscheider 25 gespeist werden, die nicht als Rücklauf für die Niederdrucksäule 15 benötigt wird. Bei Bedarf kann flüssiger Stickstoff mittels einer Pumpe 51 in den Abscheider 46 gedrückt werden (Leitung 52).
Ein Teil des Stickstoffs 53 aus Leitung 39 kann bei einer Zwischentemperatur aus dem Wärmetauscher 11 entnommen werden. Dieser Teil dient teilweise als Ausgleichsstrom 54, mit dessen Hilfe die Effizienz des Hauptwärmetauschersystems 11, 12 verbessert werden kann, und teilweise als weiterer Strom 55 des Wärmeträgers, der in einer zweiten Entspannungsturbine 56 arbeitsleistend auf etwas über Atmosphärendruck entspannt wird. Der arbeitsleistend entspannte weitere Strom 57 wird im Wärmetauscher 12 auf etwa Umgebungstemperatur angewärmt und verläßt die Anlage als gasförmiges Produkt 58.
Aus den Speichertanks 33, 49 können flüssiger Sauerstoff und/oder flüssiger Stickstoff als Produkte abgezogen werden (die entsprechenden Leitungen sind in der Zeichnung nicht dargestellt).
Die Wechselspeicherung hat bei dem erfindungsgemäßen Verfahren keinerlei störende Einflüsse auf die Rektifikation, insbesondere wird weder Flüssigluft der Rektifikation zugeführt, noch wird Niederdruckluft direkt in die Niederdrucksäule eingespeist. Dadurch eignet sich der Prozeß hervorragend für besonders anspruchsvolle Trennaufgaben wie die Gewinnung von Argon. Dazu kann an einer Zwischenstelle 66 der Niederdrucksäule 15 eine konventionelle Argonrektifikation angeschlossen sein, wie es in der Zeichnung durch die dort gezeigten Leitungen angedeutet ist. Bevorzugt wird dazu einer der in EP-B-377117 oder in einer der europäischen Patentanmeldungen 95101844.9 oder 95101845.6 mit älterem Zeitrang beschriebenen Verfahren und Vorrichtungen eingesetzt.
In dem Beispiel wird die erste Stufe 41 des Kreislaufverdichters auch als Produktverdichter verwendet, indem zwischen der ersten und der zweiten Stufe ein Produktstrom 65 unter einem Druck von vorzugsweise 8 bis 35 bar, beispielsweise 20 bar abgezogen wird.
Im folgenden werden nun die beiden grundsätzlichen Betriebsweisen eines Verfahrens und einer Vorrichtung gemäß der Erfindung erläutert. Die Anlage ist für eine bestimmte mittlere Menge an Drucksauerstoffprodukt ausgelegt. Die Produktion kann um diesen mittleren Wert schwanken, und zwar zwischen einem minimalen und einem maximalen Wert. Zur Erläuterung, wie diese Schwankung bewerkstelligt wird, werden in den folgenden Zahlenbeispielen die beiden extremen Betriebsfälle ("Max.", "Min.") und der Betriebsfall der durchschnittlichen Drucksauerstoffproduktion ("Mittl.") einer Anlage vorgestellt, die 190.000 Nm3/h Einsatzluft verarbeitet. Die Drücke betragen dabei
Drucksäule 14 5,1 bar
Niederdrucksäule 15 1,3 bar
Drucksauerstoff 37 26 bar
Eintritt des Kreislaufverdichters 4,8 bar
Austritt des Kreislaufverdichters 42 bar
Flüssigsauerstofftank 33 1,1 bar
Flüssigstickstofftank 1,1 bar
Tabelle 1 betrifft diejenige Betriebsweise, in der die Entspannungsturbine 43 für den zweiten Teilstrom 59 mit konstanter Drehzahl gefahren wird; bei der in Tabelle 2 dargestellten Betriebsweise wird der Durchsatz durch den Kreislaufverdichter 41, 42 konstant gehalten. Selbstverständlich ist auch bei dem Ausführungsbeispiel jeder beliebige Übergang zwischen diesen beiden Betriebsweisen möglich. In beiden Tabellen werden die Mengen der jeweiligen Ströme für die drei genannten Betriebsfälle in 1000 Nm3/h angegeben. Die Bezugszeichen in der ersten Tabellenspalte beziehen sich auf die Zeichnung.
(Konstanter Durchsatz durch Turbine 43) Max. Mittl. Min.
50 Flüssigstickstoff aus dem Hauptkondensator zum Flüssigstickstofftank 1,5 1,5 1,5
32 Flüssiger Sauerstoff aus der Niederdrucksäule zum Flüssigsauerstofftank 36,5 36,5 36,5
40 Einspeisung von Drucksäulenstickstoff in den Kreislauf 90 90 90
53 Ausgleichsstrom + weiterer Strom (Turbine 56) 30 30 30
64 Entnahme von gasförmigem Stickstoff unter Drucksäulendruck aus dem Kreislauf 15 15 15
47 Flüssigstickstoff aus dem Flüssigstickstofftank und aus dem Kreislauf zum Kopf der Drucksäule 54 54 54
36 Zu verdampfender flüssiger Sauerstoff 45 35 25
37 Gasförmiges Druckprodukt (Sauerstoff) 45 35 25
44 Austritt des Kreislaufverdichters 93 83 73
45 Erster Teilstrom des Wärmeträgers 64 54 44
59
Zweiter Teilstrom des Wärmeträgers (Turbine 43) 28,5 28,5 28,5
60
61 Rückführung aus zweitem Teilstrom direkt durch Wärmetauscher 12 zum Kreislaufverdichter 13,5 13,5 13,5
54 Ausgleichsstrom 25 15 5
55
Weiterer Strom durch zweite Turbine 56 5 15 25
57
48 Flüssigstickstoff aus dem verflüssigten ersten Teilstrom in den Tank 10 0 0
52 Flüssigstickstoff aus dem Tank zur Drucksäule 0 0 10
65 Hochdruckstickstoffprodukt 35 35 35
(Konstanter Durchsatz durch Kreislaufverdichter 41, 42) Max. Mittl. Min.
50 Flüssigstickstoff aus dem Hauptkondensator zum Flüssigstickstofftank 1,5 1,5 1,5
32 Flüssiger Sauerstoff aus der Niederdrucksäule zum Flüssigsauerstofftank 36,5 36,5 36,5
40 Einspeisung von Drucksäulenstickstoff in den Kreislauf 90 90 90
53 Ausgleichsstrom + weiterer Strom (Turbine 56) 30 30 30
64 Entnahme von gasförmigem Stickstoff unter Drucksäulendruck aus dem Kreislauf 15 15 15
47 Flüssigstickstoff aus dem Flüssigstickstofftank und aus dem Kreislauf zum Kopf der Drucksäule 54 54 54
36 Zu verdampfender flüssiger Sauerstoff 45 35 25
37 Gasförmiges Druckprodukt (Sauerstoff) 45 35 25
44 Austritt des Kreislaufverdichters 83 83 83
45 Erster Teilstrom des Wärmeträgers 64 54 44
59
Zweiter Teilstrom des Wärmeträgers (Turbine 43) 18,5 28,5 38,5
60
61 Rückführung aus zweitem Teilstrom direkt durch Wärmetauscher 12 zum Kreislaufverdichter 3,5 13,5 23,5
54 Ausgleichsstrom 25 15 5
55
Weiterer Strom durch zweite Turbine 56 5 15 25
57
48 Flüssigstickstoff aus dem verflüssigten ersten Teilstrom in den Tank 10 0 0
52 Flüssigstickstoff aus dem Tank zur Drucksäule 0 0 10
65 Hochdruckstickstoffprodukt 35 35 35
Das Schema ist in der Zeichnung ist durch ein gestrichelte Linie in zwei Hälften geteilt. Die linke Hälfte enthält im wesentlichen den Kältekreislauf und die Speichertanks; die gesamte Rektifikation befindet sich in der rechten Hälfte. Im Wechselbetrieb des Verfahrens und der Anlage bleiben alle Ströme in der rechten Hälfte der Zeichnung vollständig oder im wesentlichen unverändert, die Schwankungen in der Drucksauerstoffproduktion wirken sich nur auf den Kreislauf und die Speichertanks aus. Dies spiegelt sich in den ersten sechs Zeilen der beiden Tabellen wieder, in denen sämtliche Ströme genannt sind, die die gestrichelte Linie überschreiten; diese weisen in allen Betriebsfällen den gleichen Durchsatz auf, während sich die Verdampfungsmenge ändert (Bezugszeichen 36, 37). Insbesondere wird über Leitung 38 eine konstante Menge von 105.000 Nm3/h Stickstoff aus der Drucksäule 14 in den variablen Teil der Anlage geführt, der in den Strömen 40 und 53 von einem - ebenfalls gleichbleibenden - Teil (15.000 Nm3/h) des in der Turbine 43 entspannten zweiten Teilstroms überlagert wird. Ebenso bleibt die Entnahme von flüssigem Sauerstoffprodukt 31, 32 aus der Niederdrucksäule 15 in allen Betriebsfällen konstant.
In dem Zahlenbeispiel von Tabelle 1 wird der zweite Teilstrom 59, 60 konstant gehalten. Die für die Verdampfung notwendige Variation des ersten Teilstroms 45 wird durch die entsprechende Veränderung des Durchsatzes durch den Kreislaufverdichter (Strom 44) bewirkt: Erhöht sich beispielsweise die Produktion von dem durchschnittlichen auf den maximalen Wert, so nimmt der Durchsatz durch den Kreislaufverdichter etwa um denselben Betrag wie die Produktmenge zu. Das zusätzliche Gas wird durch eine entsprechende Verringerung der Gasmenge zur Verfügung gestellt, die als weiterer Strom 55, 57, 58 durch die Turbine 56 aus dem Kreislauf entnommen wird.
Die schwankenden Mengen an verflüssigtem Wärmeträger (erster Teilstrom 45) werden dadurch gepuffert, daß bei überdurchschnittlicher Produktion über Leitung 48 überschüssige Flüssigkeit dem zweiten Speichertank 49 zugeführt wird; umgekehrt wird die fehlende Flüssigkeit bei geringer Produktmenge über Leitung 52 aus dem Flüssigstickstofftank nachgeführt, um die Rücklaufmenge für die Drucksäule 14 konstant zu halten.
Das Zahlenbeispiel von Tabelle 1 ist so ausgelegt, daß ein durchschnittlicher Überschuß an Flüssigkeit von jeweils 1500 Nm3/h Sauerstoff und Stickstoff erzeugt wird. Dieser kann kontinuierlich, intermittierend oder auch in variabler Menge in Form von Flüssigprodukten abgeführt werden. Im übrigen ist es bei dem Verfahren auch möglich, die durchschnittliche Kälteleistung des Kreislaufs und damit die mittlere Menge der Flüssigprodukte während des Betriebs zu verändern, indem die durchschnittlichen Drehzahlen der Turbinen entsprechend angepaßt werden. Die Anlage kann damit nicht nur bezüglich des innenverdichteten Druckprodukts, sondern auch hinsichtlich der Flüssigkeitsproduktion besonders flexibel betrieben werden.
Im Beispiel von Tabelle 2 wird statt des zweiten Teilstroms der Durchsatz des Kreislaufverdichters 41, 42 konstant gehalten.

Claims (8)

  1. Verfahren zur variablen Erzeugung eines gasförmigen Druckprodukts (37) durch Tieftemperaturzerlegung von Luft, bei dem Einsatzluft (10, 13) einem Rektifiziersystem (14, 15) zugeführt wird, wobei
    eine flüssige Fraktion (31, 32, 34) aus dem Rektifiziersystem (14, 15) in einem ersten Speichertank (33) gepuffert,
    der Druck der flüssigen Fraktion (34) erhöht (35) und
    eine variable Menge der flüssigen Fraktion (36) unter dem erhöhten Druck durch indirekten Wärmeaustausch (12) verdampft und als gasförmiges Druckprodukt (37) gewonnen wird, wobei ferner
    ein Wärmeträger in einem Kältekreislauf geführt wird, der einen Kreislaufverdichter (41, 42) aufweist,
    ein erster Teilstrom (44, 45) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger dem indirekten Wärmeaustausch (12) zur Verdampfung der flüssigen Fraktion (36) zugeführt und dabei mindestens teilweise verflüssigt wird,
    ein zweiter Teilstrom (44, 59) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger (44) arbeitsleistend entspannt (43) wird und
    verflüssigter Wärmeträger (45, 48, 52) in einem zweiten Speichertank (49) gepuffert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein weiterer Strom (55) des Wärmeträgers arbeitsleistend entspannt (56) wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Menge des weiteren Stroms (55), die der arbeitsleistenden Entspannung (56) zugeführt wird, bei erhöhtem Bedarf an gasförmigem Druckprodukt (37) erniedrigt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Stickstoff (31) aus dem Rektifiziersystem (14, 15) als Wärmeträger eingesetzt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einsatzluft (10) für das Rektifiziersystem (14, 15) in einem Hauptwärmetauschersystem (11, 12) abgekühlt wird, in dem auch die Verdampfung (12) der flüssigen Fraktion (36) unter erhöhtem Druck durchgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Hauptwärmetauschersystem einen Wärmetauscherblock aufweist, in dem sowohl die Abkühlung der Einsatzluft als auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt werden.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Hauptwärmetauschersystem einen ersten und einen zweiten Wärmetauscherblock aufweist, wobei in dem ersten Wärmetauscherblock (11) die Abkühlung der Einsatzluft (10) und in dem zweiten Wärmetauscherblock (12) die Verdampfung der flüssigen Fraktion (36) unter erhöhtem Druck durchgeführt wird, und wobei die beiden Wärmetauscherblöcke (11, 12) durch einen Ausgleichsstrom (54) gekoppelt sind, der einem (11) der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende entnommen und dem anderen (12) der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende zugeführt wird.
  8. Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft,
    mit einem Rektifiziersystem (14, 15), in das eine Einsatzluftleitung (10, 13) führt,
    mit einer Flüssigkeitsleitung (31, 32) zur Entnahme einer flüssigen Fraktion aus dem Rektifiziersystem (14, 15) und zu deren Einleitung in einen ersten Speichertank (33),
    mit Mitteln (35) zur Erhöhung des Drucks der flüssigen Fraktion (34),
    mit einem Wärmetauscher (12) zur Verdampfung der flüssigen Fraktion (36) unter erhöhtem Druck,
    mit einer Produktleitung (37) zur Entnahme der verdampften flüssigen Fraktion als gasförmiges Druckprodukt,
    mit einem Kältekreislauf, der einen Kreislaufverdichter (41, 42) aufweist,
    mit einer ersten Teilstromleitung (44, 45), die von dem Kreislaufverdichter (41, 42) zu dem Wärmetauscher (12) zur Verdampfung der flüssigen Fraktion (36) verbunden ist,
    mit einer zweiten Teilstromleitung (44, 59), die von dem Kreislaufverdichter (41, 42) zu einer Entspannungsmaschine (43) führt und
    mit einem zweiten Speichertank (49) zur Pufferung von verflüssigtem Wärmeträger (45, 48).
EP96927545A 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts Expired - Lifetime EP0842385B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526785 1995-07-21
DE19526785A DE19526785C1 (de) 1995-07-21 1995-07-21 Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
PCT/EP1996/003175 WO1997004279A1 (de) 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts

Publications (3)

Publication Number Publication Date
EP0842385A1 EP0842385A1 (de) 1998-05-20
EP0842385B1 true EP0842385B1 (de) 2001-04-18
EP0842385B2 EP0842385B2 (de) 2003-12-03

Family

ID=7767507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96927545A Expired - Lifetime EP0842385B2 (de) 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts

Country Status (15)

Country Link
US (1) US5953937A (de)
EP (1) EP0842385B2 (de)
JP (1) JP3947565B2 (de)
KR (1) KR100421071B1 (de)
CN (1) CN1134638C (de)
AU (1) AU719608B2 (de)
BR (1) BR9609781A (de)
CA (1) CA2227050A1 (de)
DE (2) DE19526785C1 (de)
DK (1) DK0842385T4 (de)
ES (1) ES2158336T5 (de)
MX (1) MX9800557A (de)
TW (1) TW318882B (de)
WO (1) WO1997004279A1 (de)
ZA (1) ZA966146B (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2647934A1 (de) 2012-04-03 2013-10-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
DE10249383A1 (de) * 2002-10-23 2004-05-06 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
US7409835B2 (en) * 2004-07-14 2008-08-12 Air Liquide Process & Construction, Inc. Backup system and method for production of pressurized gas
US20070251267A1 (en) * 2006-04-26 2007-11-01 Bao Ha Cryogenic Air Separation Process
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
US9400135B2 (en) * 2010-07-05 2016-07-26 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
CN102072612B (zh) * 2010-10-19 2013-05-29 上海加力气体有限公司 N型模式节能制气方法
CN102322727A (zh) * 2011-09-08 2012-01-18 罗良宜 空气能空气液化分离装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE752439C (de) * 1943-02-11 1953-01-05 Messer & Co G M B H Verfahren zur Erzeugung von komprimiertem Sauerstoff
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
GB890458A (en) * 1959-12-14 1962-02-28 British Oxygen Co Ltd Low temperature separation of gas mixtures
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
FR1479561A (fr) * 1966-03-25 1967-05-05 Air Liquide Procédé de preoduction d'un gaz en débit variable
DE6910083U (de) * 1969-03-13 1969-12-04 Merk Gmbh Telefonbau Fried Elektromagnetisches schauzeichen
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
JPH02293575A (ja) 1989-05-08 1990-12-04 Kobe Steel Ltd 空気分離装置
US5252149B1 (en) * 1989-08-04 1998-09-29 Warman Int Ltd Ferrochromium alloy and method thereof
JPH0455682A (ja) 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
US5386692A (en) * 1994-02-08 1995-02-07 Praxair Technology, Inc. Cryogenic rectification system with hybrid product boiler
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2647934A1 (de) 2012-04-03 2013-10-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102012006746A1 (de) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Also Published As

Publication number Publication date
KR19990035798A (ko) 1999-05-25
DE59606808D1 (de) 2001-05-23
DE19526785C1 (de) 1997-02-20
CN1134638C (zh) 2004-01-14
CA2227050A1 (en) 1997-02-06
AU6734496A (en) 1997-02-18
EP0842385A1 (de) 1998-05-20
ES2158336T5 (es) 2004-07-01
AU719608B2 (en) 2000-05-11
WO1997004279A1 (de) 1997-02-06
DK0842385T3 (da) 2001-08-06
JPH11509615A (ja) 1999-08-24
BR9609781A (pt) 1999-12-21
TW318882B (de) 1997-11-01
ZA966146B (en) 1997-02-04
ES2158336T3 (es) 2001-09-01
MX9800557A (es) 1998-04-30
DK0842385T4 (da) 2004-03-22
US5953937A (en) 1999-09-21
KR100421071B1 (ko) 2004-04-17
JP3947565B2 (ja) 2007-07-25
CN1191600A (zh) 1998-08-26
EP0842385B2 (de) 2003-12-03

Similar Documents

Publication Publication Date Title
EP0842385B1 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
EP0949471B1 (de) Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi
DE69304948T2 (de) Tieftemperaturluftzerlegung für die Herstellung von gasförmigem Sauerstoff
DE69214693T2 (de) Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck
DE69012923T2 (de) Verfahren und Vorrichtung zur Herstellung von Stickstoff aus Luft.
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
DE69205424T2 (de) Verfahren und Vorrichtung für die Luftzerlegung durch Rektifikation.
DE69214409T3 (de) Verfahren zur Herstellung unreinen Sauerstoffs
DE3874731T2 (de) Kryogene luftspaltung mit einem aufkocher mit totalkondensation durch kompression/expansion.
DE3913880A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE69208962T2 (de) Lufttrennung
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP3019803B1 (de) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP1067345A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0716280A2 (de) Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft
DE69209835T2 (de) Einsäulenluftzerlegungszyklus und dessen Integration in Gasturbinen
DE69814519T2 (de) Kryogenisches Verfahren mit Doppelsäure und externem Verdämpfer-Kondensator für eine Sauerstoff- und Stickstoffmischung
DE3782660T2 (de) Kaelteerzeugung durch teilexpansion der luft fuer die tieftemperatur-luftzerlegung.
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE69712340T2 (de) Verfahren und einrichtung zur herstellung eines luftgases mit variablen mengen
DE4030749A1 (de) Verfahren zur tieftemperaturzerlegung von luft
EP2312247A1 (de) Verfahren und Vorrichtung zur Gewinnung von flüssigem Stickstoff durch Tieftemperatur-Luftzerlegung
DE69414282T3 (de) Verfahren und Anlage zur Herstellung von Drucksauerstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

REF Corresponds to:

Ref document number: 59606808

Country of ref document: DE

Date of ref document: 20010523

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010713

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158336

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20020117

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20031203

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE DK ES FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20040211

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040715

Year of fee payment: 9

ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140611

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140711

Year of fee payment: 19

Ref country code: FR

Payment date: 20140708

Year of fee payment: 19

Ref country code: GB

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140716

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606808

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719