EP0832958B1 - Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt - Google Patents

Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt Download PDF

Info

Publication number
EP0832958B1
EP0832958B1 EP97402088A EP97402088A EP0832958B1 EP 0832958 B1 EP0832958 B1 EP 0832958B1 EP 97402088 A EP97402088 A EP 97402088A EP 97402088 A EP97402088 A EP 97402088A EP 0832958 B1 EP0832958 B1 EP 0832958B1
Authority
EP
European Patent Office
Prior art keywords
zone
cut
gasoline
light
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402088A
Other languages
English (en)
French (fr)
Other versions
EP0832958A1 (de
Inventor
Thierry Chapus
Christian Marcilly
Blaise Didillon
Charles Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0832958A1 publication Critical patent/EP0832958A1/de
Application granted granted Critical
Publication of EP0832958B1 publication Critical patent/EP0832958B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a method and an installation for the production catalytic cracking gasolines with low sulfur content.
  • the reformulated gasoline production meeting the new environmental standards notably requires that their concentration of olefins and / or aromatics (especially benzene) and sulfur (including mercaptans) be reduced.
  • Catalytic cracking gasolines have high olefin contents, and the sulfur present in the gasoline pool is attributable to nearly 90% of FCC gasoline.
  • US Patent 5,318,690 proposes a process with a fractionation of gasoline, a softening of the light fraction, while the heavy fraction is hydrodesulfurized, then converted to ZSM-5 and redesulfurized under mild conditions.
  • This technique is based on a separation of the raw gasoline so as to obtain a light cut practically free from sulfur compounds other than mercaptans, so as to treat the cut only with softening to remove the mercaptans.
  • the heavy cut contains a relatively large amount of olefins which are in saturated part during the hydrotreatment.
  • the patent advocates cracking on ZSM-5 to produce olefins, but detriment of yield.
  • these olefins can be reconstituted in the presence of H2S to form mercaptans, which has the drawback of calling a additional softening, or desulfurization.
  • Another means commonly used by the refiner to treat this problem of sulfur in gasolines is to separate the boiling fraction of at least 180 ° C which contains most of the sulfur compounds other than mercaptans. This fraction is then downgraded with the LCO (light cycle oil) and is generally not valued, or it is used as a charge diluent.
  • LCO light cycle oil
  • the applicant has sought a process for the production of low sulfur catalytic cracking, which makes it possible to efficiently conserve all of the gasoline cut, reduce the sulfur content of the gasoline cut to very low levels, without loss of gasoline yield, and minimizing octane loss.
  • the feedstock is a catalytic cracking gasoline whose boiling point range typically ranges from C5 up to 220 ° C.
  • the end point of the petrol cut depends of course on the refinery and the market constraints, but generally remains within the limits indicated above.
  • the sulfur content of these catalytic cracked gasoline (FCC) gasoline sections depends on the sulfur content of the FCC-treated feed as well as the end point of the cut. Light fractions naturally have a lower sulfur content than heavier cuts. Generally, the sulfur content of the entire gasoline cut from the FCC is greater than 100 ppm by weight and most often greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, in some cases even reaching values of the order of 4000 to 5000 ppm by weight.
  • the crude gasoline from catalytic cracking is fractionated into at least one light cut and at least one heavy cut.
  • the light cut to a final boiling point less than or equal to 210 ° C, preferably less than or equal to 180 ° C, preferably less than or equal to 160 ° C and even more preferably less than or equal to 145 ° C.
  • the light fraction of the petrol fraction contains relatively few sulfur compounds, which are predominantly in the form of mercaptans, whereas the sulfur compounds of the heavier fractions are present in the form of substituted or unsubstituted thiophenes, or of heterocyclic compounds such as benzothiophene. which, unlike mercaptans, can not be removed by extractive processes. These sulfur compounds are therefore removed by hydrotreatment.
  • the light cut is relatively rich in olefins, and the sulfur is mainly present in the form of mercaptans, while the heavier cut is relatively poor in olefins and is characterized by significantly higher sulfur contents. More generally, and contrary to the prior art, the cutting point is chosen so as to maximize the olefin content in the light cut.
  • the catalytic cracking gasoline fraction (FCC) is thus fractionated into at least two fractions, which are then subjected to different desulfurization treatments.
  • the light fraction undergoes a desulfurization treatment constituted by a hydrogenation sweet, possibly preceded by a selective hydrogenation of diolefins.
  • the Hydrogenation conditions are chosen mild to minimize the saturation of olefins of high octane number.
  • the desulfurization is not complete but it virtually eliminates all sulfur compounds other than mercaptans from so that basically remain in the cut the mercaptans. They are then removed by softening. This softening step can be a softening extraction, or catalytic oxidation softening of fixed bed mercaptans.
  • the hydrogenation of the dienes is a step which makes it possible to eliminate practically all the dienes present in the light fraction before the gentle hydrotreatment. It generally takes place in the presence of a catalyst comprising at least one Group VIII metal (and preferably Pt, Pd or Ni) and a support, at a temperature of 50-250 ° C. under a pressure of 4-50 bar. This step does not necessarily cause softening. It is particularly advantageous to operate under conditions such that at least partial softening of the gasoline is obtained, that is to say with the reduction of the mercaptan content.
  • a catalyst comprising 0.1 to 1% of palladium deposited on a support operating under a pressure of 4-25 bar, at a temperature of 50-250 ° C, with a space velocity of the liquid ( LHSV) from 1 to 10 h -1 .
  • the catalyst comprises palladium (0.1 to 1% by weight, and preferably 0.2-0.5% weight) deposited on an inert support such as alumina, silica, silica-alumina, or carrier containing at least 50% alumina.
  • an inert support such as alumina, silica, silica-alumina, or carrier containing at least 50% alumina.
  • Another metal may be combined to form a bimetallic catalyst, such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • a bimetallic catalyst such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • the choice of operating conditions is particularly important. We will operate the most generally under pressure in the presence of a quantity of hydrogen in small excess by relative to the stoichiometric value necessary to hydrogenate the diolefins.
  • the hydrogen and the charge to be treated are injected in ascending or descending currents in a reactor preferably with a fixed bed of catalyst.
  • the temperature is included more generally between 50 and 200 ° C, and preferably between 80 and 200 ° C, and preferably between 150 and 170 ° C.
  • the pressure is sufficient to maintain more than 80% weight, and preferably more than 95% by weight, gasoline to be treated in the liquid phase in the reactor to know the most generally between 4 and 50 bar and preferably above 10 bar.
  • a pressure is between 10-30 bar, and preferably between 12-25 bar.
  • the space velocity is in these conditions established between 1-10 h -1 , preferably between 4-10 h -1 .
  • the light fraction of the gasoline catalytic cracking fraction may contain about 1% by weight of diolefins.
  • the diolefin content is reduced to less than 3000 ppm, or even less than 2500 ppm and better still less than 1500 ppm. In some cases it can be obtained less than 500 ppm.
  • the diene content after selective hydrogenation can even be reduced to less than 250 ppm.
  • the hydrogenation step takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the amount of hydrogen necessary to effect the desired reactions.
  • the hydrogenation step takes place in a catalytic hydrogenation reactor which is arranged in a particular manner, namely at least two catalytic zones, the first being crossed by the liquid charge (and a amount of hydrogen less than the stoichiometry necessary to convert all the diolefins to mono-olefins), the second receiving the liquid charge from the first zone (as well as the rest of the hydrogen, that is to say a quantity of sufficient hydrogen to convert the remaining diolefins to mono-olefins and to at least partially isomerize the primary and secondary olefins to tertiary olefins), for example injected through a lateral tubing and dispersed using a suitable diffuser.
  • the proportion of the first zone (by volume) is at most equal to 75% of the sum of the 2 zones and preferably of 15 to 30%.
  • Another advantageous embodiment comprises hydrogenation of the dienes on a catalyst other than Pd, a mild hydrotreatment and a final oxidizing softening.
  • the gentle hydrodesulphurization of the light fraction of the FCC gasoline fraction is intended, by using a conventional hydrotreating catalyst under mild conditions of temperature and pressure, to convert the sulfur compounds of the other section into H 2 S. mercaptans, so as to obtain an effluent containing as sulfur compounds only mercaptans.
  • the cut thus produced has the same distillation range, and a slightly lower octane number due to the inevitable partial saturation of the olefins.
  • the conditions of the hydrotreatment reactor must be adjusted to achieve the desired desulfurization level, and especially to minimize the octane loss resulting from the saturation of the olefins. At least 90% of the olefins are generally converted (the diolefins being totally or substantially completely hydrogenated), and preferably at most 80-85% of the olefins are converted.
  • the temperature of the mild hydrotreating step is generally between 160 ° C and 380 ° C, preferably between 180 ° C and 360 ° C, and more preferably between 180 ° C and 320 ° C.
  • Low to moderate pressures are generally sufficient, between 5 and 50 bar, preferably between 10 and 45 bar, and more preferably between 10 and 30 bar.
  • the LHSV space velocity is between 0.5 and 10 h -1, preferably between 1 and 6 h -1.
  • the catalyst (s) used in the mild hydrotreating reactor is a conventional hydrodesulfurization catalyst, comprising at least one Group VI metal and / or at least one Group VIII metal, on a suitable support. .
  • the Group VI metal is usually molybdenum or tungsten, and the Group VIII metal is generally nickel or cobalt. Combinations such as Ni-Mo or Co-Mo are typical.
  • the catalyst support is usually a porous solid such as alumina, silica-alumina or other porous solids such as magnesia, silica or TiO2, alone. or in admixture with alumina or silica-alumina.
  • the lighter fraction of the gasoline fraction is then subjected to a non-hydrogenating desulphurization to remove the remaining sulfur compounds in the form of mercaptans.
  • a non-hydrogenating desulphurization to remove the remaining sulfur compounds in the form of mercaptans.
  • It may be an extractive softening process using sodium hydroxide or sodium or potassium cresylate. Extractive processes are sufficient as long as the processed section does not contain high molecular weight mercaptans. Softening can also be achieved by catalytic oxidation of mercaptans to disulfides.
  • This catalytic oxidation of the mercaptans to disulfides can be carried out simply by mixing the gasoline to be treated with an aqueous solution of an alkaline base, such as sodium hydroxide, in which a catalyst based on a metal chelate is added in the presence of an oxidizing agent.
  • an alkaline base such as sodium hydroxide
  • a catalyst based on a metal chelate is added in the presence of an oxidizing agent.
  • the alkaline base is not incorporated in the catalyst.
  • the metal chelate used as a catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine, for example.
  • the reaction is carried out at a pressure of between 1 and 30 bar, at a temperature of between 20 and 100 ° C, and preferably 20 and 80 ° C.
  • the alkaline base may be incorporated into the catalyst by introducing an alkaline ion into a mixed oxide structure consisting essentially of combined aluminum and silicon oxides.
  • alkali metal aluminosilicates more particularly sodium and potassium, characterized by an Si / Al atomic ratio of structure less than or equal to 5 (ie an SiO 2 / Al 2 O 3 molar ratio are used.
  • these alkali aluminosilicates have the advantage of a very low solubility in an aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is added regularly or, optionally, alkaline solution.
  • This step of softening (preferably carried out in a fixed bed) of the light gasoline fraction containing mercaptans can therefore be defined as comprising the passage, under oxidation conditions, of the gasoline to be treated (stabilized) in contact with a porous catalyst.
  • a porous catalyst Preferably, according to the patent EP-A-638,628, it comprises from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkali aluminosilicate having an Si / Si atomic ratio. Al less than or equal to 5, preferably less than or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight at least one inorganic or organic binder.
  • This porous catalyst has a basicity determined according to ASTM 2896 greater than 20 milligrams of potash per gram and a total BET surface area greater than 10 m 2 / g, and contains within its porosity a permanent aqueous phase representing 0, 1 to 40%, preferably 1 to 25%, by weight of the dry catalyst.
  • said alkali aluminosilicate is obtained by reaction in a medium aqueous solution of at least one clay (kaolinite, halloysite, montmorillonite, etc.) with at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkali, in particular sodium, and potassium, this compound being preferably hydroxide, followed by a heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • kaolinite, halloysite, montmorillonite, etc. at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkali, in particular sodium, and potassium, this compound being preferably hydroxide, followed by a heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • the clay can also be heat treated and crushed before being brought into contact with the alkaline solution.
  • kaolinite and all its thermal transformation products metalakaolin, inverse spinel phase, mullite
  • metalakaolin, inverse spinel phase, mullite can be used according to the method of the invention.
  • the clay is kaolin, kaolinite and / or metakaolin are the preferred basic chemical reagents.
  • metal chelate it will be possible to deposit on the support any chelate used for this purpose in the prior art, in particular phthalocyanines, porphyrins or metal corrines. Particularly preferred are cobalt phthalocyanine and vanadium phthalocyanine.
  • the metal phthalocyanine is preferably used in the form of a derivative thereof, with particular preference for its commercially available sulfonates, for example cobalt phthalocyanine mono- or disulfonate and mixtures thereof. this.
  • water can be added, in adequate quantity, to the cut upstream of the catalyst in a continuous or discontinuous manner to maintain the degree of hydration within the desired range, that is, the water content of the support is maintained between 0.1 and 40% by weight of the support, and preferably between 1 and 25%.
  • the temperature of the feed is set to a sufficient value, below 80 ° C, to solubilize the reaction water resulting from the transformation of mercaptans into disulfides.
  • the temperature of the charge is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight thereof.
  • This range of predetermined values of the water content of the support will, of course, depend on the nature of the catalyst support used in the softening reaction.
  • this softening step can be eliminated when the light cut has been selectively hydrogenated to remove dienes and at the same time softening has been achieved.
  • the sweetening yield may be such that the final softening step with an oxidizing agent may no longer be necessary.
  • This case is true with a catalyst based on palladium as described above.
  • the presence of this treatment step with a palladium catalyst can also make it possible to modify the softening step, for example by increasing the hourly speed, hence increasing productivity, or reducing the amount of catalyst, hence a reduced investment.
  • a step of selective hydrogenation of the dienes can be used which is not softening.
  • Hydrodesulfurization of the heaviest fraction of FCC gasoline is conducted following the same process as that used for the light fraction.
  • the catalyst contains also at least one metal of G VIII and / or group VI, deposited on a support. Only the operating conditions are adjusted, in order to obtain the level of desulfurization desired, on this cup richer in sulfur.
  • the temperature used is usually between 200 ° C and 420 ° C, preferably between 220 ° C and 400 ° C.
  • the pressures operating procedures are generally between 20 and 80 bar and preferably between 30 and 50 bar. The effluent obtained is stripped to eliminate H2S and is sent to the pool petrol.
  • the softening zone is located after the stripping and the installation further comprises a zone for selective hydrogenation of the dienes located between the fractionation column and the soft hydrotreating zone, said hydrogenation zone comprising a driving for the introduction of the light cut and driving for the release of the light cut dedienized.
  • the plant also comprises a zone (15) for hydrotreating the heavy fraction, provided with a pipe (4) for introducing the heavy cut from the column (1), a pipe ( 16) for the outlet of the hydrotreated section and a line (17) supplying the hydrogen at the charge or the zone, said zone being followed by a stripping column (18) provided with a pipe for the introducing the hydrotreated cut, a pipe (19) for the outlet of H 2 S and a pipe (20) for the outlet of the hydrotreated cut.
  • the cuts leaving the pipes (20) and (13) can be sent to the fuel storage via a pipe (21).
  • Example 1 illustrates a process without a softening step on Pd
  • the following example illustrates the process, in the case where the crude gasoline cut is fractionated into a light C5 cut less than 80 ° C, and a heavier fraction 180-220 ° C.
  • Table 1 shows the characteristics of these different sections. Characteristics of the different FCC petrol cuts Chopped off Total gasoline (C5-220 ° C) Light fraction (C5-180 ° C) Heavy fraction (180-220 ° C) (% wt) (100) (70) (30) Olefin content (% wt) 44.0 56.4 10.0 Aromatic content (% wt) 23.0 4.6 66.0 Bromine index 68 90 16 Total sulfur (ppm wt) 200 154 307 Sulfur mercaptans (ppm wt) 106 74 0 RON 92.0 92.5 90.8 MY 80.0 80.7 78.4 (RON + MON) / 2 86.0 86.6 84.6
  • the light cut of FCC gasoline is rich in olefins and contains almost all mercaptans.
  • the heavier fraction which is richer in sulfur, contains sulfur compounds essentially in the form of thiophene derivatives.
  • Table 2 below indicates the operating conditions used for the hydrotreatment of heavy gasoline, as well as the characteristics of the heavy gasoline thus desulfurized.
  • the catalyst used is a CoMo supported alumina (HR 306C sold by the company Procatalyse). Characteristics of hydrodesulfurization of heavy gasoline.
  • Table 3 below indicates the characteristics of the light gasoline desulfurized and softened.
  • the temperature is 280 ° C.
  • the pressure is 20 bar
  • the LHV is 8 h -1
  • the catalyst is the NiMo-based LD 145 sold by Procatalyse followed by CoMo catalyst (HR306 C sold by the company Procatalyse). Characteristics of the initial light gasoline, after mild hydrotreatment and then after softening.
  • the softening is performed on a catalyst comprising sodalite (alkali aluminosilicate) and 20% of activated carbon, impregnated with an oxidizing agent such as sulfated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cata) prepared such that described in EP-A-638,628).
  • an oxidizing agent such as sulfated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cata) prepared such that described in EP-A-638,628).
  • the method and the installation according to the invention thus make it possible to obtain FCC containing less than 50 ppm sulfur, responding negatively to the "doctor test" and this with a loss in octane number barrel (RON + MON) / 2 lower than 8 points per compared to the same raw gasoline fraction of FCC before treatment, and preferably less than or equal to 6 points.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Claims (10)

  1. Verfahren zur Herstellung eines gesüßten Benzins, das weniger als 50 ppm Schwefel enthält aus Rohbenzin von katalytischem Cracken, das Olefine, Mercaptane und schwefelhaltige Verbindungen enthält, die von Mercaptanen verschieden sind, in welchen Verfahren:
    1) das Rohbenzin zu wenigstens einer leichten Fraktion mit Endsiedepunkt unter oder gleich 210°C fraktioniert wird, die den Hauptteil der Olefine und der Mercaptane enthält, und wenigstens einer schweren Fraktion, wobei die Fraktionen anschließend verschiedenen Entschwefelungsbehandlungen unterzogen werden,
    2) die leichte Fraktion einem weichen Hydrotreatment in Gegenwart von Wasserstoff mit einem Katalysator unterzogen wird, der wenigstens ein Metall der Gruppe VIII und/oder wenigstens ein Metall der Gruppe VI enthält, bei einer Temperatur von 160 bis 380°C unter einem Druck von 10 bis 30 bar und der erhaltene Abstrom abgestreift wird, um H2S zu entfernen,
    3) die leichte Fraktion einem Süßen wenigstens teilweise unterzogen wird und einer Hydrierung der Diene durch Behandlung der leichten Fraktion vor dem weichen Hydrotreatment in Gegenwart von Wasserstoff mit einem Katalysator, der 0,1 bis 1% Palladium, abgeschieden auf einem Träger, enthält, bei einer Temperatur von 50 bis 250°C, unter einem Druck von 4 bis 25 bar mit einer stündlichen Raumgeschwindigkeit der Flüssigkeit von 1 bis 10 h-1,
    4) die schwere Fraktion einem Hydrotreatment in Gegenwart von Wasserstoff mit einem Katalysator unterzogen wird, der wenigstens ein Metall der Gruppe VI und/oder wenigstens ein Metall der Gruppe VIII enthält, bei einer Temperatur von 200 bis 420°C und einem Druck von 20 bis 80 bar und der erhaltene Abstrom abgestreift wird, um H2S zu entfernen.
  2. Verfahren nach Anspruch 1, in welchem die leichte Fraktion vor dem weichen Hydrotreatment der selektiven Hydrierung der Diene unterzogen wird und die hydrierbehandelte und abgestreifte Fraktion einem Süßen unterzogen wird, das durch eines der folgenden Verfahren durchgeführt wird:
    extraktives Süßen des Abstroms, der nach weichem Hydrotreatment und Abstreifen erhalten wird;
    Süßen mit einem Oxidationsmittel, einem Katalysator und einer Alkalibase, die gegebenenfalls in den Katalysator einverleibt ist, des Abstroms, der nach weichem Hydrotreatment und Abstreifen erhalten ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die leichte Fraktion einen Endsiedepunkt unterhalb oder gleich 180°C aufweist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die leichte Fraktion einen Endsiedepunkt unterhalb oder gleich 160°C aufweist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die leichte Fraktion einen Endsiedepunkt unterhalb oder gleich 145°C aufweist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Behandlung der leichten Fraktion vor weichem Hydrotreatment mit einem Katalysator durchgeführt wird, der 0,1 bis 1 Palladium und 1 bis 20 Gew.-% Nickel enthält.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Behandlung der leichten Fraktion vor dem weichen Hydrotreatment mit einem Katalysator durchgeführt wird, der 0,1 bis 1% Palladium und Gold in einem Gewichtsverhältnis Au/Pd von wenigstens 0,1 und unter 1 enthält.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das extraktive Süßen mit einem Oxidationsmittelreagens bei 20 bis 100°C unter einem Druck von 1 bis 30 bar durchgeführt wird.
  9. Anlage zur Erzeugung von Benzinen mit geringem Schwefelgehalt aus Benzin von katalytischem Kracken, umfassend:
    eine Kolonne (1) zur Fraktionierung, ausgerüstet mit einer Leitung (2) zum Einführen des Rohbenzins, das von dem katalytischen Kracken kommt, und wenigstens zwei Leitungen umfassend, die eine (3) in dem oberen Teil der Kolonne für den Austritt der leichten Fraktion und die andere (4) in dem unteren Teil der Kolonne für den Austritt der schweren Fraktion;
    eine Zone (5) zum Hydrotreatment in Gegenwart von Wasserstoff, die ein katalytisches Bett mit einem Katalysator umfasst, der wenigstens ein Metall der Gruppe VIII und/oder wenigstens ein Metall der Gruppe VI enthält, eine Leitung (6) zum Eintritt der leichten zu behandelnden Benzinfraktion, wobei die Leitung mit der Zone zur Behandlung (7) auf Palladiumkatalysator verbunden ist, wobei die Hydrotreatmentzone auch eine Leitung (8) zum Austritt des hydrierbehandelten Abstroms umfasst,
    eine Zone (9) zum Abstreifen, umfassend eine Leitung zum Einführen von leichtem hydrierbehandelten Benzin, eine Leitung (10) zur Entfernung von H2S und eine Leitung (11) zum Austritt des leichten abgestreiften Benzins,
    und wobei die Anlage auch umfasst:
    eine Zone (7) zum Süßen und zum Hydrieren der Diene, angeordnet vor der Hydrotreatmentzone und eine Leitung (3) umfassend zur Einführung der leichten Benzinfraktion aus der Fraktionierungskolonne, eine Leitung zum Austritt der leichten behandelten Benzinfraktion, wobei die Zone auch wenigstens ein Katalysatorbett mit 0,1 bis 1% Palladium, abgeschieden auf einem Träger umfasst und die Anlage außerdem eine Leitung (13) zum Austritt des leichten abgestreiften und gesüßten Benzins aus der Anlage heraus umfasst, die mit der Zone (12) oder der Zone (9) verbunden ist,
    eine Zone (15) zum Hydrotreatment der schweren Fraktion mit einem Katalysator, der wenigstens ein Metall der Gruppe VI und/oder wenigstens ein Metall der Gruppe VIII enthält, ausgerüstet mit einer Leitung (4) zum Einführen der schweren Fraktion, die von der Kolonne kommt, eine Leitung (16) für den Austritt der hydrierbehandelten Fraktion und eine Leitung (17), die Wasserstoff auf der Ebene der Beschickung oder der Zone zuführt, wobei die Zone von einer Kolonne (18) zum Abstreifen gefolgt ist, ausgerüstet mit einer Leitung zur Einführung der hydrierbehandelten Fraktion, einer Leitung (19) für den Austritt von H2S und einer Leitung (20) für den Austritt der hydrierbehandelten Fraktion.
  10. Anlage nach Anspruch 9, außerdem umfassend eine Zone (12) zum Süßen, angeordnet nach der Zone zum Abstreifen, umfassend eine Leitung zum Einführen von leichtem abgestreiften Benzin und eine Leitung (14) zur Zufuhr von Oxidationsmittelreagens auf dem Niveau dieser Zone.
EP97402088A 1996-09-24 1997-09-08 Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt Expired - Lifetime EP0832958B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9611691A FR2753717B1 (fr) 1996-09-24 1996-09-24 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
FR9611691 1996-09-24

Publications (2)

Publication Number Publication Date
EP0832958A1 EP0832958A1 (de) 1998-04-01
EP0832958B1 true EP0832958B1 (de) 2005-08-17

Family

ID=9496062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402088A Expired - Lifetime EP0832958B1 (de) 1996-09-24 1997-09-08 Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt

Country Status (6)

Country Link
US (2) US6007704A (de)
EP (1) EP0832958B1 (de)
JP (1) JP4006483B2 (de)
KR (1) KR100456209B1 (de)
DE (1) DE69733985T2 (de)
FR (1) FR2753717B1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626126C2 (de) * 1996-06-28 1998-04-16 Fraunhofer Ges Forschung Verfahren zur Ausbildung einer räumlichen Chipanordnung und räumliche Chipanordung
US6649043B1 (en) 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents
US6215020B1 (en) * 1998-06-30 2001-04-10 Eastman Chemical Company Basic clay catalyst for the production of pentylglycol monoesters
US6692635B2 (en) * 1999-02-24 2004-02-17 Institut Francais Du Petrole Process for the production of gasolines with low sulfur contents
US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
FR2797639B1 (fr) 1999-08-19 2001-09-21 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
US6602405B2 (en) * 2000-01-21 2003-08-05 Bp Corporation North America Inc. Sulfur removal process
US6599417B2 (en) * 2000-01-21 2003-07-29 Bp Corporation North America Inc. Sulfur removal process
FR2807061B1 (fr) * 2000-03-29 2002-05-31 Inst Francais Du Petrole Procede de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
CA2407066A1 (en) * 2000-04-18 2001-10-25 Exxonmobil Research And Engineering Company Selective hydroprocessing and mercaptan removal
US6656877B2 (en) 2000-05-30 2003-12-02 Conocophillips Company Desulfurization and sorbents for same
US6946068B2 (en) * 2000-06-09 2005-09-20 Catalytic Distillation Technologies Process for desulfurization of cracked naphtha
FR2811328B1 (fr) * 2000-07-06 2002-08-23 Inst Francais Du Petrole Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape
JP4991083B2 (ja) * 2000-09-22 2012-08-01 バスフ・カタリスツ・エルエルシー 構造的に強化された分解用触媒
US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
US20020148754A1 (en) * 2001-02-08 2002-10-17 Gong William H. Integrated preparation of blending components for refinery transportation fuels
US7029573B2 (en) 2001-06-19 2006-04-18 Exxonmobil Research And Engineering Company Composition and control method for treating hydrocarbon
FR2834515B1 (fr) * 2002-01-10 2006-03-10 Atofina Vapocraquage de naphta modifie
AU2003215213A1 (en) * 2002-02-12 2003-09-04 The Penn State Research Foundation Deep desulfurization of hydrocarbon fuels
WO2003097771A1 (fr) * 2002-05-22 2003-11-27 Japan Energy Corporation Agent de desulfuration par adsorption utile pour desulfurer la coupe petroliere et procede de desulfuration comprenant ledit agent
AR044779A1 (es) * 2003-06-16 2005-10-05 Shell Int Research Un proceso y un catalizador para la hidrogenacion selectiva de las diolefinas de una corriente de olefinas y para la remocion de arsenico de la misma y un metodo de elaboracion de dicho catalizador
FR2857973B1 (fr) * 2003-07-25 2008-02-22 Inst Francais Du Petrole Procede de desulfuration des essences par adsorption
US20070068849A1 (en) * 2003-11-07 2007-03-29 Yasuhiro Araki Lead-free gasoline composition and method for production thereof
US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
US7752659B2 (en) * 2005-02-14 2010-07-06 Lenovo (Singapore) Pte. Ltd. Packet filtering in a NIC to control antidote loading
WO2006120898A1 (ja) * 2005-05-06 2006-11-16 Japan Energy Corporation 低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物
JP5280625B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
JP5280623B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
JP5280624B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
FR2900157B1 (fr) * 2006-04-24 2010-09-24 Inst Francais Du Petrole Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration
FR2908781B1 (fr) * 2006-11-16 2012-10-19 Inst Francais Du Petrole Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane
US8524043B2 (en) * 2007-11-09 2013-09-03 Ranfeng Ding System for producing high quality gasoline by catalytic hydrocarbon recombination
WO2009094934A1 (fr) * 2008-01-29 2009-08-06 Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd Système et procédé pour la production d'essence de haute qualité
JP5706126B2 (ja) * 2010-10-07 2015-04-22 出光興産株式会社 吸着剤の再生方法
CN102443433B (zh) * 2010-10-15 2014-07-30 中国石油化工股份有限公司 一种生产低硫汽油的方法
CN102465031B (zh) * 2010-11-04 2014-07-23 中国石油化工股份有限公司 一种重烃原料加氢处理方法
WO2012066572A2 (en) 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Process for deep desulfurization of cracked gasoline with minimum octane loss
CN102041086A (zh) * 2011-01-17 2011-05-04 江苏佳誉信实业有限公司 一种高硫、高烯烃催化汽油的选择性加氢脱硫方法
CN103087771B (zh) * 2011-11-07 2015-06-03 中国石油化工股份有限公司 一种汽油深度脱硫的加氢方法
CN107236571B (zh) * 2016-03-29 2019-01-08 中国石油化工股份有限公司 一种生产催化裂化原料油的方法
CN107903943A (zh) * 2017-11-02 2018-04-13 中石化炼化工程(集团)股份有限公司 催化裂化柴油利用的方法及高辛烷值汽油或高辛烷值汽油调和组分
CN107880934A (zh) * 2017-11-02 2018-04-06 中石化炼化工程(集团)股份有限公司 催化裂化柴油利用的方法及高辛烷值汽油或高辛烷值汽油调和组分
CN109097104B (zh) * 2018-09-11 2019-11-08 福州大学 一种fcc汽油改质方法
CN112955528B (zh) 2018-11-07 2022-12-20 埃克森美孚化学专利公司 C5+烃转化方法
CN110643380B (zh) * 2019-08-22 2020-10-13 中科合成油工程有限公司 一种将煤热解产物转化为汽油、柴油和氢气的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2025255A (en) * 1934-02-07 1935-12-24 Shell Dev Method of treating cracked oil distillates
US2270667A (en) * 1940-05-20 1942-01-20 Shell Dev Process for extraction
US2983669A (en) * 1958-12-30 1961-05-09 Houdry Process Corp Hydrodesulfurization of selected gasoline fractions
US3221078A (en) * 1961-07-06 1965-11-30 Engelhard Ind Inc Selective hydrogenation of olefins in dripolene
BE625074A (de) * 1961-11-24
US3161586A (en) * 1962-12-21 1964-12-15 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
US3424673A (en) * 1966-03-07 1969-01-28 Sun Oil Co Process for hydrodesulfurizing the lower boiling fraction of a cracked gas oil blend
US3451922A (en) * 1967-04-28 1969-06-24 Universal Oil Prod Co Method for hydrogenation
US3457163A (en) * 1967-06-16 1969-07-22 Universal Oil Prod Co Method for selective hydrogenation of diolefins with separation of gum formers prior to the reaction zone
DE1645689C3 (de) * 1968-03-19 1978-08-17 Air Products And Chemicals Inc., Philadelphia, Pa. (V.St.A.) Verfahren zur Behandlung eines ungesättigten Kohlenwasserstoffdestillates
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US3847800A (en) * 1973-08-06 1974-11-12 Kvb Eng Inc Method for removing sulfur and nitrogen in petroleum oils
US3957625A (en) * 1975-02-07 1976-05-18 Mobil Oil Corporation Method for reducing the sulfur level of gasoline product
US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
FR2410038A1 (fr) * 1977-11-29 1979-06-22 Inst Francais Du Petrole Procede d'hydrogenation selective d'essences contenant a la fois des composes generateurs de gommes et des composes indesirables du soufre
GB1565754A (en) * 1978-03-08 1980-04-23 British Petroleum Co Selective hydrogenation
US4486297A (en) * 1980-01-12 1984-12-04 Jgc Corporation Process for desulfurizing and refining hydrocarbon fraction containing large quantities of aromatic components
FR2523149A1 (fr) * 1982-03-15 1983-09-16 Catalyse Soc Prod Francais Nouveau catalyseur supporte palladium-or, sa preparation et son utilisation dans les reactions d'hydrogenation selective d'hydrocarbures diolefiniques et/ou acetyleniques
US4897175A (en) * 1988-08-29 1990-01-30 Uop Process for improving the color and color stability of a hydrocarbon fraction
US4908122A (en) * 1989-05-08 1990-03-13 Uop Process for sweetening a sour hydrocarbon fraction
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5064525A (en) * 1991-02-19 1991-11-12 Uop Combined hydrogenolysis plus oxidation process for sweetening a sour hydrocarbon fraction
US5503734A (en) * 1991-08-15 1996-04-02 Mobil Oil Corporation Hydrocarbon upgrading process
US5318690A (en) * 1991-08-15 1994-06-07 Mobil Oil Corporation Gasoline upgrading process
US5346609A (en) * 1991-08-15 1994-09-13 Mobil Oil Corporation Hydrocarbon upgrading process
FR2689517B1 (fr) * 1992-04-02 1995-07-28 Inst Francais Du Petrole Procede d'hydrogenation selective des hydrocarbures.
FR2720754B1 (fr) * 1994-06-01 1996-07-26 Inst Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique.
ES2109576T3 (es) * 1994-10-22 1998-01-16 Krupp Uhde Gmbh Procedimiento para la fabricacion de un producto precursor, que contiene hidrocarburos aromaticos, para la obtencion de compuestos aromaticos a partir de benceno crudo de coqueria.
JP3443474B2 (ja) * 1995-02-03 2003-09-02 新日本石油株式会社 接触分解ガソリンの脱硫処理方法
JP3450940B2 (ja) * 1995-06-08 2003-09-29 新日本石油株式会社 接触分解ガソリンの脱硫方法

Also Published As

Publication number Publication date
FR2753717B1 (fr) 1998-10-30
KR19980024831A (ko) 1998-07-06
US6838060B1 (en) 2005-01-04
DE69733985D1 (de) 2005-09-22
EP0832958A1 (de) 1998-04-01
JP4006483B2 (ja) 2007-11-14
FR2753717A1 (fr) 1998-03-27
KR100456209B1 (ko) 2005-01-27
JPH10102070A (ja) 1998-04-21
US6007704A (en) 1999-12-28
DE69733985T2 (de) 2006-01-26

Similar Documents

Publication Publication Date Title
EP0832958B1 (de) Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt
EP1138749B1 (de) Benzin Entschwefelungsverfahren mit Entschwefelung von Schwer- und Mittelfraktionen von einen Fraktionierung in mindestens drei Schnitten
EP1002853B1 (de) Verfahren zur Herstellung von Benzin mit niedrigem Schwefelgehalt
EP1174485B1 (de) Zweistufiges Benzin Entschwefelungsverfahren mit zwischenzeitlicher Entfernung von H2S
EP2169032B1 (de) Katalysator zur teilweise oder ganz Zersetzung oder Hydrierung von ungesättigten schwefelhaltigen Verbindungen
KR100493874B1 (ko) 촉매의 노화를 지연시키는 고도 모양 선택적 탈왁스 방법
EP1931751B1 (de) Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion
EP1849850B1 (de) Verfahren zur raffination von olefinischen benzinstoffen mit mindestens zwei verschiedenen phasen der hydroraffination
EP1746144B1 (de) Neues Verfahren zur Entschwefelung eines olefinischen Benzins zur Begrenzung von Mercaptan.
FR2993570A1 (fr) Procede de production d'une essence legere basse teneur en soufre
EP1031622A1 (de) Verfahren zur Erzeugung von schwefelarmen Benzinen
EP1369466A1 (de) Hydroentschwefelungsverfahren für Schwefel und Olefine enthaltende Schnitten in Anwesenheit eines Träger-Katalysators welcher Metalle von den Gruppen VIII und VIB enthält
EP1370627B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt
EP0831140B1 (de) Verfahren zur Reinigung von katalytischen Krackbenzinen
EP1370629B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt
EP1370630B1 (de) Verfahren zur herstellung von entschwefeltem benzin aus einem crackbenzin enthaltendem benzin
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19981001

AKX Designation fees paid

Free format text: DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20021202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69733985

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050912

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69733985

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150924

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150915

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151001

Year of fee payment: 19

Ref country code: IT

Payment date: 20150930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150921

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69733985

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908