EP1931751B1 - Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion - Google Patents

Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion Download PDF

Info

Publication number
EP1931751B1
EP1931751B1 EP06794276.3A EP06794276A EP1931751B1 EP 1931751 B1 EP1931751 B1 EP 1931751B1 EP 06794276 A EP06794276 A EP 06794276A EP 1931751 B1 EP1931751 B1 EP 1931751B1
Authority
EP
European Patent Office
Prior art keywords
stage
gasoline
fraction
adsorption
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06794276.3A
Other languages
English (en)
French (fr)
Other versions
EP1931751A1 (de
Inventor
Alexandre Nicolaos
Florent Picard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1931751A1 publication Critical patent/EP1931751A1/de
Application granted granted Critical
Publication of EP1931751B1 publication Critical patent/EP1931751B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/12Recovery of used adsorbent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/16Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]

Definitions

  • the present invention relates to a process for producing gasoline with a low sulfur content and high octane number from an initial gasoline comprising olefins and thiophene-type sulfur compounds.
  • the gasoline concerned by the invention is a catalytic cracking gasoline, but it can also be a gasoline resulting from a conversion process such as coking, or even from a straight-run gasoline, or from even more generally, of any mixture of the said essences.
  • the present method therefore finds particular application in the desulfurization of gasolines resulting from a catalytic cracking process, fluid catalytic cracking, coking, visbreaking, or pyrolysis.
  • Flow internal process means a flow generated by one of the units forming part of the process object of the invention.
  • the relevant prior art with respect to the present invention consists of the teachings relating to a gasoline desulphurization with decomposition of the said gasoline into two sections, each being the subject of a specific treatment, an adsorption desulfurization for the so-called light, and a hydrodesulfurization for the so-called heavy cut.
  • the mercaptans present in the light fraction are then removed by a process using an extractive solution of sodium hydroxide.
  • the heavy fraction is desulphurized by a conventional hydrodesulphurization process.
  • the said gasoline is separated by distillation into a light gasoline and a heavy gasoline.
  • the light fraction is desulfurized in an adsorption desulfurization unit, and the heavy fraction is desulphurized in a hydrodesulphurization unit.
  • Regeneration of the adsorbent used to desulphurize the light cut is done with a fraction of the heavy desulphurized cup whose final boiling point can be up to 300 ° C.
  • This fraction of the heavy desulfurized fraction contains aromatics but is distinct from a reformate by its distillation range.
  • the figure 1 represents a diagram of the method according to the invention in which the optional unit E0 is represented in dashed line.
  • the present invention relates to a process for the desulphurization of a gasoline containing sulfur and unsaturated compounds, generally a catalytic cracking gasoline, comprising at least one separation unit of said gasoline into a light fraction and a heavy fraction, a desulphurization unit by adsorption of said light fraction, and a hydrodesulfurization unit of said heavy fraction, the process being characterized in that the regeneration of the adsorbent solid used in the desulfurization unit by adsorption of the light fraction, is carried out through a portion of said heavy fraction desulphurized, that is to say after its desulfurization in the hydrodesulfurization unit.
  • the present process provides both better adsorption selectivity to the thiophene compounds present in the initial charge, reduced hydrogen consumption, and furthermore achieves future sulfur standards in gasolines.
  • the method according to the invention makes it possible to recover a characteristic gasoline very similar to that of the gasoline to be treated with a desulfurization rate which is at least 50%, and preferably at least 80%.
  • the process according to the invention does not disturb the refining scheme, and even applies to refineries that do not have a petrol reforming unit.
  • the present invention makes it possible to carry out the desulphurization of said hydrocarbon fraction by minimizing the loss of octane by hydrogenation of the olefins since this octane loss is especially sensitive on the heavy fraction of the gasoline to be treated, the light fraction being desulphurized by adsorption, thus preserving the octane number.
  • the octane number of the gasoline produced is very little affected by the process, and is less than 10% less than the octane number of the gasoline to be treated, and the most often less than 5% less than the octane number of the gasoline to be treated.
  • the light fraction generally has an end point of from about 90 ° C to about 200 ° C, preferably from about 90 ° C to about 160 ° C, most preferably from about 90 ° C to 110 ° C.
  • This separation is conventionally carried out by means of a distillation column.
  • the cutting point of the distillation for splitting the gasoline to be treated in two or three fractions is chosen according to the composition of the initial gasoline to be treated and / or depending on the concentration of aromatic hydrocarbons present in the light fraction. (mode I), or in the intermediate fraction (mode II) after fractionation.
  • the efficiency of the desulfurization is better if the weight percentage of aromatic compounds in said light fraction is less than 25%, and preferably less than 10%, and so still preferred less than 5%.
  • the cutting point of the light fraction will be chosen according to the composition of the gasoline to be treated so as to have a weight percentage of aromatic compounds present in said light fraction less than 25%, preferably less than 10%, and more preferably less than 5%.
  • step b Adsorption / desorption step of the light fraction
  • This step consists in eliminating the sulfur compounds present in the light fraction (mode I) or in the intermediate fraction (mode II) resulting from stage a).
  • said fractions have previously been depleted of mercaptan type compounds, for example by a selective hydrogenation step as described below.
  • This adsorption step is carried out by contacting the feedstock to be treated with an adsorbent solid having a high affinity with the sulfur compounds, preferably the thiophene compounds.
  • the solids used as adsorbent can be selected from the following families of adsorbents; silicas, aluminas, zeolites, preferably faujasites, and preferably faujasites partially exchanged with cesium, activated carbons, resins, clays, metal oxides, reduced metals.
  • an adsorbent solid having an increased adsorption capacity towards sulfur compounds by appropriate physical surface treatments, for example temperature treatments, or chemical surface treatments, for example the grafting of molecules. specific surface.
  • Regeneration of the adsorbent solid will be via adsorption / regeneration cycles known per se to those skilled in the art.
  • the experimental conditions of the adsorption and the regeneration will be selected so as to maximize the dynamic capacity of the solid, ie the difference between the quantity of sulfur captured during the adsorption and the quantity of sulfur remaining on the solid after regeneration.
  • Regeneration of the adsorbent solid is done using a regeneration fluid or solvent having a sufficiently high desorption power.
  • the regeneration solvent is chosen to replace the gasoline retained in the pores of the adsorbent solid, then to cause the desorption of the other compounds retained on the solid, in particular sulfur compounds.
  • the regeneration solvent will comprise at least a portion of aromatic compounds. Said part of aromatic compounds will be at least 10% by weight, and preferably at least 25% by weight.
  • the regeneration solvent is furthermore characterized by a sulfur content lower than the sulfur content of the desulfurized gasoline by adsorption.
  • the sulfur content of the regeneration solvent is less than 100 ppm, preferably less than 50 ppm, and very preferably less than 20 ppm.
  • a part of the heavy fraction resulting from the separation of the gasoline to be treated into two fractions according to step a) will be used as regeneration solvent of the adsorbent solid, the said heavy fraction having been desulphurized in the first stage.
  • hydrodesulfurization unit (HDS) subject of step c) of the process according to the invention is a part of the heavy fraction resulting from the separation of the gasoline to be treated into two fractions according to step a) will be used as regeneration solvent of the adsorbent solid, the said heavy fraction having been desulphurized in the first stage.
  • hydrodesulfurization unit (HDS) subject of step c) of the process according to the invention hydrodesulfurization unit (HDS) subject of step c) of the process according to the invention.
  • the regeneration solvent according to the invention is therefore a part of the heavy desulfurized fraction, said part being calculated to allow optimum regeneration of the adsorbent solid.
  • the regeneration effluent containing the sulfur molecules initially retained on the adsorbent solid is recycled to the inlet of the hydrodesulfurization unit of the heavy fraction.
  • the heavy fraction obtained from step a) of distillation of the gasoline to be treated is subjected to a hydrodesulfurization treatment.
  • This step can be carried out by passing gasoline, in the presence of hydrogen, over a catalyst comprising at least one element of group VIII selected from the group consisting of iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum, and at least one group VIB element selected from the group consisting of chromium, molybdenum and tungsten, each of which is at least partly in the form of sulphide.
  • group VIII selected from the group consisting of iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum
  • group VIB element selected from the group consisting of chromium, molybdenum and tungsten, each of which is at least partly in the form of sulphide.
  • the hourly space velocity is between about 1h -1 and 20 h -1 .
  • the ratio of the hydrogen flow rate to the feed rate is between 100 liters / liter and 600 liters / liter, expressed as normal liters of hydrogen per liter of gasoline.
  • the catalyst used to carry out the hydrodesulfurization of the heavy fraction comprises between 0.5% and 15% by weight of Group VIII metal, this percentage expressed in oxide form.
  • the content by weight of Group VIB metal is generally between 1.5% and 60% by weight and preferably between 2% and 50% by weight.
  • the element of group VIII is preferably cobalt, and the element of group VIB is preferably molybdenum or tungsten.
  • the catalyst support is usually a porous solid, such as, for example, magnesia, silica, titanium oxide or alumina, alone or as a mixture.
  • the effluent from hydrodesulphurization step c) is mixed with the adsorption effluent of step b) to form the high octane desulfurized gasoline.
  • the sulfur content of said gasoline resulting from the process is reduced by at least 50% and preferably by at least 80% relative to the starting gasoline.
  • This hydrodesulfurization step c) may furthermore comprise a step of finishing the hydrodesulfurization carried out on a catalyst comprising at least one element of group VIII, preferably chosen from the group formed by nickel, cobalt or iron. .
  • the metal content of the catalyst of the finishing step is generally from about 1% to about 60% by weight as oxide. This finishing step makes it possible to eliminate the residual sulfur compounds, and mainly the saturated sulfur compounds which will have been formed during the first hydrodesulfurization step.
  • the temperature of the finishing step is generally between 240 ° C and 360 ° C, and is preferably greater than at least 10 ° C at the inlet temperature of the hydrodesulfurization step.
  • the pressure is between about 1 MPa and 5 MPa.
  • the hourly space velocity is between about 1 hr -1 and 20 hr -1 .
  • the ratio of the hydrogen flow rate to the feed rate is between 100 liters / liter and 600 liters / liter, expressed as normal liters of hydrogen per liter of gasoline.
  • This optional step, carried out upstream of steps a), b), c), is intended to at least partially remove the diolefins present in the gasoline, and to convert the light sulfur compounds by weighting.
  • Diolefins are in fact precursors of gums which polymerize in hydrodesulphurization or adsorption reactors, especially when the adsorbent solid has an acidity, and thus limit its shelf life. The diolefins are thus hydrogenated to olefins during this step.
  • This step also makes it possible to convert light sulfur compounds, such as mercaptans, sulphides and CS2, whose boiling point is generally lower than that of thiophene, into heavier sulfur compounds whose boiling point is greater than that of thiophene. by reaction with the olefins present in the feed.
  • light sulfur compounds such as mercaptans, sulphides and CS2
  • a majority of said heavy compounds thus formed will be discharged into the heavy fraction after fractionation (step a).
  • the selective hydrogenation step generally takes place in the presence of a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, deposited on a support.
  • a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, deposited on a support.
  • a catalyst containing from 1% to 20% by weight of nickel deposited on an inert support such as, for example, alumina, silica, silica-alumina or a nickel aluminate, will be used.
  • the support will contain at least 50% alumina.
  • Group VIB metal such as, for example, molybdenum or tungsten may optionally be combined with the Group VIII metal to form a bimetallic catalyst.
  • This group VIB metal will be deposited at a level of 1% by weight at 20% by weight on the support.
  • the choice of the operating conditions of the selective hydrogenation step is particularly important.
  • the operation will generally be carried out under pressure in the presence of a quantity of hydrogen in small excess relative to the stoichiometric value necessary for hydrogenating the diolefins.
  • the hydrogen and the feedstock to be treated are injected in ascending or descending streams into a reactor preferably with a fixed bed of catalyst.
  • the temperature is generally between 50 ° C and 300 ° C, preferably between 80 ° C and 250 ° C, and more preferably between 120 ° C and 210 ° C.
  • the pressure is chosen to maintain more than 80%, and preferably more than 95% by weight of the gasoline to be treated in the liquid phase in the reactor. It is most generally from 0.4 MPa to 5 MPa, and preferably from 1 MPa to 4 MPa.
  • the space velocity is generally between 1 h -1 and 12 h -1 , preferably between 2 h -1 and 10 h -1 .
  • the light fraction of the catalytic cracking gasoline fraction can contain up to a few% by weight of diolefins. After hydrogenation, the diolefin content is reduced to less than 3000 ppm, preferentially less than 2500 ppm, and very preferably less than 1500 ppm.
  • the selective hydrogenation step takes place in a catalytic hydrogenation reactor comprising a catalytic reaction zone traversed by the entire charge and the quantity of hydrogen necessary to effect the desired reactions. .
  • the gasoline to be treated originating from a catalytic cracking unit (not shown in FIG. 1) is in certain cases sent via line 1 to a selective hydrogenation reactor E0, mixed with a flow of a gas comprising hydrogen (not shown on the figure 1 ).
  • the effluent from reactor E0 is sent via line 2 to a distillation column E1 which produces a light fraction at the top discharged via line (4), and a heavy fraction at the bottom discharged via line (3).
  • the heavy fraction (3) from the distillation column E1 is mixed with the desorption solvent (8) of the adsorption desulfurization unit (Ad) in the desorption phase to form the charge (3a).
  • the charge (3a) resulting from the mixing of the lines (3) and (8) is introduced into the hydrodesulfurization reactor E4.
  • the effluent (5a) of the hydrodesulfurization reactor E4 is separated into a portion (7) which is used for the regeneration of the adsorption desulphurization unit (Ad), and a complementary part (5) which is mixed with the effluent (6) of the adsorption desulfurization unit (Ad) in the adsorption phase to form the desulphurized gasoline (9) which is directed to the gasoline pool.
  • the light fraction recovered by the line (4) is sent to the desulfurization unit (Ad).
  • the adsorption desulfurization unit (Ad) comprises at least two capacities working alternately in adsorption, on the figure 1 capacity (E2) and desorption, on the figure 1 the capacity (E3).
  • the switchover from the adsorption phase to the regeneration phase is done by means of additional lines and valve opening and closing systems not shown on the display. figure 1 .
  • the capacity E3 is supplied with desorption solvent via the line (7) consisting of a fraction of the desulfurization effluent from the hydrodesulfurization unit E4.
  • a representative gasoline I of a catalytic cracking gasoline is synthesized by taking up the proportions of paraffins (n-heptane, isooctane), olefins (1-hexene, 1-dodecene), aromatic compounds (toluene, metaxylene) and of sulfur compounds (thiophene, benzothiophene) usually encountered in a cracking gasoline.
  • Table 1 gives the characteristics of gasoline I.
  • Table 1 Compound Mass (g) % weight nC7 195.6 24.0 iso octane 142.8 17.5 1 hexene 203.9 25.0 1-dodecene 102.0 12.5 toluene 8.3 1.0 meta xylene 162.6 19.9 thiophene 0.11 0.01 50 ppm S benzothiophene 0.51 0.06 150 ppm S
  • a gasoline II reproducing the proportions of paraffins (n-heptane), olefins (1-hexene), aromatic compounds (toluene) and sulfur compounds (thiophene) of the light fraction obtained after fractionation at 90 ° C. essence I was synthesized.
  • Table 2 gives the characteristics of this species II.
  • Table 2 Compound Mass (g) % weight n heptane 195.6 48.0 1 hexene 203.9 50.0 toluene 8.3 2.0 thiophene 0.11 0.03 100 ppm S
  • Table 4 gives the characteristics of this species IV.
  • Table 4 Compound Mass (g) % weight iso octane 191.9 47.0 1-dodecene 52.9 13.0 meta xylene 162.6 39.9
  • Synthetic essence II representing the light fraction to desulfurize by adsorption is sent using a liquid pump on an adsorption column filled with an adsorbent NaCsX type.
  • This NaCsX solid is obtained by ion exchange carried out dynamically on a NaX zeolite with an aqueous solution of CsCl.sub.1 concentrated to 1.8 mol / l at a temperature of 90.degree.
  • the adsorption column contains 20 ml of adsorbent solid, and it has been possible to desulphurize at least 100 ml of gasoline II with a sulfur content of less than 5 ppmS.
  • Regeneration of the adsorbent solid is carried out by passing the synthetic essence IV at a temperature of 60 ° C in the adsorption column.
  • the sulfur concentration at the output increases sharply at first, then returns to values close to 0 ppm S after the passage of 100 ml of this charge, which indicates the end of the desorption step.
  • This example demonstrates the capacity of the desulphurized heavy fraction (represented by the synthetic gasoline IV) derived from the gasoline to be desulphurized (represented by the synthetic gasoline I) to desorb the sulfur contained in the adsorbent solid after the desulfurization step. by adsorption of the light fraction represented by synthetic essence II.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (11)

  1. Verfahren zur Herstellung eines entschwefelten Benzins mit hohem Oktanwert aus einem Ausgangsbenzin, umfassend Olefine und Thiophenverbindungen, wobei das Verfahren die folgenden Schritte umfasst:
    a) einen Destillationsschritt des Ausgangsbenzins in mindestens zwei Fraktionen, unter anderem:
    - eine leichte Fraktion, die die Mehrheit der Olefine mit 5 und 6 Kohlenstoffatomen sowie das Thiophen und vorzugswiese die Methylthiophene enthält,
    - eine schwere Fraktion, die keine Olefine mit 5 Kohlenstoffatomen mehr enthält, und die die die schweren schwefelhaltigen Verbindungen, wie die Benzothiophene, konzentriert,
    b) einen Entschwefelungsschritt der leichten Fraktion durch Adsorption der schwefelhaltigen Verbindungen auf einem adsorbierenden Feststoff, wobei der verwendete adsorbierende Feststoff in der Gruppe ausgewählt ist, die von den Siliziumoxiden, den Aluminiumoxiden, den Zeolithen, den Aktivkohlen, den Harzen, den Tonen, den Metalloxiden und den reduzierten Metallen gebildet ist,
    c) einen Hydroentschwefelungsschritt der schweren Fraktion auf einem Katalysator, der mindestens ein Metall der Gruppe VIII und ein Metall der Gruppe Vlb enthält, unter herkömmlichen Hydroentschwefelungsbedinungen,
    wobei die Regeneration des adsorbierenden Feststoffes bei einer Temperatur über 50 °C, unter Verbleib in der Flüssigphase, mit Hilfe eines Desorptionslösungsmittels durchgeführt wird, das ein Teil des Effluenten aus dem Hydroentschwefelungsschritt der schweren Fraktion ist, wobei das Lösungsmittel mindestens einen Teil von aromatischen Verbindungen umfasst, wobei der komplementäre Teil des Effluenten aus dem Hydroentschwefelungsschritt mit dem Effluent aus dem Entschwefelungsschritt durch Adsorption der leichten Fraktion gemischt wird, um das entschwefelte Benzin mit hohem Oktanwert zu bilden, wobei das aus der Regeneration kommende Lösungsmittel rezykliert wird, wobei es mit der schweren Fraktion gemischt wird, bevor Schritt c) durchgeführt wird.
  2. Verfahren zur Herstellung eines entschwefelten Benzins nach Anspruch 1, bei dem der Schritt der Trennung des Benzins zusätzlich zu den leichten und schweren Fraktionen eine Zwischenfraktion erzeugt, umfassend mindestens das Thiophen, und deren endgültiger Siedepunkt zwischen 90 °C und 160 °C beträgt.
  3. Verfahren zur Herstellung eines entschwefelten Benzins nach Anspruch 2, bei dem der Entschwefelungsschritt durch Adsorption an der Zwischenfraktion, die aus der Destillation der Essenz in drei Fraktionen hervorgeht, angewandt wird.
  4. Verfahren zur Herstellung eines entschwefelten Benzins nach einem der Ansprüche 1 bis 3, bei dem der adsorbierende Feststoff, der in dem Entschwefelungsschritt durch Adsorption verwendet wird, unter den Zeolithen, vorzugsweise den Zeolithen vom Typ Faujasite, und weiter bevorzugt unter den teilweise mit Cäsium ausgetauschten Faujasiten, ausgewählt ist.
  5. Verfahren zur Herstellung eines entschwefelten Benzins nach einem der Ansprüche 1 bis 4, bei dem der Adsorptionsschritt in flüssiger Phase bei einer Temperatur zwischen 0 °C und 200 °C und bei einem Druck zwischen 0,1 MPa und 30 MPa durchgeführt wird.
  6. Verfahren zur Herstellung eines entschwefelten Benzins nach einem der Ansprüche 1 bis 5, bei dem der Desorptionsschritt bei einer Temperatur über 50 °C, vorzugsweise über 80 °C, weiter bevorzugt über 100 °C, durchgeführt wird.
  7. Verfahren zur Herstellung eines entschwefelten Benzins nach einem der Ansprüche 1 bis 6, bei dem der Hydroentschwefelungsschritt der schweren Fraktion auf einem Katalysator durchgeführt wird, umfassend zwischen 0,5 und 15 Gew.% eines Metalls der Gruppe VIII, und umfassend zwischen 1,5 und 60 Gew.-% und vorzugsweise zwischen 2 und 50 Gew.-% eines Metalls der Gruppe Vlb.
  8. Verfahren zur Herstellung eines Benzins nach Anspruch 7, bei dem das Metall der Gruppe VIII vorzugsweise Kobalt ist, und das Metall der Gruppe Vlb aus der von Molybdän und Wolfram gebildeten Gruppe ausgewählt ist.
  9. Verfahren zur Herstellung eines entschwefelten Benzins nach einem der Ansprüche 1 bis 8, bei dem dem Schritt der Trennung der zu behandelnden Benzinfraktion ein Schritt der selektiven Hydrierung vorausgeht, der auf einem Katalysator durchgeführt wird, umfassend mindestens ein Metall der Gruppe VIII, vorzugsweise ausgewählt in der von Platin, Palladium und Nickel gebildeten Gruppe.
  10. Verfahren zur Herstellung eines Benzins nach einem der Ansprüche 1 bis 9, bei dem auf den Hydroentschwefelungsschritt der schweren Fraktion ein Endbearbeitungsschritt folgt, der auf einem Katalysator durchgeführt wird, umfassend mindestens ein Element der Gruppe VIII, vorzugsweise ausgewählt in der von Nickel, Kobalt oder Eisen gebildeten Gruppe.
  11. Verfahren zur Herstellung eines entschwefelten Benzins nach Anspruch 10, bei dem die Temperatur, bei der der Endbearbeitungsschritt durchgeführt wird, zwischen 240 °C und 360 °C beträgt und vorzugsweise um mindestens 10 °C höher als die Eingangstemperatur des Hydroentschwefelungsschrittes ist.
EP06794276.3A 2005-08-08 2006-08-02 Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion Not-in-force EP1931751B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508474A FR2889539B1 (fr) 2005-08-08 2005-08-08 Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde
PCT/FR2006/001885 WO2007017581A1 (fr) 2005-08-08 2006-08-02 Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde

Publications (2)

Publication Number Publication Date
EP1931751A1 EP1931751A1 (de) 2008-06-18
EP1931751B1 true EP1931751B1 (de) 2017-06-28

Family

ID=36685887

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06794276.3A Not-in-force EP1931751B1 (de) 2005-08-08 2006-08-02 Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion

Country Status (8)

Country Link
US (1) US7731836B2 (de)
EP (1) EP1931751B1 (de)
JP (1) JP5000654B2 (de)
KR (1) KR101320813B1 (de)
CN (2) CN101283074A (de)
BR (1) BRPI0614337B1 (de)
FR (1) FR2889539B1 (de)
WO (1) WO2007017581A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1984096B1 (de) * 2006-01-30 2014-04-30 Advanced Technology Materials, Inc. Eine methode zur erhöhung der beladungskapazität eines porösen kohlenstoff adsorbens
US7901565B2 (en) * 2006-07-11 2011-03-08 Basf Corporation Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
CN101294108B (zh) * 2007-04-28 2010-09-22 中国石油化工股份有限公司 一种催化裂化产物分离与加氢精制的组合方法
FR2937045B1 (fr) 2008-10-10 2012-11-30 Inst Francais Du Petrole Mise en oeuvre de solides a base de ferrite de zinc dans un procede de desulfuration profonde de charges oxygenees
CN102286293B (zh) * 2010-06-18 2014-04-30 中国石油化工股份有限公司 一种页岩油加工方法
US8741127B2 (en) 2010-12-14 2014-06-03 Saudi Arabian Oil Company Integrated desulfurization and denitrification process including mild hydrotreating and oxidation of aromatic-rich hydrotreated products
US8741128B2 (en) 2010-12-15 2014-06-03 Saudi Arabian Oil Company Integrated desulfurization and denitrification process including mild hydrotreating of aromatic-lean fraction and oxidation of aromatic-rich fraction
US8679231B2 (en) 2011-01-19 2014-03-25 Advanced Technology Materials, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
CN102839021A (zh) * 2011-06-22 2012-12-26 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置及其方法
CN102851069B (zh) * 2011-06-29 2014-12-31 中国石油化工股份有限公司 一种汽油脱硫的方法
US20130186805A1 (en) 2011-07-29 2013-07-25 Omer Refa Koseoglu Selective middle distillate hydrotreating process
FR2988398B1 (fr) 2012-03-26 2015-12-11 Axens Procede de purification d'une charge d'hydrocarbures
CN103773431B (zh) * 2012-10-24 2016-01-20 中国石油化工股份有限公司 一种汽油脱硫方法
CN103773432B (zh) * 2012-10-24 2015-11-25 中国石油化工股份有限公司 一种汽油脱硫方法
CN103571536B (zh) * 2013-09-17 2014-07-30 中国石油大学(华东) 催化裂化与加氢生产清洁汽油并增产丙烯的装置及方法
US9683183B2 (en) 2015-02-04 2017-06-20 China University of Petroleum—Beijing Method for deep desulfurization of gasoline
WO2016123860A1 (zh) * 2015-02-04 2016-08-11 中国石油大学(北京) 一种汽油深度脱硫方法
CN104673379B (zh) * 2015-02-04 2016-08-24 中国石油大学(北京) 一种汽油深度脱硫方法
CN104673378B (zh) * 2015-02-04 2016-08-17 中国石油大学(北京) 一种脱硫汽油的生产方法
WO2016123861A1 (zh) * 2015-02-04 2016-08-11 中国石油大学(北京) 一种催化裂化汽油的提质方法
CN110157494A (zh) * 2018-03-27 2019-08-23 北京欧美中科学技术研究院 一种生物柴油脱硫新方法
US11186782B2 (en) * 2019-01-08 2021-11-30 Evonik Operations Gmbh Catalyst and process for removing mercaptans from hydrocarbon streams
CN112708460A (zh) 2019-10-24 2021-04-27 中国石油化工股份有限公司 生产低碳烯烃和低硫燃料油组分的方法
CN112708461B (zh) 2019-10-24 2022-06-24 中国石油化工股份有限公司 一种多产丙烯和低硫燃料油组分的方法
CN111408355B (zh) * 2020-03-27 2023-01-17 河北科技大学 一种树脂基吸附剂及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011805A (en) * 1988-12-13 1991-04-30 Mobil Oil Corporation Dehydrogenation, dehydrocyclization and reforming catalyst
US6482316B1 (en) * 1999-06-11 2002-11-19 Exxonmobil Research And Engineering Company Adsorption process for producing ultra low hydrocarbon streams
US7052598B2 (en) * 2001-03-12 2006-05-30 Institut Francais Du Petrole Process for the production of gasoline with a low sulfur content comprising a hydrogenation, a fractionation, a stage for transformation of sulfur-containing compounds and a desulfurization
FR2857973B1 (fr) 2003-07-25 2008-02-22 Inst Francais Du Petrole Procede de desulfuration des essences par adsorption
FR2857974B1 (fr) * 2003-07-25 2008-01-18 Inst Francais Du Petrole Procede de desulfuration d'une charge d'hydrocarbures par adsorption/desorption

Also Published As

Publication number Publication date
EP1931751A1 (de) 2008-06-18
US7731836B2 (en) 2010-06-08
JP5000654B2 (ja) 2012-08-15
WO2007017581A1 (fr) 2007-02-15
CN101283074A (zh) 2008-10-08
FR2889539A1 (fr) 2007-02-09
BRPI0614337B1 (pt) 2016-04-05
BRPI0614337A2 (pt) 2011-03-22
JP2009504829A (ja) 2009-02-05
US20070261993A1 (en) 2007-11-15
FR2889539B1 (fr) 2011-05-13
CN105199776A (zh) 2015-12-30
KR20080038208A (ko) 2008-05-02
KR101320813B1 (ko) 2013-10-21

Similar Documents

Publication Publication Date Title
EP1931751B1 (de) Verfahren zur entschwefelung von benzinen durch adsorption einer leichtfraktion und durch hydroentschwefelung einer schwerfraktion
EP1174485B1 (de) Zweistufiges Benzin Entschwefelungsverfahren mit zwischenzeitlicher Entfernung von H2S
EP0832958B1 (de) Verfahren und Vorrichtung zur Erzeugung von katalytischen Krackbenzinen mit niedrigem Schwefelgehalt
EP2256179B1 (de) Verfahren zur Herstellung einer Kohlewasserstofffraktion mit hohem Oktan- und niedrigem Schwefelgehalt
US7780847B2 (en) Method of producing low sulfur, high octane gasoline
KR20080044768A (ko) 옥탄가 손실이 적은 크래킹 가솔린의 심도 탈황 방법
FR2852019A1 (fr) Procede de desulfuration, de deazotation et/ou de desaromatisation d'une charge hydrocarbonee par adsorption par un solide adsorbant use
EP1666568A1 (de) Verfahren zur Entschwefelung einer Kohlenwasserstofffraktion mit einem simuliertem Wanderbett
FR2847260A1 (fr) Procede de desulfuration comprenant une etape d'hydrogenation selective des diolefines et une etape d'extraction des composes soufres
EP1474499B1 (de) Integriertes verfahren zur entschwefelung eines abflusses vom cracken oder dampfcracken von kohlenwasserstoffen.
FR2857974A1 (fr) Procede de desulfuration d'une charge d'hydrocarbures par adsorption/desorption
FR2857973A1 (fr) Procede de desulfuration des essences par adsorption
FR2895417A1 (fr) Procede de desulfurisation comprenant une etape de transformation et une etape d'extraction des composes soufres
EP1370627B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
EP1370629B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090304

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170227

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 904832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006052912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170628

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 904832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006052912

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170928

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628