EP0832958B1 - Process and apparatus for the production of low sulphur catalytically cracked gasolines - Google Patents

Process and apparatus for the production of low sulphur catalytically cracked gasolines Download PDF

Info

Publication number
EP0832958B1
EP0832958B1 EP97402088A EP97402088A EP0832958B1 EP 0832958 B1 EP0832958 B1 EP 0832958B1 EP 97402088 A EP97402088 A EP 97402088A EP 97402088 A EP97402088 A EP 97402088A EP 0832958 B1 EP0832958 B1 EP 0832958B1
Authority
EP
European Patent Office
Prior art keywords
zone
cut
gasoline
light
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402088A
Other languages
German (de)
French (fr)
Other versions
EP0832958A1 (en
Inventor
Thierry Chapus
Christian Marcilly
Blaise Didillon
Charles Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0832958A1 publication Critical patent/EP0832958A1/en
Application granted granted Critical
Publication of EP0832958B1 publication Critical patent/EP0832958B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a method and an installation for the production catalytic cracking gasolines with low sulfur content.
  • the reformulated gasoline production meeting the new environmental standards notably requires that their concentration of olefins and / or aromatics (especially benzene) and sulfur (including mercaptans) be reduced.
  • Catalytic cracking gasolines have high olefin contents, and the sulfur present in the gasoline pool is attributable to nearly 90% of FCC gasoline.
  • US Patent 5,318,690 proposes a process with a fractionation of gasoline, a softening of the light fraction, while the heavy fraction is hydrodesulfurized, then converted to ZSM-5 and redesulfurized under mild conditions.
  • This technique is based on a separation of the raw gasoline so as to obtain a light cut practically free from sulfur compounds other than mercaptans, so as to treat the cut only with softening to remove the mercaptans.
  • the heavy cut contains a relatively large amount of olefins which are in saturated part during the hydrotreatment.
  • the patent advocates cracking on ZSM-5 to produce olefins, but detriment of yield.
  • these olefins can be reconstituted in the presence of H2S to form mercaptans, which has the drawback of calling a additional softening, or desulfurization.
  • Another means commonly used by the refiner to treat this problem of sulfur in gasolines is to separate the boiling fraction of at least 180 ° C which contains most of the sulfur compounds other than mercaptans. This fraction is then downgraded with the LCO (light cycle oil) and is generally not valued, or it is used as a charge diluent.
  • LCO light cycle oil
  • the applicant has sought a process for the production of low sulfur catalytic cracking, which makes it possible to efficiently conserve all of the gasoline cut, reduce the sulfur content of the gasoline cut to very low levels, without loss of gasoline yield, and minimizing octane loss.
  • the feedstock is a catalytic cracking gasoline whose boiling point range typically ranges from C5 up to 220 ° C.
  • the end point of the petrol cut depends of course on the refinery and the market constraints, but generally remains within the limits indicated above.
  • the sulfur content of these catalytic cracked gasoline (FCC) gasoline sections depends on the sulfur content of the FCC-treated feed as well as the end point of the cut. Light fractions naturally have a lower sulfur content than heavier cuts. Generally, the sulfur content of the entire gasoline cut from the FCC is greater than 100 ppm by weight and most often greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, in some cases even reaching values of the order of 4000 to 5000 ppm by weight.
  • the crude gasoline from catalytic cracking is fractionated into at least one light cut and at least one heavy cut.
  • the light cut to a final boiling point less than or equal to 210 ° C, preferably less than or equal to 180 ° C, preferably less than or equal to 160 ° C and even more preferably less than or equal to 145 ° C.
  • the light fraction of the petrol fraction contains relatively few sulfur compounds, which are predominantly in the form of mercaptans, whereas the sulfur compounds of the heavier fractions are present in the form of substituted or unsubstituted thiophenes, or of heterocyclic compounds such as benzothiophene. which, unlike mercaptans, can not be removed by extractive processes. These sulfur compounds are therefore removed by hydrotreatment.
  • the light cut is relatively rich in olefins, and the sulfur is mainly present in the form of mercaptans, while the heavier cut is relatively poor in olefins and is characterized by significantly higher sulfur contents. More generally, and contrary to the prior art, the cutting point is chosen so as to maximize the olefin content in the light cut.
  • the catalytic cracking gasoline fraction (FCC) is thus fractionated into at least two fractions, which are then subjected to different desulfurization treatments.
  • the light fraction undergoes a desulfurization treatment constituted by a hydrogenation sweet, possibly preceded by a selective hydrogenation of diolefins.
  • the Hydrogenation conditions are chosen mild to minimize the saturation of olefins of high octane number.
  • the desulfurization is not complete but it virtually eliminates all sulfur compounds other than mercaptans from so that basically remain in the cut the mercaptans. They are then removed by softening. This softening step can be a softening extraction, or catalytic oxidation softening of fixed bed mercaptans.
  • the hydrogenation of the dienes is a step which makes it possible to eliminate practically all the dienes present in the light fraction before the gentle hydrotreatment. It generally takes place in the presence of a catalyst comprising at least one Group VIII metal (and preferably Pt, Pd or Ni) and a support, at a temperature of 50-250 ° C. under a pressure of 4-50 bar. This step does not necessarily cause softening. It is particularly advantageous to operate under conditions such that at least partial softening of the gasoline is obtained, that is to say with the reduction of the mercaptan content.
  • a catalyst comprising 0.1 to 1% of palladium deposited on a support operating under a pressure of 4-25 bar, at a temperature of 50-250 ° C, with a space velocity of the liquid ( LHSV) from 1 to 10 h -1 .
  • the catalyst comprises palladium (0.1 to 1% by weight, and preferably 0.2-0.5% weight) deposited on an inert support such as alumina, silica, silica-alumina, or carrier containing at least 50% alumina.
  • an inert support such as alumina, silica, silica-alumina, or carrier containing at least 50% alumina.
  • Another metal may be combined to form a bimetallic catalyst, such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • a bimetallic catalyst such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • the choice of operating conditions is particularly important. We will operate the most generally under pressure in the presence of a quantity of hydrogen in small excess by relative to the stoichiometric value necessary to hydrogenate the diolefins.
  • the hydrogen and the charge to be treated are injected in ascending or descending currents in a reactor preferably with a fixed bed of catalyst.
  • the temperature is included more generally between 50 and 200 ° C, and preferably between 80 and 200 ° C, and preferably between 150 and 170 ° C.
  • the pressure is sufficient to maintain more than 80% weight, and preferably more than 95% by weight, gasoline to be treated in the liquid phase in the reactor to know the most generally between 4 and 50 bar and preferably above 10 bar.
  • a pressure is between 10-30 bar, and preferably between 12-25 bar.
  • the space velocity is in these conditions established between 1-10 h -1 , preferably between 4-10 h -1 .
  • the light fraction of the gasoline catalytic cracking fraction may contain about 1% by weight of diolefins.
  • the diolefin content is reduced to less than 3000 ppm, or even less than 2500 ppm and better still less than 1500 ppm. In some cases it can be obtained less than 500 ppm.
  • the diene content after selective hydrogenation can even be reduced to less than 250 ppm.
  • the hydrogenation step takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the amount of hydrogen necessary to effect the desired reactions.
  • the hydrogenation step takes place in a catalytic hydrogenation reactor which is arranged in a particular manner, namely at least two catalytic zones, the first being crossed by the liquid charge (and a amount of hydrogen less than the stoichiometry necessary to convert all the diolefins to mono-olefins), the second receiving the liquid charge from the first zone (as well as the rest of the hydrogen, that is to say a quantity of sufficient hydrogen to convert the remaining diolefins to mono-olefins and to at least partially isomerize the primary and secondary olefins to tertiary olefins), for example injected through a lateral tubing and dispersed using a suitable diffuser.
  • the proportion of the first zone (by volume) is at most equal to 75% of the sum of the 2 zones and preferably of 15 to 30%.
  • Another advantageous embodiment comprises hydrogenation of the dienes on a catalyst other than Pd, a mild hydrotreatment and a final oxidizing softening.
  • the gentle hydrodesulphurization of the light fraction of the FCC gasoline fraction is intended, by using a conventional hydrotreating catalyst under mild conditions of temperature and pressure, to convert the sulfur compounds of the other section into H 2 S. mercaptans, so as to obtain an effluent containing as sulfur compounds only mercaptans.
  • the cut thus produced has the same distillation range, and a slightly lower octane number due to the inevitable partial saturation of the olefins.
  • the conditions of the hydrotreatment reactor must be adjusted to achieve the desired desulfurization level, and especially to minimize the octane loss resulting from the saturation of the olefins. At least 90% of the olefins are generally converted (the diolefins being totally or substantially completely hydrogenated), and preferably at most 80-85% of the olefins are converted.
  • the temperature of the mild hydrotreating step is generally between 160 ° C and 380 ° C, preferably between 180 ° C and 360 ° C, and more preferably between 180 ° C and 320 ° C.
  • Low to moderate pressures are generally sufficient, between 5 and 50 bar, preferably between 10 and 45 bar, and more preferably between 10 and 30 bar.
  • the LHSV space velocity is between 0.5 and 10 h -1, preferably between 1 and 6 h -1.
  • the catalyst (s) used in the mild hydrotreating reactor is a conventional hydrodesulfurization catalyst, comprising at least one Group VI metal and / or at least one Group VIII metal, on a suitable support. .
  • the Group VI metal is usually molybdenum or tungsten, and the Group VIII metal is generally nickel or cobalt. Combinations such as Ni-Mo or Co-Mo are typical.
  • the catalyst support is usually a porous solid such as alumina, silica-alumina or other porous solids such as magnesia, silica or TiO2, alone. or in admixture with alumina or silica-alumina.
  • the lighter fraction of the gasoline fraction is then subjected to a non-hydrogenating desulphurization to remove the remaining sulfur compounds in the form of mercaptans.
  • a non-hydrogenating desulphurization to remove the remaining sulfur compounds in the form of mercaptans.
  • It may be an extractive softening process using sodium hydroxide or sodium or potassium cresylate. Extractive processes are sufficient as long as the processed section does not contain high molecular weight mercaptans. Softening can also be achieved by catalytic oxidation of mercaptans to disulfides.
  • This catalytic oxidation of the mercaptans to disulfides can be carried out simply by mixing the gasoline to be treated with an aqueous solution of an alkaline base, such as sodium hydroxide, in which a catalyst based on a metal chelate is added in the presence of an oxidizing agent.
  • an alkaline base such as sodium hydroxide
  • a catalyst based on a metal chelate is added in the presence of an oxidizing agent.
  • the alkaline base is not incorporated in the catalyst.
  • the metal chelate used as a catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine, for example.
  • the reaction is carried out at a pressure of between 1 and 30 bar, at a temperature of between 20 and 100 ° C, and preferably 20 and 80 ° C.
  • the alkaline base may be incorporated into the catalyst by introducing an alkaline ion into a mixed oxide structure consisting essentially of combined aluminum and silicon oxides.
  • alkali metal aluminosilicates more particularly sodium and potassium, characterized by an Si / Al atomic ratio of structure less than or equal to 5 (ie an SiO 2 / Al 2 O 3 molar ratio are used.
  • these alkali aluminosilicates have the advantage of a very low solubility in an aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is added regularly or, optionally, alkaline solution.
  • This step of softening (preferably carried out in a fixed bed) of the light gasoline fraction containing mercaptans can therefore be defined as comprising the passage, under oxidation conditions, of the gasoline to be treated (stabilized) in contact with a porous catalyst.
  • a porous catalyst Preferably, according to the patent EP-A-638,628, it comprises from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkali aluminosilicate having an Si / Si atomic ratio. Al less than or equal to 5, preferably less than or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight at least one inorganic or organic binder.
  • This porous catalyst has a basicity determined according to ASTM 2896 greater than 20 milligrams of potash per gram and a total BET surface area greater than 10 m 2 / g, and contains within its porosity a permanent aqueous phase representing 0, 1 to 40%, preferably 1 to 25%, by weight of the dry catalyst.
  • said alkali aluminosilicate is obtained by reaction in a medium aqueous solution of at least one clay (kaolinite, halloysite, montmorillonite, etc.) with at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkali, in particular sodium, and potassium, this compound being preferably hydroxide, followed by a heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • kaolinite, halloysite, montmorillonite, etc. at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkali, in particular sodium, and potassium, this compound being preferably hydroxide, followed by a heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • the clay can also be heat treated and crushed before being brought into contact with the alkaline solution.
  • kaolinite and all its thermal transformation products metalakaolin, inverse spinel phase, mullite
  • metalakaolin, inverse spinel phase, mullite can be used according to the method of the invention.
  • the clay is kaolin, kaolinite and / or metakaolin are the preferred basic chemical reagents.
  • metal chelate it will be possible to deposit on the support any chelate used for this purpose in the prior art, in particular phthalocyanines, porphyrins or metal corrines. Particularly preferred are cobalt phthalocyanine and vanadium phthalocyanine.
  • the metal phthalocyanine is preferably used in the form of a derivative thereof, with particular preference for its commercially available sulfonates, for example cobalt phthalocyanine mono- or disulfonate and mixtures thereof. this.
  • water can be added, in adequate quantity, to the cut upstream of the catalyst in a continuous or discontinuous manner to maintain the degree of hydration within the desired range, that is, the water content of the support is maintained between 0.1 and 40% by weight of the support, and preferably between 1 and 25%.
  • the temperature of the feed is set to a sufficient value, below 80 ° C, to solubilize the reaction water resulting from the transformation of mercaptans into disulfides.
  • the temperature of the charge is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight thereof.
  • This range of predetermined values of the water content of the support will, of course, depend on the nature of the catalyst support used in the softening reaction.
  • this softening step can be eliminated when the light cut has been selectively hydrogenated to remove dienes and at the same time softening has been achieved.
  • the sweetening yield may be such that the final softening step with an oxidizing agent may no longer be necessary.
  • This case is true with a catalyst based on palladium as described above.
  • the presence of this treatment step with a palladium catalyst can also make it possible to modify the softening step, for example by increasing the hourly speed, hence increasing productivity, or reducing the amount of catalyst, hence a reduced investment.
  • a step of selective hydrogenation of the dienes can be used which is not softening.
  • Hydrodesulfurization of the heaviest fraction of FCC gasoline is conducted following the same process as that used for the light fraction.
  • the catalyst contains also at least one metal of G VIII and / or group VI, deposited on a support. Only the operating conditions are adjusted, in order to obtain the level of desulfurization desired, on this cup richer in sulfur.
  • the temperature used is usually between 200 ° C and 420 ° C, preferably between 220 ° C and 400 ° C.
  • the pressures operating procedures are generally between 20 and 80 bar and preferably between 30 and 50 bar. The effluent obtained is stripped to eliminate H2S and is sent to the pool petrol.
  • the softening zone is located after the stripping and the installation further comprises a zone for selective hydrogenation of the dienes located between the fractionation column and the soft hydrotreating zone, said hydrogenation zone comprising a driving for the introduction of the light cut and driving for the release of the light cut dedienized.
  • the plant also comprises a zone (15) for hydrotreating the heavy fraction, provided with a pipe (4) for introducing the heavy cut from the column (1), a pipe ( 16) for the outlet of the hydrotreated section and a line (17) supplying the hydrogen at the charge or the zone, said zone being followed by a stripping column (18) provided with a pipe for the introducing the hydrotreated cut, a pipe (19) for the outlet of H 2 S and a pipe (20) for the outlet of the hydrotreated cut.
  • the cuts leaving the pipes (20) and (13) can be sent to the fuel storage via a pipe (21).
  • Example 1 illustrates a process without a softening step on Pd
  • the following example illustrates the process, in the case where the crude gasoline cut is fractionated into a light C5 cut less than 80 ° C, and a heavier fraction 180-220 ° C.
  • Table 1 shows the characteristics of these different sections. Characteristics of the different FCC petrol cuts Chopped off Total gasoline (C5-220 ° C) Light fraction (C5-180 ° C) Heavy fraction (180-220 ° C) (% wt) (100) (70) (30) Olefin content (% wt) 44.0 56.4 10.0 Aromatic content (% wt) 23.0 4.6 66.0 Bromine index 68 90 16 Total sulfur (ppm wt) 200 154 307 Sulfur mercaptans (ppm wt) 106 74 0 RON 92.0 92.5 90.8 MY 80.0 80.7 78.4 (RON + MON) / 2 86.0 86.6 84.6
  • the light cut of FCC gasoline is rich in olefins and contains almost all mercaptans.
  • the heavier fraction which is richer in sulfur, contains sulfur compounds essentially in the form of thiophene derivatives.
  • Table 2 below indicates the operating conditions used for the hydrotreatment of heavy gasoline, as well as the characteristics of the heavy gasoline thus desulfurized.
  • the catalyst used is a CoMo supported alumina (HR 306C sold by the company Procatalyse). Characteristics of hydrodesulfurization of heavy gasoline.
  • Table 3 below indicates the characteristics of the light gasoline desulfurized and softened.
  • the temperature is 280 ° C.
  • the pressure is 20 bar
  • the LHV is 8 h -1
  • the catalyst is the NiMo-based LD 145 sold by Procatalyse followed by CoMo catalyst (HR306 C sold by the company Procatalyse). Characteristics of the initial light gasoline, after mild hydrotreatment and then after softening.
  • the softening is performed on a catalyst comprising sodalite (alkali aluminosilicate) and 20% of activated carbon, impregnated with an oxidizing agent such as sulfated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cata) prepared such that described in EP-A-638,628).
  • an oxidizing agent such as sulfated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cata) prepared such that described in EP-A-638,628).
  • the method and the installation according to the invention thus make it possible to obtain FCC containing less than 50 ppm sulfur, responding negatively to the "doctor test" and this with a loss in octane number barrel (RON + MON) / 2 lower than 8 points per compared to the same raw gasoline fraction of FCC before treatment, and preferably less than or equal to 6 points.

Description

La présente invention concerne un procédé et une installation pour la production d'essences de craquage catalytique à faible teneur en soufre.The present invention relates to a method and an installation for the production catalytic cracking gasolines with low sulfur content.

La production d'essence reformulée répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue leur concentration en oléfines et/ou en aromatiques (surtout le benzène) et en soufre (dont les mercaptans).
Les essences de craquage catalytique présentent des teneurs en oléfines élevées, et le soufre présent dans le pool essence est imputable à près de 90 % à l'essence de FCC.
The reformulated gasoline production meeting the new environmental standards notably requires that their concentration of olefins and / or aromatics (especially benzene) and sulfur (including mercaptans) be reduced.
Catalytic cracking gasolines have high olefin contents, and the sulfur present in the gasoline pool is attributable to nearly 90% of FCC gasoline.

L'hydrotraitement de la charge envoyée au craquage catalytique permet d'atteindre des essences contenant typiquement 100 ppm de soufre. Les unités d'hydrotraitement de charges FCC opèrent cependant dans des conditions sévères de température et de pression, ce qui suppose un effort d'investissement important.The hydrotreatment of the feedstock sent to catalytic cracking makes it possible to reach species typically containing 100 ppm sulfur. Hydroprocessing units However, FCC charges operate under severe conditions of temperature and pressure, which implies a major investment effort.

L'hydrotraitement des essences de craquage catalytique permet à la fois de réduire la teneur en soufre et en oléfines de la coupe. Cependant, ceci présente l'inconvénient majeur d'entraíner une perte très importante en octane baril de la coupe, en raison de la saturation de l'ensemble des oléfines.The hydrotreatment of catalytic cracking gasolines makes it possible both to reduce the sulfur and olefin content of the cut. However, this has the disadvantage major to cause a very significant loss in octane barrel of the cut, because of the saturation of all olefins.

Il a été déjà proposé des procédés d'hydrotraitement des essences FCC. Par exemple, le brevet US-5,290,427 décrit un procédé consistant à fractionner l'essence, désulfurer les fractions et convertir la fraction essence sur une zéolithe ZSM-5.Methods for hydrotreating FCC species have already been proposed. For example, the US Pat. No. 5,290,427 discloses a process of splitting gasoline, desulphurizing fractions and convert the gasoline fraction to a zeolite ZSM-5.

Le brevet US-5,318,690 propose un procédé avec un fractionnement de l'essence, un adoucissement de la fraction légère, tandis que la fraction lourde est hydrodésulfurée, puis convertie sur ZSM-5 et redésulfurée dans des conditions douces. Cette technique est basée sur une séparation de l'essence brute de façon à obtenir une coupe légère pratiquement dépourvue de composés soufrés autres que les mercaptans, de façon à traiter la coupe uniquement avec un adoucissement pour enlever les mercaptans. De ce fait, la coupe lourde contient une quantité relativement importante d'oléfines qui sont en partie saturées lors de l'hydrotraitement. Pour éviter cette perte d'indice d'octane, le brevet préconise un craquage sur ZSM-5 de façon à produire des oléfines, mais au détriment du rendement. De plus, ces oléfines peuvent se reconstituer en présence d'H2S pour former des mercaptans, ce qui a pour inconvénient d'appeler un adoucissement supplémentaire, ou une désulfuration. US Patent 5,318,690 proposes a process with a fractionation of gasoline, a softening of the light fraction, while the heavy fraction is hydrodesulfurized, then converted to ZSM-5 and redesulfurized under mild conditions. This technique is based on a separation of the raw gasoline so as to obtain a light cut practically free from sulfur compounds other than mercaptans, so as to treat the cut only with softening to remove the mercaptans. From this fact, the heavy cut contains a relatively large amount of olefins which are in saturated part during the hydrotreatment. To avoid this loss of octane number, the patent advocates cracking on ZSM-5 to produce olefins, but detriment of yield. In addition, these olefins can be reconstituted in the presence of H2S to form mercaptans, which has the drawback of calling a additional softening, or desulfurization.

Un autre moyen couramment utilisé par le raffineur pour traiter ce problème du soufre dans les essences est de séparer la fraction à point d'ébullition d'au moins 180°C qui contient l'essentiel des composés soufrés autres que les mercaptans. Cette fraction est alors déclassée avec le LCO (light cycle oil) et n'est en général pas valorisée, ou elle est utilisée comme diluant de charge.Another means commonly used by the refiner to treat this problem of sulfur in gasolines is to separate the boiling fraction of at least 180 ° C which contains most of the sulfur compounds other than mercaptans. This fraction is then downgraded with the LCO (light cycle oil) and is generally not valued, or it is used as a charge diluent.

Le déposant a recherché un procédé de production d'essences à faible teneur en soufre à partir du craquage catalytique, qui permet de valoriser la totalité de la coupe essence, de réduire la teneur en soufre de la coupe essence à de très faibles niveaux, sans perte de rendement essence, et en minimisant la perte en octane.The applicant has sought a process for the production of low sulfur catalytic cracking, which makes it possible to valorize all of the gasoline cut, reduce the sulfur content of the gasoline cut to very low levels, without loss of gasoline yield, and minimizing octane loss.

Plus précisément dans le procédé selon l'invention, l'essence brute est fractionnée en au moins une coupe légère à point d'ébullition inférieur ou égal à 210°C contenant la majeure partie des oléfines et des mercaptans, et au moins une fraction lourde. La coupe légère est soumise à un hydrotraitement doux, en présence d'hydrogène, avec un catalyseur contenant au moins un métal du groupe VIII et/ou au moins un métal du groupe VI, à une température de 160-380°C, sous une pression de 5-50 bar, et l'effluent obtenu est strippé pour éliminer H2S. La fraction légère est soumise à un adoucissement qui est réalisé par au moins l'un des procédés suivants :

  • traitement de la coupe légère avant l'hydrotraitement doux, en présence d'hydrogène avec un catalyseur contenant 0,1-1% de palladium déposé sur un support, à une température de 50-250°C, sous une pression de 4-50 bar;
  • adoucissement extractif de l'effluent obtenu après hydrotraitement doux et strippage;
  • adoucissement avec un agent oxydant, un catalyseur et une base alcaline incorporée ou non au catalyseur, de l'effluent obtenu après hydrotraitement doux et strippage.
More specifically, in the process according to the invention, the crude gasoline is fractionated into at least one light cut with a boiling point of less than or equal to 210 ° C. containing the major part of the olefins and mercaptans, and at least one heavy fraction. . The light cut is subjected to a mild hydrotreatment, in the presence of hydrogen, with a catalyst containing at least one Group VIII metal and / or at least one Group VI metal, at a temperature of 160-380 ° C, at a temperature of pressure of 5-50 bar, and the effluent obtained is stripped to remove H 2 S. The light fraction is subjected to a softening which is achieved by at least one of the following processes:
  • treatment of light cutting before gentle hydrotreating, in the presence of hydrogen with a catalyst containing 0.1-1% of palladium deposited on a support, at a temperature of 50-250 ° C, under a pressure of 4-50 bar;
  • extractive softening of the effluent obtained after gentle hydrotreatment and stripping;
  • softening with an oxidizing agent, a catalyst and an alkaline base incorporated or not incorporated in the catalyst, the effluent obtained after gentle hydrotreatment and stripping.

La charge est une essence de craquage catalytique, dont la gamme de points d'ébullition s'étend typiquement des C5 jusqu'à 220°C. Le point final de la coupe essence dépend bien sûr de la raffinerie et des contraintes du marché, mais reste généralement dans les limites indiquées ci-avant.
La teneur en soufre de ces coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée au FCC, ainsi que du point final de la coupe. Les fractions légères ont naturellement une teneur en soufre plus faible que les coupes plus lourdes. Généralement, les teneurs en soufre de l'intégralité de la coupe essence provenant du FCC sont supérieures à 100 ppm poids et la plupart du temps supérieures à 500 ppm poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm poids, pouvant même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm poids.
Selon l'invention, l'essence brute provenant du craquage catalytique est fractionnée en au moins une coupe légère et au moins une coupe lourde.
La coupe légère à un point d'ébullition final inférieur ou égal à 210°C, avantageusement inférieur ou égal à 180°C, de préférence inférieur ou égal à 160°C et encore plus préféré inférieur ou égal à 145°C.
La fraction légère de la coupe essence contient relativement peu de composés soufrés, qui sont présents en majorité sous forme de mercaptans, tandis que les composés soufrés des fractions plus lourdes sont présents sous forme de thiophènes substitués ou non, ou de composés hétérocycliques tels le benzothiophène, qui, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs. Ces composés soufrés sont par conséquent éliminés par hydrotraitement. La coupe légère est relativement riche en oléfines, et le soufre est essentiellement présent sous forme de mercaptans, tandis que la coupe plus lourde est relativement pauvre en oléfines et est caractérisée par des teneurs en soufre nettement plus élevées.
De façon plus générale, et contrairement à l'art antérieur le point de coupe est choisi de façon à maximiser la teneur en oléfines dans la coupe légère.
The feedstock is a catalytic cracking gasoline whose boiling point range typically ranges from C5 up to 220 ° C. The end point of the petrol cut depends of course on the refinery and the market constraints, but generally remains within the limits indicated above.
The sulfur content of these catalytic cracked gasoline (FCC) gasoline sections depends on the sulfur content of the FCC-treated feed as well as the end point of the cut. Light fractions naturally have a lower sulfur content than heavier cuts. Generally, the sulfur content of the entire gasoline cut from the FCC is greater than 100 ppm by weight and most often greater than 500 ppm by weight. For gasolines with end points greater than 200 ° C., the sulfur contents are often greater than 1000 ppm by weight, in some cases even reaching values of the order of 4000 to 5000 ppm by weight.
According to the invention, the crude gasoline from catalytic cracking is fractionated into at least one light cut and at least one heavy cut.
The light cut to a final boiling point less than or equal to 210 ° C, preferably less than or equal to 180 ° C, preferably less than or equal to 160 ° C and even more preferably less than or equal to 145 ° C.
The light fraction of the petrol fraction contains relatively few sulfur compounds, which are predominantly in the form of mercaptans, whereas the sulfur compounds of the heavier fractions are present in the form of substituted or unsubstituted thiophenes, or of heterocyclic compounds such as benzothiophene. which, unlike mercaptans, can not be removed by extractive processes. These sulfur compounds are therefore removed by hydrotreatment. The light cut is relatively rich in olefins, and the sulfur is mainly present in the form of mercaptans, while the heavier cut is relatively poor in olefins and is characterized by significantly higher sulfur contents.
More generally, and contrary to the prior art, the cutting point is chosen so as to maximize the olefin content in the light cut.

La coupe essence de craquage catalytique (FCC) est ainsi fractionnée en au moins deux fractions, qui sont ensuite soumises à des traitements de désulfuration différents. La fraction légère subit un traitement de désulfuration constitué par une hydrogénation douce, éventuellement précédée d'une hydrogénation sélective des dioléfines. Les conditions d'hydrogénation sont choisies douces pour minimiser la saturation des oléfines de haut indice d'octane. La désulfuration n'est donc pas complète mais elle permet d'éliminer pratiquement tous les composés soufrés autres que les mercaptans de façon à ce que restent dans la coupe essentiellement les mercaptans. Ils sont ensuite éliminés par adoucissement. Cette étape d'adoucissement peut être un adoucissement extractif, ou un adoucissement par oxydation catalytique des mercaptans en lit fixe.The catalytic cracking gasoline fraction (FCC) is thus fractionated into at least two fractions, which are then subjected to different desulfurization treatments. The light fraction undergoes a desulfurization treatment constituted by a hydrogenation sweet, possibly preceded by a selective hydrogenation of diolefins. The Hydrogenation conditions are chosen mild to minimize the saturation of olefins of high octane number. The desulfurization is not complete but it virtually eliminates all sulfur compounds other than mercaptans from so that basically remain in the cut the mercaptans. They are then removed by softening. This softening step can be a softening extraction, or catalytic oxidation softening of fixed bed mercaptans.

• Hydrogénation des diènes• Hydrogenation of dienes

L'hydrogénation des diènes est une étape qui permet d'éliminer pratiquement la totalité des diènes présents dans la fraction légère avant l'hydrotraitement doux. Elle se déroule généralement en présence d'un catalyseur comprenant au moins un métal du groupe VIII (et de préférence Pt, Pd ou Ni) et un support, à une température de 50-250°C sous une pression de 4-50 bar. Cette étape ne provoque pas forcément l'adoucissement. Il est particulièrement avantageux d'opérer dans des conditions telles qu'un adoucissement, au moins partiel, de l'essence soit obtenu, c'est-à-dire avec la réduction de la teneur en mercaptans.
Pour ce faire, on emploiera avantageusement un catalyseur comprenant 0,1 à 1% de palladium déposé sur un support opérant sous une pression de 4-25 bar, à une température de 50-250 °C, avec une vitesse spatiale horaire du liquide (LHSV) de 1 à 10 h-1.
The hydrogenation of the dienes is a step which makes it possible to eliminate practically all the dienes present in the light fraction before the gentle hydrotreatment. It generally takes place in the presence of a catalyst comprising at least one Group VIII metal (and preferably Pt, Pd or Ni) and a support, at a temperature of 50-250 ° C. under a pressure of 4-50 bar. This step does not necessarily cause softening. It is particularly advantageous to operate under conditions such that at least partial softening of the gasoline is obtained, that is to say with the reduction of the mercaptan content.
To do this, use will advantageously be made of a catalyst comprising 0.1 to 1% of palladium deposited on a support operating under a pressure of 4-25 bar, at a temperature of 50-250 ° C, with a space velocity of the liquid ( LHSV) from 1 to 10 h -1 .

Le catalyseur comporte du palladium (0,1 à 1 % poids, et de préférence 0,2-0,5 % poids) déposé sur un support inerte tel que l'alumine, la silice, la silice-alumine, ou un support contenant au moins 50 % d'alumine.The catalyst comprises palladium (0.1 to 1% by weight, and preferably 0.2-0.5% weight) deposited on an inert support such as alumina, silica, silica-alumina, or carrier containing at least 50% alumina.

Un autre métal peut être associé pour former un catalyseur bimétallique, tel que le nickel (1-20 % poids, et de préférence 5-15 % poids) ou l'or (Au/Pd exprimé en poids supérieur ou égal à 0,1 et inférieur à 1, et de préférence compris entre 0,2 et 0,8).Another metal may be combined to form a bimetallic catalyst, such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).

Le choix des conditions opératoires est particulièrement important. On opèrera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre 50 et 200 °C, et de préférence entre 80 et 200°C, et de préférence entre 150 et 170 °C.The choice of operating conditions is particularly important. We will operate the most generally under pressure in the presence of a quantity of hydrogen in small excess by relative to the stoichiometric value necessary to hydrogenate the diolefins. The hydrogen and the charge to be treated are injected in ascending or descending currents in a reactor preferably with a fixed bed of catalyst. The temperature is included more generally between 50 and 200 ° C, and preferably between 80 and 200 ° C, and preferably between 150 and 170 ° C.

La pression est suffisante pour maintenir plus de 80% poids, et de préférence plus de 95% poids, de l'essence à traiter en phase liquide dans le réacteur à savoir le plus généralement entre 4 et 50 bar et de préférence au-dessus de 10 bar. Une pression avantageuse est comprise entre 10-30 bar, et de préférence entre 12-25 bar.The pressure is sufficient to maintain more than 80% weight, and preferably more than 95% by weight, gasoline to be treated in the liquid phase in the reactor to know the most generally between 4 and 50 bar and preferably above 10 bar. A pressure Advantageous is between 10-30 bar, and preferably between 12-25 bar.

La vitesse spatiale est dans ces conditions établie entre 1-10 h-1, de préférence entre 4-10h-1.The space velocity is in these conditions established between 1-10 h -1 , preferably between 4-10 h -1 .

La fraction légère de la coupe essence de craquage catalytique peut contenir de l'ordre de 1% poids de dioléfines. Après hydrogénation, la teneur en dioléfines est réduite à moins de 3 000 ppm, voire moins de 2 500 ppm et mieux moins de 1 500 ppm. Dans certains cas il peut être obtenu moins de 500 ppm. La teneur en diènes après hydrogénation sélective peut même être réduite à moins de 250 ppm.
Selon une réalisation de l'invention, l'étape d'hydrogénation se déroule dans un réacteur catalytique d'hydrogénation qui comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.
The light fraction of the gasoline catalytic cracking fraction may contain about 1% by weight of diolefins. After hydrogenation, the diolefin content is reduced to less than 3000 ppm, or even less than 2500 ppm and better still less than 1500 ppm. In some cases it can be obtained less than 500 ppm. The diene content after selective hydrogenation can even be reduced to less than 250 ppm.
According to one embodiment of the invention, the hydrogenation step takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the amount of hydrogen necessary to effect the desired reactions.

Selon une réalisation préférée de l'invention, l'étape d'hydrogénation se déroule dans un réacteur catalytique d'hydrogénation qui est agencé de manière particulière, à savoir au moins deux zones catalytiques, la première étant traversée par la charge liquide (et une quantité d'hydrogène inférieure à la stoechiométrie nécessaire pour convertir toutes les dioléfines en mono-oléfines), la seconde recevant la charge liquide provenant de la première zone (ainsi que le reste de l'hydrogène c'est-à-dire une quantité d'hydrogène suffisante pour convertir les dioléfines restantes en mono-oléfines et pour isomériser au moins en partie les oléfines primaires et secondaires en oléfines tertiaires) par exemple injectée par une tubulure latérale et dispersée à l'aide d'un diffuseur approprié.
La proportion de la première zone (en volume) est tout au plus égale à 75 % de la somme des 2 zones et de préférence de 15 à 30 %.
Un autre mode de réalisation avantageux comprend une hydrogénation des diènes sur un catalyseur différent du Pd, un hydrotraitement doux et un adoucissement oxydant final.
According to a preferred embodiment of the invention, the hydrogenation step takes place in a catalytic hydrogenation reactor which is arranged in a particular manner, namely at least two catalytic zones, the first being crossed by the liquid charge (and a amount of hydrogen less than the stoichiometry necessary to convert all the diolefins to mono-olefins), the second receiving the liquid charge from the first zone (as well as the rest of the hydrogen, that is to say a quantity of sufficient hydrogen to convert the remaining diolefins to mono-olefins and to at least partially isomerize the primary and secondary olefins to tertiary olefins), for example injected through a lateral tubing and dispersed using a suitable diffuser.
The proportion of the first zone (by volume) is at most equal to 75% of the sum of the 2 zones and preferably of 15 to 30%.
Another advantageous embodiment comprises hydrogenation of the dienes on a catalyst other than Pd, a mild hydrotreatment and a final oxidizing softening.

• Hydrotraitement doux• Gentle hydrotreatment

L'hydrodésulfuration douce de la fraction légère de la coupe essence de FCC a pour but, en utilisant un catalyseur d'hydrotraitement conventionnel dans des conditions douces de température et de pression, de convertir en H2S les composés soufrés de la coupe autres ques les mercaptans, de façon à obtenir un effluent ne contenant comme composés soufrés que les mercaptans. La coupe ainsi produite possède le même intervalle de distillation, et un indice d'octane un peu plus faible du fait de la saturation partielle inévitable des oléfines.
Les conditions du réacteur d'hydrotraitement doivent être ajustées pour atteindre le niveau de désulfuration désiré, et surtout pour minimiser la perte en octane résultant de la saturation des oléfines. On convertit généralement au plus 90 % des oléfines (les dioléfines étant totalement ou pratiquement totalement hydrogénées), et de préférence sont converties au plus 80-85 % des oléfines.
The gentle hydrodesulphurization of the light fraction of the FCC gasoline fraction is intended, by using a conventional hydrotreating catalyst under mild conditions of temperature and pressure, to convert the sulfur compounds of the other section into H 2 S. mercaptans, so as to obtain an effluent containing as sulfur compounds only mercaptans. The cut thus produced has the same distillation range, and a slightly lower octane number due to the inevitable partial saturation of the olefins.
The conditions of the hydrotreatment reactor must be adjusted to achieve the desired desulfurization level, and especially to minimize the octane loss resulting from the saturation of the olefins. At least 90% of the olefins are generally converted (the diolefins being totally or substantially completely hydrogenated), and preferably at most 80-85% of the olefins are converted.

La température de l'étape d'hydrotraitement doux est généralement comprise entre 160°C et 380°C, de préférence entre 180°C et 360°C, et plus préférentiellement entre 180°C et 320°C. Des pressions faibles à modérées sont généralement suffisantes, comprises entre 5 et 50 bar, de préférence entre 10 et 45 bar, et plus préférentiellement entre 10 et 30 bar. La vitesse spatiale LHSV est comprise entre 0.5 et 10 h-1, de préférence entre 1 et 6 h-1.
Le(s) catalyseur(s) utilisé(s) dans le réacteur d'hydrotraitement doux est un catalyseur conventionnel d'hydrodésulfuration, comprenant au moins un métal du groupe VI et/ou au moins un métal du groupe VIII, sur un support approprié. Le métal du groupe VI est généralement du molybdène ou du tungstène, et le métal du groupe VIII est généralement du nickel ou du cobalt. Des combinaisons telles que Ni-Mo ou Co-Mo sont typiques.Le support du catalyseur est habituellement un solide poreux tel qu'une alumine, une silice-alumine ou d'autres solides poreux tels que la magnésie, la silice ou TiO2, seuls ou en mélange avec l'alumine ou la silice-alumine.
The temperature of the mild hydrotreating step is generally between 160 ° C and 380 ° C, preferably between 180 ° C and 360 ° C, and more preferably between 180 ° C and 320 ° C. Low to moderate pressures are generally sufficient, between 5 and 50 bar, preferably between 10 and 45 bar, and more preferably between 10 and 30 bar. The LHSV space velocity is between 0.5 and 10 h -1, preferably between 1 and 6 h -1.
The catalyst (s) used in the mild hydrotreating reactor is a conventional hydrodesulfurization catalyst, comprising at least one Group VI metal and / or at least one Group VIII metal, on a suitable support. . The Group VI metal is usually molybdenum or tungsten, and the Group VIII metal is generally nickel or cobalt. Combinations such as Ni-Mo or Co-Mo are typical. The catalyst support is usually a porous solid such as alumina, silica-alumina or other porous solids such as magnesia, silica or TiO2, alone. or in admixture with alumina or silica-alumina.

• Adoucissement• Softening

La fraction la plus légère de la coupe essence est ensuite soumise à une désulfuration non-hydrogénante visant à éliminer les composés soufrés restant sous forme de mercaptans.
Il peut s'agir d'un procédé d'adoucissement extractif utilisant de la soude ou du crésylate de sodium ou de potassium. Les procédés extractifs sont suffisants tant que la coupe traitée ne contient pas de mercaptans de haut poids moléculaire.
L'adoucissement peut également être réalisée par oxydation catalytique des mercaptans en disulfures. Cette oxydation catalytique des mercaptans en disulfures peut être réalisée simplement en mélangeant l'essence à traiter à une solution aqueuse d'une base alcaline, telle la soude, dans laquelle on ajoute un catalyseur à base d'un chélate métallique, en présence d'un agent oxydant.
Dans le cas où la teneur en mercaptans de l'essence est importante, il est préférable de réaliser la mise au contact de la coupe avec un lit fixe de catalyseur supporté, en présence d'une base alcaline et d'un agent oxydant. Dans une première variante, la base alcaline n'est pas incorporée au catalyseur. Il s'agit habituellement de la soude en solution aqueuse; elle est introduite dans le milieu réactionnel soit en continu, soit par intermittence, pour maintenir les conditions d'alcalinité et la phase aqueuse nécessaires à la réaction d'oxydation. L'agent oxydant, généralement de l'air, est avantageusement mélangé à la coupe essence à adoucir. Le chélate métallique utilisé comme catalyseur est généralement une phtalocyanine métallique, telle la phtalocyanine de cobalt par exemple. La réaction a lieu à une pression comprise entre 1 et 30 bar, à une température comprise entre 20 et 100°C, et de préférence 20 et 80°C. Il convient de renouveler la solution sodique qui s'épuise, d'une part en raison des impuretés provenant de la charge, d'autre part en raison de la variation de la concentration de la base, qui diminue du fait de l'apport d'eau par la charge et de la transformation des mercaptans en disulfures.
Dans une seconde variante préférée, la base alcaline peut être incorporée au sein du catalyseur en introduisant un ion alcalin dans une structure oxyde mixte constituée essentiellement d'oxydes d'aluminium et de silicium combinés.
Avantageusement, on emploie des aluminosilicates de métaux alcalins, plus particulièrement de sodium et de potassium, caractérisés par un rapport atomique Si/Al de leur structure inférieur ou égal à 5 (c'est à dire un rapport molaire SiO2/Al2O3 inférieur ou égal à 10), et qui sont associés intimement à du charbon actif et à un chélate métallique et présentent des performances catalytiques optimales en adoucissement lorsque le taux d'hydratation du catalyseur est compris entre 0,1 et 40% et de préférence entre 1 et 25% en poids de celui-ci. Outre leurs performances catalytiques supérieures, ces aluminosilicates alcalins présentent l'avantage d'une très faible solubilité en milieu aqueux, ce qui permet leur utilisation prolongée à l'état hydraté pour traiter des coupes pétrolières auxquelles on ajoute régulièrement un peu d'eau ou, éventuellement, de solution alcaline.
Cette étape d'adoucissement (de préférence réalisée en lit fixe) de la fraction essence légère contenant des mercaptans peut donc être définie comme comprenant le passage, dans des conditions d'oxydation, de l'essence à traiter (stabilisée) au contact d'un catalyseur poreux. De préférence, selon le brevet EP-A-638.628, il comprend de 10 à 98%, de préférence de 50 à 95% en poids, d'au moins une phase solide minérale constituée d'un aluminosilicate alcalin ayant un rapport atomique Si/Al inférieur ou égal à 5, de préférence inférieur ou égal à 3, de 1 à 60% en poids de charbon actif, de 0,02 à 2% en poids d'au moins un chélate métallique et de 0 à 20% en poids d'au moins un liant minéral ou organique. Ce catalyseur poreux présente une basicité déterminée selon la norme ASTM 2896 supérieure à 20 milligrammes de potasse par gramme et une surface totale BET supérieure à 10 m2/g, et contient à l'intérieur de sa porosité une phase aqueuse permanente représentant de 0,1 à 40%, de préférence de 1 à 25%, en poids du catalyseur sec.
The lighter fraction of the gasoline fraction is then subjected to a non-hydrogenating desulphurization to remove the remaining sulfur compounds in the form of mercaptans.
It may be an extractive softening process using sodium hydroxide or sodium or potassium cresylate. Extractive processes are sufficient as long as the processed section does not contain high molecular weight mercaptans.
Softening can also be achieved by catalytic oxidation of mercaptans to disulfides. This catalytic oxidation of the mercaptans to disulfides can be carried out simply by mixing the gasoline to be treated with an aqueous solution of an alkaline base, such as sodium hydroxide, in which a catalyst based on a metal chelate is added in the presence of an oxidizing agent.
In the case where the mercaptan content of the gasoline is important, it is preferable to bring the cup into contact with a fixed bed of supported catalyst, in the presence of an alkaline base and an oxidizing agent. In a first variant, the alkaline base is not incorporated in the catalyst. It is usually soda in aqueous solution; it is introduced into the reaction medium either continuously or intermittently, to maintain the alkalinity conditions and the aqueous phase necessary for the oxidation reaction. The oxidizing agent, generally air, is advantageously mixed with the essence cut to be softened. The metal chelate used as a catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine, for example. The reaction is carried out at a pressure of between 1 and 30 bar, at a temperature of between 20 and 100 ° C, and preferably 20 and 80 ° C. It is advisable to renew the sodium solution which is exhausted, partly because of the impurities resulting from the charge, on the other hand because of the variation of the concentration of the base, which decreases because of the contribution of by the charge and the transformation of mercaptans into disulfides.
In a second preferred variant, the alkaline base may be incorporated into the catalyst by introducing an alkaline ion into a mixed oxide structure consisting essentially of combined aluminum and silicon oxides.
Advantageously, alkali metal aluminosilicates, more particularly sodium and potassium, characterized by an Si / Al atomic ratio of structure less than or equal to 5 (ie an SiO 2 / Al 2 O 3 molar ratio are used. less than or equal to 10), which are intimately associated with active carbon and a metal chelate and exhibit optimum catalytic performance in softening when the hydration rate of the catalyst is between 0.1 and 40% and preferably between 1 and 25% by weight thereof. In addition to their superior catalytic performance, these alkali aluminosilicates have the advantage of a very low solubility in an aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is added regularly or, optionally, alkaline solution.
This step of softening (preferably carried out in a fixed bed) of the light gasoline fraction containing mercaptans can therefore be defined as comprising the passage, under oxidation conditions, of the gasoline to be treated (stabilized) in contact with a porous catalyst. Preferably, according to the patent EP-A-638,628, it comprises from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkali aluminosilicate having an Si / Si atomic ratio. Al less than or equal to 5, preferably less than or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight at least one inorganic or organic binder. This porous catalyst has a basicity determined according to ASTM 2896 greater than 20 milligrams of potash per gram and a total BET surface area greater than 10 m 2 / g, and contains within its porosity a permanent aqueous phase representing 0, 1 to 40%, preferably 1 to 25%, by weight of the dry catalyst.

Parmi les phases minérales basiques du type aluminosilicates (principalement de sodium et/ou de potassium) qui conviennent particulièrement bien, on peut citer un grand nombre de phases:

  • lorsque l'alcalin est majoritairement le potassium :
    • la kaliophilite : K2O, Al2O3, SiO2(1,8 < < 2,4).
    • le feldspathoïde appelé leucite : K2O, Al2O3, SiO2 (3,5 < < 4,5).
    • les zéolithes du type :
      • philipsite : (K, Na)O, Al2O3, SiO2 (3,0 < < 5,0).
      • érionite ou offrétite : (K, Na, Mg, Ca)O, Al2O3, SiO2 (4 < < 8).
      • mazzite ou zéolithe Oméga : (K, Na, Mg, Ca)O, Al2O3, SiO2 (4 < < 8).
      • zéolithe L : (K, Na)O, Al2O3, SiO2 (5 < < 8).
  • lorsque l'alcalin est le sodium :
    • les aluminosilicates de sodium amorphes dont l'organisation cristalline ne peut être détectée par diffraction X et dont le rapport atomique Si/Al est inférieur ou égal à 5, et de préférence inférieur ou égal à 3.
    • la sodalite Na2O, A12O3, SiO2 (1,8 < < 2,4). La sodalite peut contenir différents ions ou sels alcalins dans sa structure, comme par exemple Cl-, Br-, ClO3-, BrO3-, IO3-, NO3-, OH-, CO3--, SO3--, CrO4--, MoO4--, PO4---, etc... , sous forme de sels acalins, principalement de sodium. Ces différentes variétés conviennent pour la présente invention. Les variétés préférées pour la présente invention sont celles contenant l'ion OH- sous forme de NaOH et l'ion S-sous forme de Na2S.
    • la néphéline Na2O, Al2O3, SiO2 (1,8 < < 2,4).
    • les tectosilicates du type analcime, natrolite, mesolite, thomsonite, clinoptilolite, stilbite, zéolithe Na-P1, dachiardite, chabasite, gmelinite, cancrinite, la faujasite comprenant les zéolithes synthétiques X et Y, la zéolithe A.
Among the basic inorganic phases of the aluminosilicate type (mainly sodium and / or potassium) which are particularly suitable, there may be mentioned a large number of phases:
  • when the alkaline is predominantly potassium:
    • kaliophilite: K 2 O, Al 2 O 3 , SiO 2 (1.8 <<2.4).
    • the feldspathoid called leucite: K2O, Al2O3, SiO2 (3.5 <<4.5).
    • zeolites of the type:
      • philipsite: (K, Na) O, Al2O3, SiO2 (3.0 <<5.0).
      • erionite or offretite: (K, Na, Mg, Ca) O, Al2O3, SiO2 (4 <<8).
      • mazzite or Omega zeolite: (K, Na, Mg, Ca) O, Al2O3, SiO2 (4 <<8).
      • zeolite L: (K, Na) O, Al2O3, SiO2 (5 <<8).
  • when the alkaline is sodium:
    • amorphous sodium aluminosilicates whose crystalline organization can not be detected by X-ray diffraction and whose Si / Al atomic ratio is less than or equal to 5, and preferably less than or equal to 3.
    • sodalite Na2O, Al2O3, SiO2 (1.8 <<2.4). Sodalite may contain different ions or alkali salts in its structure, such as Cl-, Br-, ClO3-, BrO3-, IO3-, NO3-, OH-, CO3--, SO3--, CrO4--, MoO4 -, PO4 ---, etc ..., in the form of salts acalins, mainly sodium. These different varieties are suitable for the present invention. The preferred varieties for the present invention are those containing the OH- ion in the form of NaOH and the S-ion in the form of Na2S.
    • nepheline Na2O, Al2O3, SiO2 (1.8 <<2.4).
    • tectosilicates of the analcime type, natrolite, mesolite, thomsonite, clinoptilolite, stilbite, zeolite Na-P1, dachiardite, chabasite, gmelinite, cancrinite, faujasite comprising synthetic zeolites X and Y, zeolite A.

D'une façon préférée, ledit aluminosilicate alcalin est obtenu par réaction en milieu aqueux d'au moins un argile (kaolinite, halloysite, montmorillonite, etc...) avec au moins un composé (hydroxyde, carbonate, acétate, nitrate, etc...) d'au moins un métal alcalin, notamment le sodium, et le potassium, ce composé étant de préférence l'hydroxyde, suivie d'un traitement thermique à une température entre 90 et 600°C, de préférence entre 120 et 350°C.In a preferred manner, said alkali aluminosilicate is obtained by reaction in a medium aqueous solution of at least one clay (kaolinite, halloysite, montmorillonite, etc.) with at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkali, in particular sodium, and potassium, this compound being preferably hydroxide, followed by a heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.

L'argile peut aussi être traitée thermiquement et broyée avant d'être mis au contact de la solution alcaline. Ainsi, la kaolinite et tous ses produits de transformation thermique (métakaolin, phase spinelle inverse, mullite) peuvent être utilisés selon le procédé de l'invention. The clay can also be heat treated and crushed before being brought into contact with the alkaline solution. Thus, kaolinite and all its thermal transformation products (metakaolin, inverse spinel phase, mullite) can be used according to the method of the invention.

Lorsque l'argile considérée est le kaolin, la kaolinite et/ou le métakaolin constituent les réactifs chimiques de base préférés.
Comme chélate métallique, on pourra déposer sur le support tout chélate utilisé dans ce but dans la technique antérieure, en particulier les phtalocyanines, les porphyrines ou les corrines métalliques. On préfère particulièrement la phtalocyanine de cobalt et la phtalocyanine de vanadium. On utilise, de préférence, la phtalocyanine métallique sous forme d'un dérivé de cette dernière, avec une préférence particulière pour ses sulfonates disponibles dans le commerce, comme par exemple le mono- ou le disulfonate de phtalocyanine de cobalt et des mélanges de ceux-ci.
When the clay is kaolin, kaolinite and / or metakaolin are the preferred basic chemical reagents.
As metal chelate, it will be possible to deposit on the support any chelate used for this purpose in the prior art, in particular phthalocyanines, porphyrins or metal corrines. Particularly preferred are cobalt phthalocyanine and vanadium phthalocyanine. The metal phthalocyanine is preferably used in the form of a derivative thereof, with particular preference for its commercially available sulfonates, for example cobalt phthalocyanine mono- or disulfonate and mixtures thereof. this.

Les conditions réactionnelles mises en oeuvre pour réaliser cette seconde variante de l'étape d'adoucissement se caractérisent par l'absence de base aqueuse, une température et une vitesse spatiale horaire plus élevées. Les conditions adoptées sont généralement les suivantes :

  • Température: 20 à 100°C, de préférence 20 à 80°C.
  • Pression: 105 à 30.105 Pascal.
  • Quantité d'agent oxydant air: 1 à 3 kg/kg de mercaptans.
  • Vitesse spatiale horaire en VVH (volume de charge par volume de catalyseur et par heure): 1 à 10h-1 dans le cadre du procédé de l'invention.
The reaction conditions used to carry out this second variant of the softening step are characterized by the absence of aqueous base, a temperature and a higher hourly space velocity. The conditions adopted are generally the following:
  • Temperature: 20 to 100 ° C, preferably 20 to 80 ° C.
  • Pressure: 10 5 30.10 5 Pascal.
  • Amount of air oxidizing agent: 1 to 3 kg / kg of mercaptans.
  • Hourly space velocity in VVH (volume of charge per volume of catalyst per hour): 1 to 10 h -1 in the context of the process of the invention.

La teneur en eau du catalyseur à base alcaline utilisé dans l'étape d'adoucissement oxydant de la présente invention peut varier en cours d'opération dans deux directions opposées :

  • 1) Si la coupe pétrolière à adoucir est préalablement séchée, elle peut entraíner progressivement, en la dissolvant, l'eau présente à l'intérieur de la porosité du catalyseur. Dans ces conditions, la teneur en eau de ce dernier diminue régulièrement et peut ainsi descendre en dessous de la valeur limite de 0,1 % en poids.
  • 2) Inversement, si la coupe pétrolière à adoucir est saturée en eau et compte tenu du fait que la réaction d'adoucissement s'accompagne de la production d'une molécule d'eau par molécule de disulfure formée, la teneur en eau du catalyseur peut augmenter et atteindre des valeurs supérieures à 25% et surtout 40% en poids, valeurs auxquelles les performances du catalyseur se dégradent.
  • The water content of the alkali-based catalyst used in the oxidative softening step of the present invention may vary during operation in two opposite directions:
  • 1) If the oil cut to be softened is previously dried, it can gradually lead, by dissolving, the water present inside the porosity of the catalyst. Under these conditions, the water content of the latter regularly decreases and can thus fall below the limit value of 0.1% by weight.
  • 2) Inversely, if the oil cut to be softened is saturated with water and considering that the softening reaction is accompanied by the production of one molecule of water per molecule of disulfide formed, the water content of the catalyst can increase and reach values greater than 25% and especially 40% by weight, values at which the performance of the catalyst is degraded.
  • Dans le premier cas, de l'eau peut être ajoutée, en quantité adéquate, à la coupe pétrolière, en amont du catalyseur de manière continue ou discontinue pour maintenir le degré d'hydratation à l'intérieur de l'intervalle désiré, c'est-à-dire que la teneur en eau du support est maintenue entre 0,1 et 40% pds du support, et de préférence entre 1 et 25%.In the first case, water can be added, in adequate quantity, to the cut upstream of the catalyst in a continuous or discontinuous manner to maintain the degree of hydration within the desired range, that is, the water content of the support is maintained between 0.1 and 40% by weight of the support, and preferably between 1 and 25%.

    Dans le second cas, il suffit que la température de la charge soit fixée à une valeur suffisante, inférieure à 80°C, pour solubiliser l'eau de réaction résultant de la transformation des mercaptans en disulfures. La température de la charge est ainsi choisie de manière à maintenir la teneur en eau du support entre 0,1 et 40% en poids du support et, de préférence, entre 1 et 25% en poids de celui-ci.
    Cet intervalle de valeurs prédeterminées de teneurs en eau du support dépendra, bien entendu, de la nature même du support catalytique utilisé lors de la réaction d'adoucissement. En effet, le demandeur a constaté, conformément au brevet FR-2.651.791, que si de nombreux supports catalytiques sont susceptibles d'être utilisés sans soude (ou sans base) aqueuse, leur activité ne se manifestera que lorsque leur teneur en eau (également appelée taux d'hydratation du support) est maintenue dans un intervalle de valeurs relativement étroit, variable suivant les supports, mais apparemment lié à la teneur du support en silicate et à la structure de ses pores.
    In the second case, it is sufficient that the temperature of the feed is set to a sufficient value, below 80 ° C, to solubilize the reaction water resulting from the transformation of mercaptans into disulfides. The temperature of the charge is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight thereof.
    This range of predetermined values of the water content of the support will, of course, depend on the nature of the catalyst support used in the softening reaction. Indeed, the applicant has found, in accordance with Patent FR-2,651,791, that if many catalytic supports are likely to be used without aqueous soda (or base), their activity will only occur when their water content ( also called the hydration rate of the support) is maintained in a relatively narrow range of values, variable depending on the supports, but apparently related to the content of the silicate support and the structure of its pores.

    Le déposant a pu constater que, de façon particulièrement avantageuse, cette étape d'adoucissement peut être éliminée lorsque la coupe légère a été hydrogénée sélectivement pour éliminer les diènes et que dans le même temps un adoucissement a été obtenu. Le rendement en adoucissement peut être tel que l'étape finale d'adoucissement par un agent oxydant peut n'être plus nécessaire. Ce cas se vérifie bien avec un catalyseur à base de palladium tel que décrit précédemment.
    La présence de cette étape de traitement avec un catalyseur au palladium peut permettre également de modifier l'étape d'adoucissement, par exemple en augmentant la vitesse horaire, d'où une productivité accrue, ou en réduisant la quantité de catalyseur, d'où un investissement réduit.
    Lorsque l'étape finale d'adoucissement est employée, on peut utiliser une étape d'hydrogénation sélective des diènes qui ne soit pas adoucissante.
    The Applicant has found that, particularly advantageously, this softening step can be eliminated when the light cut has been selectively hydrogenated to remove dienes and at the same time softening has been achieved. The sweetening yield may be such that the final softening step with an oxidizing agent may no longer be necessary. This case is true with a catalyst based on palladium as described above.
    The presence of this treatment step with a palladium catalyst can also make it possible to modify the softening step, for example by increasing the hourly speed, hence increasing productivity, or reducing the amount of catalyst, hence a reduced investment.
    When the final softening step is employed, a step of selective hydrogenation of the dienes can be used which is not softening.

    • Hydrodésulfuration de la fraction lourde• Hydrodesulfurization of the heavy fraction

    L'hydrodésulfuration de la fraction la plus lourde de l'essence de FCC est conduite suivant le même procédé que celui utilisé pour la fraction légère. Le catalyseur contient également au moins un métal du G VIII et/ou du groupe VI, déposé sur un support. Seules les conditions opératoires sont ajustées, afin d'obtenir le niveau de désulfuration désiré, sur cette coupe plus riche en soufre. La température utilisée est généralement comprise entre 200°C et 420°C, de préférence entre 220°C et 400°C. Les pressions opératoires utilisées sont généralement comprises entre 20 et 80 bar et de préférence entre 30 et 50 bar.L'effluent obtenu est strippé pour éliminer H2S et est envoyé au pool essence.Hydrodesulfurization of the heaviest fraction of FCC gasoline is conducted following the same process as that used for the light fraction. The catalyst contains also at least one metal of G VIII and / or group VI, deposited on a support. Only the operating conditions are adjusted, in order to obtain the level of desulfurization desired, on this cup richer in sulfur. The temperature used is usually between 200 ° C and 420 ° C, preferably between 220 ° C and 400 ° C. The pressures operating procedures are generally between 20 and 80 bar and preferably between 30 and 50 bar.The effluent obtained is stripped to eliminate H2S and is sent to the pool petrol.

    L'invention concerne également une installation pour mettre en oeuvre le procédé selon l'invention, comprenant les caractéristiques de la revendication 9 et elle comprend:

    • une colonne (1) de fractionnement munie d'une conduite (2) pour l'introduction de l'essence brute provenant du craquage catalytique et comportant au moins 2 conduites, l'une (3) dans la partie haute de la colonne pour la sortie de la coupe légère, et une autre (4) dans la partie basse de la colonne pour la sortie de la coupe lourde ;
    • une zone (5) d'hydrotraitement en présence d'hydrogène comportant un lit catalytique, une conduite (6) pour l'entrée de la coupe d'essence légère à traiter, ladite conduite étant reliée soit à la colonne (1) de fractionnement, soit à la zone de traitement (7) sur catalyseur au palladium, ladite zone d'hydrotraitement comportant également une conduite (8) pour la sortie de l'effluent hydrotraité,
    • une zone (9) de strippage comportant une conduite pour l'introduction de l'essence légère hydrotraitée, une conduite (10) pour l'évacuation de H2S et une conduite (11) pour la sortie de l'essence légère strippée,
       et ladite installation comportant également:
    • éventuellement une zone (12) d'adoucissement située après la zone de strippage comportant une conduite pour l'introduction de l'essence légère strippée et une conduite (14) pour amener l'agent oxydant au niveau de ladite zone (selon la revendicalion 10)
    • une zone (7) de traitement située avant la zone d'hydrotraitement et comportant une conduite (3) pour l'introduction de la coupe d'essence légère issue de la colonne de fractionnement, une conduite pour la sortie de la coupe d'essence légère traitée, ladite zone comportant également au moins un lit d'un catalyseur à 0,1-1% de palladium déposé sur un support, et ladite installation comportant en outre une conduite (13) pour la sortie de l'essence légère strippée et adoucie hors de l'installation, et reliée soit à la zone (9) soit à la zone (12) lorsqu'elle existe.
    The invention also relates to an installation for implementing the method according to the invention, comprising the features of claim 9 and it comprises:
    • a fractionation column (1) provided with a line (2) for the introduction of the crude gasoline from catalytic cracking and comprising at least two pipes, one (3) in the upper part of the column for the exit of the light cut, and another (4) in the lower part of the column for the exit of the heavy cut;
    • a hydrotreating zone (5) in the presence of hydrogen comprising a catalytic bed, a pipe (6) for the entry of the light gasoline fraction to be treated, said pipe being connected either to the fractionation column (1) at the treatment zone (7) on a palladium catalyst, said hydrotreatment zone also comprising a pipe (8) for the outlet of the hydrotreated effluent,
    • a stripping zone (9) comprising a pipe for introduction of the hydrotreated light gasoline, a pipe (10) for the evacuation of H2S and a pipe (11) for the exit of the stripped light gasoline,
    and said installation also comprising:
    • optionally a zone (12) for softening located after the stripping zone comprising a pipe for the introduction of the light stripped gasoline and a pipe (14) for bringing the oxidizing agent to said zone (according to claim 10). )
    • a treatment zone (7) situated before the hydrotreatment zone and comprising a pipe (3) for introducing the light fuel cutoff from the fractionation column, a pipe for the exit of the gasoline cutter lightly treated, said zone also comprising at least one bed of a 0.1-1% palladium catalyst deposited on a support, and said installation further comprising a pipe (13) for the exit of the stripped light gasoline and softened out of the installation, and connected to either the zone (9) or the zone (12) when it exists.

    Selon une variante, la zone d'adoucissement est située après le strippage et l'installation comporte en outre une zone d'hydrogénation sélective des diènes située entre la colonne de fractionnement et la zone d'hydrotraitement doux, ladite zone d'hydrogénation comportant une conduite pour l'introduction de la coupe légère et une conduite pour la sortie de la coupe légère dédiénisée.
    Dans un mode préféré, l'installation comporte également une zone (15) d'hydrotraitement de la fraction lourde, munie d'une conduite (4) pour l'introduction de la coupe lourde provenant de la colonne (1), une conduite (16) pour la sortie de la coupe hydrotraitée et une conduite (17) amenant l'hydrogène au niveau de la charge ou de la zone, ladite zone étant suivie d'une colonne (18) de strippage munie d'une conduite pour l'introduction de la coupe hydrotraitée, d'une conduite (19) pour la sortie de H2S et d'une conduite (20) pour la sortie de la coupe hydrotraitée. Les coupes sortant par les canalisations (20) et (13) peuvent être envoyées au stockage essence par une canalisation (21).
    According to one variant, the softening zone is located after the stripping and the installation further comprises a zone for selective hydrogenation of the dienes located between the fractionation column and the soft hydrotreating zone, said hydrogenation zone comprising a driving for the introduction of the light cut and driving for the release of the light cut dedienized.
    In a preferred embodiment, the plant also comprises a zone (15) for hydrotreating the heavy fraction, provided with a pipe (4) for introducing the heavy cut from the column (1), a pipe ( 16) for the outlet of the hydrotreated section and a line (17) supplying the hydrogen at the charge or the zone, said zone being followed by a stripping column (18) provided with a pipe for the introducing the hydrotreated cut, a pipe (19) for the outlet of H 2 S and a pipe (20) for the outlet of the hydrotreated cut. The cuts leaving the pipes (20) and (13) can be sent to the fuel storage via a pipe (21).

    Les chiffres se rapportent aux figures 1 et 2. Sur la figure 1, l'installation pour le traitement de la coupe légère est représenté avec en pointillé les zones d'adoucissements. On comprendra que les trois modes de réalisations suivants peuvent être utilisés :

    • premier mode, avec la zone (7) d'adoucissant mais sans la zone (12);
    • deuxième mode, avec la zone (12) mais sans la zone (7);
    • et troisième mode, avec les zones (12) et (7).
    The figures refer to FIGS. 1 and 2. In FIG. 1, the installation for the treatment of the light cut is shown with dotted areas of softening. It will be understood that the following three embodiments can be used:
    • first mode, with the zone (7) of softener but without the zone (12);
    • second mode, with the zone (12) but without the zone (7);
    • and third mode, with zones (12) and (7).

    Sur la figure 2, on a ajouté le traitement de la coupe lourde.
    On n'a pas représenté les conduites pour amener l'hydrogène, qui alourdiraient les schémas, mais il est bien évident qu'en présence de la zone (7) ou d'une zone d'hydrogénation des diènes, il y a une conduite pour amener l'hydrogène au niveau de la coupe légère ou dans le réacteur directement. En l'absence de telles zones, la conduite débouche directement dans la zone d'hydrotraitement ou dans la coupe légère.
    In Figure 2, the treatment of the heavy cut was added.
    We did not show the pipes to bring hydrogen, which would increase the diagrams, but it is quite obvious that in the presence of the zone (7) or a zone of hydrogenation of the dienes, there is a pipe to bring the hydrogen at the light cut or into the reactor directly. In the absence of such zones, the pipe opens directly into the hydrotreating zone or into the light section.

    Exemple 1 illustre un procédé sans étape d'adoucissement sur Pd Example 1 illustrates a process without a softening step on Pd

    L'exemple ci-après illustre le procédé, dans le cas où la coupe essence brute est fractionnée en une coupe légère C5 moins del80°C, et une fraction plus lourde 180-220°C. Le tableau 1 indique les caractéristiques de ces différentes coupes. Caractéristiques des différentes coupes essence FCC Coupe Essence totale
    (C5-220°C)
    Fraction légère
    (C5-180°C)
    Fraction lourde
    (180-220°C)
       (% pds) (100) (70) (30) Teneur oléfines (% pds) 44.0 56.4 10.0 Teneur aromatiques (% pds) 23.0 4.6 66.0 Indice de brome 68 90 16 Soufre total (ppm pds) 200 154 307 Soufre mercaptans (ppm pds) 106 74 0 RON 92.0 92.5 90.8 MON 80.0 80.7 78.4 (RON + MON)/2 86.0 86.6 84.6
    The following example illustrates the process, in the case where the crude gasoline cut is fractionated into a light C5 cut less than 80 ° C, and a heavier fraction 180-220 ° C. Table 1 shows the characteristics of these different sections. Characteristics of the different FCC petrol cuts Chopped off Total gasoline
    (C5-220 ° C)
    Light fraction
    (C5-180 ° C)
    Heavy fraction
    (180-220 ° C)
    (% wt) (100) (70) (30) Olefin content (% wt) 44.0 56.4 10.0 Aromatic content (% wt) 23.0 4.6 66.0 Bromine index 68 90 16 Total sulfur (ppm wt) 200 154 307 Sulfur mercaptans (ppm wt) 106 74 0 RON 92.0 92.5 90.8 MY 80.0 80.7 78.4 (RON + MON) / 2 86.0 86.6 84.6

    La coupe légère de l'essence de FCC est riche en oléfines et contient la quasi-totalité des mercaptans. La fraction plus lourde, plus riche en soufre, contient des composés soufrés essentiellement sous forme de dérivés thiophéniques.
    Le tableau 2 ci-après indique les conditions opératoires utilisées pour l'hydrotraitement de l'essence lourde, ainsi que les caractéristiques de l'essence lourde ainsi désulfurée.
    Le catalyseur utilisé est un CoMo supporté alumine (HR 306C vendu par la société Procatalyse). Caractéristiques de l'hydrodésulfuration de l'essence lourde.
    Caractéristiques de l'essence lourde désulfurée
    Caractéristiques essence lourde Charge avant désulfuration Essence lourde désulfurée Intervalle de distillation (°C) 180 - 220 180 - 220 Teneur oléfines (% pds) 10.0 2.6 Indice de brome 16 4.2 Soufre total (ppm pds) 307 10 Soufre mercaptans (ppm pds) 0 0 RON 90.8 88.8 MON 78.4 77.0 Conditions opératoires Température (°C) 300 Pression (bar) 30
    The light cut of FCC gasoline is rich in olefins and contains almost all mercaptans. The heavier fraction, which is richer in sulfur, contains sulfur compounds essentially in the form of thiophene derivatives.
    Table 2 below indicates the operating conditions used for the hydrotreatment of heavy gasoline, as well as the characteristics of the heavy gasoline thus desulfurized.
    The catalyst used is a CoMo supported alumina (HR 306C sold by the company Procatalyse). Characteristics of hydrodesulfurization of heavy gasoline.
    Characteristics of heavy desulphurised gasoline
    Characteristics heavy gasoline Charge before desulfurization Desulphurized heavy gas Distillation interval (° C) 180 - 220 180 - 220 Olefin content (% wt) 10.0 2.6 Bromine index 16 4.2 Total sulfur (ppm wt) 307 10 Sulfur mercaptans (ppm wt) 0 0 RON 90.8 88.8 MY 78.4 77.0 Operating conditions Temperature (° C) 300 Pressure (bar) 30

    Le tableau 3 ci-après indique les caractéristiques de l'essence légère désulfurée puis adoucie. Lors de l'étape d'hydrotraitement doux, la température est de 280°C, la pression est de 20 bar, LHV de 8h-1 et le catalyseur est le LD 145 à base de NiMo vendu par la société Procatalyse suivi d'un catalyseur CoMo (HR306 C vendu par la société Procatalyse). Caractéristiques de l'essence légère initiale, après hydrotraitement doux puis après adoucissement. Caractéristiques essence légère Charge essence légère Essence légère désulfurée Essence légère désulfurée et adoucie Intervalle de distillation (°C) C5 - 180 C5 - 180 C5 - 180 MAV 4 Teneur oléfines (% pds) 56.4 30.0 30.0 Indice de brome 90 47 47 Soufre total (ppm pds) 154 19 19 Soufre mercaptans (ppm pds) 74 19 < 5 RON 92.5 86.5 86.5 MON 80.7 77.0 77.0 Table 3 below indicates the characteristics of the light gasoline desulfurized and softened. During the mild hydrotreating step, the temperature is 280 ° C., the pressure is 20 bar, the LHV is 8 h -1 and the catalyst is the NiMo-based LD 145 sold by Procatalyse followed by CoMo catalyst (HR306 C sold by the company Procatalyse). Characteristics of the initial light gasoline, after mild hydrotreatment and then after softening. Light gasoline characteristics Light gasoline charge Lightly desulphurated gasoline Light sweet and sweetened gasoline Distillation interval (° C) C5 - 180 C5 - 180 C5 - 180 MY V 4 Olefin content (% wt) 56.4 30.0 30.0 Bromine index 90 47 47 Total sulfur (ppm wt) 154 19 19 Sulfur mercaptans (ppm wt) 74 19 <5 RON 92.5 86.5 86.5 MY 80.7 77.0 77.0

    L'adoucissement est effectué sur un catalyseur comportant de la sodalite (aluminosilicate alcalin) et 20% de charbon actif, imprégné avec un agent oxydant tel la phtalocyamine de cobalt sulfonnée (imprégnation de PeCo : 60 kg (m3 de cata) préparé tel que decrit dans le brevet EP-A-638.628).The softening is performed on a catalyst comprising sodalite (alkali aluminosilicate) and 20% of activated carbon, impregnated with an oxidizing agent such as sulfated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cata) prepared such that described in EP-A-638,628).

    Le procédé et l'installation selon l'invention permettent ainsi d'obtenir des essences de FCC contenant moins de 50 ppm de soufre, répondant négativement au "doctor test" et ce avec une perte en indice d'octane baril (RON + MON)/2 inférieure à 8 points par rapport à la même coupe d'essence brute de FCC avant traitement, et de préférence inférieure ou égale à 6 points.The method and the installation according to the invention thus make it possible to obtain FCC containing less than 50 ppm sulfur, responding negatively to the "doctor test" and this with a loss in octane number barrel (RON + MON) / 2 lower than 8 points per compared to the same raw gasoline fraction of FCC before treatment, and preferably less than or equal to 6 points.

    Claims (10)

    1. A process for the production of sweetened gasoline containing less than 50 ppm of sulphur, from catalytic cracking raw gasoline containing olefins, mercaptans and sulphur-containing compounds other than mercaptans, in which process:
      1) the raw gasoline is fractionated into at least one light cut with a boiling point of 210°C or less containing the major portion of the olefins and mercaptans, and at least one heavy fraction, said fractions being further submitted to different desulphurizing steps,
      2) the light cut undergoes mild hydrotreatment in the presence of hydrogen with a catalyst containing at least one group VIII metal and/or at least one group VI metal, at a temperature of 160-380°C, under a pressure of 10-30 bar, and the effluent obtained is stripped to eliminate H2S,
      3) the light fraction undergoes sweetening, at least partially, and diene hydrogenation by treatment of the light cut before the mild hydrotreatment step, in the presence of hydrogen using a catalyst containing 0,1-1% of palladium deposited on a support, at a temperature of 50-250°C, under a pressure of 4-25 bar, with a liquid hourly space velocity of 1 to 10 h-1.
      4) the heavy fraction undergoes hydrotreatment in the presence of hydrogen with a catalyst containing at least one group VI metal and/or at least one group VIII metal, at a temperature of 200-420°C, under a pressure of 20-80 bar, and the effluent obtained is stripped to eliminate H2S.
    2. A process according to claim 1, in which the light cut undergoes, before the mild hydrotreatment step, said selective diene hydrogenation and the hydrotreated and stripped cut undergoes sweetening using one of the following methods:
      extractive sweetening of the effluent obtained after mild hydrotreatment and stripping,
      sweetening of the effluent obtained after mild hydrotreatment and stripping with an oxidizing agent, a catalyst and an alkaline base which may or may not be incorporated in the catalyst.
    3. A process according to any one of the preceding claims, in which the light cut has an end point of 180°C or less.
    4. A process according to any one of the preceding claims, in which the light cut has an end point of 160°C or less.
    5. A process according to any one of the preceding claims, in which the light cut has an end point of 145°C or less.
    6. A process according to any one of the preceding claims, in which the light cut treatment before the mild hydrotreatment step is carried out using a catalyst containing 0,1-1% of palladium and 1-20% wt. of nickel.
    7. A process according to any one of the preceding claims, in which the light cut treatment before the mild hydrotreatment step is carried out using a catalyst containing 0,1-1% of palladium and gold, in an Au/Pd weight ratio of at least 0,1 and less than 1.
    8. A process according to any one of the preceding claims, in which the extractive sweetening step or the sweetening step using an oxidizing agent is carried out at 20-100°C under a pressure of 1-30 bar.
    9. An apparatus for the production of gasolines with a low sulphur content from a catalytic cracking gasoline, comprising:
      a fractionation column (1) provided with a line (2) for introducing raw gasoline from a catalytic cracking step and comprising at least two lines, one (3) in the upper portion of the column for taking off the light cut, and the other (4) in the lower portion of the column for taking off the heavy cut;
      a zone (5) for hydrotreatment in the presence of hydrogen, comprising a catalytic bed with a catalyst containing at least one group VIII metal and/or at least one group VI metal, an inlet line (6) for the light gasoline cut to be treated, said line being connected to the zone (7) for treatment over a palladium catalyst, said hydrotreatment zone also comprising an outlet line (8) for hydrotreated effluent;
      a stripping zone (9) comprising a line for introducing the light hydrotreated gasoline, a line (10) for evacuating H2S and an outlet line (11) for the stripped light gasoline,
      and said apparatus also comprising:
      a treatment zone (7) for sweetening and diene hydrogenation located before the hydrotreatment zone and comprising a line (3) for introducing the light gasoline cut from the fractionation column, an outlet line for the treated light gasoline cut, said zone also comprising at least one catalyst bed containing 0,1-1% of palladium deposited on a support, and said apparatus further comprising a line (13) for taking the stripped and sweetened gasoline out of the apparatus, and connected either to the zone (12) or to the zone (9),
      a zone (15) for hydrotreating the heavy fraction with a catalyst containing at least one group VI metal and/or at least one group VIII metal, provided with a line (4) for introducing the heavy cut from the column, an outlet line (16) for the hydrotreated cut and a line (17) supplying hydrogen to the feed or to the zone, said zone being followed by a stripping column (18) provided with a line for introducing the hydrotreated cut, an H2S outlet line (19) and an outlet line (20) for the hydrotreated cut.
    10. An apparatus according to claim 9, further comprising a sweetening zone (12) located after the stripping zone comprising an inlet line for introducing the stripped light gasoline cut and a line (14) for supplying an oxidizing agent to said zone.
    EP97402088A 1996-09-24 1997-09-08 Process and apparatus for the production of low sulphur catalytically cracked gasolines Expired - Lifetime EP0832958B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9611691 1996-09-24
    FR9611691A FR2753717B1 (en) 1996-09-24 1996-09-24 PROCESS AND PLANT FOR THE PRODUCTION OF LOW SULFUR CATALYTIC CRACKING ESSENCES

    Publications (2)

    Publication Number Publication Date
    EP0832958A1 EP0832958A1 (en) 1998-04-01
    EP0832958B1 true EP0832958B1 (en) 2005-08-17

    Family

    ID=9496062

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97402088A Expired - Lifetime EP0832958B1 (en) 1996-09-24 1997-09-08 Process and apparatus for the production of low sulphur catalytically cracked gasolines

    Country Status (6)

    Country Link
    US (2) US6007704A (en)
    EP (1) EP0832958B1 (en)
    JP (1) JP4006483B2 (en)
    KR (1) KR100456209B1 (en)
    DE (1) DE69733985T2 (en)
    FR (1) FR2753717B1 (en)

    Families Citing this family (46)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19626126C2 (en) * 1996-06-28 1998-04-16 Fraunhofer Ges Forschung Method for forming a spatial chip arrangement and spatial chip arrangement
    US6649043B1 (en) 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents
    WO2000000282A1 (en) * 1998-06-30 2000-01-06 Eastman Chemical Company Basic clay catalyst for the production of glycol monoester
    US6692635B2 (en) * 1999-02-24 2004-02-17 Institut Francais Du Petrole Process for the production of gasolines with low sulfur contents
    US6475376B2 (en) * 1999-06-11 2002-11-05 Chevron U.S.A. Inc. Mild hydrotreating/extraction process for low sulfur fuel for use in fuel cells
    FR2797639B1 (en) 1999-08-19 2001-09-21 Inst Francais Du Petrole PROCESS FOR PRODUCING LOW SULFUR ESSENCE
    US6599417B2 (en) * 2000-01-21 2003-07-29 Bp Corporation North America Inc. Sulfur removal process
    US6602405B2 (en) * 2000-01-21 2003-08-05 Bp Corporation North America Inc. Sulfur removal process
    FR2807061B1 (en) 2000-03-29 2002-05-31 Inst Francais Du Petrole PROCESS FOR FUEL DESULFURIZATION COMPRISING DESULFURIZATION OF HEAVY AND INTERMEDIATE FRACTIONS FROM A FRACTIONATION IN AT LEAST THREE CUT
    US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
    AU2001253223A1 (en) * 2000-04-18 2001-10-30 Exxonmobil Research And Engineering Company Selective hydroprocessing and mercaptan removal
    US6656877B2 (en) 2000-05-30 2003-12-02 Conocophillips Company Desulfurization and sorbents for same
    US6946068B2 (en) * 2000-06-09 2005-09-20 Catalytic Distillation Technologies Process for desulfurization of cracked naphtha
    FR2811328B1 (en) * 2000-07-06 2002-08-23 Inst Francais Du Petrole PROCESS INCLUDING TWO STAGES OF GASOLINE HYDRODESULFURATION AND AN INTERMEDIATE REMOVAL OF THE H2S FORMED DURING THE FIRST STAGE
    BR0114097A (en) * 2000-09-22 2004-03-02 Engelhard Corp Macroporous zeolite catalyst; fluid catalyst for catalytic cracking; and method for fabricating a fluid catalyst for catalytic cracking
    US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
    US20020148754A1 (en) * 2001-02-08 2002-10-17 Gong William H. Integrated preparation of blending components for refinery transportation fuels
    US7029573B2 (en) * 2001-06-19 2006-04-18 Exxonmobil Research And Engineering Company Composition and control method for treating hydrocarbon
    FR2834515B1 (en) * 2002-01-10 2006-03-10 Atofina VAPOCRAQUAGE OF MODIFIED NAPHTA
    AU2003215213A1 (en) * 2002-02-12 2003-09-04 The Penn State Research Foundation Deep desulfurization of hydrocarbon fuels
    CA2486886A1 (en) * 2002-05-22 2003-11-27 Japan Energy Corporation Adsorption desulfurization agent for desulfurizing petroleum fraction and desulfurization method using the same
    AR044779A1 (en) * 2003-06-16 2005-10-05 Shell Int Research A PROCESS AND A CATALYST FOR THE SELECTIVE HYDROGENATION OF THE DIOLEFINS OF A CURRENT OF OLEFINS AND FOR THE REMOVAL OF ARSENICO FROM THE SAME AND A METHOD OF ELABORATION OF SUCH CATALYST
    FR2857973B1 (en) * 2003-07-25 2008-02-22 Inst Francais Du Petrole METHOD FOR DESULFURING ESSENCES BY ADSORPTION
    CA2543953C (en) * 2003-11-07 2012-10-23 Japan Energy Corporation Unleaded gasoline composition and method for producing the same
    US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
    US7752659B2 (en) * 2005-02-14 2010-07-06 Lenovo (Singapore) Pte. Ltd. Packet filtering in a NIC to control antidote loading
    WO2006120898A1 (en) * 2005-05-06 2006-11-16 Japan Energy Corporation Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition
    JP5280624B2 (en) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 Unleaded gasoline composition
    JP5280625B2 (en) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 Unleaded gasoline composition
    JP5280623B2 (en) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 Unleaded gasoline composition
    FR2900157B1 (en) * 2006-04-24 2010-09-24 Inst Francais Du Petrole PROCESS FOR THE DESULFURATION OF OLEFINIC ESSENCES COMPRISING AT LEAST TWO DISTINCT HYDRODESULFURATION STAGES
    FR2908781B1 (en) * 2006-11-16 2012-10-19 Inst Francais Du Petrole PROCESS FOR DEEP DEFLAVING CRACKING SPECIES WITH LOW LOSS OF OCTANE INDEX
    EA201070499A1 (en) * 2007-11-09 2010-12-30 Жаньфэн Дин SYSTEM AND METHOD FOR OBTAINING HIGH-QUALITY GASOLINE AS A RESULT OF CATALYTIC HYDROCARBON RECOMBINATION
    WO2009094934A1 (en) * 2008-01-29 2009-08-06 Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd A system and a process for producing high quality gasoline
    JP5706126B2 (en) * 2010-10-07 2015-04-22 出光興産株式会社 Adsorbent regeneration method
    CN102443433B (en) * 2010-10-15 2014-07-30 中国石油化工股份有限公司 Method for producing low-sulfur gasoline
    CN102465031B (en) * 2010-11-04 2014-07-23 中国石油化工股份有限公司 Hydrotreating method for heavy hydrocarbon raw materials
    WO2012066572A2 (en) 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Process for deep desulfurization of cracked gasoline with minimum octane loss
    CN102041086A (en) * 2011-01-17 2011-05-04 江苏佳誉信实业有限公司 Selective hydrodesulfurization method for high-sulfur high-olefin catalytic gasoline
    CN103087771B (en) * 2011-11-07 2015-06-03 中国石油化工股份有限公司 Hydrogenation method for deeply desulfurizing gasoline
    CN107236571B (en) * 2016-03-29 2019-01-08 中国石油化工股份有限公司 A method of producing catalytically cracked stock
    CN107880934A (en) * 2017-11-02 2018-04-06 中石化炼化工程(集团)股份有限公司 The method and high-knock rating gasoline or high-knock rating gasoline blend component that catalytic cracking diesel oil utilizes
    CN107903943A (en) * 2017-11-02 2018-04-13 中石化炼化工程(集团)股份有限公司 The method and high-knock rating gasoline or high-knock rating gasoline blend component that catalytic cracking diesel oil utilizes
    CN109097104B (en) * 2018-09-11 2019-11-08 福州大学 A kind of FCC gasoline method for modifying
    SG11202104697QA (en) 2018-11-07 2021-06-29 Exxonmobil Chemical Patents Inc Process for c5+ hydrocarbon conversion
    CN110643380B (en) * 2019-08-22 2020-10-13 中科合成油工程有限公司 Method for converting coal pyrolysis product into gasoline, diesel oil and hydrogen

    Family Cites Families (30)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2025255A (en) * 1934-02-07 1935-12-24 Shell Dev Method of treating cracked oil distillates
    US2270667A (en) * 1940-05-20 1942-01-20 Shell Dev Process for extraction
    US2983669A (en) * 1958-12-30 1961-05-09 Houdry Process Corp Hydrodesulfurization of selected gasoline fractions
    US3221078A (en) * 1961-07-06 1965-11-30 Engelhard Ind Inc Selective hydrogenation of olefins in dripolene
    BE625074A (en) * 1961-11-24
    US3161586A (en) * 1962-12-21 1964-12-15 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
    US3424673A (en) * 1966-03-07 1969-01-28 Sun Oil Co Process for hydrodesulfurizing the lower boiling fraction of a cracked gas oil blend
    US3451922A (en) * 1967-04-28 1969-06-24 Universal Oil Prod Co Method for hydrogenation
    US3457163A (en) * 1967-06-16 1969-07-22 Universal Oil Prod Co Method for selective hydrogenation of diolefins with separation of gum formers prior to the reaction zone
    DE1645689C3 (en) * 1968-03-19 1978-08-17 Air Products And Chemicals Inc., Philadelphia, Pa. (V.St.A.) Process for the treatment of an unsaturated hydrocarbon distillate
    US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
    US3847800A (en) * 1973-08-06 1974-11-12 Kvb Eng Inc Method for removing sulfur and nitrogen in petroleum oils
    US3957625A (en) * 1975-02-07 1976-05-18 Mobil Oil Corporation Method for reducing the sulfur level of gasoline product
    US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
    FR2410038A1 (en) * 1977-11-29 1979-06-22 Inst Francais Du Petrole SELECTIVE HYDROGENATION PROCESS OF GASOLINES CONTAINING BOTH GUM-GENERATING COMPOUNDS AND UNDESIRABLE SULFUR COMPOUNDS
    GB1565754A (en) * 1978-03-08 1980-04-23 British Petroleum Co Selective hydrogenation
    FR2473542B1 (en) * 1980-01-12 1986-04-11 Jgc Corp PROCESS FOR SULFURIZING AND REFINING HYDROCARBON FRACTIONS CONTAINING LARGE QUANTITIES OF AROMATIC CONSTITUENTS
    FR2523149A1 (en) * 1982-03-15 1983-09-16 Catalyse Soc Prod Francais NEW CATALYST SUPPORTING PALLADIUM-OR, ITS PREPARATION AND USE IN SELECTIVE HYDROGENATION REACTIONS OF DIOLEFINIC AND / OR ACETYLENE HYDROCARBONS
    US4897175A (en) * 1988-08-29 1990-01-30 Uop Process for improving the color and color stability of a hydrocarbon fraction
    US4908122A (en) * 1989-05-08 1990-03-13 Uop Process for sweetening a sour hydrocarbon fraction
    US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
    US5064525A (en) * 1991-02-19 1991-11-12 Uop Combined hydrogenolysis plus oxidation process for sweetening a sour hydrocarbon fraction
    US5503734A (en) * 1991-08-15 1996-04-02 Mobil Oil Corporation Hydrocarbon upgrading process
    US5346609A (en) * 1991-08-15 1994-09-13 Mobil Oil Corporation Hydrocarbon upgrading process
    US5318690A (en) * 1991-08-15 1994-06-07 Mobil Oil Corporation Gasoline upgrading process
    FR2689517B1 (en) * 1992-04-02 1995-07-28 Inst Francais Du Petrole PROCESS FOR SELECTIVE HYDROGENATION OF HYDROCARBONS.
    FR2720754B1 (en) * 1994-06-01 1996-07-26 Inst Francais Du Petrole Method and installation for the treatment by selective hydrogenation of a catalytic cracked gasoline.
    DE59404736D1 (en) * 1994-10-22 1998-01-15 Krupp Uhde Gmbh Process for the production of a precursor containing aromatic hydrocarbons for the production of aromatics from coking plant raw benzene
    JP3443474B2 (en) * 1995-02-03 2003-09-02 新日本石油株式会社 Desulfurization treatment method for catalytic cracking gasoline
    JP3450940B2 (en) * 1995-06-08 2003-09-29 新日本石油株式会社 Desulfurization method of catalytic cracking gasoline

    Also Published As

    Publication number Publication date
    JP4006483B2 (en) 2007-11-14
    KR19980024831A (en) 1998-07-06
    JPH10102070A (en) 1998-04-21
    EP0832958A1 (en) 1998-04-01
    FR2753717B1 (en) 1998-10-30
    KR100456209B1 (en) 2005-01-27
    US6007704A (en) 1999-12-28
    US6838060B1 (en) 2005-01-04
    DE69733985D1 (en) 2005-09-22
    DE69733985T2 (en) 2006-01-26
    FR2753717A1 (en) 1998-03-27

    Similar Documents

    Publication Publication Date Title
    EP0832958B1 (en) Process and apparatus for the production of low sulphur catalytically cracked gasolines
    EP1138749B1 (en) Gasoline desulphurisation process comprising the desulphurisation of heavy and intermediate fractions from a fractionation into at least three cuts
    EP1002853B1 (en) Process for the production of low sulfur gasolines
    EP1174485B1 (en) Process comprising two gasoline hydrodesulphurisation steps with intermediary elimination of H2S
    EP2169032B1 (en) Catalyst capable of at least partially decomposing or hydrogenating unsaturated sulfur compounds
    KR100493874B1 (en) Process for highly shape selective dewaxing which retards catalyst aging
    EP1931751B1 (en) Gasoline desulfurization method comprising adsorption desulfurization of the light fraction and hydrodesulfurization of the heavy fraction
    EP1849850B1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
    EP1746144B1 (en) New process for olefinic gasoline desulfurisation which limits mercaptan content
    CA2299152C (en) Process for the production of low-sulfur fuels
    EP1369466A1 (en) Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst.
    EP1370627B1 (en) Method for producing petrol having a low sulphur content
    EP0831140B1 (en) Process for the purification of catalytically cracked gasolines
    WO2006114510A1 (en) Method for desulfurising olefin motor gasoline
    EP1370629B1 (en) Method for producing low-sulphur petrol
    EP1370630B1 (en) Method for producing desulphurised petrol from a petroleum fraction containing cracked petrol
    FR2785833A1 (en) Nickel based catalyst and its use in the dehydrosulfuration of hydrocarbonaceous charges

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT NL

    17P Request for examination filed

    Effective date: 19981001

    AKX Designation fees paid

    Free format text: DE FR GB IT NL

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20021202

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69733985

    Country of ref document: DE

    Date of ref document: 20050922

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050912

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060518

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 69733985

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150924

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150915

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20151001

    Year of fee payment: 19

    Ref country code: IT

    Payment date: 20150930

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150921

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69733985

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20161001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161001

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160930

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908