WO2006120898A1 - Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition - Google Patents

Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition Download PDF

Info

Publication number
WO2006120898A1
WO2006120898A1 PCT/JP2006/308696 JP2006308696W WO2006120898A1 WO 2006120898 A1 WO2006120898 A1 WO 2006120898A1 JP 2006308696 W JP2006308696 W JP 2006308696W WO 2006120898 A1 WO2006120898 A1 WO 2006120898A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
sulfur
cracked gasoline
cracked
fraction
Prior art date
Application number
PCT/JP2006/308696
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Araki
Katsuaki Ishida
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP2007528215A priority Critical patent/JP5219247B2/en
Publication of WO2006120898A1 publication Critical patent/WO2006120898A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen

Definitions

  • the present invention relates to a method for producing a low-sulfur cracking gasoline base material with reduced environmental impact, and an unleaded gasoline composition.
  • the sulfur content in the cracked gasoline fraction can be easily reduced by a known technique in which the cracked gasoline fraction is hydrotreated in the presence of high-pressure hydrogen and a catalyst.
  • the olefin component which is contained in the cracked gasoline fraction and is relatively hydrogenated, is hydrogenated to lower the RON of the base material.
  • the unleaded gasoline composition blended with oil as a base material has the problem that sufficient driving performance cannot be obtained.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-277768
  • the present invention uses a method for producing a low-sulfur cracked gasoline base material with reduced sulfur content while ensuring sufficient operating performance, and using the low-sulfur cracked gasoline base material. The challenge is to provide an unleaded gasoline composition.
  • the present inventors have conducted a process of fractionating cracked gasoline and contacting each fraction with a catalyst containing molybdenum or tungsten in the presence of hydrogen.
  • the present inventors found that the sulfur content of the cracked gasoline base material can be reduced while minimizing the loss of octane number by desulfurization by appropriately combining the treatment with a desulfurization agent containing nickel and zinc in the presence of hydrogen. It was.
  • the present invention provides:
  • step B in which the heavy cracked gasoline fraction obtained in step A is contacted with a catalyst containing molybdenum and Z or tungsten in the presence of hydrogen to reduce the sulfur content (step B); All or part of the light cracked gasoline fraction obtained in Step A and the heavy cracked gasoline fraction with reduced sulfur content obtained in Z or Step B contains nickel and zinc in the presence of hydrogen.
  • a porous desulfurizing agent to reduce and remove sulfur to 5 mass ppm or less.
  • step D Mixing step of mixing the cracked gasoline fraction obtained in steps A to C to obtain a low sulfur cracked gasoline base material having a sulfur content of 12 mass ppm or less and a research octane number of 85.0 or more (step D)
  • the preliminary desulfurization control coefficient ⁇ expressed by the following formula (1) is 12 to 30
  • LW is the fraction of light cracked gasoline fractionated in process A (volume%)
  • LS is the sulfur content in the light cracked gasoline obtained in process A (mass ppm)
  • HW is in process A.
  • the fraction (volume%) of the heavy cracked gasoline fractionated in this manner and HS represents the sulfur content (mass ppm) in the heavy cracked gasoline obtained in Step B).
  • the ratio of supplying to the process C and treating with respect to the total amount of cracked gasoline supplied to the process A is 20% by volume or more and 90% by volume or less. It is preferable.
  • Step B or Step C the whole or part of the cracked gasoline fraction is brought into contact with a catalyst containing at least one metal selected from Group 8 element force in the periodic table in the presence of hydrogen. It is preferable to include a Gen reduction processing step (Process E) that performs Gen reduction processing. Further, it is preferable to include a pretreatment step (step F) that increases the molecular weight of the sulfur-containing compound contained in the cracked gasoline fraction before step A or at the same time as the fractionation step of step A.
  • a Gen reduction processing step Process E
  • step F pretreatment step that increases the molecular weight of the sulfur-containing compound contained in the cracked gasoline fraction before step A or at the same time as the fractionation step of step A.
  • the present invention contains 30% by volume or more of the low sulfur cracking gasoline base material produced by the above method, the research octane number is 89 or more, the sulfur content is 10 mass ppm or less, and the doctor test is negative. It is a lead-free gasoline composition that has a corrosive power of silver plate or less.
  • Sarako research method octane number 92 or more, sulfur content 10 mass ppm or less, doctor test A lead-free gasoline composition which is negative and has a silver plate corrosive power ⁇ or less is preferred.
  • Various cracked gasoline fractions such as catalytically cracked gasoline fractions and pyrolyzed gasoline fractions are rich in high octane olefins.
  • hydrodesulfurization using a catalyst containing molybdenum or tungsten and an appropriate combination of treatment with a porous desulfurization agent containing nickel and zinc in the presence of hydrogen can be used for decomposition while minimizing olefin loss. It is possible to reduce the sulfur content of gasoline.
  • the cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention is a petroleum fraction, a refined process oil, a petrochemical process oil, a coal liquefied oil, an oil sand, an oil shale, a polyolefin, a plastic,
  • Typical processes for obtaining cracked gasoline fractions include catalytic cracking processes and thermal cracking processes.
  • a catalytic cracked gasoline fraction can be preferably used as the cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention.
  • the process for producing the catalytic cracking gasoline fraction can employ any known production process that does not specifically limit the catalytic cracking equipment, feedstock, and operating conditions.
  • Catalytic cracking equipment includes amorphous silica alumina, zeolite, etc.
  • the catalytic cracking of diesel fuel oil obtained from heavy oil indirect desulfurization equipment, direct desulfurization oil obtained from heavy oil direct desulfurization equipment, and atmospheric residual oil This is a device for obtaining a high octane gasoline base material.
  • the catalytic cracking feed oil preferably has a sulfur content of 8000 ppm by mass or less, particularly preferably 4000 ppm by mass or less, more preferably ⁇ or 2000 ppm by mass, or more, or 1000 ppm by mass or less. Use fractions reduced to 500 mass ppm or less by hydrorefining.
  • Specific catalytic cracking methods include, for example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, residual oil fluid catalytic cracking such as RCC method and HOC method. (The Petroleum Institute of Japan, Petroleum Refining Process, P. 125, Kodansha Scientific Fukui (1998)).
  • a heavy oil pyrolysis gasoline fraction can also be used as the cracked gasoline fraction preferably used in the method for producing a low sulfur cracking gasoline base material of the present invention.
  • Heavy oil pyrolysis A gasoline fraction is a fraction with a carbon number of approximately 4 or more and a boiling point of 250 ° C or less obtained by applying a heat reaction to a heavy oil fraction and mainly a radical reaction. For example, a fraction obtained by a delayed coking method, a visbreaking method or a fluid coking method.
  • the light cracked gasoline fraction obtained in this way does not need to be subjected to a hydrodesulfurization step in which it is brought into contact with a hydrodesulfurization catalyst in the presence of high-pressure hydrogen as in step B described later. Since the olefinic compound is not hydrogenated, a decrease in RON of the light cracked gasoline fraction can be avoided.
  • the cracked gasoline fraction may be fractionated into three or more fractions. Then, the hydrodesulfurization step (step B) described later is performed on the heavy cracked gasoline fraction containing a relatively large amount of sulfur. As a result, the load on the collection / removal sulfur process (process C) described later can be reduced, and desulfurization can be carried out economically.
  • the preferred properties of the fractionated light cracked gasoline fraction are: 5% distillation temperature 35-55 ° C, especially 40-50 ° C, 95% distillation temperature 65-125 ° C, especially is seventy-five to one hundred fifteen ° C, sulfur content L ⁇ 50ppm, particularly 5 to 20 ppm, Orefin content 30-70 volume 0/0, especially from 40-60% by volume.
  • the heavy cracked gasoline fraction is heavier than the light cracked gasoline fraction, and usually has a higher sulfur content and lower olefin content than the light cracked gasoline fraction.
  • Preferred properties of the fractionated heavy cracked gasoline fraction 5% distillation temperature of 80 to 170 ° C, particularly 95 ⁇ 160 o C, 95 0/0 distillation temperature strength S175 ⁇ 215. C, especially ⁇ or 190-220. Is C, sulfur force ⁇ 20 ⁇ 500ppm, particularly ⁇ or 50 ⁇ 300ppm, old olefin component force 1-35 capacity 0/0, is particularly ⁇ or 5-25% by volume.
  • the fractionation step fractionates the cracked gasoline fraction obtained from a cracking process such as a catalytic cracking process, but the light cracking gasoline fraction directly from the fractionation step included in the final stage of the cracking process. And heavy cracked gasoline fractions can also be obtained.
  • Process IV is a process in which the heavy cracked gasoline fraction obtained in Process IV and the hydrodesulfurization catalyst are brought into contact with each other in the presence of high-pressure hydrogen to separate the sulfur as hydrogen sulfide and hydrodesulfurize it. . Since heavy cracked gasoline fractions contain relatively large amounts of sulfur, all heavy cracked gasoline fractions are usually hydrodesulfurized to supply low sulfur gasoline, but most of them. Specifically, it is preferable to hydrodesulfurize 80% by volume or more, particularly 90% by volume or more. Through the hydrodesulfurization process, the sulfur content of the heavy cracked gasoline fraction can be 5-50 ppm, preferably 10-30 ppm.
  • the hydrodesulfurization catalyst contains molybdenum and Z or tungsten, and is preferably one in which molybdenum or tungsten is supported on an inorganic porous carrier such as alumina.
  • the hydrodesulfurization catalyst has a total content of molybdenum and tungsten of 2 to 20% by mass, especially Is preferably 5 to 15% by mass. The content is defined by mass% of the metal element contained in the catalyst.
  • component elements other than molybdenum or tungsten contained in the catalyst include cobalt, phosphorus, potassium, carbon, nitrogen, and the like.
  • the cobalt content is from 0.5 to 10 mass 0/0, especially 1 to 5 wt%, the content of phosphorus 0.1. 2 to: LO wt%, particularly is 5-5 wt% 0.1 Is preferred.
  • the catalyst is used after sulfiding.
  • Preferred reaction conditions include a reaction temperature of 150 to 350 ° C, the reaction pressure 0.1 ⁇ 4.0MPa, liquid hourly space velocity (LHSV) 1.0 ⁇ 10h _1, is hydrogen Z oil ratio 50 ⁇ 1000NLZL.
  • Particularly preferred reaction conditions include a reaction temperature of 200 to 300 [° C, the reaction pressure 0.5 ⁇ 2.5MPa, LHSV2.0 ⁇ 6.0h _1, is hydrogen Z oil ratio 100 ⁇ 600NLZL.
  • the reaction pressure in this specification is indicated by gauge pressure.
  • the heavy cracked gasoline fraction does not contain a relatively high amount of olefinic compounds with high RON. However, when hydrogenated, the olefinic compounds may be saturated and RON may be reduced. However, operation under conditions where the olefin content is reduced by 20% or more, further 10% or more, particularly 3% or more is not preferable.
  • Step B hydrogen sulfide produced by hydrodesulfurization reacts with olefins that are usually contained in cracked gasoline to produce thiols, but if gasoline contains thiols, corrosion of gasoline car parts will occur. Cause unpleasant odor.
  • the thiols in the cracked gasoline that has undergone Step B are preferably removed after going through Step C, which will be described later. Although this removal method is not particularly limited, it is preferable to remove thiols by a method of converting thiols typified by acid-sweet jung to disulfide.
  • thiols contained in heavy cracked gasoline usually have about 5 to 10 carbon atoms, and it is preferable to apply an oxidized sweet-jung process that can remove even thiols having a large carbon number.
  • Specific examples include the MERICAT-II process described in NPRA 2000 Annual Meeting AM-00-54. The details of such sweetening will be described later as a method for increasing the molecular weight of the sulfur compound.
  • As another removal method it is preferable to reduce the thiols in the gasoline base material in advance so that the sulfur content of the thiols in the unleaded gasoline composition is 2 mass ppm or less, and further 1 mass ppm or less. . [0022] [Removal and removal sulfur process (Process C)]
  • Step A after performing Step A and Step B, in the coexistence of hydrogen, a desulfurization agent containing nickel and zinc and various cracked gasoline fractions obtained in Step A and Step B, that is, Step A
  • the obtained light cracked gasoline fraction and the heavy cracked gasoline fraction and the heavy cracked gasoline fraction obtained in step B are brought into contact with each or all or a part thereof to reduce the sulfur content.
  • the preliminary desulfurization control coefficient ⁇ represented by the following formula (1) is preferably 12-30, more preferably 13-20.
  • LW is the fraction (volume%) of the light cracked gasoline fraction fractionated in step A
  • LS is the sulfur content (mass ppm) in the light cracked gasoline fraction obtained in step A
  • HW Indicates the fraction (volume%) of the heavy cracked gasoline fraction fractionated in step A
  • HS indicates the sulfur content (mass ppm) in the heavy cracked gasoline fraction obtained in step B.
  • the ratio of the light cracked gasoline fraction and the ratio of the heavy cracked gasoline fraction are the ratio to the capacity of 100% by volume of cracked gasoline fractionated in the process A.
  • the ratio HW of the heavy cracked gasoline fractionated in step A is preferably 10 to 80% by volume, particularly 25 to 60% by volume.
  • Hydrocracking a cracked gasoline fraction in the presence of a hydrodesulfurization catalyst and hydrogen to desulfurize it to a sulfur content of 5 mass ppm or less means that the RON of the gasoline base material obtained by hydrogenating olefin is Decreasing and not preferable. Furthermore, since hydrogen sulfide produced by hydrodesulfurization reacts with olefin to regenerate thiols, it is not preferable because it cannot be sufficiently desulfurized. When a porous desulfurization agent containing nickel and zinc is used in the presence of hydrogen, sulfur removed from the organic sulfur compound is fixed on the desulfurization agent and does not generate hydrogen sulfide. React with fins to regenerate thiols.
  • the feedstock used in Step C was obtained by contacting the hydrocracked catalyst in the presence of high-pressure hydrogen in Step B or in part or all of the light cracked gasoline fraction obtained in Step A. Use all or part of the heavy cracked gasoline fraction. Alternatively, use a mixture of each in an appropriate ratio.
  • the ratio of treatment in Step C to the total amount of cracked gasoline before being used in Step A is 20% by volume or more and 90% by volume or less, particularly 25% by volume or more and 70% by volume or less. LV preferred. If the rate of treatment in Step C is less than 20% by volume, a sufficient effect of suppressing the decrease in octane number cannot be obtained. If the proportion treated in Step C exceeds 90% by volume, the life of the desulfurizing agent containing nickel and zinc is shortened, which is not preferable.
  • the porous desulfurization agent of the present invention contains nickel and zinc.
  • the method for producing a porous desulfurization agent containing nickel and zinc in the present invention is not particularly limited! However, a porous carrier such as alumina is impregnated with metal components such as zinc and nickel, and fired.
  • a preferable method is a production method or a production method in which a metal component such as zinc or nickel is precipitated by filtration and washed by a coprecipitation method, followed by steps such as molding and baking.
  • other elements such as iron and copper may be included.
  • the elemental mass ratio of nickel to zinc is preferably 1 to 50% by mass, particularly preferably 2 to 35% by mass, and more preferably 5 to 30% by mass with respect to 100% by mass of the total elemental mass of zinc and nickel. is there.
  • the nickel content is preferably 33% by mass or less, more preferably 20% by mass or less, based on the total mass of the desulfurizing agent.
  • the zinc content is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 55% by mass or more with respect to the total mass of the desulfurizing agent. If the nickel content exceeds 50% by mass or the zinc content is less than 30% by mass, the life of the porous desulfurizing agent is shortened, which is not preferable.
  • the sodium content is preferably 1.0% by mass or less based on the total mass of the desulfurizing agent, more preferably 0.5% by mass or less, and further 0 2% by mass or less. If sodium is contained in an amount exceeding 1.0 mass% with respect to the total mass of the desulfurizing agent, the desulfurization performance is lowered, which is not preferable.
  • a preferable desulfurizing agent contains 30 to 85% by mass, particularly 50 to 80% by mass of a metal component such as nickel and zinc. Further, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired.
  • the desulfurizing agent is preferably used after being treated in a hydrogen atmosphere.
  • the specific surface area of the desulfurizing agent is preferably 30 m 2 / g or more, particularly preferably 50 to 600 m 2 Zg.
  • the porous desulfurization agent of the present invention is preferably a porous desulfurization agent having a sulfur sorption function.
  • the porous desulfurization agent having a sulfur sorption function here is to fix the sulfur atom in the organic sulfur compound to the desulfurization agent, and for hydrocarbon residues other than the sulfur atom in the organic sulfur compound.
  • hydrocarbon compounds from which sulfur atoms have been removed may give products that have undergone reactions such as hydrogenation, isomerization, and decomposition. Since sulfur is fixed to the desulfurizing agent in the detachable sulfur, it does not generate sulfur compounds such as hydrogen sulfide as a product, unlike hydrorefining. Further, since hydrogen sulfide is not generated, hydrogen sulfide is not included in the recital hydrogen or purge hydrogen, and no facility for removing hydrogen sulfide is required, so that desulfurization can be achieved economically.
  • the collection / removal sulfur treatment may be carried out by a notch type or a flow type, but the light cracked gasoline fraction or the heavy cracked gasoline fraction is placed in a fixed bed desulfurization tower filled with a desulfurizing agent. It is preferable to carry out the distribution of the fraction because the separation of the desulfurization agent and the obtained desulfurized cracked gasoline fraction can be easily performed.
  • the temperature in the desulfurization treatment is preferably 100 to 400 ° C, more preferably 200 to 350 ° C, and particularly preferably 250 to 350 ° C. If the reaction temperature is less than 100 ° C, the desulfurization rate decreases, and desulfurization cannot be efficiently performed, which is not preferable.
  • reaction temperature exceeds 400 ° C
  • the desulfurization agent is sintered, and the desulfurization capacity is lowered, which is not preferable.
  • hydrogen is allowed to coexist.
  • the reaction pressure is preferably 0 to 5. OMPa, more preferably 0 to 3. OMPa, and particularly preferably 0 to 5. 2. It is OMPa. If the reaction pressure exceeds 5. OMPa, hydrogenation of the olefins contained in the hydrocarbon oil tends to proceed and RON may decrease, which is not preferable.
  • LH SV is preferably more than 2.
  • Oh _ 1 and 50 Oh _ 1 or less, more preferably 2. is a beyond 20.
  • Oh _ 1 below Oh _1, particularly preferably 10.
  • Oh _1 from more than 2.
  • the LHSV is 2.
  • Oh _ 1 or less the oil flow rate is limited or the desulfurization reactor becomes too large, and it is not preferable because it cannot economically desulfurize.
  • the LHSV exceeds 50.
  • Oh _1 a contact time sufficient for desulfurization cannot be obtained, and the desulfurization rate decreases, which is not preferable.
  • the hydrogen Z oil ratio is preferably 1 to 1000 NLZL, more preferably 10 to 500 NLZL. Particularly preferred is 10 to 300 NL / L.
  • Hydrogen may contain impurities such as methane, but the hydrogen purity is preferably 50% by volume or more, more preferably 80% by volume or more, especially 95% by volume or more so that the hydrogen compressor does not become too large. preferable. If a sulfur compound such as sulfur dioxide or hydrogen is contained in hydrogen, the life of the desulfurizing agent is reduced, so that it is preferably less than a certain ratio.
  • the sulfur content in hydrogen is preferably 1000 ppm by volume or less, more preferably 100 ppm by volume or less, and particularly preferably 10 ppm by volume or less.
  • the cracked gasoline fraction is treated in Step A, Step B, and Step C, and the base materials obtained in each step are mixed to obtain a sulfur content of 12 mass ppm or less, and RON is 85.
  • the sulfur content is preferably 10 ppm by mass or less, more preferably 8 ppm by mass or less.
  • RON is preferably 89.0-93.0.
  • the various base materials obtained in Process A, Process B, and Process C have a sufficient amount of production and the amount used in Process D for preparing a low sulfur cracked gasoline base material. It is economical and preferable to use it frequently.
  • the light cracked gasoline fraction obtained in step A and treated in step C is mixed with the heavy cracked gasoline fraction obtained in step A and treated in step B, or
  • the light cracked gasoline fraction obtained in step A is mixed with the heavy cracked gasoline fraction obtained in step A, treated in step B, and further treated in the same step.
  • Cracked gasoline fraction used as raw material for process A It is preferable to mix various base materials obtained with almost the entire amount, for example, 80% by volume or more, to make a low sulfur decomposition gasoline base material. Further, the mixing in step D may be performed simultaneously with the blending step described later, which is mixing with other gasoline base materials for the preparation of the gasoline composition.
  • the whole or part of the cracked gasoline fraction in the pre-process of Step B or Step C is preferably present in the presence of hydrogen, preferably on an inorganic porous support such as alumina. It is preferable to reduce the gen value by contacting with a catalyst supporting at least one metal selected from the group 8 elements in the table. Since cracked gasoline fractions contain sulfur, catalysts with high resistance to sulfur and nickel or cobalt are preferred. There are no particular restrictions on the active component elements other than the Group 8 element contained in the catalyst, but molybdenum, tungsten, and phosphorus are listed as preferred components that may be included. Usually, the catalyst is used after the sulfur treatment. The reaction conditions need to be set so that the hydrogen of the olefins can be significantly reduced and the RON cannot be significantly reduced by reducing the gen number of the cracked gasoline fraction obtained.
  • Preferred reaction conditions are a reaction temperature of 40 to 300 ° C, a reaction pressure of 0 to 4 MPa, an LHSV of 1 to: L0h_1, and a hydrogen Z oil ratio of 1 to 500 NLZL.
  • the gen number of the cracked gasoline fraction obtained by step E is preferably 0.5 gZl00 g or less, more preferably 0.3 gZl00 g, particularly preferably 0. lgZlOOg or less. If the Gen value exceeds 0.5 gZ100 g, desulfurization performance and desulfurization agent life will be greatly impaired in Process B and Process C! /, Preferable! /.
  • the decrease in olefin content is preferably 10% by volume or less, particularly preferably 5% by volume or less, more preferably 2% by volume or less, and the decrease in RON is preferably 1 or less, more preferably. It is 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.2 or less.
  • the sulfur content is not substantially reduced. Part of the sulfur content may be converted to hydrogen sulfide, which may be desulfurized in the subsequent step B or step C, and a sulfur hydrogen removal facility is installed in the Jen reduction treatment step. This is not economical.
  • the gen value as used in the present invention refers to the gen value measured by UOP326-82.
  • the gen number is obtained by bringing a catalyst and catalytically cracked gasoline into contact with each other in the presence of hydrogen and converting gen to mono-olefin or reacting with a sulfur compound coexisting with gen to convert it into sulfides. Is reduced.
  • a catalyst containing a Group 8 element By using a catalyst containing a Group 8 element and applying the above-mentioned preferred reaction conditions, hydrogenation of olefin can be almost suppressed, so that the gen number can be lowered without significantly reducing RON.
  • gen in olefin is selectively hydrorefined, and can be applied as step E in the present invention.
  • the IFP Selective Hydrogenation process and the Huies Selective Hydrogenation process are used favorably (edited by the Japan Petroleum Institute, Petroleum Refining Process, p. 62, Kodansha Scientific (199 8)).
  • the SHU process 21st JPI Petroleum Refining and onference 'Recent Progress in Petroleum Process ⁇ echnology, 37 (2002)
  • CD Hydro process NPRA 2001 Annual Meeting, AM-01- 39 (2001)
  • the pretreatment step (Step F) to increase the molecular weight of the sulfur compounds contained in the cracked gasoline fraction is used for the fractionation step in Step A, or the molecular weight of the sulfur compounds is reduced simultaneously with the fractionation step in Step A. It is preferable to do pretreatment to enlarge. By selectively increasing the molecular weight of the sulfur compound such as thiols, the boiling point of the sulfur compound is increased. Therefore, in the fractionation process, the sulfur compound is contained in the heavy cracked gasoline fraction. The sulfur content of the light cracked gasoline fraction obtained in the fractionation process can be reduced.
  • a catalyst is placed in a distillation column to make the sulfur content heavy, and the heavy sulfur compound moves to the distillate component on the heavy side to reduce the sulfur content of the light fraction. be able to.
  • the CD-Hydro process described below uses this!
  • a sweet jung is performed to treat the thiols to make the product non-brominated.
  • a known method for converting thiols to disulfides by an oxidation method or an oxidation extraction method can be applied as a method for increasing the molecular weight of a sulfur compound in the present invention.
  • the Marlox method, doctor method, etc. are preferably used (Oil Refining Technology Handbook 3rd Edition, Sangyo Tosho Co., Ltd. (1981)).
  • a method of increasing the molecular weight of the sulfur compound a method of reacting a sulfur compound contained in the cracked gasoline fraction with olefins can also be suitably used.
  • SHU process and OATS process 21st JPI Petroleum Refining conference Recent Progress in Petroleum Process Technology, 37 (2002)
  • a SHU process capable of simultaneously performing a process for increasing the molecular weight of a sulfur compound and a process for reducing a gen is preferable.
  • a process capable of simultaneously increasing the molecular weight of the sulfur compound and reducing the gen while carrying out fractional distillation is more preferable, and specifically, a CD-hydro process can be mentioned as such a process.
  • gasoline base materials other than the cracked gasoline fraction mixed in the blending process include catalytic reformed gasoline base materials, alkylate gasoline base materials, straight-run naphtha.
  • Desulfurized base materials isomeric gasoline base materials, aromatic base materials such as toluene and xylene, and methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), tamyl ether ether (TAEE ),
  • Known gasoline base materials such as oxygen-containing gasoline base materials such as ethanol and methanol can be appropriately used.
  • ETBE has a higher octane number improvement effect per oxygen content than ethanol and MTBE, and is a preferred base material because it can increase the octane number without deteriorating volatility by mixing ETBE.
  • the other gasoline base material mixed in the blending process preferably has a sulfur content of 20 ppm by mass or less, more preferably 10 ppm by mass or less, further 3 ppm by mass or less, particularly 1 ppm by mass. It is as follows. If the sulfur content of other gasoline base materials exceeds 20 mass ppm, the blending amount in the blending process of gasoline base materials is restricted, which is not preferable.
  • Preferred blending amounts are 30 to 90% by volume of cracked gasoline fraction, especially 40 to 80% by volume, 5 to 50% by volume of catalytically reformed gasoline base, particularly 10 to 45% by volume, alkylate gasoline base 5 to 40% by volume, especially 10 to 30% by volume, and oxygen-containing gasoline base material such as ETBE is 0 to 16% by volume, particularly 1 to 7% by volume.
  • the unleaded gasoline composition of the present invention has a research octane number of 89.0 or more and a total sulfur content. 10 mass ppm or less, doctor test is negative, silver plate corrosion is 1 or less.
  • the research octane number is preferably 90.0 or more and the gen number is preferably 0.1 lg / 100 g or less. If the doctor test is positive or the silver plate corrosion exceeds 1, unpleasant odor of gasoline power is generated, and corrosion of components used in gasoline automobiles is not preferable.
  • RON is preferably 92 or more, more preferably 93 to 102. Having such a high RON is preferable because it can improve the acceleration performance and fuel consumption of a gasoline automobile.
  • the sulfur content is preferably 8 mass ppm or less, more preferably 5 mass ppm or less.
  • the lead-free gasoline composition of the present invention preferably has a Reed vapor pressure (RVP) of 93 kPa or less, more preferably 44 to 93 kPa. If it exceeds 93 kPa, the amount of gasoline vapor released into the atmosphere increases, which is preferable. If it is less than 44 kPa, the startability of a gasoline vehicle deteriorates, which is not preferable. More preferably, it is preferable to adjust the RVP according to the season to 44-65 kPa in summer and 70-93 kPa in winter! /.
  • RVP Reed vapor pressure
  • the unleaded gasoline composition of the present invention has a 50% by volume distillation temperature of 75 to 105 ° C, more preferably 75 to 100 ° C. If the 50% by volume distillation temperature is less than 75 ° C, the RVP of the unleaded gasoline composition increases, which is not preferable. If it exceeds 105 ° C, the acceleration performance of gasoline automobiles will be poor, which is not preferable.
  • the aromatic content is preferably 40% by volume or less, more preferably 30% by volume or less, and particularly preferably 20 to 30% by volume. When the aromatic content is less than 20% by volume, the blending amount of the cracked gasoline base material is limited, and the production cost of the unleaded gasoline composition becomes high, which is not preferable. If it exceeds 40% by volume, the unflammable gasoline composition has poor flammability, which is preferable.
  • the olefin content which is the ratio of the unsaturated carbon number to the total carbon number, is 45% by volume or less, more preferably 20 to 40% by volume, particularly preferably 20 to 30% by volume. is there.
  • the ratio of unsaturated carbon to total carbon is in such a range, it becomes easy to secure the olefin and aromatic content within the above-mentioned range.
  • fuel oil additives known in the art can be blended as required. These compounding amounts can be appropriately selected. Usually, it is preferable to maintain the total compounding amount of the additives at 0.1% by mass or less.
  • fuel oil additives that can be used in water include phenolic and amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organophosphorus compounds.
  • Detergents such as surface ignition inhibitors, succinimides, polyalkylamines, polyetheramines, anti-icing agents such as polyhydric alcohols or ethers, alkali metal salts of organic acids or alkaline earth metals
  • auxiliary agents such as salts and sulfates of higher alcohols
  • antistatic agents such as anionic surfactants, cationic surfactants and amphoteric surfactants
  • colorants such as azo dyes.
  • JIS ⁇ 2276 Pulleum product aviation fuel oil test method 14 14. Silver plate corrosion The silver plate used in “Test method” was used for evaluation. The test temperature is 50 ° C and the test time is 3 hours. The doctor test was measured according to JIS K 2276.
  • This catalytic cracking gasoline fraction B was fractionated to obtain a light catalytic cracking gasoline fraction C and a heavy catalytic cracking gasoline fraction D.
  • the ratio of light fraction C and heavy fraction D was 68:32 (volume ratio).
  • Table 1 shows the properties of light catalytic cracking gasoline fraction C and heavy catalytic cracking gasoline fraction D. Shown in
  • a solution in which 106 g of sodium carbonate was dissolved in water was heated to 60 ° C, and 58 g of nickel nitrate hexahydrate was added to the solution in which 179 g of zinc nitrate hexahydrate was dissolved in water.
  • the food was dripped.
  • the resulting precipitate was filtered and washed with water. Thereafter, after drying at 120 ° C. for 16 hours, calcination was performed at 350 ° C. for 3 hours to obtain a desulfurizing agent Z.
  • the desulfurizing agent Z had a nickel content of 17.9% by mass, a zinc content of 58.7% by mass, a sodium content of 0.02% by mass and a specific surface area of 80 m 2 Zg.
  • Table 1 shows the properties of light catalytic cracking gasoline fractions E and F.
  • the oxidized sweet jung equipment is a MERICAT-IV process manufactured by Merichem, and the reaction temperature was 41 ° C. Drove in.
  • Table 3 shows the properties of the low-sulfur cracking gasoline base material L and the properties of the above-mentioned intermediate base material.
  • the preliminary desulfurization control coefficient ⁇ in Example 3 was 18.
  • the catalytically cracked gasoline fraction B obtained in Example 1 was fractionally distilled to a volume ratio of 47:53 to obtain a light catalytic cracked gasoline fraction M and a heavy catalytic cracked gasoline fraction N.
  • the total amount of light catalytic cracking gasoline M, the half amount of heavy catalytic cracking gasoline O and the total amount of heavy catalytic cracking gasoline P were mixed to obtain a low sulfur cracking gasoline base material Q.
  • Table 4 shows the properties of the low sulfur decomposition gasoline substrate Q and related intermediate substrates. The preliminary desulfurization control coefficient ex in Example 4 was 14.
  • the light catalytic cracking gasoline fraction C obtained in Example 1 was mixed with the entire heavy catalytic cracking gasoline R to obtain cracked gasoline base material S.
  • Table 5 shows the properties of the cracked gasoline base material 3 and the related intermediate base material.
  • Gasoline base materials obtained by known techniques other than catalytic cracking include desulfurized straight-run naphtha T, catalytically reformed medium oil U, catalytically reformed heavy oil V, alkylate gasoline W, ethyl tbutylbutyl X
  • the properties are as shown in Table 6.
  • Catalytically modified medium oil U is obtained by distilling and separating a toluene-rich fraction from catalytically modified gasoline.
  • Catalytically modified heavy oil V is obtained by distillation separation of aromatics having 9 or more carbon atoms and less than 11 from catalytically reformed gasoline.
  • Example 4 An unleaded gasoline composition CC was prepared by blending 22% by volume of the cracked gasoline base material Q described above and 25% by volume of the light catalytic cracked gasoline base material M described in Example 4. Table 7 shows the properties.
  • Undecomposed gasoline composition DD was prepared by blending 70% by volume of the cracked gasoline base S described. Table 7 shows the properties.

Abstract

A lead-free gasoline composition reduced in sulfur content while ensuring sufficient driving performance; a process for producing the composition; and a process for producing a low-sulfur cracked-gasoline base suitable for preparing the gasoline composition. The process for producing a low-sulfur cracked-gasoline base is characterized by comprising: a step (A) in which cracked-gasoline fractions are obtained; a step (B) in which a heavy cracked-gasoline fraction obtained in the step (A) is hydrodesulfurized; a step (C) in which the whole or part of a light cracked-gasoline fraction obtained in the step (A) and/or the whole or part of the heavy cracked-gasoline fraction reduced in sulfur content obtained in the step (B) is subjected to sorption desulfurization; and a step (D) in which the cracked-gasoline fractions obtained in the steps (A) to (C) are mixed together to obtain a low-sulfur cracked-gasoline base having a specific sulfur content and a specific octane value.

Description

明 細 書  Specification
低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物  Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
技術分野  Technical field
[0001] 本発明は、環境への影響を低減した低硫黄分解ガソリン基材の製造方法、および 無鉛ガソリン組成物に関する。  [0001] The present invention relates to a method for producing a low-sulfur cracking gasoline base material with reduced environmental impact, and an unleaded gasoline composition.
背景技術  Background art
[0002] 接触分解や熱分解等、重質な石油留分を分解することによって製造される分解ガ ソリン留分は、他のガソリン基材に比べ経済的に製造でき、リサーチ法オクタン価 (R ON)が比較的高いォレフィン分に富むという利点があるため、無鉛ガソリン組成物の 基材として用いられている。しかし、分解ガソリン留分は、硫黄分を多く含むため、分 解ガソリン留分を多く配合したガソリン組成物を燃料として用いると、 NOx吸蔵型等 のガソリン自動車排気ガス浄ィ匕触媒を有効に作用させることができないという問題が めつに。  [0002] Cracked gasoline fractions produced by cracking heavy petroleum fractions, such as catalytic cracking and thermal cracking, can be produced more economically than other gasoline bases. ) Has a relatively high olefin content, and is used as a base material for unleaded gasoline compositions. However, the cracked gasoline fraction contains a large amount of sulfur, so if a gasoline composition containing a large amount of the cracked gasoline fraction is used as fuel, the NOx storage type gasoline automobile exhaust gas purification catalyst will work effectively. The problem of not being able to make it happen.
[0003] 分解ガソリン留分に含まれる硫黄分を低減することは、分解ガソリン留分を高圧水 素と触媒の共存下で水素化処理するという公知技術で容易に可能である。しかし、そ の場合は、分解ガソリン留分中に多く含まれ、比較的高い RONをもつォレフィン分が 水素化されて基材の RONが低下してしまうため、そのようにして得た水素化処理油 を基材として配合した無鉛ガソリン組成物では、十分な運転性能が得られな ヽと ヽぅ 問題があった。  [0003] The sulfur content in the cracked gasoline fraction can be easily reduced by a known technique in which the cracked gasoline fraction is hydrotreated in the presence of high-pressure hydrogen and a catalyst. However, in that case, the olefin component, which is contained in the cracked gasoline fraction and is relatively hydrogenated, is hydrogenated to lower the RON of the base material. The unleaded gasoline composition blended with oil as a base material has the problem that sufficient driving performance cannot be obtained.
[0004] 例えば、(1)硫黄分 200質量 ppm以下の接触分解ガソリンをスイートユングした後、 硫黄分が 20質量 ppm以下である軽質留分と残部の硫黄分を含有する重質留分に 蒸留分離する工程、(2)重質留分をリサーチオクタン価の低下が 3以下、かつ硫黄分 が 20質量 ppm以下となるように水素化脱硫する工程、 (3) (1)の工程で得られた軽 質留分、(2)の工程で得られた重質留分、および接触分解ガソリン以外のガソリン基 材であって硫黄分が 10質量 ppm以下のガソリン基材を混合して、硫黄分が 8質量 pp m以下の製品ガソリンを製造する工程、力 なる低硫黄分ガソリンの製造方法が提案 されている(特許文献 1参照)。しかし、この方法では、ォレフィンが水添されてパラフ インに変化するため十分な RONを維持して実用性能を確保することはできない。 [0004] For example, (1) after catalytic cracking gasoline with a sulfur content of 200 mass ppm or less is sweet-junged, it is distilled into a light fraction with a sulfur content of 20 mass ppm or less and a heavy fraction containing the remaining sulfur content. Obtained by the step of separating, (2) the hydrodesulfurization of the heavy fraction so that the decrease in the research octane number is 3 or less and the sulfur content is 20 mass ppm or less, and (3) the step of (1). Mixing the light fraction, the heavy fraction obtained in step (2), and a gasoline base material other than catalytic cracking gasoline with a sulfur content of 10 mass ppm or less, the sulfur content A process for producing a product gasoline of 8 mass ppm or less and a powerful method for producing low sulfur gasoline have been proposed (see Patent Document 1). However, with this method, olefins are hydrogenated and paraffinized. Because it changes to IN, it is not possible to maintain sufficient RON to ensure practical performance.
[0005] 一方、炭化水素油を、特定の条件下、吸着剤と接触させて硫黄ィ匕合物を吸着させ る工程と、吸着剤に水素を通気させることにより吸着剤から硫黄化合物を脱離するェ 程を繰り返すことにより、ォレフィンの水素化反応など不要な反応を抑制し、ガソリン の基材となる炭化水素油に含まれる硫黄分を連続的に低減する方法が提案されて いる(特許文献 2参照)。し力しながら、このような吸着剤を用いる方法も、原料油に含 有される特定の炭化水素化合物によるせいか、硫黄の吸着能が阻害されて硫黄分を 効率よく «続的に低減することができず、必ずしも満足できる方法ではな力つた。 特許文献 1 :特開 2003— 183676号公報 [0005] On the other hand, a hydrocarbon oil is brought into contact with an adsorbent under specific conditions to adsorb a sulfur compound, and a sulfur compound is desorbed from the adsorbent by passing hydrogen through the adsorbent. By repeating this process, a method has been proposed in which unnecessary reactions such as the hydrogenation reaction of olefins are suppressed, and the sulfur content in hydrocarbon oil that is the base material of gasoline is continuously reduced (patent document). 2). However, the method using such an adsorbent also reduces the sulfur content efficiently and continuously because the adsorption capability of sulfur is hindered because of the specific hydrocarbon compound contained in the feedstock. I couldn't do it, and it wasn't always a satisfactory way. Patent Document 1: Japanese Unexamined Patent Publication No. 2003-183676
特許文献 2:特開 2003 - 277768号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-277768
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上述したように、硫黄分を低減し、かつ十分な RONを維持して実用性能を確保し た無鉛ガソリン組成物の製造方法は未だ確立されていない。本発明は、このような状 況下で、十分な運転性能を確保しつつ、硫黄分を低減した低硫黄分解ガソリン基材 の製造方法、さら〖こ、その低硫黄分解ガソリン基材を用いた無鉛ガソリン組成物を提 供することを課題とする。 [0006] As described above, a method for producing an unleaded gasoline composition that has reduced sulfur content and maintained sufficient RON to ensure practical performance has not yet been established. Under such circumstances, the present invention uses a method for producing a low-sulfur cracked gasoline base material with reduced sulfur content while ensuring sufficient operating performance, and using the low-sulfur cracked gasoline base material. The challenge is to provide an unleaded gasoline composition.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者等は、上記課題を解決するために鋭意研究した結果、分解ガソリンを分 留し、各留分に対し、水素の存在下でモリブデンまたはタングステンを含む触媒と接 触させる処理と、水素の存在下でニッケルと亜鉛を含む脱硫剤による処理を適切に 組み合わせて脱硫することで、オクタン価のロスを最小限にしながら分解ガソリン基材 の硫黄分が低減できることを見出しこの発明に至った。 [0007] As a result of diligent research to solve the above problems, the present inventors have conducted a process of fractionating cracked gasoline and contacting each fraction with a catalyst containing molybdenum or tungsten in the presence of hydrogen. In addition, the present inventors found that the sulfur content of the cracked gasoline base material can be reduced while minimizing the loss of octane number by desulfurization by appropriately combining the treatment with a desulfurization agent containing nickel and zinc in the presence of hydrogen. It was.
[0008] すなわち、本発明は、 That is, the present invention provides:
(1) 分解ガソリン留分を分留して、軽質分解ガソリン留分と重質分解ガソリン留分と を得る分留工程 (工程 A)、  (1) A fractionation process in which a cracked gasoline fraction is fractionated to obtain a light cracked gasoline fraction and a heavy cracked gasoline fraction (Step A),
工程 Aで得られた重質分解ガソリン留分を水素の存在下でモリブデン及び Z又は タングステンを含む触媒と接触させて硫黄分を低減する水素化脱硫工程 (工程 B)、 工程 Aにて得られた軽質分解ガソリン留分及び Z又は工程 Bにて得られた硫黄分 が低減された重質分解ガソリン留分の全量あるいは一部を水素の存在下でニッケル と亜鉛を含む多孔質脱硫剤と接触させ、硫黄分を 5質量 ppm以下に低減する収着脱 硫工程(工程 C)、 A hydrodesulfurization step (step B) in which the heavy cracked gasoline fraction obtained in step A is contacted with a catalyst containing molybdenum and Z or tungsten in the presence of hydrogen to reduce the sulfur content (step B); All or part of the light cracked gasoline fraction obtained in Step A and the heavy cracked gasoline fraction with reduced sulfur content obtained in Z or Step B contains nickel and zinc in the presence of hydrogen. Contact with a porous desulfurizing agent to reduce and remove sulfur to 5 mass ppm or less.
前記工程 A〜Cによって得られた分解ガソリン留分を混合して硫黄分 12質量 ppm 以下、リサーチ法オクタン価 85. 0以上である低硫黄分解ガソリン基材を得る混合ェ 程(工程 D)  Mixing step of mixing the cracked gasoline fraction obtained in steps A to C to obtain a low sulfur cracked gasoline base material having a sulfur content of 12 mass ppm or less and a research octane number of 85.0 or more (step D)
を含む  including
ことを特徴とする低硫黄分解ガソリン基材の製造方法である。  It is a manufacturing method of the low sulfur decomposition gasoline base material characterized by the above-mentioned.
[0009] 工程 A及び工程 Bを経た段階で、次式(1)で表される予備脱硫制御係数 αが 12〜 30である [0009] After the process A and the process B, the preliminary desulfurization control coefficient α expressed by the following formula (1) is 12 to 30
a = (LW X LS + HW X HS) /100 (1)  a = (LW X LS + HW X HS) / 100 (1)
(式中、 LWは工程 Aにて分留された軽質分解ガソリンの割合 (容量%)、 LSは工程 Aにて得られた軽質分解ガソリン中の硫黄分 (質量 ppm)、 HWは工程 Aにて分留さ れた重質分解ガソリンの割合 (容量%)、 HSは工程 Bにて得られた重質分解ガソリン 中の硫黄分 (質量 ppm)を示す。)ことが好ましい。  (Where LW is the fraction of light cracked gasoline fractionated in process A (volume%), LS is the sulfur content in the light cracked gasoline obtained in process A (mass ppm), and HW is in process A. The fraction (volume%) of the heavy cracked gasoline fractionated in this manner and HS represents the sulfur content (mass ppm) in the heavy cracked gasoline obtained in Step B).
[0010] 本発明の低硫黄分解ガソリン基材の製造方法は、工程 Aに供給する分解ガソリン 全量に対し、工程 Cに供給して処理する割合が 20容量%以上、 90容量%以下であ ることが好ましい。 [0010] In the method for producing a low-sulfur cracked gasoline base material of the present invention, the ratio of supplying to the process C and treating with respect to the total amount of cracked gasoline supplied to the process A is 20% by volume or more and 90% by volume or less. It is preferable.
また、工程 Bまたは工程 Cの前に、分解ガソリン留分の全量または一部を水素の存 在下で、周期律表第 8属元素力 選ばれる少なくとも 1種の金属を含む触媒と接触さ せてジェン低減処理を行うジェン低減処理工程(工程 E)を含むことが好ま ヽ。 さら〖こ、工程 Aの前に、あるいは工程 Aの分留工程と同時に分解ガソリン留分に含 まれる硫黄ィ匕合物の分子量を大きくする前処理工程 (工程 F)を含むことが好ましい。  Prior to Step B or Step C, the whole or part of the cracked gasoline fraction is brought into contact with a catalyst containing at least one metal selected from Group 8 element force in the periodic table in the presence of hydrogen. It is preferable to include a Gen reduction processing step (Process E) that performs Gen reduction processing. Further, it is preferable to include a pretreatment step (step F) that increases the molecular weight of the sulfur-containing compound contained in the cracked gasoline fraction before step A or at the same time as the fractionation step of step A.
[0011] また、本発明は、上記の方法によって製造された低硫黄分解ガソリン基材を 30容 量%以上含有し、リサーチ法オクタン価が 89以上、硫黄分 10質量 ppm以下、ドクタ 一テストが陰性、銀板腐食力 ^以下である無鉛ガソリン組成物である。 [0011] Further, the present invention contains 30% by volume or more of the low sulfur cracking gasoline base material produced by the above method, the research octane number is 89 or more, the sulfur content is 10 mass ppm or less, and the doctor test is negative. It is a lead-free gasoline composition that has a corrosive power of silver plate or less.
さら〖こ、リサーチ法オクタン価が 92以上、硫黄分 10質量 ppm以下、ドクターテストが 陰性、及び銀板腐食力 ^以下である無鉛ガソリン組成物であることが好ましい。 Sarako, research method octane number 92 or more, sulfur content 10 mass ppm or less, doctor test A lead-free gasoline composition which is negative and has a silver plate corrosive power ^ or less is preferred.
発明の効果  The invention's effect
[0012] 接触分解ガソリン留分ゃ熱分解ガソリン留分等の各種の分解ガソリン留分には、高 オクタン価のォレフィンが多く含まれる。本発明は、モリブデンまたはタングステンを含 む触媒による水素化脱硫と、水素の存在下でニッケルと亜鉛を含む多孔質脱硫剤に よる処理を適切に組み合わせることで、ォレフィンのロスを最小限にしながら分解ガソ リンの硫黄分を低減することが可能である。また、ォレフィンのロスが最小限であること 力もオクタン価もほとんど減少しないので、オクタン価などの性状をほとんど変えること なく硫黄分だけを 12質量 ppm以下まで減じることが可能である。  [0012] Various cracked gasoline fractions such as catalytically cracked gasoline fractions and pyrolyzed gasoline fractions are rich in high octane olefins. In the present invention, hydrodesulfurization using a catalyst containing molybdenum or tungsten and an appropriate combination of treatment with a porous desulfurization agent containing nickel and zinc in the presence of hydrogen can be used for decomposition while minimizing olefin loss. It is possible to reduce the sulfur content of gasoline. In addition, since the loss of olefins is minimal and neither the octane number nor the octane number decreases, it is possible to reduce the sulfur content to 12 ppm by mass or less without changing the properties such as octane number.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 〔分解ガソリン留分〕 [0013] [cracked gasoline fraction]
本発明の低硫黄分解ガソリン基材の製造方法における分解ガソリン留分とは、石油 留分、石油精製プロセス油、石油化学プロセス油、石炭液化油、オイルサンド、オイ ルシェール、ポリオレフイン類、プラスチック類、廃プラスチック等の炭化水素類を分 解して得られる、より分子量の小さい炭化水素化合物であり、おおよそ炭素数が 4以 上で沸点が 250°C以下の範囲の留分を指す。分解ガソリン留分を得るためのプロセ スとしては、接触分解プロセスや熱分解プロセスが代表的なものとして挙げられる。 ガソリン、灯油、軽油等の炭化水素化合物を分解して、エチレンやプロピレン等の ォレフィン類を得るためのクラッキングプロセス力 副生するおおよそ炭素数力 S4以上 で沸点が 250°C以下の範囲の留分や、軽油や潤滑油に含まれるノルマルパラフィン 化合物を選択的に分解して、低温流動性を改善する接触脱蝌プロセスから得られる 脱蠟ガソリン留分なども本発明の分解ガソリン留分として用いることができる。  The cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention is a petroleum fraction, a refined process oil, a petrochemical process oil, a coal liquefied oil, an oil sand, an oil shale, a polyolefin, a plastic, A hydrocarbon compound with a lower molecular weight, obtained by decomposing hydrocarbons such as waste plastics, and refers to a fraction having a carbon number of 4 or more and a boiling point of 250 ° C or less. Typical processes for obtaining cracked gasoline fractions include catalytic cracking processes and thermal cracking processes. Cracking process power for decomposing hydrocarbon compounds such as gasoline, kerosene, and light oil to obtain olefins such as ethylene and propylene By-product fraction with a carbon number of approximately S4 or more and a boiling point of 250 ° C or less Also, degassing gasoline fractions obtained from catalytic degassing processes that selectively decompose normal paraffin compounds contained in light oil and lubricating oil to improve low-temperature fluidity should be used as cracked gasoline fractions of the present invention. Can do.
また、本発明では上記の各種の分解プロセスで得られる分解ガソリン留分を 2種以 上組み合わせて用いてょ 、。  In the present invention, two or more cracked gasoline fractions obtained by the above various cracking processes are used in combination.
[0014] 本発明の低硫黄分解ガソリン基材の製造方法における分解ガソリン留分としては接 触分解ガソリン留分を好ましく用いることができる。接触分解ガソリン留分を製造する プロセスは、接触分解装置、原料油、運転条件を特に限定するものでなぐ公知の任 意の製造工程を採用できる。接触分解装置は、無定形シリカアルミナ、ゼォライトなど の触媒を使用して、軽油から減圧軽油までの石油留分のほか、重油間接脱硫装置 から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油など を接触分解して高オクタン価ガソリン基材を得る装置である。接触分解の原料油は、 好ましくはその硫黄分が 8000質量 ppm以下、特に好ましくは 4000質量 ppm以下、 より好ましく ίま 2000質量 ppm以下、さら【こ ίま 1000質量 ppm以下、特【こ ίま 500質量 p pm以下に水素化精製などにより低減した留分を用いる。接触分解方法として具体的 には、例えば、 UOP接触分解法、フレキシクラッキング法、ウルトラ 'オルソフロー法、 テキサコ流動接触分解法などの流動接触分解法、 RCC法、 HOC法などの残油流動 接触分解法などがある (石油学会編、石油精製プロセス、 P. 125、講談社サイェンテ ィフイク(1998) )。 [0014] As the cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention, a catalytic cracked gasoline fraction can be preferably used. The process for producing the catalytic cracking gasoline fraction can employ any known production process that does not specifically limit the catalytic cracking equipment, feedstock, and operating conditions. Catalytic cracking equipment includes amorphous silica alumina, zeolite, etc. In addition to the oil fraction from diesel oil to vacuum diesel oil, the catalytic cracking of diesel fuel oil obtained from heavy oil indirect desulfurization equipment, direct desulfurization oil obtained from heavy oil direct desulfurization equipment, and atmospheric residual oil This is a device for obtaining a high octane gasoline base material. The catalytic cracking feed oil preferably has a sulfur content of 8000 ppm by mass or less, particularly preferably 4000 ppm by mass or less, more preferably ί or 2000 ppm by mass, or more, or 1000 ppm by mass or less. Use fractions reduced to 500 mass ppm or less by hydrorefining. Specific catalytic cracking methods include, for example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, residual oil fluid catalytic cracking such as RCC method and HOC method. (The Petroleum Institute of Japan, Petroleum Refining Process, P. 125, Kodansha Scientific Fukui (1998)).
[0015] また、本発明の低硫黄分解ガソリン基材の製造方法において好ましく用いられる分 解ガソリン留分として重質油熱分解ガソリン留分も用いることができる。重質油熱分解 ガソリン留分とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により 得られるおおよそ炭素数が 4以上で沸点が 250°C以下の範囲の留分で、例えば、デ ィレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得 られる留分をいう。  [0015] A heavy oil pyrolysis gasoline fraction can also be used as the cracked gasoline fraction preferably used in the method for producing a low sulfur cracking gasoline base material of the present invention. Heavy oil pyrolysis A gasoline fraction is a fraction with a carbon number of approximately 4 or more and a boiling point of 250 ° C or less obtained by applying a heat reaction to a heavy oil fraction and mainly a radical reaction. For example, a fraction obtained by a delayed coking method, a visbreaking method or a fluid coking method.
[0016] 〔分留工程 (工程 A) ) [0016] [Fractionation process (Process A))
分解ガソリン留分、特に、接触分解ガソリン留分は、軽質な留分中に RONの高いォ レフインィ匕合物を比較的多く含むが、硫黄分を多くは含まない。これに対して、重質 な留分中には、硫黄分を比較的多く含むが、 RONの高いォレフィン化合物を多くは 含まない。したがって、分解ガソリン留分、特に、接触分解ガソリン留分を無鉛ガソリ ン組成物の基材として有効利用するためには、基材とする軽質分解ガソリン留分に 含まれる硫黄分が十分に低くなるように分留することが好ましい。例えば、硫黄分が 2 0質量 ppm以下、特には 10質量 ppm以下となるよう分留する。このようにして得られ た軽質分解ガソリン留分は、後述する工程 Bのような高圧の水素存在下で水素化脱 硫触媒と接触させる水素化脱硫工程を実施する必要がなく、そのため RONの高 ヽ ォレフィンィ匕合物が水素化されな 、ので、軽質分解ガソリン留分の RON低下を回避 することができる。無鉛ガソリン組成物への基材配合の自由度を高めるために、軽質 分解ガソリン留分と重質分解ガソリン留分の少なくとも一方をさらに分留し細分ィ匕してCracked gasoline fractions, particularly catalytic cracked gasoline fractions, contain relatively high RON olefinic compounds in light distillates, but do not contain much sulfur. In contrast, the heavy fraction contains a relatively large amount of sulfur, but does not contain a large amount of olefin compounds with high RON. Therefore, in order to effectively use cracked gasoline fractions, particularly catalytic cracked gasoline fractions, as the base material for unleaded gasoline compositions, the sulfur content in the light cracked gasoline fraction used as the base material is sufficiently low. Thus, it is preferable to carry out fractional distillation. For example, fractional distillation is performed so that the sulfur content is 20 mass ppm or less, particularly 10 mass ppm or less. The light cracked gasoline fraction obtained in this way does not need to be subjected to a hydrodesulfurization step in which it is brought into contact with a hydrodesulfurization catalyst in the presence of high-pressure hydrogen as in step B described later. Since the olefinic compound is not hydrogenated, a decrease in RON of the light cracked gasoline fraction can be avoided. In order to increase the degree of freedom in blending base materials into unleaded gasoline compositions, Further fractionate and subdivide at least one of cracked gasoline fraction and heavy cracked gasoline fraction
、分解ガソリン留分を 3つ以上の留分に分留しても構わない。そして、硫黄分を比較 的多く含有する重質分解ガソリン留分に対しては、後述する水素化脱硫工程 (工程 B )を実施する。これにより、後述する収着脱硫工程 (工程 C)への負荷が低減でき、経 済的に脱硫を行うことができる。 The cracked gasoline fraction may be fractionated into three or more fractions. Then, the hydrodesulfurization step (step B) described later is performed on the heavy cracked gasoline fraction containing a relatively large amount of sulfur. As a result, the load on the collection / removal sulfur process (process C) described later can be reduced, and desulfurization can be carried out economically.
[0017] 分留された軽質分解ガソリン留分の好ましい性状は、 5%留出温度が 35〜55°C、 特には 40〜50°C、 95%留出温度が 65〜125°C、特には 75〜115°Cであり、硫黄 分が l〜50ppm、特には 5〜20ppm、ォレフィン分が 30〜70容量0 /0、特には 40〜 60容量%である。重質分解ガソリン留分は、軽質分解ガソリン留分よりも重質な留分 であり、通常、軽質分解ガソリン留分よりも硫黄分が高ぐォレフィン分が低い。分留さ れた重質分解ガソリン留分の好ましい性状は、 5%留出温度が 80〜170°C、特には 95〜160oC、 950/0留出温度力 S175〜215。C、特に ίま 190〜220。Cであり、硫黄分 力 ^20〜500ppm、特に ίま 50〜300ppm、才レフィン分力 1〜35容量0 /0、特に ίま 5〜 25容量%である。 [0017] The preferred properties of the fractionated light cracked gasoline fraction are: 5% distillation temperature 35-55 ° C, especially 40-50 ° C, 95% distillation temperature 65-125 ° C, especially is seventy-five to one hundred fifteen ° C, sulfur content L~50ppm, particularly 5 to 20 ppm, Orefin content 30-70 volume 0/0, especially from 40-60% by volume. The heavy cracked gasoline fraction is heavier than the light cracked gasoline fraction, and usually has a higher sulfur content and lower olefin content than the light cracked gasoline fraction. Preferred properties of the fractionated heavy cracked gasoline fraction, 5% distillation temperature of 80 to 170 ° C, particularly 95~160 o C, 95 0/0 distillation temperature strength S175~215. C, especially ί or 190-220. Is C, sulfur force ^ 20~500ppm, particularly ί or 50~300ppm, old olefin component force 1-35 capacity 0/0, is particularly ί or 5-25% by volume.
分留工程は、接触分解プロセスなどの分解プロセスカゝら得られた分解ガソリン留分 を分留するものであるが、分解プロセスの最終段階に含まれる分留工程から、直接に 軽質分解ガソリン留分と重質分解ガソリン留分を得ることもできる。  The fractionation step fractionates the cracked gasoline fraction obtained from a cracking process such as a catalytic cracking process, but the light cracking gasoline fraction directly from the fractionation step included in the final stage of the cracking process. And heavy cracked gasoline fractions can also be obtained.
[0018] 〔水素化脱硫工程(工程 Β)〕  [0018] [Hydrodesulphurization process (process Β)]
工程 Βは、工程 Αで得られた重質分解ガソリン留分と水素化脱硫触媒とを高圧水素 の存在下で接触させて、硫黄分を硫化水素として分離し、水素化脱硫する工程であ る。重質分解ガソリン留分は、比較的多量に硫黄分を含有しているので、低硫黄のガ ソリンを供給するには、重質分解ガソリン留分は通常全て水素化脱硫するが、その大 部分、具体的には 80容量%以上、特には 90容量%以上を水素化脱硫することが好 ましい。水素化脱硫工程により、重質分解ガソリン留分の硫黄分は 5〜50ppm好まし くは 10〜30ppmとすることができる。  Process IV is a process in which the heavy cracked gasoline fraction obtained in Process IV and the hydrodesulfurization catalyst are brought into contact with each other in the presence of high-pressure hydrogen to separate the sulfur as hydrogen sulfide and hydrodesulfurize it. . Since heavy cracked gasoline fractions contain relatively large amounts of sulfur, all heavy cracked gasoline fractions are usually hydrodesulfurized to supply low sulfur gasoline, but most of them. Specifically, it is preferable to hydrodesulfurize 80% by volume or more, particularly 90% by volume or more. Through the hydrodesulfurization process, the sulfur content of the heavy cracked gasoline fraction can be 5-50 ppm, preferably 10-30 ppm.
[0019] 水素化脱硫触媒は、モリブデン及び Z又はタングステンを含み、好ましくは、アルミ ナなどの無機多孔質担体にモリブデンまたはタングステンを担持したものである。水 素化脱硫触媒は、モリブデンとタングステンの含有量は合計で 2〜20質量%、特に は 5〜15質量%が好ましい。含有量は、触媒に含まれる金属元素の質量%で規定さ れる。触媒が含むモリブデンまたはタングステン以外の成分元素に特に制約はな ヽ 力 含ませてよい好ましい成分として、コバルト、リン、カリウム、炭素、窒素などが挙 げられる。コバルトの含有量が 0. 5〜10質量0 /0、特には 1〜5質量%が、リンの含有 量が 0. 2〜: LO質量%、特には 0. 5〜5質量%であることが好ましい。通常、触媒は 硫化処理を行なった後に用いられる。 [0019] The hydrodesulfurization catalyst contains molybdenum and Z or tungsten, and is preferably one in which molybdenum or tungsten is supported on an inorganic porous carrier such as alumina. The hydrodesulfurization catalyst has a total content of molybdenum and tungsten of 2 to 20% by mass, especially Is preferably 5 to 15% by mass. The content is defined by mass% of the metal element contained in the catalyst. There are no particular restrictions on the component elements other than molybdenum or tungsten contained in the catalyst. Preferred components that may be contained include cobalt, phosphorus, potassium, carbon, nitrogen, and the like. The cobalt content is from 0.5 to 10 mass 0/0, especially 1 to 5 wt%, the content of phosphorus 0.1. 2 to: LO wt%, particularly is 5-5 wt% 0.1 Is preferred. Usually, the catalyst is used after sulfiding.
[0020] 好ましい反応条件は、反応温度 150〜350°C、反応圧力 0.1〜4.0MPa、液空間 速度(LHSV) 1.0〜10h_1、水素 Z油比 50〜1000NLZLである。特に好ましい反 応条件は、反応温度 200〜300°C、反応圧力 0.5〜2.5MPa、 LHSV2.0〜6.0h_1 、水素 Z油比 100〜600NLZLである。なお、本明細書での反応圧力は、ゲージ圧 で示す。重質分解ガソリン留分は、 RONの高いォレフィンィ匕合物を比較的多くは含 まないが、水素化するとォレフインィ匕合物は、飽和されて RONが低下することがある から、あまり過酷な条件、ォレフィン分が 20%以上、さらには 10%以上、特には 3% 以上低下するような条件下の運転は好ましくない。 [0020] Preferred reaction conditions include a reaction temperature of 150 to 350 ° C, the reaction pressure 0.1~4.0MPa, liquid hourly space velocity (LHSV) 1.0~10h _1, is hydrogen Z oil ratio 50~1000NLZL. Particularly preferred reaction conditions include a reaction temperature of 200 to 300 [° C, the reaction pressure 0.5~2.5MPa, LHSV2.0~6.0h _1, is hydrogen Z oil ratio 100~600NLZL. The reaction pressure in this specification is indicated by gauge pressure. The heavy cracked gasoline fraction does not contain a relatively high amount of olefinic compounds with high RON. However, when hydrogenated, the olefinic compounds may be saturated and RON may be reduced. However, operation under conditions where the olefin content is reduced by 20% or more, further 10% or more, particularly 3% or more is not preferable.
[0021] 工程 Bでは、水素化脱硫によって生成する硫ィ匕水素と分解ガソリンに通常含まれる ォレフィン分が反応しチオール類が生成するが、ガソリン中にチオール類が含まれる とガソリン車の部材腐食や悪臭の原因となり好ましくない。工程 Bを経た分解ガソリン 中のチオール類は、後述する工程 Cを経ると除去される力 工程 Cを経ない場合には チオール類を除去することが好ま 、。この除去方法につ!、て特には限定しな 、が、 酸ィ匕型のスイートユングに代表されるチオール類をジスルフイドに転ィ匕する方法によ り、チオール類を除去することが好ましい。さらに、重質分解ガソリン中に含まれるチ オール類は、通常炭素数が 5〜10程度であり、炭素数が大きいチオールでも除去出 来る酸化型スイートユングプロセスの適用が好ましい。具体的には、 NPRA 2000 Ann ual Meeting AM-00-54記載の MERICAT-IIプロセスなどが挙げられる。このようなスィ 一トニングの詳細は硫黄ィ匕合物の分子量を大きくする方法として後述する。他の除 去方法としては、無鉛ガソリン組成物中のチオール類硫黄分が 2質量 ppm以下、さら には 1質量 ppm以下となるよう、ガソリン基材中のチオール類を予め減じておくことが 好ましい。 [0022] 〔収着脱硫工程 (工程 C)〕 [0021] In Step B, hydrogen sulfide produced by hydrodesulfurization reacts with olefins that are usually contained in cracked gasoline to produce thiols, but if gasoline contains thiols, corrosion of gasoline car parts will occur. Cause unpleasant odor. The thiols in the cracked gasoline that has undergone Step B are preferably removed after going through Step C, which will be described later. Although this removal method is not particularly limited, it is preferable to remove thiols by a method of converting thiols typified by acid-sweet jung to disulfide. Furthermore, thiols contained in heavy cracked gasoline usually have about 5 to 10 carbon atoms, and it is preferable to apply an oxidized sweet-jung process that can remove even thiols having a large carbon number. Specific examples include the MERICAT-II process described in NPRA 2000 Annual Meeting AM-00-54. The details of such sweetening will be described later as a method for increasing the molecular weight of the sulfur compound. As another removal method, it is preferable to reduce the thiols in the gasoline base material in advance so that the sulfur content of the thiols in the unleaded gasoline composition is 2 mass ppm or less, and further 1 mass ppm or less. . [0022] [Removal and removal sulfur process (Process C)]
本発明においては、工程 A及び工程 Bを実施した後、水素の共存下でニッケルと亜 鉛を含む脱硫剤と、工程 A及び工程 Bで得られた各種の分解ガソリン留分、すなわち 工程 Aで得られた軽質分解ガソリン留分と重質分解ガソリン留分および工程 Bで得ら れた重質分解ガソリン留分の内少なくとも一つの留分のそれぞれ全量または一部と を接触させ、硫黄分を 5質量 ppm以下、好ましくは 1質量 ppm以下まで脱硫する収着 脱硫工程 (工程 C)を実施する。  In the present invention, after performing Step A and Step B, in the coexistence of hydrogen, a desulfurization agent containing nickel and zinc and various cracked gasoline fractions obtained in Step A and Step B, that is, Step A The obtained light cracked gasoline fraction and the heavy cracked gasoline fraction and the heavy cracked gasoline fraction obtained in step B are brought into contact with each or all or a part thereof to reduce the sulfur content. Perform a sorption desulfurization step (Step C) to desulfurize to 5 ppm by mass or less, preferably 1 ppm by mass or less.
[0023] なお、工程 A及び工程 Bを経た段階で、次式(1)で表される予備脱硫制御係数 α は 12〜30が好ましぐより好ましくは 13〜20である。  [0023] In the stage after Step A and Step B, the preliminary desulfurization control coefficient α represented by the following formula (1) is preferably 12-30, more preferably 13-20.
a = (LWX LS + HWX HS) /100 (1)  a = (LWX LS + HWX HS) / 100 (1)
式中、 LWは工程 Aにて分留された軽質分解ガソリン留分の割合 (容量%)、 LSはェ 程 Aにて得られた軽質分解ガソリン留分中の硫黄分 (質量 ppm)、 HWは工程 Aにて 分留された重質分解ガソリン留分の割合 (容量%)、 HSは工程 Bにて得られた重質 分解ガソリン留分中の硫黄分 (質量 ppm)を示す。軽質分解ガソリン留分の割合、重 質分解ガソリン留分の割合は、工程 Aで分留される分解ガソリンの容量 100容量%に 対する割合である。工程 Aにて分留された重質分解ガソリン留分の割合 HWは、 10 〜80容量%特には 25〜60容量%が好ましい。  Where LW is the fraction (volume%) of the light cracked gasoline fraction fractionated in step A, LS is the sulfur content (mass ppm) in the light cracked gasoline fraction obtained in step A, HW Indicates the fraction (volume%) of the heavy cracked gasoline fraction fractionated in step A, and HS indicates the sulfur content (mass ppm) in the heavy cracked gasoline fraction obtained in step B. The ratio of the light cracked gasoline fraction and the ratio of the heavy cracked gasoline fraction are the ratio to the capacity of 100% by volume of cracked gasoline fractionated in the process A. The ratio HW of the heavy cracked gasoline fraction fractionated in step A is preferably 10 to 80% by volume, particularly 25 to 60% by volume.
これにより、適度に脱硫しながら必要以上に水素化することがないため RON低下を 最小限にコントロールすることができ、経済的に脱硫を行うことができる。予備脱硫制 御係数 αが 12未満であると、 RON低下が大きくなつてしまい好ましくない。 aが 30 を超えると、工程 Cにおいて原料硫黄濃度が高くなり、ニッケルと亜鉛を含む脱硫剤 の寿命が短くなり好ましくない。  This prevents excessive hydrogenation while desulfurizing moderately, so that the decrease in RON can be controlled to a minimum, and desulfurization can be performed economically. If the preliminary desulfurization control coefficient α is less than 12, it is not preferable because the decrease in RON increases. If a exceeds 30, the raw material sulfur concentration in Step C becomes high, and the life of the desulfurizing agent containing nickel and zinc is shortened.
[0024] 水素化脱硫触媒と水素の存在下で、分解ガソリン留分を水素化精製処理し硫黄分 5質量 ppm以下まで脱硫することは、ォレフィンが水素化されて得られるガソリン基材 の RONが低下し好ましくない。さらに、水素化脱硫によって生成する硫ィ匕水素がォ レフインと反応してチオール類を再生成するため、十分に脱硫処理できな 、ので好ま しくな 、。水素の存在下ニッケルと亜鉛を含む多孔質脱硫剤を用いると有機硫黄ィ匕 合物から除去される硫黄が脱硫剤上に固定ィ匕され、硫ィ匕水素を生じないので、ォレ フィンと反応してチオール類を再生成することがな 、。 [0024] Hydrocracking a cracked gasoline fraction in the presence of a hydrodesulfurization catalyst and hydrogen to desulfurize it to a sulfur content of 5 mass ppm or less means that the RON of the gasoline base material obtained by hydrogenating olefin is Decreasing and not preferable. Furthermore, since hydrogen sulfide produced by hydrodesulfurization reacts with olefin to regenerate thiols, it is not preferable because it cannot be sufficiently desulfurized. When a porous desulfurization agent containing nickel and zinc is used in the presence of hydrogen, sulfur removed from the organic sulfur compound is fixed on the desulfurization agent and does not generate hydrogen sulfide. React with fins to regenerate thiols.
[0025] 工程 Cに使用する原料油としては、工程 Aで得られた軽質分解ガソリン留分の全量 あるいは一部もしくは工程 Bで高圧の水素存在下で水素化脱硫触媒と接触させて得 られた重質分解ガソリン留分の全量あるいは一部を用いる。あるいは、それぞれを適 宜の割合で混合したものを用いてもょ 、。  [0025] The feedstock used in Step C was obtained by contacting the hydrocracked catalyst in the presence of high-pressure hydrogen in Step B or in part or all of the light cracked gasoline fraction obtained in Step A. Use all or part of the heavy cracked gasoline fraction. Alternatively, use a mixture of each in an appropriate ratio.
工程 Aで得られた軽質分解ガソリン留分を工程 Cに使用する場合は、軽質分解ガソ リン留分の 30〜 100容量%を原料油とすることが好ま ヽ。工程 Bで得られた重質分 解ガソリン留分を工程 Cに使用する場合は、重質分解ガソリン留分の 30〜: L00容量 %を原料油とすることが好ましい。  When the light cracked gasoline fraction obtained in Process A is used in Process C, it is preferable to use 30 to 100% by volume of the light cracked gasoline fraction as the feedstock. When the heavy cracked gasoline fraction obtained in Step B is used in Step C, it is preferable to use 30 to L00 vol% of the heavy cracked gasoline fraction as the feedstock.
[0026] 工程 Aに使用する前の分解ガソリン全量に対し、工程 Cにて処理する割合が 20容 量%以上、 90容量%以下、特には 25容量%以上、 70容量%以下であることが好ま LV、。工程 Cにて処理する割合が 20容量%未満だと十分なオクタン価低下の抑制効 果が得られない。工程 Cにて処理する割合が 90容量%を超えると、ニッケルと亜鉛を 含む脱硫剤の寿命が短くなり好ましくない。  [0026] The ratio of treatment in Step C to the total amount of cracked gasoline before being used in Step A is 20% by volume or more and 90% by volume or less, particularly 25% by volume or more and 70% by volume or less. LV preferred. If the rate of treatment in Step C is less than 20% by volume, a sufficient effect of suppressing the decrease in octane number cannot be obtained. If the proportion treated in Step C exceeds 90% by volume, the life of the desulfurizing agent containing nickel and zinc is shortened, which is not preferable.
[0027] 本発明の多孔質脱硫剤はニッケルと亜鉛を含むものである。本発明における-ッケ ルと亜鉛を含む多孔質脱硫剤の製造方法は特に限定されな!、が、アルミナのような 多孔質担体に亜鉛やニッケルなどの金属成分を含浸、担持して焼成する製造方法 や、共沈法によって亜鉛やニッケルなどの金属成分を沈殿させてろ過洗浄し、成形、 焼成等の工程を経る製造方法が、好ましい方法として挙げられる。ニッケルと亜鉛以 外にも、鉄、銅等の他の元素を含んでよい。亜鉛に対するニッケルの元素質量比率 は、亜鉛とニッケルの合計元素質量 100質量%に対するニッケルの量が好ましくは 1 〜50質量%、特に好ましくは 2〜35質量%以下、さらには 5〜30質量%である。ニッ ケル含有量は脱硫剤総質量に対して、好ましくは 33質量%以下であり、さらに好まし くは 20質量%以下である。亜鉛含有量は脱硫剤総質量に対して、好ましくは 30質量 %以上であり、さらに好ましくは 50質量%以上であり、特に好ましくは 55質量%以上 である。ニッケル含有量が 50質量%を超えていたり、亜鉛含有量が 30質量%未満だ つたりすると、多孔質脱硫剤の寿命が短くなり好ましくない。ナトリウム含有量は脱硫 剤総質量に対して 1. 0質量%以下が好ましぐさらには 0. 5質量%以下、さらには 0 . 2質量%以下である。ナトリウムが脱硫剤総質量に対して 1. 0質量%を超えて含ま れると脱硫性能が低下し好ましくない。好ましい脱硫剤は、ニッケル、亜鉛などの金 属成分を 30〜85質量%、特には 50〜80質量%含有する。また、成形、焼成された 脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、水素雰囲気 下で処理して用いるのが好ましい。脱硫剤の比表面積は、好ましくは 30m2/g以上 、特に好ましくは 50〜600m2Zgである。 [0027] The porous desulfurization agent of the present invention contains nickel and zinc. The method for producing a porous desulfurization agent containing nickel and zinc in the present invention is not particularly limited! However, a porous carrier such as alumina is impregnated with metal components such as zinc and nickel, and fired. A preferable method is a production method or a production method in which a metal component such as zinc or nickel is precipitated by filtration and washed by a coprecipitation method, followed by steps such as molding and baking. In addition to nickel and zinc, other elements such as iron and copper may be included. The elemental mass ratio of nickel to zinc is preferably 1 to 50% by mass, particularly preferably 2 to 35% by mass, and more preferably 5 to 30% by mass with respect to 100% by mass of the total elemental mass of zinc and nickel. is there. The nickel content is preferably 33% by mass or less, more preferably 20% by mass or less, based on the total mass of the desulfurizing agent. The zinc content is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 55% by mass or more with respect to the total mass of the desulfurizing agent. If the nickel content exceeds 50% by mass or the zinc content is less than 30% by mass, the life of the porous desulfurizing agent is shortened, which is not preferable. The sodium content is preferably 1.0% by mass or less based on the total mass of the desulfurizing agent, more preferably 0.5% by mass or less, and further 0 2% by mass or less. If sodium is contained in an amount exceeding 1.0 mass% with respect to the total mass of the desulfurizing agent, the desulfurization performance is lowered, which is not preferable. A preferable desulfurizing agent contains 30 to 85% by mass, particularly 50 to 80% by mass of a metal component such as nickel and zinc. Further, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired. The desulfurizing agent is preferably used after being treated in a hydrogen atmosphere. The specific surface area of the desulfurizing agent is preferably 30 m 2 / g or more, particularly preferably 50 to 600 m 2 Zg.
[0028] 本発明の多孔質脱硫剤とは、硫黄収着機能を持った多孔質脱硫剤が好ま ヽ。こ こでいう硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物中の硫黄原子 を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残 基については、有機硫黄ィ匕合物中の炭素 硫黄結合が開裂することによって脱硫 剤から脱離させる機能をもった多孔質脱硫剤を 、う。この炭化水素残基が脱離する 際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したが つて、有機硫黄ィ匕合物力 硫黄原子が除かれた炭化水素化合物が生成物として得 られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、 異性化、分解等の反応を受けた生成物を与えることがあっても構わない。収着脱硫 において、硫黄は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として 硫ィ匕水素などの硫黄ィ匕合物を発生しない。さらに、硫ィ匕水素を発生しないので、リサ イタル水素あるいはパージ水素中に硫ィヒ水素は含まれず、硫化水素を除去する設 備が不要となり、経済的に脱硫できる。  [0028] The porous desulfurization agent of the present invention is preferably a porous desulfurization agent having a sulfur sorption function. The porous desulfurization agent having a sulfur sorption function here is to fix the sulfur atom in the organic sulfur compound to the desulfurization agent, and for hydrocarbon residues other than the sulfur atom in the organic sulfur compound. A porous desulfurization agent having a function of desorbing from a desulfurization agent by cleaving a carbon-sulfur bond in an organic sulfur compound. When this hydrocarbon residue is eliminated, hydrogen present in the system is added to carbon whose bond with sulfur has been cleaved. Therefore, organic sulfur-compound strength hydrocarbon compounds from which sulfur atoms are removed are obtained as products. However, hydrocarbon compounds from which sulfur atoms have been removed may give products that have undergone reactions such as hydrogenation, isomerization, and decomposition. Since sulfur is fixed to the desulfurizing agent in the detachable sulfur, it does not generate sulfur compounds such as hydrogen sulfide as a product, unlike hydrorefining. Further, since hydrogen sulfide is not generated, hydrogen sulfide is not included in the recital hydrogen or purge hydrogen, and no facility for removing hydrogen sulfide is required, so that desulfurization can be achieved economically.
[0029] 収着脱硫処理は、ノ ツチ式で行っても、流通式で行っても構わな 、が、脱硫剤を充 填した固定床脱硫塔に軽質分解ガソリン留分ゃ重質分解ガソリン留分を流通させて 行うことが、脱硫剤と得られる脱硫分解ガソリン留分の分離が簡便にできるので好まし い。脱硫処理における温度は、好ましくは 100〜400°Cであり、より好ましくは 200〜 350°C、特に好ましくは 250〜350°Cである。反応温度が 100°C未満であると、脱硫 速度が低下し、効率的に脱硫ができず好ましくない。また、反応温度が 400°Cを超え ると、脱硫剤がシンタリングし脱硫容量が低下し好ましくない。脱硫剤と接触させただ けでは脱硫されにくいチォフェン類の脱硫を促進するために、水素を共存させる。反 応圧力は好ましくは 0〜5. OMPa、より好ましくは 0〜3. OMPa、特に好ましくは 0〜 2. OMPaである。反応圧力が 5. OMPaを超えると、炭化水素油中に含まれるォレフ イン分の水素化が進行しやすくなり、 RONが低下する可能性があり好ましくない。 [0029] The collection / removal sulfur treatment may be carried out by a notch type or a flow type, but the light cracked gasoline fraction or the heavy cracked gasoline fraction is placed in a fixed bed desulfurization tower filled with a desulfurizing agent. It is preferable to carry out the distribution of the fraction because the separation of the desulfurization agent and the obtained desulfurized cracked gasoline fraction can be easily performed. The temperature in the desulfurization treatment is preferably 100 to 400 ° C, more preferably 200 to 350 ° C, and particularly preferably 250 to 350 ° C. If the reaction temperature is less than 100 ° C, the desulfurization rate decreases, and desulfurization cannot be efficiently performed, which is not preferable. On the other hand, if the reaction temperature exceeds 400 ° C, the desulfurization agent is sintered, and the desulfurization capacity is lowered, which is not preferable. In order to promote desulfurization of thiophenes that are difficult to desulfurize only by contacting with a desulfurizing agent, hydrogen is allowed to coexist. The reaction pressure is preferably 0 to 5. OMPa, more preferably 0 to 3. OMPa, and particularly preferably 0 to 5. 2. It is OMPa. If the reaction pressure exceeds 5. OMPa, hydrogenation of the olefins contained in the hydrocarbon oil tends to proceed and RON may decrease, which is not preferable.
[0030] 固定床流通式で脱硫剤と分解ガソリン留分を接触させて脱硫処理を行う場合、 LH SVは、好ましくは 2. Oh_ 1を超え 50. Oh_ 1以下であり、より好ましくは 2. Oh_1を超え 20. Oh_ 1以下であり、特に好ましくは 2. Oh_1を超え 10. Oh_1以下である。 LHSVが 2. Oh_ 1以下だと、通油量が制限されたり、脱硫リアクターが大きくなりすぎたりして経 済的に脱硫できず好ましくない。 LHSVが 50. Oh_1を超えると脱硫するのに十分な 接触時間が得られず、脱硫率が低下してしまい好ましくない。また、水素の存在下、 固定床流通式で脱硫剤と分解ガソリン留分を接触させて脱硫処理を行う場合、水素 Z油比は、好ましくは 1〜1000NLZL、より好ましくは 10〜500NLZLであり、特に 好ましくは 10〜300NL/Lである。水素としては、メタン等の不純物を含んでいても よいが、水素コンプレッサーが大きくなりすぎないよう、水素純度は 50容量%以上が 好ましぐさらには 80容量%以上、特には 95容量%以上が好ましい。水素中に硫ィ匕 水素などの硫黄ィ匕合物が含まれると脱硫剤の寿命が低下するので一定割合以下で あるのが好ましい。具体的に水素中の硫黄分は、 1000容量 ppm以下が好ましぐさ らには 100容量 ppm以下、特には 10容量 ppm以下が好ましい。 [0030] When the desulfurization treatment is performed by contacting the desulfurizing agent and the cracked gasoline fraction in a fixed bed flow type, LH SV is preferably more than 2. Oh _ 1 and 50. Oh _ 1 or less, more preferably 2. is a beyond 20. Oh _ 1 below Oh _1, particularly preferably 10. Oh _1 from more than 2. Oh _1. If the LHSV is 2. Oh _ 1 or less, the oil flow rate is limited or the desulfurization reactor becomes too large, and it is not preferable because it cannot economically desulfurize. If the LHSV exceeds 50. Oh _1 , a contact time sufficient for desulfurization cannot be obtained, and the desulfurization rate decreases, which is not preferable. Also, when desulfurization treatment is performed by contacting a desulfurization agent and a cracked gasoline fraction in a fixed bed flow system in the presence of hydrogen, the hydrogen Z oil ratio is preferably 1 to 1000 NLZL, more preferably 10 to 500 NLZL. Particularly preferred is 10 to 300 NL / L. Hydrogen may contain impurities such as methane, but the hydrogen purity is preferably 50% by volume or more, more preferably 80% by volume or more, especially 95% by volume or more so that the hydrogen compressor does not become too large. preferable. If a sulfur compound such as sulfur dioxide or hydrogen is contained in hydrogen, the life of the desulfurizing agent is reduced, so that it is preferably less than a certain ratio. Specifically, the sulfur content in hydrogen is preferably 1000 ppm by volume or less, more preferably 100 ppm by volume or less, and particularly preferably 10 ppm by volume or less.
[0031] 〔混合工程 (工程 D):低硫黄分解ガソリン基材の調製〕  [0031] [Mixing step (Step D): Preparation of low sulfur cracking gasoline base material]
混合工程(工程 D)では、分解ガソリン留分を工程 A、工程 B、工程 Cにて処理し、各 工程で得られた基材を混合して、硫黄分 12質量 ppm以下、 RONは 85. 0以上の低 硫黄分解ガソリン基材を調製する。硫黄分は 10質量 ppm以下が好ましぐ 8質量 pp m以下がより好ましい。 RONは、 89. 0-93. 0が好ましい。また、工程 A、工程 B、ェ 程 Cで得られた各種基材は、その製造量と、低硫黄分解ガソリン基材を調製するこの 工程 Dでの使用量とが、過不足なぐノ《ランスよく用いられることが、経済的であり、好 ましい。  In the mixing step (Step D), the cracked gasoline fraction is treated in Step A, Step B, and Step C, and the base materials obtained in each step are mixed to obtain a sulfur content of 12 mass ppm or less, and RON is 85. Prepare zero or more low sulfur cracking gasoline base. The sulfur content is preferably 10 ppm by mass or less, more preferably 8 ppm by mass or less. RON is preferably 89.0-93.0. In addition, the various base materials obtained in Process A, Process B, and Process C have a sufficient amount of production and the amount used in Process D for preparing a low sulfur cracked gasoline base material. It is economical and preferable to use it frequently.
[0032] 典型的には、工程 Aで得られ、工程 Cで処理した軽質分解ガソリン留分と、工程 A で得られ、工程 Bで処理した重質分解ガソリン留分とを混合する、または、工程 Aで 得られた軽質分解ガソリン留分と、工程 Aで得られ、工程 Bで処理し、さらに工程じで 処理した重質分解ガソリン留分とを混合する。工程 Aの原料となる分解ガソリン留分 のほとんど全量、例えば 80容量%以上力 得られた各種基材を混合して低硫黄分 解ガソリン基材とすることが好ましい。また、工程 Dの混合は、ガソリン組成物の調製 のための他のガソリン基材との混合である後述のブレンド工程と同時に行なってもよ い。 [0032] Typically, the light cracked gasoline fraction obtained in step A and treated in step C is mixed with the heavy cracked gasoline fraction obtained in step A and treated in step B, or The light cracked gasoline fraction obtained in step A is mixed with the heavy cracked gasoline fraction obtained in step A, treated in step B, and further treated in the same step. Cracked gasoline fraction used as raw material for process A It is preferable to mix various base materials obtained with almost the entire amount, for example, 80% by volume or more, to make a low sulfur decomposition gasoline base material. Further, the mixing in step D may be performed simultaneously with the blending step described later, which is mixing with other gasoline base materials for the preparation of the gasoline composition.
[0033] 〔ジェン低減処理工程(工程 E)〕  [0033] [Gen reduction treatment process (process E)]
本発明の分解ガソリン基材の製造方法では、工程 Bもしくは工程 Cの前工程で分解 ガソリン留分の全量または一部を水素の存在下で、好ましくは、アルミナなどの無機 多孔質担体に周期律表第 8族元素から選ばれる少なくとも 1種の金属を担持した触 媒と接触させてジェン価を減少させることが好ま ヽ。分解ガソリン留分は硫黄分を 含むので、硫黄分に対する耐性の高!、ニッケルまたはコバルトを含む触媒が好まし い。触媒が含む第 8族元素以外の活性成分元素に特に制約はないが、モリブデン、 タングステン、リンは含ませてよい好ましい成分として挙げられる。通常、触媒は硫ィ匕 処理を行なった後に用いられる。反応条件としては、得られる分解ガソリン留分のジ ェン価を低下させる力 ォレフィンの水素化を著しく進めて RONを著しく低下させる ことがな 、ように設定する必要がある。  In the method for producing a cracked gasoline base material of the present invention, the whole or part of the cracked gasoline fraction in the pre-process of Step B or Step C is preferably present in the presence of hydrogen, preferably on an inorganic porous support such as alumina. It is preferable to reduce the gen value by contacting with a catalyst supporting at least one metal selected from the group 8 elements in the table. Since cracked gasoline fractions contain sulfur, catalysts with high resistance to sulfur and nickel or cobalt are preferred. There are no particular restrictions on the active component elements other than the Group 8 element contained in the catalyst, but molybdenum, tungsten, and phosphorus are listed as preferred components that may be included. Usually, the catalyst is used after the sulfur treatment. The reaction conditions need to be set so that the hydrogen of the olefins can be significantly reduced and the RON cannot be significantly reduced by reducing the gen number of the cracked gasoline fraction obtained.
[0034] 好ましい反応条件は、反応温度が 40〜300°C、反応圧力が 0〜4MPa、 LHSVが 1〜: L0h_1、水素 Z油比が 1〜500NLZLである。工程 Eにより得られる分解ガソリン 留分のジェン価は、好ましくは 0. 5gZl00g以下、さらに好ましくは 0. 3gZl00g、 特に好ましくは 0. lgZlOOg以下である。ジェン価が 0. 5gZl00gを超えると、工程 Bや工程 Cにお 、て脱硫性能や脱硫剤寿命を大きく損なわせてしま!/、好ましくな!/、。 さらに、工程 Eでは、ォレフィン分の減少を、好ましくは 10容量%以下、特に好ましく は 5容量%以下、さらに好ましくは 2容量%以下とし、 RONの低下を、好ましくは 1以 下、より好ましくは 0. 5以下、さらに好ましくは 0. 3以下、特に好ましくは 0. 2以下とす る。このジェン低減処理の段階では、硫黄分は実質的に低減されない。硫黄分の一 部は硫ィ匕水素に変換する場合もあるが、これは後続の工程 Bもしくは工程 Cで脱硫 することができることもあり、ジェン低減処理工程に硫ィ匕水素の除去設備を設けること は経済的に見合わない。本発明でいうジェン価とは、 UOP326— 82によって測定さ れるジェン価を指す。 [0035] ジェン価は、触媒と接触分解ガソリンを水素の共存下で接触させ、ジェンをモノォ レフインに転ィ匕する力、あるいは、ジェンと共存する硫黄化合物とを反応させスルフィ ド類に転化させることにより低減される。第 8族元素を含む触媒を用い、上述の好まし い反応条件を適用することで、ォレフィンの水素化をほとんど抑制できるので、 RON を著しく低下させることなぐジェン価を低下させることができる。 [0034] Preferred reaction conditions are a reaction temperature of 40 to 300 ° C, a reaction pressure of 0 to 4 MPa, an LHSV of 1 to: L0h_1, and a hydrogen Z oil ratio of 1 to 500 NLZL. The gen number of the cracked gasoline fraction obtained by step E is preferably 0.5 gZl00 g or less, more preferably 0.3 gZl00 g, particularly preferably 0. lgZlOOg or less. If the Gen value exceeds 0.5 gZ100 g, desulfurization performance and desulfurization agent life will be greatly impaired in Process B and Process C! /, Preferable! /. Further, in step E, the decrease in olefin content is preferably 10% by volume or less, particularly preferably 5% by volume or less, more preferably 2% by volume or less, and the decrease in RON is preferably 1 or less, more preferably. It is 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.2 or less. In this gen reduction treatment stage, the sulfur content is not substantially reduced. Part of the sulfur content may be converted to hydrogen sulfide, which may be desulfurized in the subsequent step B or step C, and a sulfur hydrogen removal facility is installed in the Jen reduction treatment step. This is not economical. The gen value as used in the present invention refers to the gen value measured by UOP326-82. [0035] The gen number is obtained by bringing a catalyst and catalytically cracked gasoline into contact with each other in the presence of hydrogen and converting gen to mono-olefin or reacting with a sulfur compound coexisting with gen to convert it into sulfides. Is reduced. By using a catalyst containing a Group 8 element and applying the above-mentioned preferred reaction conditions, hydrogenation of olefin can be almost suppressed, so that the gen number can be lowered without significantly reducing RON.
[0036] 従来力 石油精製においては、ォレフィン中のジェンを選択的に水素化精製するこ とが行われており、本発明において工程 Eとして適用できる。具体的には、 IFP Selec tive Hydrogenationプロセス、 Huies Selective Hydrogenationプロセスなど力好まし \ 用いられる (石油学会編、石油精製プロセス、 p. 62、講談社サイェンティフイク(199 8) )。また、本発明においてジェン価を低減する方法として、 SHUプロセス(21st JPI Petroleum Refiningし onference 'Recent Progress in Petroleum Process Ί echnology , 37 (2002) )や CD Hydroプロセス(NPRA 2001 Annual Meeting, AM- 01- 39(2001) ) ち用いることがでさる。  Conventional power In petroleum refining, gen in olefin is selectively hydrorefined, and can be applied as step E in the present invention. Specifically, the IFP Selective Hydrogenation process and the Huies Selective Hydrogenation process are used favorably (edited by the Japan Petroleum Institute, Petroleum Refining Process, p. 62, Kodansha Scientific (199 8)). In addition, as a method of reducing the gen value in the present invention, the SHU process (21st JPI Petroleum Refining and onference 'Recent Progress in Petroleum Process Ί echnology, 37 (2002)) and CD Hydro process (NPRA 2001 Annual Meeting, AM-01- 39 (2001)).
[0037] 〔硫黄化合物の分子量を大きくする前処理工程 (工程 F)〕  [0037] [Pretreatment step for increasing the molecular weight of the sulfur compound (Step F)]
分解ガソリン留分は、含まれる硫黄化合物の分子量を大きくする前処理工程 (工程 F)を行って工程 Aの分留工程に供するカゝ、あるいは工程 Aの分留工程と同時に硫黄 化合物の分子量を大きくする前処理を行うことが好まし 、。チオール類などの硫黄ィ匕 合物の分子量を選択的に大きくすることにより、その含硫黄ィ匕合物の沸点が高くなる ため、分留工程において、含硫黄化合物を重質分解ガソリン留分中に移行すること ができ、分留工程で得られる軽質分解ガソリン留分の硫黄分を低減することができる 。例えば、蒸留塔の中に触媒を入れておいて硫黄分の重質化を行い、重質化された 硫黄化合物は重質側の留出成分に移行して軽質留分の硫黄分を低減することがで きる。後述の CD - Hydroプロセスはこれを利用して!/、る。  For cracked gasoline fractions, the pretreatment step (Step F) to increase the molecular weight of the sulfur compounds contained in the cracked gasoline fraction is used for the fractionation step in Step A, or the molecular weight of the sulfur compounds is reduced simultaneously with the fractionation step in Step A. It is preferable to do pretreatment to enlarge. By selectively increasing the molecular weight of the sulfur compound such as thiols, the boiling point of the sulfur compound is increased. Therefore, in the fractionation process, the sulfur compound is contained in the heavy cracked gasoline fraction. The sulfur content of the light cracked gasoline fraction obtained in the fractionation process can be reduced. For example, a catalyst is placed in a distillation column to make the sulfur content heavy, and the heavy sulfur compound moves to the distillate component on the heavy side to reduce the sulfur content of the light fraction. be able to. The CD-Hydro process described below uses this!
[0038] 従来力 石油精製においては、チオール類を処理して製品を無臭化するためのス ィートユングが行われている。酸化法や酸化抽出法によって、チオール類をジスルフ イド類に転ィ匕する公知の方法は、本発明にお 、て硫黄化合物の分子量を大きくする 方法として適用できる。具体的には、マーロックス法、ドクター法などが好ましく用いら れる (石油精製技術便覧第 3版、産業図書株式会社 (1981) )。 [0039] また、本発明において硫黄ィ匕合物の分子量を大きくする方法として、分解ガソリン 留分に含まれる硫黄化合物とォレフィン類とを反応させる方法も好適に用いることが できる。具体的には、 SHUプロセスや OATSプロセス(21st JPI Petroleum Refining conference Recent Progress in Petroleum Process Technology , 37 (2002) )力 け られる。特に、硫黄化合物の分子量を大きくする処理とジェン低減処理を同時に行う ことができる SHUプロセスが好ましい。さらには、分留を行いながら、硫黄化合物の 分子量を大きくする処理とジェン低減処理を同時にできるプロセスがいっそう好ましく 、具体的にこのようなものとして、 CD— Hydroプロセスが挙げられる。 [0038] Conventional power In petroleum refining, a sweet jung is performed to treat the thiols to make the product non-brominated. A known method for converting thiols to disulfides by an oxidation method or an oxidation extraction method can be applied as a method for increasing the molecular weight of a sulfur compound in the present invention. Specifically, the Marlox method, doctor method, etc. are preferably used (Oil Refining Technology Handbook 3rd Edition, Sangyo Tosho Co., Ltd. (1981)). [0039] In the present invention, as a method of increasing the molecular weight of the sulfur compound, a method of reacting a sulfur compound contained in the cracked gasoline fraction with olefins can also be suitably used. Specifically, SHU process and OATS process (21st JPI Petroleum Refining conference Recent Progress in Petroleum Process Technology, 37 (2002)) In particular, a SHU process capable of simultaneously performing a process for increasing the molecular weight of a sulfur compound and a process for reducing a gen is preferable. Furthermore, a process capable of simultaneously increasing the molecular weight of the sulfur compound and reducing the gen while carrying out fractional distillation is more preferable, and specifically, a CD-hydro process can be mentioned as such a process.
[0040] 〔分解ガソリン留分以外の他のガソリン基材〕  [0040] [Other gasoline base materials other than cracked gasoline fraction]
低硫黄のガソリン組成物を調製する最終的な工程であるブレンド工程で混合される 分解ガソリン留分以外の他のガソリン基材としては、接触改質ガソリン基材、アルキレ ートガソリン基材、直留ナフサを脱硫処理した基材、異性ィ匕ガソリン基材、トルエン、 キシレンなどの芳香族基材、及びメチル t ブチルエーテル(MTBE)、ェチル tーブ チルエーテル(ETBE)、 tーァミルェチルエーテル(TAEE)、エタノール、メタノール 等の含酸素ガソリン基材等、公知のガソリン基材を適宜用いることができる。特に、 E TBEは酸素含有量あたりのオクタン価向上効果がエタノールや MTBEに比べて高く 、 ETBE混合により揮発性を悪ィ匕させることなくオクタン価を高めることができ好まし ヽ 基材である。  Other gasoline base materials other than the cracked gasoline fraction mixed in the blending process, which is the final step for preparing a low-sulfur gasoline composition, include catalytic reformed gasoline base materials, alkylate gasoline base materials, straight-run naphtha. Desulfurized base materials, isomeric gasoline base materials, aromatic base materials such as toluene and xylene, and methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), tamyl ether ether (TAEE ), Known gasoline base materials such as oxygen-containing gasoline base materials such as ethanol and methanol can be appropriately used. In particular, ETBE has a higher octane number improvement effect per oxygen content than ethanol and MTBE, and is a preferred base material because it can increase the octane number without deteriorating volatility by mixing ETBE.
[0041] ブレンド工程で混合される他のガソリン基材は、好ましくは硫黄分が 20質量 ppm以 下であり、より好ましくは 10質量 ppm以下、さらには 3質量 ppm以下、特には 1質量 p pm以下である。他のガソリン基材の硫黄分が 20質量 ppmを超えると、ガソリン基材 のブレンド工程での配合量が制約されるため好ましくない。  [0041] The other gasoline base material mixed in the blending process preferably has a sulfur content of 20 ppm by mass or less, more preferably 10 ppm by mass or less, further 3 ppm by mass or less, particularly 1 ppm by mass. It is as follows. If the sulfur content of other gasoline base materials exceeds 20 mass ppm, the blending amount in the blending process of gasoline base materials is restricted, which is not preferable.
好ましい配合量は、分解ガソリン留分を 30〜90容量%、特には 40〜80容量%、 接触改質ガソリン基材を 5〜50容量%、特には 10〜45容量%、アルキレートガソリン 基材を 5〜40容量%、特には 10〜30容量%、 ETBEなどの含酸素ガソリン基材を 0 〜16容量%、特には 1〜7容量%である。  Preferred blending amounts are 30 to 90% by volume of cracked gasoline fraction, especially 40 to 80% by volume, 5 to 50% by volume of catalytically reformed gasoline base, particularly 10 to 45% by volume, alkylate gasoline base 5 to 40% by volume, especially 10 to 30% by volume, and oxygen-containing gasoline base material such as ETBE is 0 to 16% by volume, particularly 1 to 7% by volume.
[0042] 〔ガソリン組成物〕  [0042] [Gasoline composition]
本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が 89. 0以上、全硫黄分が 10質量 ppm以下、ドクターテストが陰性、銀板腐食が 1以下である。リサーチ法ォクタ ン価が 90. 0以上、ジェン価が 0. lg/100g以下であることが好ましい。ドクターテス トが陽性あるいは銀板腐食が 1を超えると、ガソリン力 悪臭が発生したり、ガソリン自 動車に使われている部材の腐食を引き起こすため好ましくない。 RONは、好ましくは 92以上、より好ましくは 93〜102である。このように高い RONを有すると、ガソリン自 動車の加速性や燃費を向上させることができ、好ましい。また、硫黄分は、好ましくは 8質量 ppm以下、より好ましくは 5質量 ppm以下である。 The unleaded gasoline composition of the present invention has a research octane number of 89.0 or more and a total sulfur content. 10 mass ppm or less, doctor test is negative, silver plate corrosion is 1 or less. The research octane number is preferably 90.0 or more and the gen number is preferably 0.1 lg / 100 g or less. If the doctor test is positive or the silver plate corrosion exceeds 1, unpleasant odor of gasoline power is generated, and corrosion of components used in gasoline automobiles is not preferable. RON is preferably 92 or more, more preferably 93 to 102. Having such a high RON is preferable because it can improve the acceleration performance and fuel consumption of a gasoline automobile. Further, the sulfur content is preferably 8 mass ppm or less, more preferably 5 mass ppm or less.
[0043] 本発明の無鉛ガソリン組成物は、好ましくはリード蒸気圧 (RVP)が 93kPa以下であ り、より好ましくは 44〜93kPaである。 93kPaを超えると大気中にガソリン蒸気の放出 量が多くなり好ましくな 、。 44kPa未満ではガソリン自動車の始動性が悪化するため 好ましくない。さらに好ましくは、季節に応じて RVPを調整し、夏場は 44〜65kPa、 冬場は 70〜93kPaとするのが好まし!/、。  [0043] The lead-free gasoline composition of the present invention preferably has a Reed vapor pressure (RVP) of 93 kPa or less, more preferably 44 to 93 kPa. If it exceeds 93 kPa, the amount of gasoline vapor released into the atmosphere increases, which is preferable. If it is less than 44 kPa, the startability of a gasoline vehicle deteriorates, which is not preferable. More preferably, it is preferable to adjust the RVP according to the season to 44-65 kPa in summer and 70-93 kPa in winter! /.
[0044] 本発明の無鉛ガソリン組成物は、 50容量%留出温度が 75〜105°Cであることが好 ましぐより好ましくは、 75〜100°Cである。 50容量%留出温度が 75°C未満では、無 鉛ガソリン組成物の RVPが高くなり、好ましくない。 105°Cを超えるとガソリン自動車 の加速性が悪ィ匕し、好ましくない。また、芳香族分は 40容量%以下が好ましぐさら には、 30容量%以下、特には 20〜30容量%であることが好ましい。芳香族分が 20 容量%未満では、分解ガソリン基材の配合量が制限され、無鉛ガソリン組成物の製 造コストが高くなり、好ましくない。 40容量%を超えると、無鉛ガソリン組成物の燃焼 性が悪ィ匕するため好ましくな 、。  [0044] The unleaded gasoline composition of the present invention has a 50% by volume distillation temperature of 75 to 105 ° C, more preferably 75 to 100 ° C. If the 50% by volume distillation temperature is less than 75 ° C, the RVP of the unleaded gasoline composition increases, which is not preferable. If it exceeds 105 ° C, the acceleration performance of gasoline automobiles will be poor, which is not preferable. The aromatic content is preferably 40% by volume or less, more preferably 30% by volume or less, and particularly preferably 20 to 30% by volume. When the aromatic content is less than 20% by volume, the blending amount of the cracked gasoline base material is limited, and the production cost of the unleaded gasoline composition becomes high, which is not preferable. If it exceeds 40% by volume, the unflammable gasoline composition has poor flammability, which is preferable.
さらに、不飽和炭素数が全炭素数に占める割合であるォレフィン分が 45容量%以 下であることが好ましぐより好ましくは、 20〜40容量%、特に好ましくは 20〜30容 量%である。不飽和炭素数が全炭素数に占める割合力このような範囲にあると、上述 の範囲のォレフィン分や芳香族分を確保することが容易になる。  Furthermore, it is preferable that the olefin content, which is the ratio of the unsaturated carbon number to the total carbon number, is 45% by volume or less, more preferably 20 to 40% by volume, particularly preferably 20 to 30% by volume. is there. When the ratio of unsaturated carbon to total carbon is in such a range, it becomes easy to secure the olefin and aromatic content within the above-mentioned range.
[0045] 〔添加剤〕  [0045] [Additive]
本発明の無鉛ガソリン組成物には、当業界で公知の燃料油添加剤の 1種または 2 種以上を必要に応じて配合することができる。これらの配合量は適宜選べる力 通常 は添加剤の合計配合量を 0.1質量%以下に維持することが好ましい。本発明のガソリ ンで使用可能な燃料油添加剤を例示すれば、フエノール系、アミン系などの酸ィ匕防 止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合 物などの表面着火防止剤、コハク酸イミド、ポリアルキルァミン、ポリエーテルァミンな どの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のァ ルカリ金属塩又はアル力リ土類金属塩、高級アルコールの硫酸エステルなどの助燃 剤、ァニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防 止剤、ァゾ染料などの着色剤を挙げることができる。 In the unleaded gasoline composition of the present invention, one or more kinds of fuel oil additives known in the art can be blended as required. These compounding amounts can be appropriately selected. Usually, it is preferable to maintain the total compounding amount of the additives at 0.1% by mass or less. Gasoline of the present invention Examples of fuel oil additives that can be used in water include phenolic and amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organophosphorus compounds. Detergents such as surface ignition inhibitors, succinimides, polyalkylamines, polyetheramines, anti-icing agents such as polyhydric alcohols or ethers, alkali metal salts of organic acids or alkaline earth metals Examples thereof include auxiliary agents such as salts and sulfates of higher alcohols, antistatic agents such as anionic surfactants, cationic surfactants and amphoteric surfactants, and colorants such as azo dyes.
[0046] 以下に、実施例により具体的に説明する力 本発明はこれらの例により何ら制限さ れるものではない。  [0046] The power described in detail below with reference to examples. The present invention is not limited to these examples.
実施例 1  Example 1
[0047] 中東系原油の減圧軽油留分を水素化精製処理したものと常圧蒸留残渣油を水素 化精製処理したものを主たる原料油 (硫黄分 3, 500ppm)として、流動接触分解して 得られた接触分解ガソリン留分 Aに対して、酸ィ匕型のスイートユング装置によって処 理して、接触分解ガソリン留分 Bを得た。接触分解ガソリン留分 Aおよび Bの性状を表 1に示す。なお、酸化型のスイートユング装置は、 UOP社の Meroxプロセスであり、 反応温度 42°Cの条件で運転した。  [0047] Fluidized catalytic cracking was performed on hydrodepressurized middle gas oil fractions and hydrodistilled atmospheric distillation residue oil as the main feedstock (sulfur content 3,500ppm). The catalytically cracked gasoline fraction A was processed by an acid-sweet type sweet jung equipment to obtain catalytically cracked gasoline fraction B. Table 1 shows the properties of catalytic cracking gasoline fractions A and B. The oxidation-type sweet-jung equipment is a UOP Merox process, which was operated at a reaction temperature of 42 ° C.
[0048] なお、本明細書中、密度 «JIS K 2249、蒸気圧(リード法) ¾JIS K 2258、蒸留 性状 «JIS K 2254 (常圧法)、炭化水素成分組成 «JIS K 2536 (蛍光指示薬吸着 法)、ジェン価は UOP326— 82、硫黄分は、 ASTM D 5453 (紫外蛍光法)に準拠 して測定した。 RONは、ヒューレットパッカード社製 PIONA装置を用いて、ガスクロ マトグラフ法で測定した。銀板腐食 «JIS K2513 (石油製品 銅板腐食試験方法: 対応 ASTM D130)のボンべ法(ジェット燃料)で、銅板の代わりに JIS Κ2276 ( 石油製品 航空燃料油試験方法)の「14.銀板腐食試験方法」に用いる銀板を使用 して評価した。試験温度は 50°C、試験時間は 3時間である。ドクターテストは、 JIS K 2276に準拠して測定した。  [0048] In this specification, density «JIS K 2249, vapor pressure (Lead method) ¾ JIS K 2258, distillation properties« JIS K 2254 (normal pressure method), hydrocarbon component composition «JIS K 2536 (fluorescent indicator adsorption method) ), Gen number was measured according to UOP326-82, and sulfur content was measured according to ASTM D 5453 (ultraviolet fluorescence method). RON was measured by a gas chromatograph method using a PIONA apparatus manufactured by Hewlett-Packard Company. Silver plate corrosion «JIS K2513 (Petroleum product copper plate corrosion test method: Corresponding ASTM D130) cylinder method (jet fuel). Instead of copper plate, JIS Κ2276 (Petroleum product aviation fuel oil test method)" 14. Silver plate corrosion The silver plate used in “Test method” was used for evaluation. The test temperature is 50 ° C and the test time is 3 hours. The doctor test was measured according to JIS K 2276.
[0049] この接触分解ガソリン留分 Bを分留して、軽質接触分解ガソリン留分 Cと重質接触 分解ガソリン留分 Dを得た。軽質留分 Cと重質留分 Dの割合は 68: 32 (容量比)であ つた。軽質接触分解ガソリン留分 Cおよび重質接触分解ガソリン留分 Dの性状を表 1 に示す。 [0049] This catalytic cracking gasoline fraction B was fractionated to obtain a light catalytic cracking gasoline fraction C and a heavy catalytic cracking gasoline fraction D. The ratio of light fraction C and heavy fraction D was 68:32 (volume ratio). Table 1 shows the properties of light catalytic cracking gasoline fraction C and heavy catalytic cracking gasoline fraction D. Shown in
[0050] アルミナにニッケルを 20質量%担持した触媒を固定床流通式反応装置に充填して 硫化処理した後、反応温度 250°C、反応圧力常圧、 LHSV=4.
Figure imgf000018_0001
水素 Z油比 340NLZLの条件のもと、軽質接触分解ガソリン留分 Cを通油してジェン低減処理 を行い、軽質接触分解ガソリン Eを得た。
[0050] A catalyst having 20% by mass of nickel supported on alumina is charged into a fixed bed flow reactor and subjected to sulfiding treatment, and then the reaction temperature is 250 ° C, the reaction pressure is normal pressure, and LHSV = 4.
Figure imgf000018_0001
Under the condition of hydrogen Z oil ratio 340NLZL, light catalytic cracking gasoline fraction C was passed through and subjected to the reduction of gen to obtain light catalytic cracking gasoline E.
[0051] 炭酸ナトリウム 106gを水に溶力した溶液を 60°Cに加温し、これに硝酸亜鉛六水和 物 179gを水に溶カゝした溶液に硝酸ニッケル六水和物 58gをカ卩えたものを滴下した。 得られた沈殿物をろ過した後、水で洗浄した。その後、 120°Cで 16時間乾燥後、 35 0°Cで 3時間焼成し脱硫剤 Zを得た。脱硫剤 Zはニッケル含有量が 17. 9質量%、亜 鉛含有量が 58. 7質量%、ナトリウム含有量が 0. 02質量%、比表面積が 80m2Zg であった。また、亜鉛に対するニッケルの割合は 30. 4質量%であった。軽質接触分 解ガソリン留分 Eを、脱硫剤 Zを用い反応温度 300°C、反応圧力常圧、 LHSV= 2. 5 h~ 水素/油比 180NL/Lの条件で脱硫処理して軽質接触分解ガソリン Fを得た 。軽質接触分解ガソリン留分 Eおよび Fの性状を表 1に示す。 [0051] A solution in which 106 g of sodium carbonate was dissolved in water was heated to 60 ° C, and 58 g of nickel nitrate hexahydrate was added to the solution in which 179 g of zinc nitrate hexahydrate was dissolved in water. The food was dripped. The resulting precipitate was filtered and washed with water. Thereafter, after drying at 120 ° C. for 16 hours, calcination was performed at 350 ° C. for 3 hours to obtain a desulfurizing agent Z. The desulfurizing agent Z had a nickel content of 17.9% by mass, a zinc content of 58.7% by mass, a sodium content of 0.02% by mass and a specific surface area of 80 m 2 Zg. The ratio of nickel to zinc was 30.4% by mass. Light catalytic cracking gasoline fraction E is desulfurized using desulfurizing agent Z under the conditions of reaction temperature 300 ° C, reaction pressure normal pressure, LHSV = 2.5 h ~ hydrogen / oil ratio 180NL / L, and light catalytic cracking Got gasoline F. Table 1 shows the properties of light catalytic cracking gasoline fractions E and F.
[0052] コバルト、モリブデンおよびリンをアルミナに担持した触媒 (コバルト含有量 2.4質量 %、モリブデン含有量 9.4質量%、リン含有量 2.0質量%)を固定床流通式反応装置 に充填して硫化処理した後、反応温度 225°C、反応圧力 1.0MPa、 LHSV= 5.0h" \水素 Z油比 = 307NLZLの条件下で、重質接触分解ガソリン留分 Dを通油して 水素化脱硫を行 ヽ、さらに酸化型のスイートユング装置で処理して重質接触分解ガ ソリン Gを得た。なお、酸化型のスイートユング装置は、メリケム社の MERICAT-Πプロ セスであり、反応温度 41°Cの条件で運転した。  [0052] A catalyst having cobalt, molybdenum and phosphorus supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass) was charged into a fixed bed flow reactor and subjected to sulfurization treatment. After that, under the conditions of reaction temperature 225 ° C, reaction pressure 1.0MPa, LHSV = 5.0h "\ hydrogen Z oil ratio = 307NLZL, heavy catalytic cracking gasoline fraction D was passed through and hydrodesulfurized. Further, it was treated with an oxidized sweet jung equipment to obtain heavy catalytic cracking gasoline G. The oxidized sweet jung equipment is a MERICAT-IV process manufactured by Merichem, and the reaction temperature was 41 ° C. Drove in.
軽質接触分解ガソリン F全量および重質接触分解ガソリン Gを全量混合し低硫黄分 解ガソリン基材 Hを得た。重質接触分解ガソリン G及び低硫黄分解ガソリン基材 Hの 性状を表 1に示す。実施例 1における予備脱硫制御係数 αの値は 18であった。なお 、スイートユング前後で硫黄分は変わらないので、重質接触分解ガソリン留分 Dを水 素化脱硫し、次 、でスイートユングした後の重質接触分解ガソリン Gの硫黄分を HSと して用い、予備脱硫制御係数 αを算出した。  Light catalytic cracking gasoline F and heavy catalytic cracking gasoline G were mixed together to obtain a low sulfur decomposition gasoline base H. Table 1 shows the properties of heavy catalytic cracking gasoline G and low sulfur cracking gasoline base H. The value of the preliminary desulfurization control coefficient α in Example 1 was 18. Since the sulfur content does not change before and after sweet jung, the sulfur content of heavy catalytic cracked gasoline G after hydrocatalyzed desulfurization of heavy catalytic cracked gasoline fraction D and then sweet jung is defined as HS. The preliminary desulfurization control coefficient α was calculated.
[0053] [表 1]
Figure imgf000019_0001
[0053] [Table 1]
Figure imgf000019_0001
実施例 2 Example 2
[0054] 実施例 1と同様の方法で得られた軽質接触分解ガソリン留分 Cの半量を、実施例 1 と同じ方法でジェン除去処理および脱硫剤 Zによる脱硫処理を行い、軽質接触分解 ガソリン Fを得た。  [0054] Half of the light catalytic cracking gasoline fraction C obtained by the same method as in Example 1 was subjected to a gen removal treatment and a desulfurization treatment with a desulfurizing agent Z in the same manner as in Example 1 to obtain a light catalytic cracking gasoline F. Got.
実施例 1と同様の方法で得られた重質接触分解ガソリン留分 Dを、コバルト、モリブ デンおよびリンをアルミナに担持した触媒 (コバルト含有量 2.4質量%、モリブデン含 有量 9.4質量%、リン含有量 2.0質量%)を固定床流通式反応装置に充填して硫ィ匕 処理した後、反応温度 240°C、反応圧力 1.0MPa、 LHSV=
Figure imgf000020_0001
水素 Z油比 = 307NLZLの条件下で、通油して水素化脱硫を行い、さらに酸ィ匕型のスイート- ング装置で処理して重質接触分解ガソリン Iを得た。
A heavy catalytic cracking gasoline fraction D obtained in the same manner as in Example 1 was converted to a catalyst in which cobalt, molybdenum and phosphorus were supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus Content 2.0% by mass) in a fixed bed flow reactor and treated with sulfur, reaction temperature 240 ° C, reaction pressure 1.0MPa, LHSV =
Figure imgf000020_0001
Under conditions of hydrogen Z oil ratio = 307NLZL, hydrodesulfurization was carried out by passing oil, and further, it was treated with an acid type sweetening device to obtain heavy catalytic cracked gasoline I.
軽質接触分解ガソリン Cの半量、軽質接触分解ガソリン Fの全量および重質接触分 解ガソリン Iの全量を混合し、低硫黄分解ガソリン基材 Jを得た。低硫黄分解ガソリン基 材 Jの性状、及び関連する上記中間基材の性状を表 2に示す。実施例 2における予 備脱硫制御係数 exは 14であった。  Half of the light catalytic cracking gasoline C, all of the light catalytic cracking gasoline F and all of the heavy catalytic cracking gasoline I were mixed together to obtain a low sulfur cracking gasoline base J. Table 2 shows the properties of the low sulfur cracking gasoline base J and the properties of the intermediate substrate. The preliminary desulfurization control coefficient ex in Example 2 was 14.
[0055] [表 2] [0055] [Table 2]
Figure imgf000021_0001
Figure imgf000021_0001
実施例 3 Example 3
[0056] 実施例 1と同様の方法で得られた重質接触分解ガソリン G全量を、脱硫剤 Zを用い て反応温度 300°C、反応圧力 0. 5MPa、 LHSV= 2. 5h_ 1、水素 Z油比 20NLZL の条件で脱硫処理し重質接触分解ガソリン Kを得た。実施例 1と同様の方法で得ら れた軽質接触分解ガソリン C全量と重質接触分解ガソリン Κ全量を混合し低硫黄ガソ リン基材 Lを得た。低硫黄分解ガソリン基材 Lの性状、及び関連する上記中間基材の 性状を表 3に示す。実施例 3における予備脱硫制御係数 αは 18であった。 [0056] The heavy catalytic cracking gasoline G total amount obtained in the same manner as in Example 1, a desulfurizing agent Z reaction temperature 300 ° C using a reaction pressure 0. 5MPa, LHSV = 2. 5h _ 1, hydrogen Heavy catalytic cracking gasoline K was obtained by desulfurization treatment under the condition of Z oil ratio 20NLZL. Light sulfur cracked gasoline C obtained in the same manner as in Example 1 and heavy catalytic cracked gasoline C were mixed together to obtain a low sulfur gasoline substrate L. Table 3 shows the properties of the low-sulfur cracking gasoline base material L and the properties of the above-mentioned intermediate base material. The preliminary desulfurization control coefficient α in Example 3 was 18.
[0057] [表 3] [0057] [Table 3]
Figure imgf000023_0002
Figure imgf000023_0002
Figure imgf000023_0001
Figure imgf000023_0001
実施例 4 Example 4
実施例 1で得られた接触分解ガソリン留分 Bを容量比が 47:53となるよう分留して 軽質接触分解ガソリン留分 Mと重質接触分解ガソリン留分 Nを得た。 コバルト、モリブデンおよびリンをアルミナに担持した触媒 (コバルト含有量 2.4質量 %、モリブデン含有量 9.4質量%、リン含有量 2.0質量%)を固定床流通式反応装置 に充填して硫化処理した後、反応温度 225°C、反応圧力 1.0MPa、 LHSV= 5.0h" \水素 Z油比 = 307NLZLの条件下で、重質接触分解ガソリン留分 Nを通油して 水素化脱硫を行 ヽ、さらに酸化型のスイートユング装置で処理して重質接触分解ガ ソリン Oを得た。 The catalytically cracked gasoline fraction B obtained in Example 1 was fractionally distilled to a volume ratio of 47:53 to obtain a light catalytic cracked gasoline fraction M and a heavy catalytic cracked gasoline fraction N. A catalyst in which cobalt, molybdenum and phosphorus are supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass) is charged into a fixed-bed flow reactor and subjected to sulfidation, and then reacted. Under the conditions of temperature 225 ° C, reaction pressure 1.0MPa, LHSV = 5.0h "\ hydrogen Z oil ratio = 307NLZL, heavy catalytic cracking gasoline fraction N was passed through and hydrodesulfurization was conducted. Heavy catalytic cracking gasoline O was obtained.
重質接触分解ガソリン Oの半量を脱硫剤 Zによる脱硫処理を行 ヽ、重質接触分解 ガソリン Pを得た。  Half of the heavy catalytic cracked gasoline O was desulfurized with the desulfurizing agent Z, and heavy catalytic cracked gasoline P was obtained.
軽質接触分解ガソリン Mの全量、重質接触分解ガソリン Oの半量および重質接触 分解ガソリン Pの全量を混合し、低硫黄分解ガソリン基材 Qを得た。低硫黄分解ガソリ ン基材 Q、及び関連する上記中間基材の性状を表 4に示す。なお、実施例 4におけ る予備脱硫制御係数 exは 14であった。  The total amount of light catalytic cracking gasoline M, the half amount of heavy catalytic cracking gasoline O and the total amount of heavy catalytic cracking gasoline P were mixed to obtain a low sulfur cracking gasoline base material Q. Table 4 shows the properties of the low sulfur decomposition gasoline substrate Q and related intermediate substrates. The preliminary desulfurization control coefficient ex in Example 4 was 14.
[表 4] [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
比較例 1 Comparative Example 1
[0060] 実施例 1で得られた重質接触分解ガソリン留分 Dを、コバルト、モリブデンおよびリ ンをアルミナに担持した触媒 (コバルト含有量 2.4質量%、モリブデン含有量 9.4質量 %、リン含有量 2.0質量%)を固定床流通式反応装置に充填して硫ィ匕処理した後、 反応温度 300°C、反応圧力 3.0MPa、 LHSV=
Figure imgf000026_0001
水素 Z油比 = 307NLZL の条件下で、通油して水素化脱硫を行い、重質接触分解ガソリン Rを得た。
[0060] The heavy catalytic cracking gasoline fraction D obtained in Example 1 was used as a catalyst (cobalt content 2.4 mass%, molybdenum content 9.4 mass%, phosphorus content). 2.0 mass%) into a fixed bed flow reactor and treated with sulfur, then reaction temperature 300 ° C, reaction pressure 3.0 MPa, LHSV =
Figure imgf000026_0001
Under conditions of hydrogen Z oil ratio = 307NLZL, hydrodesulfurization was conducted by passing oil, and heavy catalytic cracking gasoline R was obtained.
実施例 1で得られた軽質接触分解ガソリン留分 C全量と重質接触分解ガソリン R全 量を混合し分解ガソリン基材 Sを得た。分解ガソリン基材3、及び関連する上記中間 基材の性状を表 5に示す。  The light catalytic cracking gasoline fraction C obtained in Example 1 was mixed with the entire heavy catalytic cracking gasoline R to obtain cracked gasoline base material S. Table 5 shows the properties of the cracked gasoline base material 3 and the related intermediate base material.
[0061] [表 5] [0061] [Table 5]
Figure imgf000027_0001
Figure imgf000027_0001
[0062] 接触分解以外の公知技術で得られるガソリン基材として、脱硫直留ナフサ T、接触 改質中質油 U、接触改質重質油 V、アルキレートガソリン W、ェチル t ブチル テ ル Xがあり、その性状は表 6に示すとおりである。接触改質中質油 Uは、接触改質ガ ソリンから、トルエンを多く含む留分を蒸留分離したものである。接触改質重質油 Vは 、接触改質ガソリンから、炭素数 9以上であって 11未満の芳香族を蒸留分離したもの である。 [0062] Gasoline base materials obtained by known techniques other than catalytic cracking include desulfurized straight-run naphtha T, catalytically reformed medium oil U, catalytically reformed heavy oil V, alkylate gasoline W, ethyl tbutylbutyl X The properties are as shown in Table 6. Catalytically modified medium oil U is obtained by distilling and separating a toluene-rich fraction from catalytically modified gasoline. Catalytically modified heavy oil V is obtained by distillation separation of aromatics having 9 or more carbon atoms and less than 11 from catalytically reformed gasoline.
[0063] [表 6]
Figure imgf000028_0001
[0063] [Table 6]
Figure imgf000028_0001
実施例 5 Example 5
脱硫直留ナフサ Tを 15容量%、接触改質中質油 Uを 5容量%、接触改質重質油 V を 5容量%、アルキレートガソリン Wを 5容量%と、実施例 1記載の分解ガソリン基材 Η を 70容量%配合し、無鉛ガソリン組成物 AAを調製した。その性状を表 7に示す。 Desulfurization straight-run naphtha T 15%, catalytic reforming medium oil U 5%, catalytic reforming heavy oil V 5%, alkylate gasoline W 5% by volume Gasoline base material Η 70% by volume was prepared to prepare an unleaded gasoline composition AA. Table 7 shows the properties.
[0065] [表 7] [0065] [Table 7]
Figure imgf000029_0001
Figure imgf000029_0001
実施例 6  Example 6
[0066] 脱硫直留ナフサ Tを 10容量%、接触改質中質油 Uを 10容量%、接触改質重質油 Vを 6容量0 アルキレートガソリン Wを 10容量0 ェチル t ブチルエーテル Xを 7 容量%と、実施例 1記載の分解ガソリン基材 Hを 57容量%配合し、無鉛ガソリン組成 物 BBを調製した。その性状を表 7に示す。 [0066] Desulfurization straight-run naphtha T, 10% by volume, catalytic reforming medium oil U, 10% by volume, catalytic reforming heavy oil V, 6 capacity 0 alkylate gasoline W, 10 capacity 0 ethyl t butyl ether X, 7 Mixing 57% by volume of cracked gasoline base H described in Example 1 and unleaded gasoline composition A product BB was prepared. Table 7 shows the properties.
実施例 7  Example 7
[0067] 接触改質中質油 Uを 15容量%、接触改質重質油 Vを 15容量%、アルキレートガソ リン Wを 16容量%、ェチル t—ブチルエーテル Xを 7容量%、実施例 4記載の分解ガ ソリン基材 Qを 22容量%と実施例 4記載の軽質接触分解ガソリン基材 Mを 25容量% 配合し、無鉛ガソリン組成物 CCを調製した。その性状を表 7に示す。  [0067] 15% by volume of catalytically modified medium oil U, 15% by volume of catalytically modified heavy oil V, 16% by volume of alkylate gasoline W, 7% by volume of ethyl t-butyl ether X, Example 4 An unleaded gasoline composition CC was prepared by blending 22% by volume of the cracked gasoline base material Q described above and 25% by volume of the light catalytic cracked gasoline base material M described in Example 4. Table 7 shows the properties.
比較例 2  Comparative Example 2
[0068] 脱硫直留ナフサ Tを 15容量%、接触改質中質油 Uを 5容量%、接触改質重質油 V を 5容量%、アルキレートガソリン Wを 5容量%と、比較例 1記載の分解ガソリン基材 S を 70容量%配合し、無鉛ガソリン組成物 DDを調製した。その性状を表 7に示す。  [0068] Comparative Example 1 with 15% by volume of desulfurized straight-run naphtha T, 5% by volume of catalytically modified medium oil U, 5% by volume of catalytically modified heavy oil V, and 5% by volume of alkylate gasoline W Undecomposed gasoline composition DD was prepared by blending 70% by volume of the cracked gasoline base S described. Table 7 shows the properties.

Claims

請求の範囲 The scope of the claims
[1] 分解ガソリン留分を分留して、軽質分解ガソリン留分と重質分解ガソリン留分とを得 る分留工程 (工程 A)、  [1] A fractionation process (Step A) for fractionating the cracked gasoline fraction to obtain a light cracked gasoline fraction and a heavy cracked gasoline fraction.
工程 Aで得られた重質分解ガソリン留分を水素の存在下でモリブデン及び Z又は タングステンを含む触媒と接触させて硫黄分を低減する水素化脱硫工程 (工程 B)、 工程 Aにて得られた軽質分解ガソリン留分及び Z又は工程 Bにて得られた硫黄分 が低減された重質分解ガソリン留分の全量あるいは一部を水素の存在下でニッケル と亜鉛を含む多孔質脱硫剤と接触させ、硫黄分を 5質量 ppm以下に低減する収着脱 硫工程(工程 C)、  A hydrodesulfurization step (Step B) in which the heavy cracked gasoline fraction obtained in Step A is brought into contact with a catalyst containing molybdenum and Z or tungsten in the presence of hydrogen to reduce the sulfur content (Step B). Contact with a porous desulfurization agent containing nickel and zinc in the presence of hydrogen in the presence or absence of hydrogen cracked light gasoline fraction and heavy cracked gasoline fraction with reduced sulfur content obtained in Z or Step B The sulfur removal and removal process (process C), which reduces the sulfur content to 5 mass ppm or less,
前記工程 A〜Cによって得られた分解ガソリン留分を混合して硫黄分 12質量 ppm 以下、リサーチ法オクタン価 85. 0以上である低硫黄分解ガソリン基材を得る混合ェ 程(工程 D)  Mixing step of mixing the cracked gasoline fraction obtained in steps A to C to obtain a low sulfur cracked gasoline base material having a sulfur content of 12 mass ppm or less and a research octane number of 85.0 or more (step D)
を含むことを特徴とする低硫黄分解ガソリン基材の製造方法。  A process for producing a low sulfur decomposition gasoline base material, comprising:
[2] 工程 A及び工程 Bを経た段階で、次式(1)で表される予備脱硫制御係数 αが 12〜 30である [2] The preliminary desulfurization control coefficient α expressed by the following formula (1) is 12 to 30 after the process A and the process B
a = (LW X LS + HW X HS) /100 (1)  a = (LW X LS + HW X HS) / 100 (1)
(式中、 LWは工程 Aにて分留された軽質分解ガソリンの割合 (容量%)、 LSは工程 Aにて得られた軽質分解ガソリン中の硫黄分 (質量 ppm)、 HWは工程 Aにて分留さ れた重質分解ガソリンの割合 (容量%)、 HSは工程 Bにて得られた重質分解ガソリン 中の硫黄分 (質量 ppm)を示す。 )  (Where LW is the fraction of light cracked gasoline fractionated in process A (volume%), LS is the sulfur content in the light cracked gasoline obtained in process A (mass ppm), and HW is in process A. (The percentage of heavy cracked gasoline fractionated by volume (volume%), HS indicates the sulfur content (mass ppm) in the heavy cracked gasoline obtained in Step B.)
ことを特徴とする請求項 1記載の低硫黄分解ガソリン基材の製造方法。  The method for producing a low-sulfur cracking gasoline base material according to claim 1.
[3] 工程 Aに供給する分解ガソリン全量に対し、工程 Cに供給して処理する割合が 20 容量%以上、 90容量%以下であることを特徴とする請求項 1または 2記載の低硫黄 分解ガソリン基材の製造方法。 [3] The low sulfur decomposition according to claim 1 or 2, wherein a ratio of supplying to the process C and processing to the total amount of cracked gasoline supplied to the process A is 20 vol% or more and 90 vol% or less. A method for producing a gasoline base material.
[4] 工程 Bまたは工程 Cの前に、分解ガソリン留分の全量または一部を水素の存在下で 、周期律表第 8属元素力 選ばれる少なくとも 1種の金属を含む触媒と接触させてジ ェン低減処理を行うジェン低減処理工程(工程 E)を含むことを特徴とする請求項 1 〜3いずれかにに記載の低硫黄分解ガソリン基材の製造方法。 [4] Prior to Step B or Step C, all or part of the cracked gasoline fraction is contacted with a catalyst containing at least one metal selected from Group 8 element force in the periodic table in the presence of hydrogen. The method for producing a low-sulfur cracking gasoline base material according to any one of claims 1 to 3, further comprising a jen reduction treatment step (step E) for performing a jen reduction treatment.
[5] 工程 Aの前に、あるいは工程 Aの分留工程と同時に分解ガソリン留分に含まれる硫 黄化合物の分子量を大きくする前処理工程 (工程 F)を含むことを特徴とする請求項 1〜4いずれかに記載の低硫黄分解ガソリン基材の製造方法。 [5] The method according to claim 1, further comprising a pretreatment step (step F) for increasing the molecular weight of the sulfur compound contained in the cracked gasoline fraction before step A or simultaneously with the fractionation step of step A. The manufacturing method of the low sulfur decomposition gasoline base material in any one of -4.
[6] 請求項 1〜5 、ずれかによつて製造された低硫黄分解ガソリン基材を 30容量%以 上含有し、リサーチ法オクタン価が 89以上、硫黄分 10質量 ppm以下、ドクターテスト が陰性、銀板腐食が 1以下である無鉛ガソリン組成物。  [6] Claims 1 to 5, containing at least 30% by volume of low-sulfur cracking gasoline base material manufactured according to any of the above, research octane number of 89 or more, sulfur content of 10 mass ppm or less, doctor test is negative An unleaded gasoline composition with a silver plate corrosion of 1 or less.
[7] リサーチ法オクタン価が 92以上である請求項 6に記載の無鉛ガソリン組成物。  7. The unleaded gasoline composition according to claim 6, having a research octane number of 92 or more.
PCT/JP2006/308696 2005-05-06 2006-04-26 Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition WO2006120898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528215A JP5219247B2 (en) 2005-05-06 2006-04-26 Method for producing low sulfur cracking gasoline base and unleaded gasoline composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-135048 2005-05-06
JP2005135048 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006120898A1 true WO2006120898A1 (en) 2006-11-16

Family

ID=37396408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308696 WO2006120898A1 (en) 2005-05-06 2006-04-26 Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition

Country Status (2)

Country Link
JP (1) JP5219247B2 (en)
WO (1) WO2006120898A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127569A (en) * 2006-11-16 2008-06-05 Ifp Depth desulfurization process for cracked gasoline with reduced loss of octane value
JP2008248195A (en) * 2007-03-30 2008-10-16 Japan Energy Corp Porous desulfurization agent and method for desulfurizing hydrocarbon oil using the same
WO2008146848A1 (en) * 2007-05-30 2008-12-04 Japan Energy Corporation Method for desulfurization of hydrocarbon oil
JP2008303273A (en) * 2007-06-06 2008-12-18 Idemitsu Kosan Co Ltd Method for producing desulfurized heavy cracked gasoline and gasoline composition containing the desulfurized heavy cracked gasoline
JP2009155498A (en) * 2007-12-27 2009-07-16 Showa Shell Sekiyu Kk Gasoline fuel composition
JP2010138292A (en) * 2008-12-11 2010-06-24 Showa Shell Sekiyu Kk Fuel composition for gasoline engine
JP2010138294A (en) * 2008-12-11 2010-06-24 Showa Shell Sekiyu Kk Fuel composition for gasoline engine
CN104046389A (en) * 2013-03-11 2014-09-17 中石化洛阳工程有限公司 Inferior gasoline desulfurization olefin-reduction method
WO2020052145A1 (en) * 2018-09-11 2020-03-19 福州大学 Method for upgrading fcc gasoline

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062762A (en) * 1976-09-14 1977-12-13 Howard Kent A Process for desulfurizing and blending naphtha
JPH10102070A (en) * 1996-09-24 1998-04-21 Inst Fr Petrole Production of catalytic cracking gasoline of low sulfur content and system therefor
JP2003183676A (en) * 2001-12-21 2003-07-03 Nippon Oil Corp Method for producing low-sulfur gasoline
JP2005068415A (en) * 2003-08-05 2005-03-17 Japan Energy Corp Process for producing catalytically cracked gasoline base and unleaded gasoline composition using catalytically cracked gasoline base

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656877B2 (en) * 2000-05-30 2003-12-02 Conocophillips Company Desulfurization and sorbents for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062762A (en) * 1976-09-14 1977-12-13 Howard Kent A Process for desulfurizing and blending naphtha
JPH10102070A (en) * 1996-09-24 1998-04-21 Inst Fr Petrole Production of catalytic cracking gasoline of low sulfur content and system therefor
JP2003183676A (en) * 2001-12-21 2003-07-03 Nippon Oil Corp Method for producing low-sulfur gasoline
JP2005068415A (en) * 2003-08-05 2005-03-17 Japan Energy Corp Process for producing catalytically cracked gasoline base and unleaded gasoline composition using catalytically cracked gasoline base

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127569A (en) * 2006-11-16 2008-06-05 Ifp Depth desulfurization process for cracked gasoline with reduced loss of octane value
JP2008248195A (en) * 2007-03-30 2008-10-16 Japan Energy Corp Porous desulfurization agent and method for desulfurizing hydrocarbon oil using the same
WO2008146848A1 (en) * 2007-05-30 2008-12-04 Japan Energy Corporation Method for desulfurization of hydrocarbon oil
JPWO2008146848A1 (en) * 2007-05-30 2010-08-19 株式会社ジャパンエナジー Hydrocarbon oil desulfurization method
JP2008303273A (en) * 2007-06-06 2008-12-18 Idemitsu Kosan Co Ltd Method for producing desulfurized heavy cracked gasoline and gasoline composition containing the desulfurized heavy cracked gasoline
JP2009155498A (en) * 2007-12-27 2009-07-16 Showa Shell Sekiyu Kk Gasoline fuel composition
JP2010138292A (en) * 2008-12-11 2010-06-24 Showa Shell Sekiyu Kk Fuel composition for gasoline engine
JP2010138294A (en) * 2008-12-11 2010-06-24 Showa Shell Sekiyu Kk Fuel composition for gasoline engine
CN104046389A (en) * 2013-03-11 2014-09-17 中石化洛阳工程有限公司 Inferior gasoline desulfurization olefin-reduction method
CN104046389B (en) * 2013-03-11 2015-11-25 中石化洛阳工程有限公司 A kind of method of inferior patrol desulfurating and reducing olefinic hydrocarbon
WO2020052145A1 (en) * 2018-09-11 2020-03-19 福州大学 Method for upgrading fcc gasoline

Also Published As

Publication number Publication date
JPWO2006120898A1 (en) 2008-12-18
JP5219247B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
KR101441129B1 (en) Process for deep desulphurization of cracking gasolines with a small loss of octane number
Song An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel
US6896795B2 (en) Process for the production of gasolines with low sulfur contents
JP5219247B2 (en) Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
US7938955B2 (en) Method for producing super-low sulfur gas oil blending component or super-low sulfur gas oil composition, and super-low sulfur gas oil composition
JP2003528942A (en) Two-stage advanced naphtha desulfurization with reduced mercaptan formation
JP2004010897A (en) Method for producing hydrocarbon having low sulfur and nitrogen content
JP5024884B2 (en) Unleaded gasoline composition and method for producing the same
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP4186157B2 (en) Process for producing low sulfur content gasoline comprising hydrogenation, fractionation, conversion of sulfur containing compounds and desulfurization
JP2003183676A (en) Method for producing low-sulfur gasoline
JP4213062B2 (en) Environmentally friendly clean gasoline and its manufacturing method
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4854075B2 (en) Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP4371937B2 (en) Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same
JP4385178B2 (en) Process for producing desulfurized gasoline from gasoline fractions containing converted gasoline
JP4931052B2 (en) Method for producing gasoline base material
JP2004269871A (en) Unleaded gasoline composition and preparation process thereof
JP5036074B2 (en) Environmentally friendly gasoline
JP2009263681A (en) Process for producing catalytically cracked gasoline base and unleaded gasoline composition using the same
JP2009046585A (en) Fuel oil for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528215

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732352

Country of ref document: EP

Kind code of ref document: A1