JP5219247B2 - Method for producing low sulfur cracking gasoline base and unleaded gasoline composition - Google Patents
Method for producing low sulfur cracking gasoline base and unleaded gasoline composition Download PDFInfo
- Publication number
- JP5219247B2 JP5219247B2 JP2007528215A JP2007528215A JP5219247B2 JP 5219247 B2 JP5219247 B2 JP 5219247B2 JP 2007528215 A JP2007528215 A JP 2007528215A JP 2007528215 A JP2007528215 A JP 2007528215A JP 5219247 B2 JP5219247 B2 JP 5219247B2
- Authority
- JP
- Japan
- Prior art keywords
- cracked gasoline
- sulfur
- gasoline
- fraction
- gasoline fraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/02—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
- C10G25/03—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
- C10G25/05—Removal of non-hydrocarbon compounds, e.g. sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、環境への影響を低減した低硫黄分解ガソリン基材の製造方法、および無鉛ガソリン組成物に関する。 The present invention relates to a method for producing a low-sulfur cracking gasoline base material with reduced environmental impact and an unleaded gasoline composition.
接触分解や熱分解等、重質な石油留分を分解することによって製造される分解ガソリン留分は、他のガソリン基材に比べ経済的に製造でき、リサーチ法オクタン価(RON)が比較的高いオレフィン分に富むという利点があるため、無鉛ガソリン組成物の基材として用いられている。しかし、分解ガソリン留分は、硫黄分を多く含むため、分解ガソリン留分を多く配合したガソリン組成物を燃料として用いると、NOx吸蔵型等のガソリン自動車排気ガス浄化触媒を有効に作用させることができないという問題があった。 Cracked gasoline fractions produced by cracking heavy petroleum fractions, such as catalytic cracking and thermal cracking, can be produced more economically than other gasoline bases and have a relatively high research octane number (RON) Due to the advantage of being rich in olefins, it is used as a base material for unleaded gasoline compositions. However, since the cracked gasoline fraction contains a large amount of sulfur, if a gasoline composition containing a large amount of cracked gasoline fraction is used as a fuel, it can effectively act as a NOx storage type gasoline automobile exhaust gas purification catalyst. There was a problem that I could not.
分解ガソリン留分に含まれる硫黄分を低減することは、分解ガソリン留分を高圧水素と触媒の共存下で水素化処理するという公知技術で容易に可能である。しかし、その場合は、分解ガソリン留分中に多く含まれ、比較的高いRONをもつオレフィン分が水素化されて基材のRONが低下してしまうため、そのようにして得た水素化処理油を基材として配合した無鉛ガソリン組成物では、十分な運転性能が得られないという問題があった。 Reduction of the sulfur content contained in the cracked gasoline fraction can be easily achieved by a known technique in which the cracked gasoline fraction is hydrotreated in the presence of high-pressure hydrogen and a catalyst. However, in that case, the hydrotreated oil obtained in such a manner is contained in the cracked gasoline fraction, and the olefin content having a relatively high RON is hydrogenated to lower the RON of the base material. In the unleaded gasoline composition which mix | blended as a base material, there existed a problem that sufficient driving | operation performance was not obtained.
例えば、(1)硫黄分200質量ppm以下の接触分解ガソリンをスイートニングした後、硫黄分が20質量ppm以下である軽質留分と残部の硫黄分を含有する重質留分に蒸留分離する工程、(2)重質留分をリサーチオクタン価の低下が3以下、かつ硫黄分が20質量ppm以下となるように水素化脱硫する工程、(3)(1)の工程で得られた軽質留分、(2)の工程で得られた重質留分、および接触分解ガソリン以外のガソリン基材であって硫黄分が10質量ppm以下のガソリン基材を混合して、硫黄分が8質量ppm以下の製品ガソリンを製造する工程、からなる低硫黄分ガソリンの製造方法が提案されている(特許文献1参照)。しかし、この方法では、オレフィンが水添されてパラフィンに変化するため十分なRONを維持して実用性能を確保することはできない。 For example, (1) after sweetening a catalytically cracked gasoline having a sulfur content of 200 mass ppm or less, distilling into a light fraction having a sulfur content of 20 mass ppm or less and a heavy fraction containing the remaining sulfur content , (2) hydrodesulfurization of the heavy fraction such that the decrease in the research octane number is 3 or less and the sulfur content is 20 mass ppm or less, (3) the light fraction obtained in the step (1) The heavy fraction obtained in the step (2) and a gasoline base material other than catalytic cracking gasoline and having a sulfur content of 10 mass ppm or less are mixed, and the sulfur content is 8 mass ppm or less. A process for producing a low-sulfur gasoline comprising a process for producing a gasoline of a product has been proposed (see Patent Document 1). However, in this method, since olefin is hydrogenated and changed to paraffin, it is not possible to maintain sufficient RON and ensure practical performance.
一方、炭化水素油を、特定の条件下、吸着剤と接触させて硫黄化合物を吸着させる工程と、吸着剤に水素を通気させることにより吸着剤から硫黄化合物を脱離する工程を繰り返すことにより、オレフィンの水素化反応など不要な反応を抑制し、ガソリンの基材となる炭化水素油に含まれる硫黄分を連続的に低減する方法が提案されている(特許文献2参照)。しかしながら、このような吸着剤を用いる方法も、原料油に含有される特定の炭化水素化合物によるせいか、硫黄の吸着能が阻害されて硫黄分を効率よく継続的に低減することができず、必ずしも満足できる方法ではなかった。
上述したように、硫黄分を低減し、かつ十分なRONを維持して実用性能を確保した無鉛ガソリン組成物の製造方法は未だ確立されていない。本発明は、このような状況下で、十分な運転性能を確保しつつ、硫黄分を低減した低硫黄分解ガソリン基材の製造方法、さらに、その低硫黄分解ガソリン基材を用いた無鉛ガソリン組成物を提供することを課題とする。 As described above, a method for producing an unleaded gasoline composition that has reduced sulfur content and maintained sufficient RON to ensure practical performance has not yet been established. The present invention provides a method for producing a low-sulfur cracked gasoline base material in which sulfur content is reduced while ensuring sufficient operating performance under such circumstances, and further, an unleaded gasoline composition using the low-sulfur cracked gasoline base material The issue is to provide goods.
本発明者等は、上記課題を解決するために鋭意研究した結果、分解ガソリンを分留し、各留分に対し、水素の存在下でモリブデンまたはタングステンを含む触媒と接触させる処理と、水素の存在下でニッケルと亜鉛を含む脱硫剤による処理を適切に組み合わせて脱硫することで、オクタン価のロスを最小限にしながら分解ガソリン基材の硫黄分が低減できることを見出しこの発明に至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have conducted fractionation of cracked gasoline, contacting each fraction with a catalyst containing molybdenum or tungsten in the presence of hydrogen, The present inventors have found that the sulfur content of the cracked gasoline base material can be reduced while minimizing the loss of octane number by desulfurization by appropriately combining treatments with a desulfurization agent containing nickel and zinc in the presence.
すなわち、本発明は、
(1) 分解ガソリン留分を分留して、軽質分解ガソリン留分と重質分解ガソリン留分とを得る分留工程(工程A)、
工程Aで得られた重質分解ガソリン留分を水素の存在下でモリブデン及び/又はタングステンを含む触媒と接触させて硫黄分を低減する水素化脱硫工程(工程B)、
工程Aにて得られた軽質分解ガソリン留分及び/又は工程Bにて得られた硫黄分が低減された重質分解ガソリン留分の全量あるいは一部を水素の存在下でニッケルと亜鉛を含む多孔質脱硫剤と接触させ、硫黄分を5質量ppm以下に低減する収着脱硫工程(工程C)、
前記工程A〜Cによって得られた分解ガソリン留分を混合して硫黄分12質量ppm以下、リサーチ法オクタン価85.0以上である低硫黄分解ガソリン基材を得る混合工程(工程D)
を含む
ことを特徴とする低硫黄分解ガソリン基材の製造方法である。That is, the present invention
(1) A fractionation step (step A) for fractionating a cracked gasoline fraction to obtain a light cracked gasoline fraction and a heavy cracked gasoline fraction,
A hydrodesulfurization step (step B) for reducing the sulfur content by contacting the heavy cracked gasoline fraction obtained in step A with a catalyst containing molybdenum and / or tungsten in the presence of hydrogen;
All or part of the light cracked gasoline fraction obtained in step A and / or the heavy cracked gasoline fraction with reduced sulfur content obtained in step B contains nickel and zinc in the presence of hydrogen. A collecting and detaching sulfur process (process C) for contacting with a porous desulfurizing agent and reducing the sulfur content to 5 mass ppm or less,
Mixing step (step D) of mixing the cracked gasoline fraction obtained in steps A to C to obtain a low sulfur cracked gasoline base material having a sulfur content of 12 mass ppm or less and a research octane number of 85.0 or more.
It is a manufacturing method of the low sulfur decomposition gasoline base material characterized by including.
工程A及び工程Bを経た段階で、次式(1)で表される予備脱硫制御係数αが12〜30である
α=(LW×LS+HW×HS)/100 (1)
(式中、LWは工程Aにて分留された軽質分解ガソリンの割合(容量%)、LSは工程Aにて得られた軽質分解ガソリン中の硫黄分(質量ppm)、HWは工程Aにて分留された重質分解ガソリンの割合(容量%)、HSは工程Bにて得られた重質分解ガソリン中の硫黄分(質量ppm)を示す。)ことが好ましい。The preliminary desulfurization control coefficient α represented by the following formula (1) is 12 to 30 in the stage after the process A and the process B α = (LW × LS + HW × HS) / 100 (1)
(Where, LW is the proportion (volume%) of the light cracked gasoline fractionated in step A, LS is the sulfur content (mass ppm) in the light cracked gasoline obtained in step A, and HW is in step A. It is preferable that the fraction (volume%) of the heavy cracked gasoline fractionated and HS represents the sulfur content (mass ppm) in the heavy cracked gasoline obtained in step B.).
本発明の低硫黄分解ガソリン基材の製造方法は、工程Aに供給する分解ガソリン全量に対し、工程Cに供給して処理する割合が20容量%以上、90容量%以下であることが好ましい。
また、工程Bまたは工程Cの前に、分解ガソリン留分の全量または一部を水素の存在下で、周期律表第8属元素から選ばれる少なくとも1種の金属を含む触媒と接触させてジエン低減処理を行うジエン低減処理工程(工程E)を含むことが好ましい。
さらに、工程Aの前に、あるいは工程Aの分留工程と同時に分解ガソリン留分に含まれる硫黄化合物の分子量を大きくする前処理工程(工程F)を含むことが好ましい。In the method for producing a low-sulfur cracked gasoline base material of the present invention, the ratio of supplying to the process C and treating it with respect to the total amount of cracked gasoline supplied to the process A is preferably 20% by volume or more and 90% by volume or less.
Further, before Step B or Step C, the whole or part of the cracked gasoline fraction is brought into contact with a catalyst containing at least one metal selected from Group 8 elements in the periodic table in the presence of hydrogen. It is preferable to include a diene reduction treatment step (step E) for performing the reduction treatment.
Furthermore, it is preferable to include a pretreatment step (step F) for increasing the molecular weight of the sulfur compound contained in the cracked gasoline fraction before step A or simultaneously with the fractionation step of step A.
また、本発明は、上記の方法によって製造された低硫黄分解ガソリン基材を30容量%以上含有し、リサーチ法オクタン価が89以上、硫黄分10質量ppm以下、ドクターテストが陰性、銀板腐食が1以下である無鉛ガソリン組成物である。
さらに、リサーチ法オクタン価が92以上、硫黄分10質量ppm以下、ドクターテストが陰性、及び銀板腐食が1以下である無鉛ガソリン組成物であることが好ましい。Further, the present invention contains 30% by volume or more of the low sulfur decomposition gasoline base material produced by the above method, the research octane number is 89 or more, the sulfur content is 10 mass ppm or less, the doctor test is negative, and the silver plate corrosion is It is an unleaded gasoline composition which is 1 or less.
Furthermore, it is preferably an unleaded gasoline composition having a research octane number of 92 or more, a sulfur content of 10 mass ppm or less, a negative doctor test, and a silver plate corrosion of 1 or less.
接触分解ガソリン留分や熱分解ガソリン留分等の各種の分解ガソリン留分には、高オクタン価のオレフィンが多く含まれる。本発明は、モリブデンまたはタングステンを含む触媒による水素化脱硫と、水素の存在下でニッケルと亜鉛を含む多孔質脱硫剤による処理を適切に組み合わせることで、オレフィンのロスを最小限にしながら分解ガソリンの硫黄分を低減することが可能である。また、オレフィンのロスが最小限であることからオクタン価もほとんど減少しないので、オクタン価などの性状をほとんど変えることなく硫黄分だけを12質量ppm以下まで減じることが可能である。 Various cracked gasoline fractions such as catalytically cracked gasoline fractions and pyrolyzed gasoline fractions contain a large amount of high octane olefins. The present invention appropriately combines hydrodesulfurization with a catalyst containing molybdenum or tungsten and a treatment with a porous desulfurization agent containing nickel and zinc in the presence of hydrogen to reduce the loss of olefins while minimizing olefin loss. It is possible to reduce the sulfur content. In addition, since the loss of olefin is minimal, the octane number hardly decreases, so that only the sulfur content can be reduced to 12 ppm by mass or less without changing properties such as the octane number.
〔分解ガソリン留分〕
本発明の低硫黄分解ガソリン基材の製造方法における分解ガソリン留分とは、石油留分、石油精製プロセス油、石油化学プロセス油、石炭液化油、オイルサンド、オイルシェール、ポリオレフィン類、プラスチック類、廃プラスチック等の炭化水素類を分解して得られる、より分子量の小さい炭化水素化合物であり、おおよそ炭素数が4以上で沸点が250℃以下の範囲の留分を指す。分解ガソリン留分を得るためのプロセスとしては、接触分解プロセスや熱分解プロセスが代表的なものとして挙げられる。
ガソリン、灯油、軽油等の炭化水素化合物を分解して、エチレンやプロピレン等のオレフィン類を得るためのクラッキングプロセスから副生するおおよそ炭素数が4以上で沸点が250℃以下の範囲の留分や、軽油や潤滑油に含まれるノルマルパラフィン化合物を選択的に分解して、低温流動性を改善する接触脱蝋プロセスから得られる脱蝋ガソリン留分なども本発明の分解ガソリン留分として用いることができる。
また、本発明では上記の各種の分解プロセスで得られる分解ガソリン留分を2種以上組み合わせて用いてよい。[Cracked gasoline fraction]
The cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention is a petroleum fraction, a petroleum refined process oil, a petrochemical process oil, a coal liquefied oil, an oil sand, an oil shale, a polyolefin, a plastic, A hydrocarbon compound having a lower molecular weight obtained by decomposing hydrocarbons such as waste plastics, and refers to a fraction having a carbon number of 4 or more and a boiling point of 250 ° C. or less. Typical processes for obtaining cracked gasoline fractions include catalytic cracking processes and thermal cracking processes.
The hydrocarbons such as gasoline, kerosene and light oil are decomposed to produce a fraction having a carbon number of 4 or more and a boiling point of 250 ° C. or less as a by-product from a cracking process for obtaining olefins such as ethylene and propylene. In addition, a dewaxed gasoline fraction obtained from a catalytic dewaxing process that selectively decomposes normal paraffin compounds contained in light oil or lubricating oil to improve low-temperature fluidity may be used as the cracked gasoline fraction of the present invention. it can.
In the present invention, two or more cracked gasoline fractions obtained by the above various cracking processes may be used in combination.
本発明の低硫黄分解ガソリン基材の製造方法における分解ガソリン留分としては接触分解ガソリン留分を好ましく用いることができる。接触分解ガソリン留分を製造するプロセスは、接触分解装置、原料油、運転条件を特に限定するものでなく、公知の任意の製造工程を採用できる。接触分解装置は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分のほか、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して高オクタン価ガソリン基材を得る装置である。接触分解の原料油は、好ましくはその硫黄分が8000質量ppm以下、特に好ましくは4000質量ppm以下、より好ましくは2000質量ppm以下、さらには1000質量ppm以下、特には500質量ppm以下に水素化精製などにより低減した留分を用いる。接触分解方法として具体的には、例えば、UOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などがある(石油学会編、石油精製プロセス、p.125、講談社サイエンティフィク(1998))。 As the cracked gasoline fraction in the method for producing a low sulfur cracked gasoline base material of the present invention, a catalytic cracked gasoline fraction can be preferably used. The process for producing the catalytic cracking gasoline fraction does not particularly limit the catalytic cracking apparatus, the feedstock, and the operating conditions, and any known production process can be employed. The catalytic cracker uses a catalyst such as amorphous silica alumina, zeolite, etc., in addition to petroleum fractions from light oil to vacuum gas oil, while it is obtained from the heavy oil indirect desulfurization unit, the direct desulfurization unit obtained from the degasification oil and heavy oil direct desulfurization unit. This is a device that obtains a high octane gasoline base material by catalytic cracking of degassed oil, atmospheric residue oil and the like. The raw material oil for catalytic cracking is preferably hydrogenated to a sulfur content of 8000 mass ppm or less, particularly preferably 4000 mass ppm or less, more preferably 2000 mass ppm or less, even more preferably 1000 mass ppm or less, especially 500 mass ppm or less. A fraction reduced by purification or the like is used. Specifically, the catalytic cracking method includes, for example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, residual oil fluid catalytic cracking such as RCC method and HOC method. (The Japan Petroleum Institute, Petroleum Refining Process, p. 125, Kodansha Scientific (1998)).
また、本発明の低硫黄分解ガソリン基材の製造方法において好ましく用いられる分解ガソリン留分として重質油熱分解ガソリン留分も用いることができる。重質油熱分解ガソリン留分とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られるおおよそ炭素数が4以上で沸点が250℃以下の範囲の留分で、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。 Moreover, a heavy oil pyrolysis gasoline fraction can also be used as a cracking gasoline fraction preferably used in the manufacturing method of the low sulfur cracking gasoline base material of this invention. A heavy oil pyrolysis gasoline fraction is a fraction having a carbon number of approximately 4 or more and a boiling point of 250 ° C. or less obtained by a reaction based on a radical reaction by applying heat to the heavy oil fraction. For example, it means a fraction obtained by a delayed coking method, a visbreaking method, a fluid coking method or the like.
〔分留工程(工程A))
分解ガソリン留分、特に、接触分解ガソリン留分は、軽質な留分中にRONの高いオレフィン化合物を比較的多く含むが、硫黄分を多くは含まない。これに対して、重質な留分中には、硫黄分を比較的多く含むが、RONの高いオレフィン化合物を多くは含まない。したがって、分解ガソリン留分、特に、接触分解ガソリン留分を無鉛ガソリン組成物の基材として有効利用するためには、基材とする軽質分解ガソリン留分に含まれる硫黄分が十分に低くなるように分留することが好ましい。例えば、硫黄分が20質量ppm以下、特には10質量ppm以下となるよう分留する。このようにして得られた軽質分解ガソリン留分は、後述する工程Bのような高圧の水素存在下で水素化脱硫触媒と接触させる水素化脱硫工程を実施する必要がなく、そのためRONの高いオレフィン化合物が水素化されないので、軽質分解ガソリン留分のRON低下を回避することができる。無鉛ガソリン組成物への基材配合の自由度を高めるために、軽質分解ガソリン留分と重質分解ガソリン留分の少なくとも一方をさらに分留し細分化して、分解ガソリン留分を3つ以上の留分に分留しても構わない。そして、硫黄分を比較的多く含有する重質分解ガソリン留分に対しては、後述する水素化脱硫工程(工程B)を実施する。これにより、後述する収着脱硫工程(工程C)への負荷が低減でき、経済的に脱硫を行うことができる。[Fractionation process (Process A))
A cracked gasoline fraction, particularly a catalytic cracked gasoline fraction, contains a relatively high amount of an olefin compound having a high RON in a light fraction, but does not contain a large amount of sulfur. On the other hand, the heavy fraction contains a relatively large amount of sulfur, but does not contain many olefin compounds having a high RON. Therefore, in order to effectively use cracked gasoline fractions, particularly catalytic cracked gasoline fractions, as the base material for unleaded gasoline compositions, the sulfur content in the light cracked gasoline fraction used as the base material is sufficiently low. It is preferable to perform fractional distillation. For example, fractional distillation is performed so that the sulfur content is 20 ppm by mass or less, particularly 10 ppm by mass or less. The light cracked gasoline fraction thus obtained does not need to be subjected to a hydrodesulfurization step in which it is brought into contact with a hydrodesulfurization catalyst in the presence of high-pressure hydrogen as in step B, which will be described later. Since the compound is not hydrogenated, a reduction in RON of the light cracked gasoline fraction can be avoided. In order to increase the degree of freedom of blending the base material into the unleaded gasoline composition, at least one of the light cracked gasoline fraction and the heavy cracked gasoline fraction is further fractionated and subdivided, and the cracked gasoline fraction is divided into three or more. You may fractionate into fractions. And the hydrodesulfurization process (process B) mentioned later is implemented with respect to the heavy cracked gasoline fraction containing comparatively much sulfur content. Thereby, the load to the collection / removal sulfur process (process C) mentioned later can be reduced, and desulfurization can be performed economically.
分留された軽質分解ガソリン留分の好ましい性状は、5%留出温度が35〜55℃、特には40〜50℃、95%留出温度が65〜125℃、特には75〜115℃であり、硫黄分が1〜50ppm、特には5〜20ppm、オレフィン分が30〜70容量%、特には40〜60容量%である。重質分解ガソリン留分は、軽質分解ガソリン留分よりも重質な留分であり、通常、軽質分解ガソリン留分よりも硫黄分が高く、オレフィン分が低い。分留された重質分解ガソリン留分の好ましい性状は、5%留出温度が80〜170℃、特には95〜160℃、95%留出温度が175〜215℃、特には190〜220℃であり、硫黄分が20〜500ppm、特には50〜300ppm、オレフィン分が1〜35容量%、特には5〜25容量%である。
分留工程は、接触分解プロセスなどの分解プロセスから得られた分解ガソリン留分を分留するものであるが、分解プロセスの最終段階に含まれる分留工程から、直接に軽質分解ガソリン留分と重質分解ガソリン留分を得ることもできる。Preferred properties of the fractionated light cracked gasoline fraction are 5% distillation temperature of 35-55 ° C, especially 40-50 ° C, 95% distillation temperature of 65-125 ° C, especially 75-115 ° C. Yes, the sulfur content is 1 to 50 ppm, particularly 5 to 20 ppm, and the olefin content is 30 to 70% by volume, particularly 40 to 60% by volume. The heavy cracked gasoline fraction is a heavier fraction than the light cracked gasoline fraction, and usually has a higher sulfur content and a lower olefin content than the light cracked gasoline fraction. Preferred properties of the fractionated heavy cracked gasoline fraction are 5% distillation temperature of 80-170 ° C, especially 95-160 ° C, 95% distillation temperature of 175-215 ° C, especially 190-220 ° C. The sulfur content is 20 to 500 ppm, particularly 50 to 300 ppm, and the olefin content is 1 to 35% by volume, particularly 5 to 25% by volume.
The fractionation step fractionates a cracked gasoline fraction obtained from a cracking process such as a catalytic cracking process. The fractionation step includes a light cracking gasoline fraction directly from a fractionation step included in the final stage of the cracking process. Heavy cracked gasoline fractions can also be obtained.
〔水素化脱硫工程(工程B)〕
工程Bは、工程Aで得られた重質分解ガソリン留分と水素化脱硫触媒とを高圧水素の存在下で接触させて、硫黄分を硫化水素として分離し、水素化脱硫する工程である。重質分解ガソリン留分は、比較的多量に硫黄分を含有しているので、低硫黄のガソリンを供給するには、重質分解ガソリン留分は通常全て水素化脱硫するが、その大部分、具体的には80容量%以上、特には90容量%以上を水素化脱硫することが好ましい。水素化脱硫工程により、重質分解ガソリン留分の硫黄分は5〜50ppm好ましくは10〜30ppmとすることができる。[Hydrodesulphurization process (Process B)]
Step B is a step in which the heavy cracked gasoline fraction obtained in Step A and the hydrodesulfurization catalyst are brought into contact with each other in the presence of high-pressure hydrogen to separate the sulfur as hydrogen sulfide and hydrodesulfurize. The heavy cracked gasoline fraction contains a relatively large amount of sulfur, so to supply low sulfur gasoline, the heavy cracked gasoline fraction is usually all hydrodesulfurized, but most of it, Specifically, it is preferable to hydrodesulfurize 80% by volume or more, particularly 90% by volume or more. By the hydrodesulfurization step, the sulfur content of the heavy cracked gasoline fraction can be 5 to 50 ppm, preferably 10 to 30 ppm.
水素化脱硫触媒は、モリブデン及び/又はタングステンを含み、好ましくは、アルミナなどの無機多孔質担体にモリブデンまたはタングステンを担持したものである。水素化脱硫触媒は、モリブデンとタングステンの含有量は合計で2〜20質量%、特には5〜15質量%が好ましい。含有量は、触媒に含まれる金属元素の質量%で規定される。触媒が含むモリブデンまたはタングステン以外の成分元素に特に制約はないが、含ませてよい好ましい成分として、コバルト、リン、カリウム、炭素、窒素などが挙げられる。コバルトの含有量が0.5〜10質量%、特には1〜5質量%が、リンの含有量が0.2〜10質量%、特には0.5〜5質量%であることが好ましい。通常、触媒は硫化処理を行なった後に用いられる。 The hydrodesulfurization catalyst contains molybdenum and / or tungsten, and preferably has molybdenum or tungsten supported on an inorganic porous carrier such as alumina. The hydrodesulfurization catalyst preferably has a total content of molybdenum and tungsten of 2 to 20 mass%, particularly 5 to 15 mass%. Content is prescribed | regulated by the mass% of the metal element contained in a catalyst. There are no particular restrictions on the component elements other than molybdenum or tungsten contained in the catalyst, but preferred components that may be included include cobalt, phosphorus, potassium, carbon, nitrogen, and the like. It is preferable that the cobalt content is 0.5 to 10% by mass, particularly 1 to 5% by mass, and the phosphorus content is 0.2 to 10% by mass, and particularly 0.5 to 5% by mass. Usually, the catalyst is used after the sulfurization treatment.
好ましい反応条件は、反応温度150〜350℃、反応圧力0.1〜4.0MPa、液空間速度(LHSV)1.0〜10h−1、水素/油比50〜1000NL/Lである。特に好ましい反応条件は、反応温度200〜300℃、反応圧力0.5〜2.5MPa、LHSV2.0〜6.0h−1、水素/油比100〜600NL/Lである。なお、本明細書での反応圧力は、ゲージ圧で示す。重質分解ガソリン留分は、RONの高いオレフィン化合物を比較的多くは含まないが、水素化するとオレフィン化合物は、飽和されてRONが低下することがあるから、あまり過酷な条件、オレフィン分が20%以上、さらには10%以上、特には3%以上低下するような条件下の運転は好ましくない。Preferred reaction conditions are a reaction temperature of 150 to 350 ° C., a reaction pressure of 0.1 to 4.0 MPa, a liquid space velocity (LHSV) of 1.0 to 10 h −1 , and a hydrogen / oil ratio of 50 to 1000 NL / L. Particularly preferable reaction conditions are a reaction temperature of 200 to 300 ° C., a reaction pressure of 0.5 to 2.5 MPa, an LHSV of 2.0 to 6.0 h −1 , and a hydrogen / oil ratio of 100 to 600 NL / L. In addition, the reaction pressure in this specification is shown with a gauge pressure. The heavy cracked gasoline fraction does not contain a relatively large amount of olefin compound having a high RON, but when hydrogenated, the olefin compound may be saturated and RON may be lowered. % Or more, more preferably 10% or more, particularly 3% or more is not preferable.
工程Bでは、水素化脱硫によって生成する硫化水素と分解ガソリンに通常含まれるオレフィン分が反応しチオール類が生成するが、ガソリン中にチオール類が含まれるとガソリン車の部材腐食や悪臭の原因となり好ましくない。工程Bを経た分解ガソリン中のチオール類は、後述する工程Cを経ると除去されるが、工程Cを経ない場合にはチオール類を除去することが好ましい。この除去方法について特には限定しないが、酸化型のスイートニングに代表されるチオール類をジスルフィドに転化する方法により、チオール類を除去することが好ましい。さらに、重質分解ガソリン中に含まれるチオール類は、通常炭素数が5〜10程度であり、炭素数が大きいチオールでも除去出来る酸化型スイートニングプロセスの適用が好ましい。具体的には、NPRA 2000 Annual Meeting AM-00-54記載のMERICAT-IIプロセスなどが挙げられる。このようなスイートニングの詳細は硫黄化合物の分子量を大きくする方法として後述する。他の除去方法としては、無鉛ガソリン組成物中のチオール類硫黄分が2質量ppm以下、さらには1質量ppm以下となるよう、ガソリン基材中のチオール類を予め減じておくことが好ましい。 In Step B, hydrogen sulfide produced by hydrodesulfurization reacts with the olefins normally contained in cracked gasoline to produce thiols, but if thiols are contained in gasoline, it will cause corrosion of car parts and bad odor. It is not preferable. The thiols in the cracked gasoline that has undergone the process B are removed when the process C described later is performed, but when the process C is not performed, the thiols are preferably removed. Although this removal method is not particularly limited, it is preferable to remove thiols by a method of converting thiols typified by oxidation-type sweetening into disulfides. Furthermore, the thiols contained in the heavy cracked gasoline usually have about 5 to 10 carbon atoms, and it is preferable to apply an oxidation-type sweetening process that can remove even thiols having a large carbon number. Specific examples include the MERICAT-II process described in NPRA 2000 Annual Meeting AM-00-54. The details of such sweetening will be described later as a method for increasing the molecular weight of the sulfur compound. As another removal method, it is preferable to reduce the thiols in the gasoline base material in advance so that the sulfur content of the thiols in the lead-free gasoline composition is 2 ppm by mass or less, and further 1 ppm by mass or less.
〔収着脱硫工程(工程C)〕
本発明においては、工程A及び工程Bを実施した後、水素の共存下でニッケルと亜鉛を含む脱硫剤と、工程A及び工程Bで得られた各種の分解ガソリン留分、すなわち工程Aで得られた軽質分解ガソリン留分と重質分解ガソリン留分および工程Bで得られた重質分解ガソリン留分の内少なくとも一つの留分のそれぞれ全量または一部とを接触させ、硫黄分を5質量ppm以下、好ましくは1質量ppm以下まで脱硫する収着脱硫工程(工程C)を実施する。[Accumulation and removal sulfur process (process C)]
In the present invention, after performing Step A and Step B, desulfurization agent containing nickel and zinc in the presence of hydrogen and various cracked gasoline fractions obtained in Step A and Step B, that is, obtained in Step A. The obtained light cracked gasoline fraction and heavy cracked gasoline fraction and the heavy cracked gasoline fraction obtained in step B are brought into contact with each or all or a part thereof, and the sulfur content is 5 mass. A collecting / removing sulfur process (process C) for desulfurization to ppm or less, preferably 1 mass ppm or less is performed.
なお、工程A及び工程Bを経た段階で、次式(1)で表される予備脱硫制御係数αは12〜30が好ましく、より好ましくは13〜20である。
α=(LW×LS+HW×HS)/100 (1)
式中、LWは工程Aにて分留された軽質分解ガソリン留分の割合(容量%)、LSは工程Aにて得られた軽質分解ガソリン留分中の硫黄分(質量ppm)、HWは工程Aにて分留された重質分解ガソリン留分の割合(容量%)、HSは工程Bにて得られた重質分解ガソリン留分中の硫黄分(質量ppm)を示す。軽質分解ガソリン留分の割合、重質分解ガソリン留分の割合は、工程Aで分留される分解ガソリンの容量100容量%に対する割合である。工程Aにて分留された重質分解ガソリン留分の割合HWは、10〜80容量%特には25〜60容量%が好ましい。
これにより、適度に脱硫しながら必要以上に水素化することがないためRON低下を最小限にコントロールすることができ、経済的に脱硫を行うことができる。予備脱硫制御係数αが12未満であると、RON低下が大きくなってしまい好ましくない。αが30を超えると、工程Cにおいて原料硫黄濃度が高くなり、ニッケルと亜鉛を含む脱硫剤の寿命が短くなり好ましくない。In addition, in the stage which passed through the process A and the process B, 12-30 are preferable and, as for the preliminary | backup desulfurization control coefficient (alpha) represented by following Formula (1), 13-20 are more preferable.
α = (LW × LS + HW × HS) / 100 (1)
In the formula, LW is the ratio (volume%) of the light cracked gasoline fraction fractionated in step A, LS is the sulfur content (mass ppm) in the light cracked gasoline fraction obtained in step A, and HW is The ratio (volume%) of the heavy cracked gasoline fraction fractionated in Step A, and HS represents the sulfur content (mass ppm) in the heavy cracked gasoline fraction obtained in Step B. The ratio of the light cracked gasoline fraction and the ratio of the heavy cracked gasoline fraction are the ratio to the capacity of 100% by volume of the cracked gasoline fractionated in the process A. The ratio HW of the heavy cracked gasoline fraction fractionated in step A is preferably 10 to 80% by volume, particularly 25 to 60% by volume.
Thereby, since it does not hydrogenate more than necessary while desulfurizing moderately, RON fall can be controlled to the minimum and desulfurization can be performed economically. If the preliminary desulfurization control coefficient α is less than 12, the decrease in RON becomes large, which is not preferable. When α exceeds 30, the raw material sulfur concentration becomes high in Step C, and the life of the desulfurizing agent containing nickel and zinc is shortened, which is not preferable.
水素化脱硫触媒と水素の存在下で、分解ガソリン留分を水素化精製処理し硫黄分5質量ppm以下まで脱硫することは、オレフィンが水素化されて得られるガソリン基材のRONが低下し好ましくない。さらに、水素化脱硫によって生成する硫化水素がオレフィンと反応してチオール類を再生成するため、十分に脱硫処理できないので好ましくない。水素の存在下ニッケルと亜鉛を含む多孔質脱硫剤を用いると有機硫黄化合物から除去される硫黄が脱硫剤上に固定化され、硫化水素を生じないので、オレフィンと反応してチオール類を再生成することがない。 Hydrocracking a cracked gasoline fraction in the presence of a hydrodesulfurization catalyst and hydrogen to desulfurize it to a sulfur content of 5 ppm by mass or less is preferable because the RON of the gasoline base obtained by hydrogenating the olefin is reduced. Absent. Furthermore, since hydrogen sulfide generated by hydrodesulfurization reacts with olefins to regenerate thiols, it is not preferable because it cannot be sufficiently desulfurized. When a porous desulfurization agent containing nickel and zinc is used in the presence of hydrogen, the sulfur removed from the organic sulfur compound is immobilized on the desulfurization agent and does not generate hydrogen sulfide, so it reacts with olefins to regenerate thiols. There is nothing to do.
工程Cに使用する原料油としては、工程Aで得られた軽質分解ガソリン留分の全量あるいは一部もしくは工程Bで高圧の水素存在下で水素化脱硫触媒と接触させて得られた重質分解ガソリン留分の全量あるいは一部を用いる。あるいは、それぞれを適宜の割合で混合したものを用いてもよい。
工程Aで得られた軽質分解ガソリン留分を工程Cに使用する場合は、軽質分解ガソリン留分の30〜100容量%を原料油とすることが好ましい。工程Bで得られた重質分解ガソリン留分を工程Cに使用する場合は、重質分解ガソリン留分の30〜100容量%を原料油とすることが好ましい。The feedstock oil used in Step C is the whole or part of the light cracked gasoline fraction obtained in Step A or the heavy cracking obtained by contacting with a hydrodesulfurization catalyst in the presence of high-pressure hydrogen in Step B. Use all or part of the gasoline fraction. Or what mixed each in the appropriate ratio may be used.
When the light cracked gasoline fraction obtained in Step A is used in Step C, 30 to 100% by volume of the light cracked gasoline fraction is preferably used as the feedstock. When the heavy cracked gasoline fraction obtained in Step B is used in Step C, it is preferable to use 30 to 100% by volume of the heavy cracked gasoline fraction as a feedstock.
工程Aに使用する前の分解ガソリン全量に対し、工程Cにて処理する割合が20容量%以上、90容量%以下、特には25容量%以上、70容量%以下であることが好ましい。工程Cにて処理する割合が20容量%未満だと十分なオクタン価低下の抑制効果が得られない。工程Cにて処理する割合が90容量%を超えると、ニッケルと亜鉛を含む脱硫剤の寿命が短くなり好ましくない。 It is preferable that the ratio of processing in Step C is 20% by volume or more and 90% by volume or less, and particularly 25% by volume or more and 70% by volume or less with respect to the total amount of cracked gasoline before being used in Step A. If the ratio of treatment in Step C is less than 20% by volume, a sufficient effect of suppressing the decrease in octane number cannot be obtained. If the ratio of treatment in Step C exceeds 90% by volume, the life of the desulfurizing agent containing nickel and zinc is shortened, which is not preferable.
本発明の多孔質脱硫剤はニッケルと亜鉛を含むものである。本発明におけるニッケルと亜鉛を含む多孔質脱硫剤の製造方法は特に限定されないが、アルミナのような多孔質担体に亜鉛やニッケルなどの金属成分を含浸、担持して焼成する製造方法や、共沈法によって亜鉛やニッケルなどの金属成分を沈殿させてろ過洗浄し、成形、焼成等の工程を経る製造方法が、好ましい方法として挙げられる。ニッケルと亜鉛以外にも、鉄、銅等の他の元素を含んでよい。亜鉛に対するニッケルの元素質量比率は、亜鉛とニッケルの合計元素質量100質量%に対するニッケルの量が好ましくは1〜50質量%、特に好ましくは2〜35質量%以下、さらには5〜30質量%である。ニッケル含有量は脱硫剤総質量に対して、好ましくは33質量%以下であり、さらに好ましくは20質量%以下である。亜鉛含有量は脱硫剤総質量に対して、好ましくは30質量%以上であり、さらに好ましくは50質量%以上であり、特に好ましくは55質量%以上である。ニッケル含有量が50質量%を超えていたり、亜鉛含有量が30質量%未満だったりすると、多孔質脱硫剤の寿命が短くなり好ましくない。ナトリウム含有量は脱硫剤総質量に対して1.0質量%以下が好ましく、さらには0.5質量%以下、さらには0.2質量%以下である。ナトリウムが脱硫剤総質量に対して1.0質量%を超えて含まれると脱硫性能が低下し好ましくない。好ましい脱硫剤は、ニッケル、亜鉛などの金属成分を30〜85質量%、特には50〜80質量%含有する。また、成形、焼成された脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、水素雰囲気下で処理して用いるのが好ましい。脱硫剤の比表面積は、好ましくは30m2/g以上、特に好ましくは50〜600m2/gである。The porous desulfurizing agent of the present invention contains nickel and zinc. The production method of the porous desulfurization agent containing nickel and zinc in the present invention is not particularly limited, but a production method in which a porous carrier such as alumina is impregnated with a metal component such as zinc or nickel, supported and fired, or coprecipitation A preferable method is a production method in which a metal component such as zinc or nickel is precipitated by a method, filtered and washed, and subjected to steps such as molding and firing. In addition to nickel and zinc, other elements such as iron and copper may be included. The element mass ratio of nickel to zinc is preferably 1 to 50 mass%, particularly preferably 2 to 35 mass% or less, and more preferably 5 to 30 mass% with respect to 100 mass% of the total element mass of zinc and nickel. is there. The nickel content is preferably 33% by mass or less, more preferably 20% by mass or less, based on the total mass of the desulfurizing agent. The zinc content is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 55% by mass or more with respect to the total mass of the desulfurizing agent. If the nickel content exceeds 50% by mass or the zinc content is less than 30% by mass, the life of the porous desulfurization agent is shortened, which is not preferable. The sodium content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further 0.2% by mass or less with respect to the total mass of the desulfurizing agent. If sodium exceeds 1.0 mass% with respect to the total mass of the desulfurizing agent, the desulfurization performance is lowered, which is not preferable. A preferable desulfurizing agent contains 30 to 85% by mass, particularly 50 to 80% by mass of a metal component such as nickel or zinc. Alternatively, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired. The desulfurizing agent is preferably used after being treated in a hydrogen atmosphere. The specific surface area of the desulfurizing agent is preferably 30 m 2 / g or more, particularly preferably 50 to 600 m 2 / g.
本発明の多孔質脱硫剤とは、硫黄収着機能を持った多孔質脱硫剤が好ましい。ここでいう硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基については、有機硫黄化合物中の炭素−硫黄結合が開裂することによって脱硫剤から脱離させる機能をもった多孔質脱硫剤をいう。この炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれた炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがあっても構わない。収着脱硫において、硫黄は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として硫化水素などの硫黄化合物を発生しない。さらに、硫化水素を発生しないので、リサイクル水素あるいはパージ水素中に硫化水素は含まれず、硫化水素を除去する設備が不要となり、経済的に脱硫できる。 The porous desulfurization agent of the present invention is preferably a porous desulfurization agent having a sulfur sorption function. The porous desulfurization agent having a sulfur sorption function here is to fix sulfur atoms in the organic sulfur compound to the desulfurization agent, and for hydrocarbon residues other than sulfur atoms in the organic sulfur compound, A porous desulfurization agent having a function of desorbing from a desulfurization agent by cleavage of a carbon-sulfur bond in a sulfur compound. When this hydrocarbon residue is eliminated, hydrogen present in the system is added to carbon whose bond with sulfur has been cleaved. Therefore, a hydrocarbon compound obtained by removing sulfur atoms from the organic sulfur compound is obtained as a product. However, the hydrocarbon compound from which the sulfur atom is removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition. In the detachable sulfur, sulfur is fixed to the desulfurizing agent, and therefore, unlike hydrorefining, a sulfur compound such as hydrogen sulfide is not generated as a product. Furthermore, since hydrogen sulfide is not generated, hydrogen sulfide is not contained in the recycled hydrogen or purge hydrogen, and no facility for removing hydrogen sulfide is required, so that desulfurization can be achieved economically.
収着脱硫処理は、バッチ式で行っても、流通式で行っても構わないが、脱硫剤を充填した固定床脱硫塔に軽質分解ガソリン留分や重質分解ガソリン留分を流通させて行うことが、脱硫剤と得られる脱硫分解ガソリン留分の分離が簡便にできるので好ましい。脱硫処理における温度は、好ましくは100〜400℃であり、より好ましくは200〜350℃、特に好ましくは250〜350℃である。反応温度が100℃未満であると、脱硫速度が低下し、効率的に脱硫ができず好ましくない。また、反応温度が400℃を超えると、脱硫剤がシンタリングし脱硫容量が低下し好ましくない。脱硫剤と接触させただけでは脱硫されにくいチオフェン類の脱硫を促進するために、水素を共存させる。反応圧力は好ましくは0〜5.0MPa、より好ましくは0〜3.0MPa、特に好ましくは0〜2.0MPaである。反応圧力が5.0MPaを超えると、炭化水素油中に含まれるオレフィン分の水素化が進行しやすくなり、RONが低下する可能性があり好ましくない。 The collection / removal sulfur treatment may be performed in a batch system or a flow system, but is performed by circulating a light cracked gasoline fraction or a heavy cracked gasoline fraction through a fixed bed desulfurization tower filled with a desulfurizing agent. It is preferable that the desulfurization agent and the obtained desulfurized cracked gasoline fraction can be easily separated. The temperature in the desulfurization treatment is preferably 100 to 400 ° C, more preferably 200 to 350 ° C, and particularly preferably 250 to 350 ° C. When the reaction temperature is less than 100 ° C., the desulfurization rate decreases, and it is not preferable because desulfurization cannot be efficiently performed. On the other hand, when the reaction temperature exceeds 400 ° C., the desulfurization agent is sintered, and the desulfurization capacity is lowered, which is not preferable. Hydrogen is allowed to coexist in order to promote desulfurization of thiophenes that are difficult to desulfurize only by contacting with a desulfurizing agent. The reaction pressure is preferably 0 to 5.0 MPa, more preferably 0 to 3.0 MPa, and particularly preferably 0 to 2.0 MPa. When the reaction pressure exceeds 5.0 MPa, hydrogenation of the olefin contained in the hydrocarbon oil is likely to proceed, and RON may be lowered.
固定床流通式で脱硫剤と分解ガソリン留分を接触させて脱硫処理を行う場合、LHSVは、好ましくは2.0h−1を超え50.0h−1以下であり、より好ましくは2.0h−1を超え20.0h−1以下であり、特に好ましくは2.0h−1を超え10.0h−1以下である。LHSVが2.0h−1以下だと、通油量が制限されたり、脱硫リアクターが大きくなりすぎたりして経済的に脱硫できず好ましくない。LHSVが50.0h−1を超えると脱硫するのに十分な接触時間が得られず、脱硫率が低下してしまい好ましくない。また、水素の存在下、固定床流通式で脱硫剤と分解ガソリン留分を接触させて脱硫処理を行う場合、水素/油比は、好ましくは1〜1000NL/L、より好ましくは10〜500NL/Lであり、特に好ましくは10〜300NL/Lである。水素としては、メタン等の不純物を含んでいてもよいが、水素コンプレッサーが大きくなりすぎないよう、水素純度は50容量%以上が好ましく、さらには80容量%以上、特には95容量%以上が好ましい。水素中に硫化水素などの硫黄化合物が含まれると脱硫剤の寿命が低下するので一定割合以下であるのが好ましい。具体的に水素中の硫黄分は、1000容量ppm以下が好ましく、さらには100容量ppm以下、特には10容量ppm以下が好ましい。If fixed bed flow contacting the cracked gasoline fraction and desulfurizing agent performs desulfurization treatment, LHSV is preferably not more than 50.0H -1 exceed 2.0 h -1, more preferably 2.0 h - is 1 to greater than 20.0H -1 or less, particularly preferably not more than 10.0H -1 exceed 2.0 h -1. If the LHSV is 2.0 h −1 or less, the amount of oil passing is limited, the desulfurization reactor becomes too large, and it is not preferable because it cannot economically desulfurize. If the LHSV exceeds 50.0 h- 1 , contact time sufficient for desulfurization cannot be obtained, and the desulfurization rate decreases, which is not preferable. Further, when the desulfurization treatment is performed by contacting the desulfurization agent and the cracked gasoline fraction in a fixed bed flow type in the presence of hydrogen, the hydrogen / oil ratio is preferably 1 to 1000 NL / L, more preferably 10 to 500 NL / L. L, particularly preferably 10 to 300 NL / L. The hydrogen may contain impurities such as methane, but the hydrogen purity is preferably 50% by volume or more, more preferably 80% by volume or more, and particularly 95% by volume or more so that the hydrogen compressor does not become too large. . When a sulfur compound such as hydrogen sulfide is contained in hydrogen, the life of the desulfurizing agent is reduced, so that the ratio is preferably a certain ratio or less. Specifically, the sulfur content in hydrogen is preferably 1000 ppm by volume or less, more preferably 100 ppm by volume or less, and particularly preferably 10 ppm by volume or less.
〔混合工程(工程D):低硫黄分解ガソリン基材の調製〕
混合工程(工程D)では、分解ガソリン留分を工程A、工程B、工程Cにて処理し、各工程で得られた基材を混合して、硫黄分12質量ppm以下、RONは85.0以上の低硫黄分解ガソリン基材を調製する。硫黄分は10質量ppm以下が好ましく、8質量ppm以下がより好ましい。RONは、89.0〜93.0が好ましい。また、工程A、工程B、工程Cで得られた各種基材は、その製造量と、低硫黄分解ガソリン基材を調製するこの工程Dでの使用量とが、過不足なく、バランスよく用いられることが、経済的であり、好ましい。[Mixing step (Step D): Preparation of low sulfur cracking gasoline base material]
In the mixing step (step D), the cracked gasoline fraction is processed in step A, step B, and step C, the base materials obtained in each step are mixed, the sulfur content is 12 mass ppm or less, and RON is 85. Prepare zero or more low sulfur cracking gasoline base. The sulfur content is preferably 10 mass ppm or less, and more preferably 8 mass ppm or less. RON is preferably 89.0 to 93.0. In addition, the various base materials obtained in Step A, Step B, and Step C are used in a well-balanced manner so that the production amount and the amount used in Step D for preparing the low sulfur decomposition gasoline base material are not excessive or insufficient. It is economical and preferable.
典型的には、工程Aで得られ、工程Cで処理した軽質分解ガソリン留分と、工程Aで得られ、工程Bで処理した重質分解ガソリン留分とを混合する、または、工程Aで得られた軽質分解ガソリン留分と、工程Aで得られ、工程Bで処理し、さらに工程Cで処理した重質分解ガソリン留分とを混合する。工程Aの原料となる分解ガソリン留分のほとんど全量、例えば80容量%以上から得られた各種基材を混合して低硫黄分解ガソリン基材とすることが好ましい。また、工程Dの混合は、ガソリン組成物の調製のための他のガソリン基材との混合である後述のブレンド工程と同時に行なってもよい。 Typically, the light cracked gasoline fraction obtained in step A and treated in step C is mixed with the heavy cracked gasoline fraction obtained in step A and treated in step B, or in step A The obtained light cracked gasoline fraction is mixed with the heavy cracked gasoline fraction obtained in step A, treated in step B, and further treated in step C. It is preferable to mix various base materials obtained from almost the entire amount of the cracked gasoline fraction used as the raw material of step A, for example, 80% by volume or more to obtain a low sulfur cracked gasoline base material. Moreover, you may perform the mixing of the process D simultaneously with the below-mentioned blending process which is mixing with the other gasoline base material for preparation of a gasoline composition.
〔ジエン低減処理工程(工程E)〕
本発明の分解ガソリン基材の製造方法では、工程Bもしくは工程Cの前工程で分解ガソリン留分の全量または一部を水素の存在下で、好ましくは、アルミナなどの無機多孔質担体に周期律表第8族元素から選ばれる少なくとも1種の金属を担持した触媒と接触させてジエン価を減少させることが好ましい。分解ガソリン留分は硫黄分を含むので、硫黄分に対する耐性の高いニッケルまたはコバルトを含む触媒が好ましい。触媒が含む第8族元素以外の活性成分元素に特に制約はないが、モリブデン、タングステン、リンは含ませてよい好ましい成分として挙げられる。通常、触媒は硫化処理を行なった後に用いられる。反応条件としては、得られる分解ガソリン留分のジエン価を低下させるが、オレフィンの水素化を著しく進めてRONを著しく低下させることがないように設定する必要がある。[Diene reduction treatment process (Process E)]
In the method for producing a cracked gasoline base material of the present invention, the whole or part of the cracked gasoline fraction in the presence of hydrogen in the step B or the step C, preferably in an inorganic porous carrier such as alumina, It is preferable to reduce the diene value by contacting with a catalyst supporting at least one metal selected from Group 8 elements. Since the cracked gasoline fraction contains a sulfur content, a catalyst containing nickel or cobalt having high resistance to the sulfur content is preferable. There are no particular restrictions on the active component elements other than the Group 8 element contained in the catalyst, but molybdenum, tungsten, and phosphorus are listed as preferred components that may be included. Usually, the catalyst is used after the sulfurization treatment. The reaction conditions are such that the diene number of the cracked gasoline fraction to be obtained is reduced, but it is necessary to set the olefin hydrogenation so as not to significantly reduce RON.
好ましい反応条件は、反応温度が40〜300℃、反応圧力が0〜4MPa、LHSVが1〜10h−1、水素/油比が1〜500NL/Lである。工程Eにより得られる分解ガソリン留分のジエン価は、好ましくは0.5g/100g以下、さらに好ましくは0.3g/100g、特に好ましくは0.1g/100g以下である。ジエン価が0.5g/100gを超えると、工程Bや工程Cにおいて脱硫性能や脱硫剤寿命を大きく損なわせてしまい好ましくない。さらに、工程Eでは、オレフィン分の減少を、好ましくは10容量%以下、特に好ましくは5容量%以下、さらに好ましくは2容量%以下とし、RONの低下を、好ましくは1以下、より好ましくは0.5以下、さらに好ましくは0.3以下、特に好ましくは0.2以下とする。このジエン低減処理の段階では、硫黄分は実質的に低減されない。硫黄分の一部は硫化水素に変換する場合もあるが、これは後続の工程Bもしくは工程Cで脱硫することができることもあり、ジエン低減処理工程に硫化水素の除去設備を設けることは経済的に見合わない。本発明でいうジエン価とは、UOP326−82によって測定されるジエン価を指す。Preferred reaction conditions are a reaction temperature of 40 to 300 ° C., a reaction pressure of 0 to 4 MPa, an LHSV of 1 to 10 h −1 , and a hydrogen / oil ratio of 1 to 500 NL / L. The diene value of the cracked gasoline fraction obtained by step E is preferably 0.5 g / 100 g or less, more preferably 0.3 g / 100 g, and particularly preferably 0.1 g / 100 g or less. If the diene value exceeds 0.5 g / 100 g, the desulfurization performance and the life of the desulfurizing agent are greatly impaired in Step B and Step C, which is not preferable. Further, in step E, the decrease in olefin content is preferably 10% by volume or less, particularly preferably 5% by volume or less, more preferably 2% by volume or less, and the decrease in RON is preferably 1 or less, more preferably 0. 0.5 or less, more preferably 0.3 or less, particularly preferably 0.2 or less. In the diene reduction treatment stage, the sulfur content is not substantially reduced. A part of the sulfur content may be converted to hydrogen sulfide, which may be desulfurized in the subsequent step B or step C, and it is economical to provide hydrogen sulfide removal equipment in the diene reduction treatment step. It doesn't match. The diene value as used in the field of this invention refers to the diene value measured by UOP326-82.
ジエン価は、触媒と接触分解ガソリンを水素の共存下で接触させ、ジエンをモノオレフィンに転化するか、あるいは、ジエンと共存する硫黄化合物とを反応させスルフィド類に転化させることにより低減される。第8族元素を含む触媒を用い、上述の好ましい反応条件を適用することで、オレフィンの水素化をほとんど抑制できるので、RONを著しく低下させることなく、ジエン価を低下させることができる。 The diene value is reduced by contacting the catalyst and catalytically cracked gasoline in the presence of hydrogen to convert the diene to a monoolefin, or reacting the sulfur compound coexisting with the diene to convert it to sulfides. By using the catalyst containing a Group 8 element and applying the above-mentioned preferable reaction conditions, hydrogenation of the olefin can be almost suppressed, so that the diene value can be reduced without significantly reducing RON.
従来から石油精製においては、オレフィン中のジエンを選択的に水素化精製することが行われており、本発明において工程Eとして適用できる。具体的には、IFP Selective Hydrogenationプロセス、Hules Selective Hydrogenationプロセスなどが好ましく用いられる(石油学会編、石油精製プロセス、p.62、講談社サイエンティフィク(1998))。また、本発明においてジエン価を低減する方法として、SHUプロセス(21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37(2002))やCD Hydroプロセス(NPRA 2001 Annual Meeting, AM-01-39(2001))も用いることができる。 Conventionally, in petroleum refining, diene in olefins has been selectively hydrorefined and can be applied as step E in the present invention. Specifically, the IFP Selective Hydrogenation process, the Hules Selective Hydrogenation process, and the like are preferably used (edited by the Petroleum Society, Petroleum Refining Process, p. 62, Kodansha Scientific (1998)). In addition, as a method for reducing the diene value in the present invention, the SHU process (21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37 (2002)) and the CD Hydro process (NPRA 2001 Annual Meeting, AM-01-39) (2001)) can also be used.
〔硫黄化合物の分子量を大きくする前処理工程(工程F)〕
分解ガソリン留分は、含まれる硫黄化合物の分子量を大きくする前処理工程(工程F)を行って工程Aの分留工程に供するか、あるいは工程Aの分留工程と同時に硫黄化合物の分子量を大きくする前処理を行うことが好ましい。チオール類などの硫黄化合物の分子量を選択的に大きくすることにより、その含硫黄化合物の沸点が高くなるため、分留工程において、含硫黄化合物を重質分解ガソリン留分中に移行することができ、分留工程で得られる軽質分解ガソリン留分の硫黄分を低減することができる。例えば、蒸留塔の中に触媒を入れておいて硫黄分の重質化を行い、重質化された硫黄化合物は重質側の留出成分に移行して軽質留分の硫黄分を低減することができる。後述のCD−Hydroプロセスはこれを利用している。[Pretreatment step for increasing the molecular weight of the sulfur compound (Step F)]
The cracked gasoline fraction is subjected to a pretreatment step (step F) for increasing the molecular weight of the sulfur compound contained therein and used for the fractionation step of step A, or the molecular weight of the sulfur compound is increased simultaneously with the fractionation step of step A. It is preferable to perform a pretreatment. By selectively increasing the molecular weight of sulfur compounds such as thiols, the boiling point of the sulfur-containing compound increases, so that the sulfur-containing compound can be transferred into the heavy cracked gasoline fraction during the fractionation process. The sulfur content of the light cracked gasoline fraction obtained in the fractionation step can be reduced. For example, a catalyst is placed in a distillation column to make the sulfur content heavy, and the heavy sulfur compound is transferred to the distillate component on the heavy side to reduce the sulfur content of the light fraction. be able to. The CD-Hydro process described later uses this.
従来から石油精製においては、チオール類を処理して製品を無臭化するためのスイートニングが行われている。酸化法や酸化抽出法によって、チオール類をジスルフィド類に転化する公知の方法は、本発明において硫黄化合物の分子量を大きくする方法として適用できる。具体的には、マーロックス法、ドクター法などが好ましく用いられる(石油精製技術便覧第3版、産業図書株式会社(1981))。 Conventionally, in petroleum refining, sweetening for treating thiols to make the product non-brominated is performed. A known method for converting a thiol to a disulfide by an oxidation method or an oxidation extraction method can be applied as a method for increasing the molecular weight of a sulfur compound in the present invention. Specifically, the Marlox method, the doctor method, etc. are preferably used (Oil Refinery Technical Handbook 3rd Edition, Sangyo Tosho Co., Ltd. (1981)).
また、本発明において硫黄化合物の分子量を大きくする方法として、分解ガソリン留分に含まれる硫黄化合物とオレフィン類とを反応させる方法も好適に用いることができる。具体的には、SHUプロセスやOATSプロセス(21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37(2002))が挙げられる。特に、硫黄化合物の分子量を大きくする処理とジエン低減処理を同時に行うことができるSHUプロセスが好ましい。さらには、分留を行いながら、硫黄化合物の分子量を大きくする処理とジエン低減処理を同時にできるプロセスがいっそう好ましく、具体的にこのようなものとして、CD−Hydroプロセスが挙げられる。 In the present invention, as a method of increasing the molecular weight of the sulfur compound, a method of reacting the sulfur compound and olefins contained in the cracked gasoline fraction can also be suitably used. Specific examples include the SHU process and OATS process (21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37 (2002)). In particular, an SHU process capable of simultaneously performing a treatment for increasing the molecular weight of a sulfur compound and a diene reduction treatment is preferable. Furthermore, a process capable of simultaneously performing a treatment for increasing the molecular weight of the sulfur compound and a diene reduction treatment while performing fractional distillation is more preferable. Specific examples of such a process include a CD-Hydro process.
〔分解ガソリン留分以外の他のガソリン基材〕
低硫黄のガソリン組成物を調製する最終的な工程であるブレンド工程で混合される分解ガソリン留分以外の他のガソリン基材としては、接触改質ガソリン基材、アルキレートガソリン基材、直留ナフサを脱硫処理した基材、異性化ガソリン基材、トルエン、キシレンなどの芳香族基材、及びメチルt−ブチルエーテル(MTBE)、エチルt−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)、エタノール、メタノール等の含酸素ガソリン基材等、公知のガソリン基材を適宜用いることができる。特に、ETBEは酸素含有量あたりのオクタン価向上効果がエタノールやMTBEに比べて高く、ETBE混合により揮発性を悪化させることなくオクタン価を高めることができ好ましい基材である。[Other gasoline base materials other than cracked gasoline fraction]
Other gasoline base materials other than the cracked gasoline fraction mixed in the blending process, which is the final step for preparing a low sulfur gasoline composition, include catalytic reformed gasoline base materials, alkylate gasoline base materials, and direct distillation. Base material obtained by desulfurizing naphtha, isomerized gasoline base, aromatic base such as toluene and xylene, and methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl ethyl ether (TAEE), Known gasoline base materials such as oxygen-containing gasoline base materials such as ethanol and methanol can be appropriately used. In particular, ETBE is a preferable base material that has a higher octane number improvement effect per oxygen content than ethanol and MTBE, and can increase the octane number without deteriorating volatility by ETBE mixing.
ブレンド工程で混合される他のガソリン基材は、好ましくは硫黄分が20質量ppm以下であり、より好ましくは10質量ppm以下、さらには3質量ppm以下、特には1質量ppm以下である。他のガソリン基材の硫黄分が20質量ppmを超えると、ガソリン基材のブレンド工程での配合量が制約されるため好ましくない。
好ましい配合量は、分解ガソリン留分を30〜90容量%、特には40〜80容量%、接触改質ガソリン基材を5〜50容量%、特には10〜45容量%、アルキレートガソリン基材を5〜40容量%、特には10〜30容量%、ETBEなどの含酸素ガソリン基材を0〜16容量%、特には1〜7容量%である。The other gasoline base material mixed in the blending step preferably has a sulfur content of 20 ppm by mass or less, more preferably 10 ppm by mass or less, further 3 ppm by mass or less, and particularly 1 ppm by mass or less. If the sulfur content of the other gasoline base exceeds 20 mass ppm, the blending amount in the blending step of the gasoline base is restricted, which is not preferable.
Preferred blending amounts are 30 to 90% by volume of cracked gasoline fraction, particularly 40 to 80% by volume, 5 to 50% by volume of catalytically reformed gasoline base, particularly 10 to 45% by volume, alkylate gasoline base 5 to 40% by volume, particularly 10 to 30% by volume, and 0 to 16% by volume, particularly 1 to 7% by volume, of an oxygen-containing gasoline base material such as ETBE.
〔ガソリン組成物〕
本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が89.0以上、全硫黄分が10質量ppm以下、ドクターテストが陰性、銀板腐食が1以下である。リサーチ法オクタン価が90.0以上、ジエン価が0.1g/100g以下であることが好ましい。ドクターテストが陽性あるいは銀板腐食が1を超えると、ガソリンから悪臭が発生したり、ガソリン自動車に使われている部材の腐食を引き起こすため好ましくない。RONは、好ましくは92以上、より好ましくは93〜102である。このように高いRONを有すると、ガソリン自動車の加速性や燃費を向上させることができ、好ましい。また、硫黄分は、好ましくは8質量ppm以下、より好ましくは5質量ppm以下である。[Gasoline composition]
The unleaded gasoline composition of the present invention has a research octane number of 89.0 or more, a total sulfur content of 10 mass ppm or less, a negative doctor test, and a silver plate corrosion of 1 or less. The research octane number is preferably 90.0 or more and the diene value is preferably 0.1 g / 100 g or less. If the doctor test is positive or the silver plate corrosion exceeds 1, unpleasant odors are generated from gasoline and corrosion of members used in gasoline automobiles is not preferable. RON is preferably 92 or more, more preferably 93 to 102. Having such a high RON is preferable because it can improve the acceleration performance and fuel consumption of a gasoline automobile. Further, the sulfur content is preferably 8 ppm by mass or less, more preferably 5 ppm by mass or less.
本発明の無鉛ガソリン組成物は、好ましくはリード蒸気圧(RVP)が93kPa以下であり、より好ましくは44〜93kPaである。93kPaを超えると大気中にガソリン蒸気の放出量が多くなり好ましくない。44kPa未満ではガソリン自動車の始動性が悪化するため好ましくない。さらに好ましくは、季節に応じてRVPを調整し、夏場は44〜65kPa、冬場は70〜93kPaとするのが好ましい。 The unleaded gasoline composition of the present invention preferably has a Reed vapor pressure (RVP) of 93 kPa or less, more preferably 44 to 93 kPa. If it exceeds 93 kPa, the amount of gasoline vapor released into the atmosphere increases, which is not preferable. If it is less than 44 kPa, the startability of the gasoline automobile is deteriorated, which is not preferable. More preferably, the RVP is adjusted according to the season, and it is preferably 44 to 65 kPa in summer and 70 to 93 kPa in winter.
本発明の無鉛ガソリン組成物は、50容量%留出温度が75〜105℃であることが好ましく、より好ましくは、75〜100℃である。50容量%留出温度が75℃未満では、無鉛ガソリン組成物のRVPが高くなり、好ましくない。105℃を超えるとガソリン自動車の加速性が悪化し、好ましくない。また、芳香族分は40容量%以下が好ましく、さらには、30容量%以下、特には20〜30容量%であることが好ましい。芳香族分が20容量%未満では、分解ガソリン基材の配合量が制限され、無鉛ガソリン組成物の製造コストが高くなり、好ましくない。40容量%を超えると、無鉛ガソリン組成物の燃焼性が悪化するため好ましくない。
さらに、不飽和炭素数が全炭素数に占める割合であるオレフィン分が45容量%以下であることが好ましく、より好ましくは、20〜40容量%、特に好ましくは20〜30容量%である。不飽和炭素数が全炭素数に占める割合がこのような範囲にあると、上述の範囲のオレフィン分や芳香族分を確保することが容易になる。The unleaded gasoline composition of the present invention preferably has a 50% by volume distillation temperature of 75 to 105 ° C, more preferably 75 to 100 ° C. If the 50% by volume distillation temperature is less than 75 ° C., the RVP of the unleaded gasoline composition increases, which is not preferable. If it exceeds 105 ° C., the acceleration performance of the gasoline vehicle deteriorates, which is not preferable. The aromatic content is preferably 40% by volume or less, more preferably 30% by volume or less, and particularly preferably 20 to 30% by volume. If the aromatic content is less than 20% by volume, the blending amount of the cracked gasoline base material is limited, and the production cost of the unleaded gasoline composition becomes high, which is not preferable. If it exceeds 40% by volume, the flammability of the unleaded gasoline composition deteriorates, which is not preferable.
Furthermore, the olefin content, which is the ratio of the unsaturated carbon number to the total carbon number, is preferably 45% by volume or less, more preferably 20 to 40% by volume, and particularly preferably 20 to 30% by volume. When the ratio of the unsaturated carbon number to the total carbon number is in such a range, it becomes easy to secure the olefin content and aromatic content in the above range.
〔添加剤〕
本発明の無鉛ガソリン組成物には、当業界で公知の燃料油添加剤の1種または2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1質量%以下に維持することが好ましい。本発明のガソリンで使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。〔Additive〕
In the unleaded gasoline composition of the present invention, one or more fuel oil additives known in the art can be blended as required. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 mass% or less normally. Examples of fuel oil additives that can be used in the gasoline of the present invention include phenolic, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based surfaces. Anti-ignition agent, detergent / dispersant such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, sulfuric acid of higher alcohol Examples include an auxiliary combustor such as an ester, an anionic surfactant, a cationic surfactant, an antistatic agent such as an amphoteric surfactant, and a colorant such as an azo dye.
以下に、実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
中東系原油の減圧軽油留分を水素化精製処理したものと常圧蒸留残渣油を水素化精製処理したものを主たる原料油(硫黄分3,500ppm)として、流動接触分解して得られた接触分解ガソリン留分Aに対して、酸化型のスイートニング装置によって処理して、接触分解ガソリン留分Bを得た。接触分解ガソリン留分AおよびBの性状を表1に示す。なお、酸化型のスイートニング装置は、UOP社のMeroxプロセスであり、反応温度42℃の条件で運転した。 Contact obtained by fluid catalytic cracking using a hydrorefining treatment of a vacuum gas oil fraction of Middle Eastern crude oil and a hydrorefining treatment of atmospheric distillation residue oil as the main feed oil (sulfur content 3,500 ppm) The cracked gasoline fraction A was treated by an oxidation type sweetening device to obtain a catalytic cracked gasoline fraction B. Table 1 shows the properties of the catalytic cracking gasoline fractions A and B. The oxidation type sweetening apparatus was a Merox process manufactured by UOP, and was operated at a reaction temperature of 42 ° C.
なお、本明細書中、密度はJIS K 2249、蒸気圧(リード法)はJIS K 2258、蒸留性状はJIS K 2254(常圧法)、炭化水素成分組成はJIS K 2536(蛍光指示薬吸着法)、ジエン価はUOP326−82、硫黄分は、ASTM D 5453(紫外蛍光法)に準拠して測定した。RONは、ヒューレットパッカード社製PIONA装置を用いて、ガスクロマトグラフ法で測定した。銀板腐食はJIS K2513(石油製品−銅板腐食試験方法:対応 ASTM D130)のボンベ法(ジェット燃料)で、銅板の代わりにJIS K2276(石油製品−航空燃料油試験方法)の「14.銀板腐食試験方法」に用いる銀板を使用して評価した。試験温度は50℃、試験時間は3時間である。ドクターテストは、JIS K 2276に準拠して測定した。 In this specification, the density is JIS K 2249, the vapor pressure (Lead method) is JIS K 2258, the distillation property is JIS K 2254 (normal pressure method), the hydrocarbon component composition is JIS K 2536 (fluorescent indicator adsorption method), The diene value was measured according to UOP326-82, and the sulfur content was measured according to ASTM D 5453 (ultraviolet fluorescence method). RON was measured by a gas chromatograph method using a PIONA device manufactured by Hewlett-Packard Company. Silver plate corrosion is the cylinder method (jet fuel) of JIS K2513 (Petroleum products-Copper plate corrosion test method: corresponding ASTM D130). Instead of the copper plate, “14. Silver plate of JIS K2276 (Petroleum product-Aviation fuel oil test method)” The silver plate used in the “corrosion test method” was evaluated. The test temperature is 50 ° C. and the test time is 3 hours. The doctor test was measured according to JIS K 2276.
この接触分解ガソリン留分Bを分留して、軽質接触分解ガソリン留分Cと重質接触分解ガソリン留分Dを得た。軽質留分Cと重質留分Dの割合は68:32(容量比)であった。軽質接触分解ガソリン留分Cおよび重質接触分解ガソリン留分Dの性状を表1に示す。 This catalytic cracking gasoline fraction B was fractionated to obtain a light catalytic cracking gasoline fraction C and a heavy catalytic cracking gasoline fraction D. The ratio of the light fraction C and the heavy fraction D was 68:32 (volume ratio). Table 1 shows the properties of the light catalytic cracking gasoline fraction C and the heavy catalytic cracking gasoline fraction D.
アルミナにニッケルを20質量%担持した触媒を固定床流通式反応装置に充填して硫化処理した後、反応温度250℃、反応圧力常圧、LHSV=4.0h−1、水素/油比340NL/Lの条件のもと、軽質接触分解ガソリン留分Cを通油してジエン低減処理を行い、軽質接触分解ガソリンEを得た。A catalyst in which 20% by mass of nickel is supported on alumina is charged into a fixed bed flow reactor and subjected to sulfidation, followed by reaction temperature of 250 ° C., reaction pressure and pressure, LHSV = 4.0 h −1 , hydrogen / oil ratio of 340 NL / Under conditions of L, light catalytic cracking gasoline fraction C was passed through and diene reduction treatment was performed to obtain light catalytic cracking gasoline E.
炭酸ナトリウム106gを水に溶かした溶液を60℃に加温し、これに硝酸亜鉛六水和物179gを水に溶かした溶液に硝酸ニッケル六水和物58gを加えたものを滴下した。得られた沈殿物をろ過した後、水で洗浄した。その後、120℃で16時間乾燥後、350℃で3時間焼成し脱硫剤Zを得た。脱硫剤Zはニッケル含有量が17.9質量%、亜鉛含有量が58.7質量%、ナトリウム含有量が0.02質量%、比表面積が80m2/gであった。また、亜鉛に対するニッケルの割合は30.4質量%であった。軽質接触分解ガソリン留分Eを、脱硫剤Zを用い反応温度300℃、反応圧力常圧、LHSV=2.5h−1、水素/油比180NL/Lの条件で脱硫処理して軽質接触分解ガソリンFを得た。軽質接触分解ガソリン留分EおよびFの性状を表1に示す。A solution obtained by dissolving 106 g of sodium carbonate in water was heated to 60 ° C., and a solution obtained by adding 58 g of nickel nitrate hexahydrate to a solution obtained by dissolving 179 g of zinc nitrate hexahydrate in water was added dropwise thereto. The resulting precipitate was filtered and washed with water. Then, after drying at 120 ° C. for 16 hours, calcination was performed at 350 ° C. for 3 hours to obtain a desulfurizing agent Z. The desulfurizing agent Z had a nickel content of 17.9% by mass, a zinc content of 58.7% by mass, a sodium content of 0.02% by mass and a specific surface area of 80 m 2 / g. Moreover, the ratio of nickel to zinc was 30.4% by mass. Light catalytic cracking gasoline fraction E is desulfurized using a desulfurizing agent Z under the conditions of a reaction temperature of 300 ° C., a reaction pressure of normal pressure, LHSV = 2.5 h −1 , and a hydrogen / oil ratio of 180 NL / L. F was obtained. Properties of light catalytic cracking gasoline fractions E and F are shown in Table 1.
コバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)を固定床流通式反応装置に充填して硫化処理した後、反応温度225℃、反応圧力1.0MPa、LHSV=5.0h−1、水素/油比=307NL/Lの条件下で、重質接触分解ガソリン留分Dを通油して水素化脱硫を行い、さらに酸化型のスイートニング装置で処理して重質接触分解ガソリンGを得た。なお、酸化型のスイートニング装置は、メリケム社のMERICAT-IIプロセスであり、反応温度41℃の条件で運転した。
軽質接触分解ガソリンF全量および重質接触分解ガソリンGを全量混合し低硫黄分解ガソリン基材Hを得た。重質接触分解ガソリンG及び低硫黄分解ガソリン基材Hの性状を表1に示す。実施例1における予備脱硫制御係数αの値は18であった。なお、スイートニング前後で硫黄分は変わらないので、重質接触分解ガソリン留分Dを水素化脱硫し、次いでスイートニングした後の重質接触分解ガソリンGの硫黄分をHSとして用い、予備脱硫制御係数αを算出した。A catalyst having cobalt, molybdenum and phosphorus supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass) was charged into a fixed bed flow reactor. After sulfiding, the heavy catalytic cracking gasoline fraction D was passed through under conditions of reaction temperature 225 ° C., reaction pressure 1.0 MPa, LHSV = 5.0 h −1 , hydrogen / oil ratio = 307 NL / L. Hydrodesulfurization was carried out and further treated with an oxidation type sweetening device to obtain heavy catalytic cracked gasoline G. The oxidation type sweetening apparatus was a MERICAT-II process manufactured by Merichem, and was operated at a reaction temperature of 41 ° C.
All the light catalytic cracking gasoline F and the heavy catalytic cracking gasoline G were mixed to obtain a low sulfur cracking gasoline base H. Table 1 shows the properties of the heavy catalytic cracking gasoline G and the low sulfur cracking gasoline base H. The value of the preliminary desulfurization control coefficient α in Example 1 was 18. In addition, since the sulfur content does not change before and after sweetening, hydrodesulfurization of heavy catalytic cracking gasoline fraction D is performed, and then the sulfur content of heavy catalytic cracking gasoline G after sweetening is used as HS for predesulfurization control. The coefficient α was calculated.
実施例1と同様の方法で得られた軽質接触分解ガソリン留分Cの半量を、実施例1と同じ方法でジエン除去処理および脱硫剤Zによる脱硫処理を行い、軽質接触分解ガソリンFを得た。
実施例1と同様の方法で得られた重質接触分解ガソリン留分Dを、コバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)を固定床流通式反応装置に充填して硫化処理した後、反応温度240℃、反応圧力1.0MPa、LHSV=5.0h−1、水素/油比=307NL/Lの条件下で、通油して水素化脱硫を行い、さらに酸化型のスイートニング装置で処理して重質接触分解ガソリンIを得た。
軽質接触分解ガソリンCの半量、軽質接触分解ガソリンFの全量および重質接触分解ガソリンIの全量を混合し、低硫黄分解ガソリン基材Jを得た。低硫黄分解ガソリン基材Jの性状、及び関連する上記中間基材の性状を表2に示す。実施例2における予備脱硫制御係数αは14であった。Half of the light catalytic cracking gasoline fraction C obtained in the same manner as in Example 1 was subjected to diene removal treatment and desulfurization treatment with a desulfurizing agent Z in the same manner as in Example 1 to obtain light catalytic cracking gasoline F. .
A heavy catalytic cracking gasoline fraction D obtained in the same manner as in Example 1 was prepared by using a catalyst in which cobalt, molybdenum and phosphorus were supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass). , Phosphorus content of 2.0 mass%) was charged into a fixed bed flow reactor and subjected to sulfiding treatment, then reaction temperature was 240 ° C., reaction pressure was 1.0 MPa, LHSV = 5.0 h −1 , hydrogen / oil ratio = Under conditions of 307 NL / L, hydrodesulfurization was carried out by passing oil, and further treated with an oxidation type sweetening device to obtain heavy catalytic cracked gasoline I.
A half amount of light catalytic cracking gasoline C, a total amount of light catalytic cracking gasoline F, and a total amount of heavy catalytic cracking gasoline I were mixed to obtain a low sulfur cracking gasoline base J. Table 2 shows the properties of the low sulfur cracking gasoline base material J and the properties of the related intermediate base material. The preliminary desulfurization control coefficient α in Example 2 was 14.
実施例1と同様の方法で得られた重質接触分解ガソリンG全量を、脱硫剤Zを用いて反応温度300℃、反応圧力0.5MPa、LHSV=2.5h−1、水素/油比20NL/Lの条件で脱硫処理し重質接触分解ガソリンKを得た。実施例1と同様の方法で得られた軽質接触分解ガソリンC全量と重質接触分解ガソリンK全量を混合し低硫黄ガソリン基材Lを得た。低硫黄分解ガソリン基材Lの性状、及び関連する上記中間基材の性状を表3に示す。実施例3における予備脱硫制御係数αは18であった。Using a desulfurizing agent Z, the total amount of heavy catalytic cracked gasoline G obtained by the same method as in Example 1 was used, reaction temperature 300 ° C., reaction pressure 0.5 MPa, LHSV = 2.5 h −1 , hydrogen / oil ratio 20 NL. A heavy catalytic cracking gasoline K was obtained by desulfurization treatment under the conditions of / L. A light sulfur cracked gasoline C total amount and a heavy catalytic cracked gasoline K total amount obtained in the same manner as in Example 1 were mixed to obtain a low sulfur gasoline base material L. Table 3 shows the properties of the low-sulfur cracking gasoline base L and the properties of the related intermediate base. The preliminary desulfurization control coefficient α in Example 3 was 18.
実施例1で得られた接触分解ガソリン留分Bを容量比が47:53となるよう分留して、軽質接触分解ガソリン留分Mと重質接触分解ガソリン留分Nを得た。
コバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)を固定床流通式反応装置に充填して硫化処理した後、反応温度225℃、反応圧力1.0MPa、LHSV=5.0h−1、水素/油比=307NL/Lの条件下で、重質接触分解ガソリン留分Nを通油して水素化脱硫を行い、さらに酸化型のスイートニング装置で処理して重質接触分解ガソリンOを得た。
重質接触分解ガソリンOの半量を脱硫剤Zによる脱硫処理を行い、重質接触分解ガソリンPを得た。
軽質接触分解ガソリンMの全量、重質接触分解ガソリンOの半量および重質接触分解ガソリンPの全量を混合し、低硫黄分解ガソリン基材Qを得た。低硫黄分解ガソリン基材Q、及び関連する上記中間基材の性状を表4に示す。なお、実施例4における予備脱硫制御係数αは14であった。The catalytic cracking gasoline fraction B obtained in Example 1 was subjected to fractional distillation so that the volume ratio was 47:53 to obtain a light catalytic cracking gasoline fraction M and a heavy catalytic cracking gasoline fraction N.
A catalyst having cobalt, molybdenum and phosphorus supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass) was charged into a fixed bed flow reactor. After sulfurization treatment, heavy catalytic cracking gasoline fraction N was passed through under conditions of reaction temperature 225 ° C., reaction pressure 1.0 MPa, LHSV = 5.0 h −1 , hydrogen / oil ratio = 307 NL / L. Hydrodesulfurization was carried out and further treated with an oxidation type sweetening device to obtain heavy catalytic cracked gasoline O.
Half of the heavy catalytic cracked gasoline O was subjected to desulfurization treatment with the desulfurizing agent Z to obtain heavy catalytic cracked gasoline P.
A total amount of light catalytic cracking gasoline M, a half amount of heavy catalytic cracking gasoline O, and a total amount of heavy catalytic cracking gasoline P were mixed to obtain a low sulfur cracking gasoline base material Q. Table 4 shows the properties of the low sulfur decomposition gasoline base material Q and the related intermediate base material. The preliminary desulfurization control coefficient α in Example 4 was 14.
実施例1で得られた重質接触分解ガソリン留分Dを、コバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)を固定床流通式反応装置に充填して硫化処理した後、反応温度300℃、反応圧力3.0MPa、LHSV=5.0h−1、水素/油比=307NL/Lの条件下で、通油して水素化脱硫を行い、重質接触分解ガソリンRを得た。
実施例1で得られた軽質接触分解ガソリン留分C全量と重質接触分解ガソリンR全量を混合し分解ガソリン基材Sを得た。分解ガソリン基材S、及び関連する上記中間基材の性状を表5に示す。The heavy catalytic cracking gasoline fraction D obtained in Example 1 was prepared from a catalyst in which cobalt, molybdenum and phosphorus were supported on alumina (cobalt content 2.4 mass%, molybdenum content 9.4 mass%, phosphorus content 2.0 mass%) was charged into a fixed bed flow reactor and subjected to sulfurization treatment, and then the reaction temperature was 300 ° C., the reaction pressure was 3.0 MPa, LHSV = 5.0 h −1 , and the hydrogen / oil ratio was 307 NL / L. Under conditions, the oil was passed through and hydrodesulfurized to obtain heavy catalytic cracked gasoline R.
The light catalytic cracking gasoline fraction C total amount obtained in Example 1 and the heavy catalytic cracking gasoline R total amount were mixed to obtain a cracked gasoline base S. Table 5 shows the properties of the cracked gasoline base material S and the related intermediate base material.
接触分解以外の公知技術で得られるガソリン基材として、脱硫直留ナフサT、接触改質中質油U、接触改質重質油V、アルキレートガソリンW、エチルt−ブチルエーテルXがあり、その性状は表6に示すとおりである。接触改質中質油Uは、接触改質ガソリンから、トルエンを多く含む留分を蒸留分離したものである。接触改質重質油Vは、接触改質ガソリンから、炭素数9以上であって11未満の芳香族を蒸留分離したものである。 Gasoline base materials obtained by known techniques other than catalytic cracking include desulfurization straight-run naphtha T, catalytic reforming medium oil U, catalytic reforming heavy oil V, alkylate gasoline W, and ethyl t-butyl ether X. The properties are as shown in Table 6. The catalytic reforming medium oil U is obtained by distilling and separating a fraction rich in toluene from catalytic reforming gasoline. The catalytically modified heavy oil V is obtained by distilling and separating aromatics having 9 or more carbon atoms and less than 11 from catalytically modified gasoline.
脱硫直留ナフサTを15容量%、接触改質中質油Uを5容量%、接触改質重質油Vを5容量%、アルキレートガソリンWを5容量%と、実施例1記載の分解ガソリン基材Hを70容量%配合し、無鉛ガソリン組成物AAを調製した。その性状を表7に示す。 Desulfurization straight-run naphtha T is 15% by volume, catalytic reforming medium oil U is 5% by volume, catalytic reforming heavy oil V is 5% by volume, alkylate gasoline W is 5% by volume, and the decomposition described in Example 1 70% by volume of the gasoline base H was blended to prepare an unleaded gasoline composition AA. The properties are shown in Table 7.
脱硫直留ナフサTを10容量%、接触改質中質油Uを10容量%、接触改質重質油Vを6容量%、アルキレートガソリンWを10容量%、エチルt−ブチルエーテルXを7容量%と、実施例1記載の分解ガソリン基材Hを57容量%配合し、無鉛ガソリン組成物BBを調製した。その性状を表7に示す。 10% by volume of desulfurized straight-run naphtha T, 10% by volume of catalytic reforming medium oil U, 6% by volume of catalytic reforming heavy oil V, 10% by volume of alkylate gasoline W, 7% of ethyl t-butyl ether X The unleaded gasoline composition BB was prepared by blending 57% by volume of the volume% and the cracked gasoline base material H described in Example 1. The properties are shown in Table 7.
接触改質中質油Uを15容量%、接触改質重質油Vを15容量%、アルキレートガソリンWを16容量%、エチルt−ブチルエーテルXを7容量%、実施例4記載の分解ガソリン基材Qを22容量%と実施例4記載の軽質接触分解ガソリン基材Mを25容量%配合し、無鉛ガソリン組成物CCを調製した。その性状を表7に示す。 15% by volume of catalytically modified medium oil U, 15% by volume of catalytically modified heavy oil V, 16% by volume of alkylate gasoline W, 7% by volume of ethyl t-butyl ether X, cracked gasoline as described in Example 4 The unleaded gasoline composition CC was prepared by blending 22% by volume of the substrate Q and 25% by volume of the light catalytic cracking gasoline substrate M described in Example 4. The properties are shown in Table 7.
脱硫直留ナフサTを15容量%、接触改質中質油Uを5容量%、接触改質重質油Vを5容量%、アルキレートガソリンWを5容量%と、比較例1記載の分解ガソリン基材Sを70容量%配合し、無鉛ガソリン組成物DDを調製した。その性状を表7に示す。 Desulfurization straight-run naphtha T is 15% by volume, catalytic reforming medium oil U is 5% by volume, catalytic reforming heavy oil V is 5% by volume, alkylate gasoline W is 5% by volume, and the decomposition described in Comparative Example 1 70% by volume of the gasoline base S was blended to prepare an unleaded gasoline composition DD. The properties are shown in Table 7.
Claims (3)
工程Aで得られた重質分解ガソリン留分を水素の存在下でモリブデン及び/又はタングステンを含む触媒と接触させて硫黄分を低減する水素化脱硫工程(工程B)、
工程Aにて得られた軽質分解ガソリン留分及び/又は工程Bにて得られた硫黄分が低減された重質分解ガソリン留分の全量あるいは一部を水素の存在下でニッケルと亜鉛を含む多孔質脱硫剤と接触させ、硫黄分を5質量ppm以下に低減する収着脱硫工程(工程C)、
前記工程A〜Cによって得られた分解ガソリン留分を混合して硫黄分12質量ppm以下、リサーチ法オクタン価85.0以上である低硫黄分解ガソリン基材を得る混合工程(工程D)を含み、
工程A及び工程Bを経た段階で、次式(1)で表される予備脱硫制御係数αが13〜20であり、
α=(LW×LS+HW×HS)/100 (1)
(式中、LWは工程Aにて分留された軽質分解ガソリンの割合(容量%)、LSは工程Aにて得られた軽質分解ガソリン中の硫黄分(質量ppm)、HWは工程Aにて分留された重質分解ガソリンの割合(容量%)、HSは工程Bにて得られた重質分解ガソリン中の硫黄分(質量ppm)を示す。)
かつ、工程Aに供給する分解ガソリン全量に対し、工程Cに供給して処理する割合が20容量%以上、90容量%以下である
ことを特徴とする低硫黄分解ガソリン基材の製造方法。 A fractionation step (step A) for fractionating the cracked gasoline fraction to obtain a light cracked gasoline fraction and a heavy cracked gasoline fraction;
A hydrodesulfurization step (step B) for reducing the sulfur content by contacting the heavy cracked gasoline fraction obtained in step A with a catalyst containing molybdenum and / or tungsten in the presence of hydrogen;
All or part of the light cracked gasoline fraction obtained in step A and / or the heavy cracked gasoline fraction with reduced sulfur content obtained in step B contains nickel and zinc in the presence of hydrogen. A collecting and detaching sulfur process (process C) for contacting with a porous desulfurizing agent and reducing the sulfur content to 5 mass ppm or less,
Including a mixing step (step D) of mixing the cracked gasoline fraction obtained by the steps A to C to obtain a low sulfur cracked gasoline base material having a sulfur content of 12 mass ppm or less and a research octane number of 85.0 or more,
The preliminary desulfurization control coefficient α represented by the following formula (1) is 13 to 20 at the stage after the process A and the process B,
α = (LW × LS + HW × HS) / 100 (1)
(Where, LW is the proportion (volume%) of the light cracked gasoline fractionated in step A, LS is the sulfur content (mass ppm) in the light cracked gasoline obtained in step A, and HW is in step A. (The ratio (volume%) of the heavy cracked gasoline fractionated in this manner, and HS represents the sulfur content (mass ppm) in the heavy cracked gasoline obtained in Step B.)
And the ratio of supplying to the process C and treating it with respect to the total amount of cracked gasoline supplied to the process A is 20 vol% or more and 90 vol% or less . Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007528215A JP5219247B2 (en) | 2005-05-06 | 2006-04-26 | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135048 | 2005-05-06 | ||
JP2005135048 | 2005-05-06 | ||
PCT/JP2006/308696 WO2006120898A1 (en) | 2005-05-06 | 2006-04-26 | Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition |
JP2007528215A JP5219247B2 (en) | 2005-05-06 | 2006-04-26 | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2006120898A1 JPWO2006120898A1 (en) | 2008-12-18 |
JP5219247B2 true JP5219247B2 (en) | 2013-06-26 |
Family
ID=37396408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007528215A Expired - Fee Related JP5219247B2 (en) | 2005-05-06 | 2006-04-26 | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5219247B2 (en) |
WO (1) | WO2006120898A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2908781B1 (en) * | 2006-11-16 | 2012-10-19 | Inst Francais Du Petrole | PROCESS FOR DEEP DEFLAVING CRACKING SPECIES WITH LOW LOSS OF OCTANE INDEX |
JP5372338B2 (en) * | 2007-03-30 | 2013-12-18 | Jx日鉱日石エネルギー株式会社 | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same |
WO2008146848A1 (en) * | 2007-05-30 | 2008-12-04 | Japan Energy Corporation | Method for desulfurization of hydrocarbon oil |
JP5431656B2 (en) * | 2007-06-06 | 2014-03-05 | 出光興産株式会社 | Method for producing desulfurized heavy cracked gasoline |
JP2009155498A (en) * | 2007-12-27 | 2009-07-16 | Showa Shell Sekiyu Kk | Gasoline fuel composition |
JP5368074B2 (en) * | 2008-12-11 | 2013-12-18 | 昭和シェル石油株式会社 | Fuel composition for gasoline engines |
JP5368072B2 (en) * | 2008-12-11 | 2013-12-18 | 昭和シェル石油株式会社 | Fuel composition for gasoline engines |
CN104046389B (en) * | 2013-03-11 | 2015-11-25 | 中石化洛阳工程有限公司 | A kind of method of inferior patrol desulfurating and reducing olefinic hydrocarbon |
CN109097104B (en) * | 2018-09-11 | 2019-11-08 | 福州大学 | A kind of FCC gasoline method for modifying |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062762A (en) * | 1976-09-14 | 1977-12-13 | Howard Kent A | Process for desulfurizing and blending naphtha |
JPH10102070A (en) * | 1996-09-24 | 1998-04-21 | Inst Fr Petrole | Production of catalytic cracking gasoline of low sulfur content and system therefor |
JP2003183676A (en) * | 2001-12-21 | 2003-07-03 | Nippon Oil Corp | Method for producing low-sulfur gasoline |
WO2003086621A1 (en) * | 2002-04-11 | 2003-10-23 | Conocophillips Company | Desulfurization and sorbents for same |
JP2005068415A (en) * | 2003-08-05 | 2005-03-17 | Japan Energy Corp | Process for producing catalytically cracked gasoline base and unleaded gasoline composition using catalytically cracked gasoline base |
-
2006
- 2006-04-26 JP JP2007528215A patent/JP5219247B2/en not_active Expired - Fee Related
- 2006-04-26 WO PCT/JP2006/308696 patent/WO2006120898A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062762A (en) * | 1976-09-14 | 1977-12-13 | Howard Kent A | Process for desulfurizing and blending naphtha |
JPH10102070A (en) * | 1996-09-24 | 1998-04-21 | Inst Fr Petrole | Production of catalytic cracking gasoline of low sulfur content and system therefor |
JP2003183676A (en) * | 2001-12-21 | 2003-07-03 | Nippon Oil Corp | Method for producing low-sulfur gasoline |
WO2003086621A1 (en) * | 2002-04-11 | 2003-10-23 | Conocophillips Company | Desulfurization and sorbents for same |
JP2005068415A (en) * | 2003-08-05 | 2005-03-17 | Japan Energy Corp | Process for producing catalytically cracked gasoline base and unleaded gasoline composition using catalytically cracked gasoline base |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006120898A1 (en) | 2008-12-18 |
WO2006120898A1 (en) | 2006-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219247B2 (en) | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition | |
Song | An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel | |
KR101441129B1 (en) | Process for deep desulphurization of cracking gasolines with a small loss of octane number | |
KR101355722B1 (en) | Method for Producing Super-Low Sulfur Gas Oil Base Material or Super-Low Sulfur Gas Oil Composition, and Super-Low Sulfur Gas Oil Compositon | |
JP2003528942A (en) | Two-stage advanced naphtha desulfurization with reduced mercaptan formation | |
JP5024884B2 (en) | Unleaded gasoline composition and method for producing the same | |
CN101724455B (en) | Combined hydrogenation method | |
CN110655954A (en) | Ultra-deep desulfurization method for residual oil hydrogenated diesel oil | |
KR101514954B1 (en) | Process for producing gasoline base and gasoline | |
JP2003183676A (en) | Method for producing low-sulfur gasoline | |
JP4213062B2 (en) | Environmentally friendly clean gasoline and its manufacturing method | |
JP4889095B2 (en) | Eco-friendly gasoline composition and method for producing the same | |
JP4632738B2 (en) | Unleaded gasoline composition and method for producing the same | |
JP4803785B2 (en) | Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same | |
JP4626950B2 (en) | Eco-friendly gasoline and method for producing the same | |
JP4371937B2 (en) | Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same | |
JP4854075B2 (en) | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base | |
JP4850412B2 (en) | Method for producing environmentally friendly gasoline composition | |
JP5036074B2 (en) | Environmentally friendly gasoline | |
JP4931052B2 (en) | Method for producing gasoline base material | |
JP2004269871A (en) | Unleaded gasoline composition and preparation process thereof | |
JP2009263681A (en) | Process for producing catalytically cracked gasoline base and unleaded gasoline composition using the same | |
JP2009046585A (en) | Fuel oil for fuel cell | |
JP2009067993A (en) | Fuel oil for fuel cell | |
JP2010111768A (en) | Method for producing purified hydrocarbon oil and purified hydrocarbon oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090309 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5219247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |