JP2004269871A - Unleaded gasoline composition and preparation process thereof - Google Patents

Unleaded gasoline composition and preparation process thereof Download PDF

Info

Publication number
JP2004269871A
JP2004269871A JP2004042484A JP2004042484A JP2004269871A JP 2004269871 A JP2004269871 A JP 2004269871A JP 2004042484 A JP2004042484 A JP 2004042484A JP 2004042484 A JP2004042484 A JP 2004042484A JP 2004269871 A JP2004269871 A JP 2004269871A
Authority
JP
Japan
Prior art keywords
light fraction
gasoline composition
catalytic cracking
volume
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004042484A
Other languages
Japanese (ja)
Inventor
Katsuaki Ishida
勝昭 石田
Yasuhiro Araki
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2004042484A priority Critical patent/JP2004269871A/en
Publication of JP2004269871A publication Critical patent/JP2004269871A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unleaded gasoline composition with reduced sulfur content assuring satisfactory mode of operation and a preparation process thereof. <P>SOLUTION: The high octane number unleaded gasoline composition is produced by step 1 of fractional distillation of a catalytically cracked oil to give a catalytically cracked lighter oil fraction with a specific distillation feature, step 2 of desulfurization treatment of the catalytically cracked lighter oil fraction to give desulfurized lighter oil fraction and step 3 of blending the desulfurized lighter oil fraction and the other gasoline base. The unleaded gasoline composition shows 96.0 or over of RON (research octane number), 50 vol% distillation temperatures at 105°C or lower, 10 vol% or over of olefin content and 50 mass% or over of thiophene in total sulfur content as sulfur. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、環境への影響を低減した無鉛ガソリン組成物とその製造方法に関する。特に、硫黄分を低減するとともに高いオクタン価を確保することで、環境への影響を低減しつつ十分な運転特性を確保した無鉛ガソリン組成物およびその製造方法に関する。   The present invention relates to a lead-free gasoline composition with reduced environmental impact and a method for producing the same. In particular, the present invention relates to a lead-free gasoline composition that ensures sufficient operating characteristics while reducing the effect on the environment by reducing the sulfur content and securing a high octane number, and a method for producing the same.

近年、自動車の高性能化に伴って、高い運転性能をもつ高性能ガソリンの需要が増加している。一方、自動車燃料やその燃焼排ガスによる環境汚染が社会問題になってきている。したがって、高い運転性能を維持するとともに、環境負荷の少ない自動車燃料が望まれている。特に、排ガス浄化と燃費改善の観点から、硫黄分の一層の低減が切望されている。   2. Description of the Related Art In recent years, demand for high-performance gasoline having high driving performance has been increasing along with higher performance of automobiles. On the other hand, environmental pollution due to automobile fuel and its combustion exhaust gas has become a social problem. Therefore, there is a demand for a vehicle fuel that maintains high driving performance and has a low environmental load. In particular, further reduction of sulfur content is desired from the viewpoints of exhaust gas purification and fuel efficiency improvement.

JIS K 2202には、リサーチ法オクタン価(RON)が96.0以上の1号自動車ガソリンと89.0以上の2号自動車ガソリンが規定されており、前者は高性能なプレミアムガソリンとして、後者はレギュラーガソリンとして市販されている。従来、プレミアムガソリンは、接触改質ガソリン基材、メチル−t−ブチルエーテル(MTBE)のような100以上のRONをもつ基材、アルキレートガソリン基材、接触分解ガソリン基材のような93以上のRONをもつ基材を中心に、各種の基材を配合して製造されている。   JIS K 2202 stipulates the first car gasoline with a research octane number (RON) of 96.0 or more and the second car gasoline with a value of 89.0 or more. The former is a high-performance premium gasoline, and the latter is regular. Commercially available as gasoline. Conventionally, premium gasoline has been used in catalytic reforming gasoline bases, bases with more than 100 RONs such as methyl-t-butyl ether (MTBE), alkylate gasoline bases, catalytic cracking gasoline bases such as 93 or more. It is manufactured by blending various base materials, mainly a base material having RON.

重質な石油留分を接触分解することによって製造される接触分解ガソリン基材は、他のプレミアムガソリン基材に比べ、経済的に製造できるという利点がある一方、硫黄分を多く含んでいる。その結果、上述のようにして製造されるプレミアムガソリン中の硫黄分の大部分は、接触分解ガソリン基材に由来している。   Catalytic cracking gasoline bases produced by catalytic cracking of heavy petroleum fractions have the advantage that they can be produced more economically than other premium gasoline bases, but contain a large amount of sulfur. As a result, most of the sulfur content in the premium gasoline produced as described above comes from the catalytic cracking gasoline base material.

接触分解ガソリン基材の硫黄分の低減は、高圧水素と触媒の共存下で水素化精製するという公知技術で容易に可能である。しかし、その場合は、接触分解ガソリン基材中に多く含まれ、高いRONをもつオレフィン分が水素化されて基材のRONが低下してしまうため、それを配合したガソリンでは十分な運転性能が得られないという問題点があった。硫黄分が1質量ppm以下と低く、かつ、十分な実用性能を確保した環境対応ガソリン、およびその製造方法は未だ確立されていない。   The reduction of the sulfur content of the catalytic cracking gasoline base material can be easily performed by a known technique of hydrorefining in the presence of high-pressure hydrogen and a catalyst. However, in that case, the catalytic cracking gasoline base material is contained in a large amount, and olefin components having a high RON are hydrogenated to lower the RON of the base material. There was a problem that it could not be obtained. An environmentally friendly gasoline having a low sulfur content of 1 mass ppm or less and sufficient practical performance, and a method for producing the same have not yet been established.

本発明は、このような状況下で、硫黄分を低減し、かつ、十分な運転特性を確保した無鉛ガソリン組成物およびその製造方法を提供することを目的とするものである。   An object of the present invention is to provide a lead-free gasoline composition which has a reduced sulfur content and secures sufficient operating characteristics under such circumstances, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、接触分解ガソリン基材のうち特定の留分のみを用い、その留分の脱硫処理を行った基材を用いることにより、高いRONを維持しながら、硫黄分を低減し、十分な運転特性を確保した無鉛ガソリン組成物およびその製造方法に想到した。   The present inventors have conducted intensive studies in order to solve the above problems, and as a result, using only a specific fraction of the catalytic cracking gasoline base material, by using a base material subjected to desulfurization treatment of the fraction, high The present inventors have conceived a lead-free gasoline composition and a method for producing the same, in which the sulfur content is reduced while maintaining the RON and sufficient operating characteristics are secured.

すなわち、本発明による硫黄分が1質量ppm以下、かつリサーチオクタン価が96.0以上である無鉛ガソリン組成物の製造方法は、(1)接触分解油を分留して5容量%留出温度が25〜43℃、かつ95容量%留出温度が55〜100℃である接触分解軽質留分を得る第1工程、(2)第1工程で得られた接触分解軽質留分を脱硫処理して脱硫軽質留分を得る第2工程、および(3)第2工程で得られた脱硫軽質留分と他のガソリン基材、好ましくは硫黄分0.5ppm以下の他のガソリン基材とを混合する第3工程を含む。   That is, the method for producing a lead-free gasoline composition having a sulfur content of 1 mass ppm or less and a research octane number of 96.0 or more according to the present invention comprises: A first step of obtaining a catalytic cracked light fraction having a distillation temperature of 25 to 43 ° C and a 95% by volume distillation rate of 55 to 100 ° C, and (2) desulfurizing the catalytic cracked light fraction obtained in the first step. A second step of obtaining a desulfurized light fraction, and (3) mixing the desulfurized light fraction obtained in the second step with another gasoline base material, preferably another gasoline base material having a sulfur content of 0.5 ppm or less. Including a third step.

第3工程において、10〜45容量%の脱硫軽質留分と90〜55容量%の他のガソリン基材とを混合することが好ましい。また、第2工程において、銅、亜鉛、ニッケルおよび鉄から選ばれる少なくとも1種を含む多孔質脱硫剤と接触分解軽質留分とを接触させて脱硫処理することが好ましく、あるいは、抽出溶媒を用いる抽出処理によって接触分解軽質留分を脱硫処理することが好ましい。さらに、第1工程で得られる接触分解軽質留分のチオフェン含有量が硫黄分として2.5質量ppm以下であることが好ましく、また、第1工程の分留を行う前に、予め接触分解油に対し、含まれる硫黄化合物の分子量を大きくする前処理をしておくことが好ましい。   In the third step, it is preferable to mix 10 to 45% by volume of the desulfurized light fraction with 90 to 55% by volume of another gasoline base material. In the second step, desulfurization treatment is preferably performed by bringing a porous desulfurizing agent containing at least one selected from copper, zinc, nickel and iron into contact with a catalytic cracking light fraction, or using an extraction solvent. It is preferable to desulfurize the catalytically cracked light fraction by an extraction treatment. Further, the thiophene content of the catalytically cracked light fraction obtained in the first step is preferably not more than 2.5 ppm by mass in terms of sulfur content. However, it is preferable to perform a pretreatment for increasing the molecular weight of the contained sulfur compound.

また、本発明による無鉛ガソリン組成物は、リサーチ法オクタン価が96.0以上、50容量%留出温度が105℃以下、オレフィン分が10容量%以上、および全硫黄分に占めるチオフェンの割合が硫黄分として50質量%以上である。   The unleaded gasoline composition according to the present invention has a research octane number of 96.0 or more, a 50% by volume distillation temperature of 105 ° C. or less, an olefin content of 10% by volume or more, and a thiophene ratio of total sulfur content of sulfur. It is 50% by mass or more as a minute.

本発明の無鉛ガソリン組成物は、全硫黄分が1質量ppm以下、全オレフィン分に占める沸点範囲35〜80℃のオレフィン分が90容量%以上であることが好ましい。さらには、ベンゼン含有量が0.3容量%以下であることが好ましい。   The unleaded gasoline composition of the present invention preferably has a total sulfur content of 1 mass ppm or less, and an olefin content in a boiling range of 35 to 80 ° C of 90 vol% or more of the total olefin content. Further, the benzene content is preferably not more than 0.3% by volume.

本発明は、特には、高オクタン価のオレフィン分をそのまま残しながら脱硫処理した接触分解油の脱硫軽質留分を用いる無鉛ガソリン組成物の製造方法であるから、極めて硫黄分が低く、十分な運転特性を有する無鉛ガソリン組成物を得ることができる。したがって、本発明によれば、特に全硫黄分に占めるチオフェンの割合が多く、極めて硫黄分が低い無鉛ガソリン組成物であるから、十分な運転特性を有しながら環境にやさしい無鉛ガソリン組成物が提供される。   The present invention is particularly a method for producing a lead-free gasoline composition using a desulfurized light fraction of a catalytically cracked oil desulfurized while leaving a high octane number olefin component as it is. Can be obtained. Therefore, according to the present invention, an unleaded gasoline composition which has a sufficient operation characteristic and has an environmentally friendly property is provided, especially because the ratio of thiophene in the total sulfur content is large and the sulfur content is extremely low. Is done.

〔第1工程〕
本発明の無鉛ガソリン組成物の製造方法における第1工程では、接触分解油を分留して5容量%留出温度が25.0〜43.0℃、好ましくは35.0〜43.0℃、かつ95容量%留出温度が55.0〜100.0℃、好ましくは55.0〜80.0℃である接触分解軽質留分を得る。5容量%留出温度が25.0℃未満であると、無鉛ガソリン組成物の蒸気圧が高くなる。一方、95容量%留出温度が特に100.0℃を超えると、脱硫軽質留分の硫黄分が高くなったり、該ガソリン基材のRONが低下したりして所望の無鉛ガソリン組成物の調製が困難になる。5容量%留出温度が43.0℃を超えたり、95容量%留出温度が55.0℃未満であると、無鉛ガソリン組成物の蒸留性状の調整が困難になったり、第1工程で得られる接触分解軽質留分の得率が低下し無鉛ガソリン組成物のコストが高くなったりする。
[First step]
In the first step of the method for producing a lead-free gasoline composition of the present invention, the catalytic cracking oil is fractionated and the 5% by volume distillation temperature is 25.0 to 43.0 ° C, preferably 35.0 to 43.0 ° C. And a 95% by volume distillation temperature of 55.0 to 100.0 ° C, preferably 55.0 to 80.0 ° C. If the 5% by volume distillation temperature is less than 25.0 ° C., the vapor pressure of the unleaded gasoline composition will increase. On the other hand, if the 95% by volume distillation temperature is particularly higher than 100.0 ° C., the sulfur content of the desulfurized light fraction increases, or the RON of the gasoline base material decreases, so that a desired lead-free gasoline composition is prepared. Becomes difficult. If the 5% by volume distillation temperature exceeds 43.0 ° C. or the 95% by volume distillation temperature is less than 55.0 ° C., it becomes difficult to adjust the distillation properties of the unleaded gasoline composition, or in the first step. The yield of the resulting catalytic cracked light fraction is reduced, and the cost of the unleaded gasoline composition is increased.

第1工程で得られる接触分解軽質留分のチオフェンの含有量は、硫黄分として0.1〜2.5質量ppmであることが好ましい。0.1〜2.0質量ppm、さらには0.1〜1.0質量ppmであるとなお一層好ましい。チオフェンは、第2工程での脱硫処理で得られる脱硫軽質留分中に最も残留しやすい硫黄化合物の1つであるため、第1工程で得られる接触分解軽質留分が、硫黄分として2.5質量ppmを超えるチオフェンを含んでいると、第2工程の脱硫処理でその硫黄分が除去されず、次の第3工程において他のガソリン基材と混合するフレキシビリティが狭くなり好ましくない。また、第1工程で得られる接触分解軽質留分が、硫黄分として0.1質量ppm未満のチオフェンしか含まないようにすることは、該接触分解軽質留分の得率を低下させるので、好ましくない。   The thiophene content of the catalytic cracking light fraction obtained in the first step is preferably 0.1 to 2.5 mass ppm in terms of sulfur content. It is even more preferable that the content be 0.1 to 2.0 ppm by mass, more preferably 0.1 to 1.0 ppm by mass. Since thiophene is one of the sulfur compounds most likely to remain in the desulfurized light fraction obtained in the desulfurization treatment in the second step, the catalytically cracked light fraction obtained in the first step has a sulfur content of 2. If the content of thiophene exceeds 5 ppm by mass, the sulfur content is not removed by the desulfurization treatment in the second step, and the flexibility of mixing with another gasoline base material in the next third step is unfavorably reduced. Further, it is preferable that the catalytically cracked light fraction obtained in the first step contains only thiophene having a sulfur content of less than 0.1 ppm by mass, since the yield of the catalytically cracked light fraction is reduced. Absent.

第1工程で得られる接触分解軽質留分に含まれる2−メチルチオフェンと3−メチルチオフェンが、硫黄分として合計0.5質量ppm以下であることが好ましい。2−メチルチオフェンと3−メチルチオフェンも、チオフェン同様、第2工程での脱硫処理で得られる脱硫軽質留分中に最も残留しやすい硫黄化合物である。したがって、第1工程において、2−メチルチオフェンと3−メチルチオフェンを低減しておくことが好ましく、硫黄分として合計0.1質量ppm以下にすると一層好ましい。このためには、分留時の95%留出温度を75.0℃以下、特には70.0℃以下とすることが好ましい。   The total amount of 2-methylthiophene and 3-methylthiophene contained in the catalytic cracking light fraction obtained in the first step is preferably not more than 0.5 ppm by mass in terms of sulfur content. 2-Methylthiophene and 3-methylthiophene, like thiophene, are sulfur compounds most likely to remain in the desulfurized light fraction obtained by the desulfurization treatment in the second step. Therefore, in the first step, it is preferable to reduce 2-methylthiophene and 3-methylthiophene, and it is more preferable that the total sulfur content is 0.1 mass ppm or less. For this purpose, the 95% distillation temperature during fractional distillation is preferably 75.0 ° C or lower, particularly preferably 70.0 ° C or lower.

〔接触分解油〕
第1工程で用いる接触分解油を製造するプロセスは、接触分解装置、原料油、運転条件を特に限定するものでなく、公知の任意の製造工程を採用できる。接触分解装置は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して主に高オクタン価ガソリン基材を得る装置である。接触分解プロセスとして、例えば、石油学会編「新石油精製プロセス」に記載されるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などが挙げられる。
(Catalytic cracking oil)
The process for producing the catalytic cracking oil used in the first step is not particularly limited to the catalytic cracking device, the feedstock, and the operating conditions, and any known production process can be adopted. The catalytic cracking unit uses catalysts such as amorphous silica alumina and zeolite to separate petroleum fractions from gas oil to reduced pressure gas oil, as well as direct gas oil obtained from heavy oil indirect desulfurization unit and direct oil obtained from heavy oil direct desulfurization unit. This equipment mainly obtains high octane gasoline base materials by catalytic cracking of heavy oil, residual oil under normal pressure, and the like. As a catalytic cracking process, for example, a fluid catalytic cracking method such as a UOP catalytic cracking method, a flexicracking method, an ultra-ortho-flow method, a Texaco fluid catalytic cracking method described in "New Petroleum Refining Process" edited by the Japan Petroleum Institute, an RCC method, Fluid catalytic cracking such as HOC method can be used.

接触分解軽質留分中のチオフェンを低減するためには、接触分解装置の原料油として軽油から減圧軽油までの上記石油留分、特にその硫黄分が2,000ppm以下のものを用いることが好ましく、さらには1,000ppm以下、特には500ppm以下に水素化精製などにより低減した留分を用いることが好ましい。   In order to reduce thiophene in the catalytic cracking light fraction, it is preferable to use the petroleum fraction from gas oil to vacuum gas oil as a feed oil of the catalytic cracking unit, particularly one whose sulfur content is 2,000 ppm or less, Further, it is preferable to use a fraction reduced to 1,000 ppm or less, particularly 500 ppm or less by hydrorefining or the like.

〔硫黄化合物の分子量を大きくする前処理〕
第1工程に供する接触分解油について、含まれる硫黄化合物の分子量を大きくする前処理を行って第1工程に供することが好ましい。チオール類などの硫黄化合物の分子量を選択的に大きくすることにより、その含硫黄化合物の沸点が高くなるため、第1工程において、含硫黄化合物を重質留分中に偏在させて除去することができ、第1工程で得られる接触分解軽質留分の硫黄分を低減することができる。具体的には、後述の方法により、接触分解軽質留分のチオールおよびチオール類の含有量を硫黄分として合計0.1質量ppm以下にすると一層好ましい。
(Pretreatment for increasing molecular weight of sulfur compound)
It is preferable that the catalytic cracked oil to be subjected to the first step is subjected to a pretreatment for increasing the molecular weight of the contained sulfur compound and then subjected to the first step. Since the boiling point of the sulfur-containing compound is increased by selectively increasing the molecular weight of the sulfur compound such as thiols, in the first step, the sulfur-containing compound can be removed by being unevenly distributed in the heavy fraction. Thus, the sulfur content of the catalytic cracking light fraction obtained in the first step can be reduced. Specifically, the content of thiols and thiols in the catalytic cracking light fraction is more preferably set to 0.1 mass ppm or less as a sulfur content by a method described later.

従来から石油精製においては、チオール類を処理して製品を無臭化するためのスイートニングが行われるが、酸化法や酸化抽出法によって、チオール類をジスルフィド類に転化する公知の方法は、本発明において硫黄化合物の分子量を大きくする方法として適用できる。具体的には、公知の文献(産業図書株式会社、石油精製技術便覧第3版、1981)に開示されているマーロックス法、ドクター法などが好ましく用いられる。   Conventionally, in petroleum refining, sweetening for treating thiols to deodorize products is performed, but a known method for converting thiols to disulfides by an oxidation method or an oxidative extraction method is described in the present invention. Can be applied as a method for increasing the molecular weight of the sulfur compound. Specifically, the Marlox method, the doctor method, and the like disclosed in known literature (Sangyo Tosho Co., Ltd., Petroleum Refining Technology Handbook, 3rd edition, 1981) are preferably used.

また、本発明において硫黄化合物の分子量を大きくする方法として、ナフサ留分に含まれる硫黄化合物とオレフィン類とを反応させる方法も好適に用いられる。具体的には、公開特許公報(特開2001-55584)に開示されているチオール類とオレフィン類とを反応させる方法や公知の文献(“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond”, Petroleum Refining Technology Seminar August 2001, 11-18)に開示されているチオール類やチオフェン類をオレフィン類と反応させる方法が挙げられる。   In the present invention, as a method for increasing the molecular weight of the sulfur compound, a method of reacting a sulfur compound contained in a naphtha fraction with an olefin is also suitably used. Specifically, a method of reacting thiols with olefins disclosed in a published patent publication (Japanese Patent Application Laid-Open No. 2001-55584) and a known literature (“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond”) , Petroleum Refining Technology Seminar August 2001, 11-18) and a method of reacting thiols and thiophenes with olefins.

〔第2工程〕
本発明の無鉛ガソリン組成物の製造方法における第2工程では、第1工程で得られた接触分解軽質留分を脱硫処理して、第3工程に供する脱硫軽質留分を得る。第2工程で得られる脱硫軽質留分の硫黄分が、3質量ppm以下に脱硫することが好ましく、2質量ppm以下、さらには1質量ppm以下にするとなお一層好ましい。また、脱硫軽質留分のオレフィン分は20〜50容量%、特には25〜45容量%であることが好ましい。
[Second step]
In the second step of the method for producing a lead-free gasoline composition of the present invention, the catalytically cracked light fraction obtained in the first step is desulfurized to obtain a desulfurized light fraction to be subjected to the third step. The sulfur content of the desulfurized light fraction obtained in the second step is desulfurized to preferably 3 ppm by mass or less, more preferably 2 ppm by mass or less, and further preferably 1 ppm by mass or less. The olefin content of the desulfurized light fraction is preferably 20 to 50% by volume, particularly preferably 25 to 45% by volume.

第2工程における脱硫処理の方法は、特に限定されないが、硫黄化合物の吸着または収着機能をもった脱硫剤と接触分解軽質留分を接触させる方法や抽出によって接触分解軽質留分から硫黄化合物を選択的に除去する方法が好ましい方法として挙げられる。脱硫触媒と水素の存在下で、接触分解軽質留分を水素化脱硫処理する方法も挙げられるが、高圧の水素の存在下では、オレフィンが水素化されやすく、得られるガソリン基材のRONが低下しやすい。そのため、脱硫処理は、水素が実質的に存在しない状態、または水素分圧1MPa未満で行うことが好ましい。   The method of the desulfurization treatment in the second step is not particularly limited, but a method of contacting a catalytically cracked light fraction with a desulfurizing agent having a function of adsorbing or sorbing a sulfur compound or selecting a sulfur compound from the catalytically cracked light fraction by extraction. A preferred method is a method of removing it. A method of hydrodesulfurizing the catalytic cracking light fraction in the presence of a desulfurization catalyst and hydrogen can also be mentioned. However, in the presence of high-pressure hydrogen, olefins are easily hydrogenated and the RON of the obtained gasoline base material decreases. It's easy to do. Therefore, the desulfurization treatment is preferably performed in a state where hydrogen is not substantially present, or at a hydrogen partial pressure of less than 1 MPa.

吸着または収着機能をもった脱硫剤と接触分解軽質留分を接触させる方法を用いる場合の脱硫剤としては、硫黄化合物に対する吸着または収着機能を有するものであれば特に限定はない。例えば、銅、亜鉛、ニッケルおよび鉄から選ばれる少なくとも1種の金属成分を含む多孔質脱硫剤が好ましく用いられる。好ましい脱硫剤は、銅などの前記金属成分を0.5〜85重量%、特には1〜80重量%含有する。脱硫剤の製造方法は特に限定されないが、アルミナのような多孔質担体に銅などの金属成分を含浸、担持して、焼成する製造方法や共沈法によって銅などの金属成分とアルミニウムなどの成分とを沈殿させて成形、焼成等の工程を経る製造方法が、好ましい方法として挙げられる。また、成形、焼成された脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、焼成されたものをそのまま用いてもよいし、水素雰囲気下で還元処理して用いてもよい。脱硫剤の比表面積は、50m2/g以上、特には100m2/g、さらには200〜600m/gであることが好ましい。脱硫剤の組成や製造方法は特に限定されないが、具体的には特許第3324746号、特許第3230864号、および特開平11-61154に開示されているような脱硫剤が好ましいものとして挙げられる。 When using a method of contacting a catalytically cracked light fraction with a desulfurizing agent having an adsorption or sorption function, the desulfurization agent is not particularly limited as long as it has an adsorption or sorption function for sulfur compounds. For example, a porous desulfurizing agent containing at least one metal component selected from copper, zinc, nickel and iron is preferably used. Preferred desulfurizing agents contain 0.5 to 85% by weight, especially 1 to 80% by weight, of the metal component such as copper. The production method of the desulfurizing agent is not particularly limited, but a porous carrier such as alumina is impregnated with a metal component such as copper, supported and baked, or a metal component such as copper and a component such as aluminum by a coprecipitation method. Is preferable as a production method of precipitating and subjecting to steps such as molding and firing. Further, the metal component may be further impregnated and supported on the molded and calcined desulfurizing agent and calcined. As the desulfurizing agent, a fired one may be used as it is, or a desulfurizing agent may be used after a reduction treatment in a hydrogen atmosphere. The specific surface area of the desulfurizing agent, 50 m @ 2 / g or more, and particularly it is preferable 100 m @ 2 / g, even at 200~600m 2 / g. The composition and production method of the desulfurizing agent are not particularly limited, but specific examples thereof include desulfurizing agents disclosed in Japanese Patent No. 3324746, Japanese Patent No. 3230864, and JP-A-11-61154.

脱硫処理は、バッチ式で行っても、流通式で行っても構わないが、脱硫剤を充填した固定床脱硫塔に接触分解軽質留分を流通させて行うことが、脱硫剤と得られる脱硫軽質留分の分離が簡便にできるので好ましい。脱硫処理する温度は、15〜400℃の範囲から選ぶことができ、好ましくは80〜380℃である。脱硫剤と接触させただけでは脱硫されにくいチオフェン類の脱硫を促進するために、水素を共存させて脱硫処理を行ってもよい。ただし、オレフィンが水素化され、得られるガソリン基材のRONが低下することを避けるため、水素分圧は1MPa未満とすることが好ましく、さらには0.6MPa未満とすることが好ましい。固定床流通式で脱硫剤と接触分解軽質留分を接触させて脱硫処理を行う場合、LHSVは、0.01〜10000h-1の範囲から選ぶことが好ましい。 The desulfurization treatment may be carried out in a batch system or a flow system, but it is possible to carry out the catalytic cracking light fraction in a fixed-bed desulfurization tower filled with a desulfurization agent, and to carry out the desulfurization with the desulfurization agent. It is preferable because light fractions can be easily separated. The temperature for the desulfurization treatment can be selected from the range of 15 to 400 ° C, preferably 80 to 380 ° C. In order to promote desulfurization of thiophenes that are not easily desulfurized only by contacting with a desulfurizing agent, desulfurization treatment may be performed in the presence of hydrogen. However, the hydrogen partial pressure is preferably less than 1 MPa, more preferably less than 0.6 MPa, in order to avoid the olefin being hydrogenated and the RON of the obtained gasoline base material being reduced. When the desulfurization treatment is carried out by bringing the desulfurizing agent and the catalytic cracking light fraction into contact with each other in a fixed bed flow system, the LHSV is preferably selected from the range of 0.01 to 10000 h- 1 .

抽出によって接触分解軽質留分から硫黄化合物を選択的に除去する方法としては、特表2003-531922及び21st JPI Petroleum Refining Conference“Recent Progress in Petroleum Process Technology”、159 (2002)などに提案されている公知の溶剤抽出プロセスや溶剤抽出プロセスとして代表的なUOP社のSulfur-X(登録商標)プロセス等を用いることができる。これらのプロセスに用いる溶剤の例としては、スルフォラン、3−メチルスルフォラン、2、4−ジメチルスルフォラン、3−エチルスルフォラン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−プロピル−2−ピロリドン、N−ホルミルモルホリン、ジメチルスルホキシド、ジエチルスルホキシド、メチルエチルスルホキシド、ジプロピルスルホキシド、炭酸エチレン、炭酸プロピレン等があげられる。これら、溶剤は扱いやすくするために水と混合して用いても良い。特にチオフェン類硫黄化合物の抽出が可能な溶剤については、チオフェン環と類似の分子構造をもつベンゼンも同時に抽出可能であることから、抽出して得られる接触分解軽質留分は低ベンゼン量の留分となる。したがって、溶剤抽出によって硫黄化合物量を低減した接触分解軽質留分を配合した無鉛ガソリン組成物は、従来と比べてベンゼン含有量をも低減することができる。   As a method for selectively removing a sulfur compound from a catalytic cracking light fraction by extraction, a publicly known method proposed in, for example, JP-A-2003-531922 and 21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 159 (2002), etc. As a solvent extraction process, a typical Sulfur-X (registered trademark) process of UOP can be used as a solvent extraction process. Examples of solvents used in these processes include sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-ethylsulfolane, diethylene glycol, triethylene glycol, tetraethylene glycol, N-methyl-2-pyrrolidone , N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-formylmorpholine, dimethylsulfoxide, diethylsulfoxide, methylethylsulfoxide, dipropylsulfoxide, ethylene carbonate, propylene carbonate and the like. These solvents may be mixed with water for ease of handling. Particularly, for solvents that can extract thiophene sulfur compounds, benzene having a molecular structure similar to that of the thiophene ring can be extracted at the same time. It becomes. Therefore, the unleaded gasoline composition containing the catalytically cracked light fraction in which the amount of sulfur compounds has been reduced by solvent extraction can also reduce the benzene content as compared with the related art.

〔第3工程に用いられる他のガソリン基材〕
第3工程で混合される他のガソリン基材としては、接触改質ガソリン基材、アルキレートガソリン基材、直留ナフサを脱硫処理した基材、およびMTBE、エチル−t−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)、エタノール、メタノール等の含酸素ガソリン基材等、公知のガソリン基材を用いることができる。第3工程で混合される他のガソリン基材の硫黄分は、第2工程から得られるガソリン基材と混合して得られる無鉛ガソリン組成物の硫黄分が1質量ppm以下になるならば、特に限定するものではない。好ましくは、硫黄分が0.5質量ppm以下であり、さらには0.1質量ppm以下である。他のガソリン基材の硫黄分が0.5質量ppmを超えると、第2工程から得られるガソリン基材の配合量が制約され、好ましくない。
[Other gasoline base material used in the third step]
Other gasoline base materials to be mixed in the third step include a catalytic reforming gasoline base material, an alkylate gasoline base material, a base material obtained by desulfurizing a straight-run naphtha, MTBE, ethyl-t-butyl ether (ETBE), Known gasoline base materials such as oxygen-containing gasoline base materials such as t-amylethyl ether (TAEE), ethanol, and methanol can be used. If the sulfur content of the unleaded gasoline composition obtained by mixing with the gasoline base material obtained from the second step is 1 mass ppm or less, the sulfur content of the other gasoline base mixed in the third step is particularly preferable. It is not limited. Preferably, the sulfur content is 0.5 mass ppm or less, more preferably 0.1 mass ppm or less. If the sulfur content of the other gasoline base exceeds 0.5 ppm by mass, the amount of the gasoline base obtained from the second step is restricted, which is not preferable.

好ましい配合量として、例えば、脱硫軽質留分は10〜45容量%、特には25〜40容量%、接触改質ガソリン基材は25〜50容量%、特には30〜45容量%、アルキレートガソリン基材は10〜40容量%、特には15〜30容量%配合するとよい。   Preferred blending amounts are, for example, 10 to 45% by volume, particularly 25 to 40% by volume of the desulfurized light fraction, 25 to 50% by volume, particularly 30 to 45% by volume of the catalytic reforming gasoline base material, and alkylate gasoline. The base material may be blended in an amount of 10 to 40% by volume, particularly 15 to 30% by volume.

〔無鉛ガソリン組成物〕
本発明の無鉛ガソリン組成物は、リサーチ法オクタン価が96.0以上、好ましくは98〜102、50容量%留出温度が105℃以下、好ましくは80〜100℃、オレフィン分が10容量%以上、好ましくは10〜20容量%、および全硫黄分に占めるチオフェンの割合が硫黄分として65〜100質量%である。
さらに、全硫黄分が1質量ppm以下であることが好ましく、また、オレフィン分の全体に占める沸点範囲25〜100℃のオレフィン分の割合が90容量%以上であることが好ましい。オレフィン分の全体に占める沸点範囲25〜100℃、特には、35〜80℃のオレフィン分の割合が90容量%未満だと、高いオクタン価をもつ軽質オレフィンの割合が減少し、満足な性能が得られなくなる。無鉛ガソリン組成物中のチオフェンを硫黄分として0.1〜1.0質量ppm含むことが好ましい。チオフェンは、該基材中に最も残留しやすい硫黄化合物の1つであるため、チオフェンを硫黄分0.1質量ppm未満とすることは本発明の無鉛ガソリン組成物のコストが高くなり好ましくない。
(Lead-free gasoline composition)
The unleaded gasoline composition of the present invention has a research octane number of 96.0 or more, preferably 98 to 102, a 50% by volume distillation temperature of 105 ° C or less, preferably 80 to 100 ° C, and an olefin content of 10% by volume or more. Preferably, the content of thiophene is 10 to 20% by volume and the total sulfur content is 65 to 100% by mass as the sulfur content.
Further, the total sulfur content is preferably 1 mass ppm or less, and the ratio of the olefin content in the boiling range of 25 to 100 ° C. to the entire olefin content is preferably 90% by volume or more. If the proportion of the olefin in the boiling range of 25 to 100 ° C., particularly 35 to 80 ° C., is less than 90% by volume, the proportion of the light olefin having a high octane number is reduced, and satisfactory performance is obtained. Can not be. The unleaded gasoline composition preferably contains thiophene in a sulfur content of 0.1 to 1.0 mass ppm. Since thiophene is one of the sulfur compounds most likely to remain in the base material, it is not preferable to make thiophene less than 0.1 mass ppm of sulfur because the cost of the unleaded gasoline composition of the present invention increases.

〔他の成分〕
さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1重量%以下に維持することが好ましい。
本発明のガソリンで使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。
(Other components)
Further, one or more fuel oil additives known in the art can be added to the gasoline composition of the present invention as needed. The amounts of these additives can be appropriately selected, but it is usually preferable to maintain the total amount of additives at 0.1% by weight or less.
Examples of fuel oil additives that can be used in the gasoline of the present invention include phenol-based, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based compounds. Anti-ignition agent, detergent / dispersant such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, sulfuric acid of higher alcohol Examples include flame retardants such as esters, anionic surfactants, cationic surfactants, antistatic agents such as amphoteric surfactants, and coloring agents such as azo dyes.

本発明を以下の実施例に基づいてより詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   The present invention will be described in more detail based on the following examples, but the present invention is not limited to the following examples.

脱硫軽質留分の調製1
中東系原油の減圧軽油留分を水素化精製処理したものを主たる原料油とする流動床接触分解で得られた接触分解油A1を、酸化抽出処理(スイートニング)して接触分解油B1を得た。接触分解油B1を分留し、軽質分と重質分を除去して、接触分解軽質留分C1を得た。接触分解油A1、接触分解油B1、および接触分解軽質留分C1の性状は、表1のとおりであった。
Preparation of desulfurized light fraction 1
Catalytic cracking oil A1 obtained by fluidized bed catalytic cracking using a hydrorefining treatment of a vacuum gas oil fraction of a Middle Eastern crude oil as a main feed oil is subjected to oxidative extraction treatment (sweetening) to obtain catalytic cracking oil B1. Was. The catalytic cracking oil B1 was fractionated, and light and heavy components were removed to obtain a catalytic cracking light fraction C1. The properties of the catalytic cracking oil A1, the catalytic cracking oil B1, and the catalytic cracking light fraction C1 were as shown in Table 1.

密度はJIS K 2249、蒸気圧はJIS K 2258、蒸留性状はJIS K 2254に準拠して測定した。硫黄分は、JIS K 2541の微量電量滴定式酸化法によって測定した。硫黄化合物の含有量(硫黄換算)は、化学発光によって硫黄化合物を選択的に検出、定量するANTEK製硫黄化学発光検出器を備えた島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。炭化水素成分組成、ベンゼン含有量およびRONは、ヒューレッドパッカード社製PIONA装置を用いて、ガスクロマトグラフ法で測定した。   The density was measured according to JIS K 2249, the vapor pressure was measured according to JIS K 2258, and the distillation properties were measured according to JIS K 2254. The sulfur content was measured by the microcoulometric titration oxidation method of JIS K2541. The content of sulfur compounds (in terms of sulfur) was measured by gas chromatography using a gas chromatograph manufactured by Shimadzu Corporation equipped with an ANTEK sulfur chemiluminescence detector for selectively detecting and quantifying the sulfur compounds by chemiluminescence. . The hydrocarbon component composition, benzene content, and RON were measured by gas chromatography using a PIONA apparatus manufactured by Hewlett-Packard Company.

Figure 2004269871
Figure 2004269871

この接触分解軽質留分C1 30mLを、酸化銅−アルミナ系脱硫剤(銅を金属原子として7.6質量%含有)10gと、室温で、24時間、フラスコ中で攪拌混合した。脱硫剤を濾別して脱硫軽質留分D1を得た。
接触分解油A1に含まれていた軽質チオール類は、酸化抽出処理によって、より高分子量のジスルフィド類に転化していた。接触分解軽質留分C1は、5.6質量ppmの硫黄分を含んでいたが、脱硫剤で処理することにより、硫黄分0.8質量ppmの脱硫軽質留分D1が得られた。得られた脱硫軽質留分D1は、チオフェンを0.8質量ppm含んでいたが、2−メチルチオフェンおよび3-メチルチオフェンは含まれていなかった。
30 mL of this catalytic cracking light fraction C1 was mixed with 10 g of a copper oxide-alumina-based desulfurizing agent (containing 7.6% by mass of copper as a metal atom) in a flask at room temperature for 24 hours. The desulfurizing agent was separated by filtration to obtain a desulfurized light fraction D1.
Light thiols contained in the catalytic cracking oil A1 were converted to higher molecular weight disulfides by the oxidative extraction treatment. The catalytic cracking light fraction C1 contained 5.6 mass ppm of sulfur, but by treating with a desulfurizing agent, a desulfurized light fraction D1 having 0.8 mass ppm of sulfur was obtained. The obtained desulfurized light fraction D1 contained 0.8 mass ppm of thiophene, but did not contain 2-methylthiophene and 3-methylthiophene.

脱硫軽質留分の調製2
別のロットの中東系原油の減圧軽油留分を用いた以外は、前記脱硫軽質留分の調製1と同様に処理して、接触分解軽質留分C1とは性状の異なる接触分解軽質留分C2を得た。この接触分解軽質留分C2 200mLを、酸化銅−アルミナ系脱硫剤(銅を金属原子として7.6質量%含有)15gと、室温で、2時間、フラスコ中で攪拌混合処理した。脱硫剤を濾別して脱硫軽質留分D2を得た。接触分解軽質留分C2と脱硫軽質留分D2の性状は、表2のとおりであった。
接触分解軽質留分C2は、6.4質量ppmの硫黄分を含んでいたが、脱硫剤で処理することにより、硫黄分1.6質量ppmの脱硫軽質留分D2が得られた。得られた脱硫軽質留分D1は、チオフェンを1.6質量ppm含んでいたが、2−メチルチオフェンおよび3-メチルチオフェンは含まれていなかった。
Preparation of desulfurized light fraction 2
Except that a vacuum gas oil fraction of a Middle Eastern crude oil of another lot was used, the same treatment as in Preparation 1 of the desulfurized light fraction was conducted, and a catalytic cracking light fraction C2 having a different property from the catalytic cracking light fraction C1 was used. Got. 200 mL of the catalytic cracking light fraction C2 was mixed with 15 g of a copper oxide-alumina-based desulfurizing agent (containing 7.6% by mass of copper as a metal atom) in a flask at room temperature for 2 hours. The desulfurizing agent was separated by filtration to obtain a desulfurized light fraction D2. The properties of the catalytic cracking light fraction C2 and the desulfurized light fraction D2 are as shown in Table 2.
The catalytically cracked light fraction C2 contained 6.4 mass ppm of sulfur, but by treating with a desulfurizing agent, a desulfurized light fraction D2 having 1.6 mass ppm of sulfur was obtained. The obtained desulfurized light fraction D1 contained 1.6 mass ppm of thiophene, but did not contain 2-methylthiophene and 3-methylthiophene.

Figure 2004269871
Figure 2004269871

脱硫軽質留分の調製3
さらに、別のロットの中東系原油の減圧軽油留分の水素化精製処理したものを用い、前記脱硫軽質留分の調製1と同様に流動床接触分解で処理して接触分解油A3を得、次いで酸化抽出処理(スイートニング)して接触分解油B3を得、さらに分留し、接触分解軽質留分C3を得た。この接触分解軽質留分C3 150mLを、水を5重量%含有するスルフォラン600mLと、室温で、1時間、フラスコ中で攪拌混合し抽出処理を行った。ラフィネート(スルフォランに抽出されなかったもの)100mLを水100mLで洗浄し、脱硫軽質留分D3を得た。接触分解油A3、接触分解油B3、接触分解軽質留分C3および脱硫軽質留分D3の性状を表3に示す。
Preparation of desulfurized light fraction 3
Further, another lot was subjected to hydrorefining treatment of a vacuum gas oil fraction of a Middle Eastern crude oil, which was subjected to fluidized bed catalytic cracking in the same manner as in Preparation 1 of the desulfurized light fraction to obtain a catalytic cracking oil A3, Then, it was subjected to an oxidative extraction treatment (sweetening) to obtain a catalytic cracking oil B3, which was further fractionated to obtain a catalytic cracking light fraction C3. 150 mL of this catalytic cracking light fraction C3 was mixed with 600 mL of sulfolane containing 5% by weight of water at room temperature for 1 hour with stirring in a flask to perform an extraction treatment. Raffinate (100 mL which was not extracted by sulfolane) was washed with 100 mL of water to obtain a desulfurized light fraction D3. Table 3 shows the properties of the catalytic cracking oil A3, the catalytic cracking oil B3, the catalytic cracking light fraction C3, and the desulfurizing light fraction D3.

Figure 2004269871
Figure 2004269871

接触分解軽質留分C3は、7.6質量ppmの硫黄分を含んでいたが、抽出処理することにより、硫黄分1.3質量ppmの脱硫軽質留分D3が得られた。得られた脱硫軽質留分D3は、チオフェンを1.3質量ppm含んでいたが、2−メチルチオフェンおよび3-メチルチオフェンを含んでいなかった。また、接触分解軽質留分C3は、1.4容量%のベンゼンを含んでいたが、抽出処理することにより、脱硫軽質留分D3では0.3容量%以下まで減少した。   The catalytic cracking light fraction C3 contained 7.6 ppm by mass of sulfur, but the extraction treatment resulted in a desulfurized light fraction D3 having 1.3 ppm by mass of sulfur. The obtained desulfurized light fraction D3 contained 1.3 mass ppm of thiophene, but did not contain 2-methylthiophene and 3-methylthiophene. The catalytically cracked light fraction C3 contained 1.4% by volume of benzene, but the extraction treatment reduced the desulfurized light fraction D3 to 0.3% by volume or less.

無鉛ガソリン組成物の調製
上記にようにして得られた脱硫軽質留分を他のガソリン基材と混合して無鉛ガソリン組成物を調製した。他のガソリン基材として接触分解以外の公知技術で得た脱硫ナフサG、接触改質中質油H、接触改質重質油I、およびアルキレートガソリンJを用いた。それらの性状は表4に示すとおりである。接触改質中質油Hは、接触改質ガソリンから、トルエンを多く含む留分を蒸留分離したものである。接触改質重質油Iは、接触改質ガソリンから、炭素数9以上であって11未満の芳香族を蒸留分離したものである。
Preparation of Unleaded Gasoline Composition The desulfurized light fraction obtained as described above was mixed with another gasoline base material to prepare an unleaded gasoline composition. As other gasoline base materials, desulfurized naphtha G, catalytic reformed medium oil H, catalytic reformed heavy oil I, and alkylated gasoline J obtained by a known technique other than catalytic cracking were used. Their properties are as shown in Table 4. The catalytic reforming medium oil H is obtained by distilling and separating a fraction containing a large amount of toluene from catalytic reforming gasoline. The catalytic reforming heavy oil I is obtained by distilling and separating aromatics having 9 or more carbon atoms and less than 11 carbon atoms from catalytic reforming gasoline.

Figure 2004269871
Figure 2004269871

上記脱硫軽質留分の調製2で得た脱硫軽質留分D2を39.5容量%と、他のガソリン基材である脱硫ナフサGを3.5容量%、接触改質中質油Hを19.0容量%、接触改質重質油Iを15.0容量%、アルキレートガソリンJを23.0容量%とを配合し、さらに、添加剤としては、着色剤(シラド化学製CL-53)2mg/L、酸化防止剤(住友化学工業製スミライザー4ML)20mg/L、清浄分散剤(ビーエーエスエフ製Keropur AP-95)100mg/Lを添加して、無鉛ガソリン組成物K1(実施例1)を調製した。また、脱硫軽質留分D2を用いる代わりに、接触分解軽質留分C2を用いた以外は無鉛ガソリン組成物K1の調製と同様にして、無鉛ガソリン組成物L1(比較例1)を調製した。   39.5% by volume of the desulfurized light fraction D2 obtained in Preparation 2 of the above desulfurized light fraction, 3.5% by volume of desulfurized naphtha G as another gasoline base material, and 19 0.05% by volume, 15.0% by volume of catalytic reforming heavy oil I, and 23.0% by volume of alkylated gasoline J. Further, a colorant (CL-53 manufactured by Shirad Chemical Co., Ltd.) was used as an additive. ) 2 mg / L, an antioxidant (Sumitomo Chemical Industries Sumilizer 4ML) 20 mg / L, and a detergent / dispersant (BESF Keropur AP-95) 100 mg / L, and a lead-free gasoline composition K1 (Example 1) Was prepared. Further, a lead-free gasoline composition L1 (Comparative Example 1) was prepared in the same manner as in the preparation of the lead-free gasoline composition K1, except that the catalytic cracking light fraction C2 was used instead of using the desulfurized light fraction D2.

また、前記無鉛ガソリン組成物K1の調製と同様に、上記脱硫軽質留分D3を40容量%と、脱硫ナフサGを2容量%、接触改質中質油Hを11容量%、接触改質重質油Iを21容量%、アルキレートガソリンJを26容量%とを配合し、添加剤としては、着色剤(シラド化学製CL-53)2mg/L、酸化防止剤(住友化学工業製スミライザー4ML)20mg/L、清浄分散剤(ビーエーエスエフ製Keropur AP-95)100mg/Lを添加して、無鉛ガソリン組成物K2(実施例2)を調製した。また、脱硫軽質留分D3を用いる代わりに、接触分解軽質留分C3を用いた以外は無鉛ガソリン組成物K2の調製と全く同じようにして、無鉛ガソリン組成物L2(比較例2)を調製した。   Further, similarly to the preparation of the lead-free gasoline composition K1, the desulfurized light fraction D3 was 40% by volume, the desulfurized naphtha G was 2% by volume, the catalytically modified medium oil H was 11% by volume, and the catalytically modified 21% by volume of high-quality oil I and 26% by volume of alkylated gasoline J. As additives, a colorant (CL-53 manufactured by Shirad Chemical) 2 mg / L, an antioxidant (Sumilyzer 4ML manufactured by Sumitomo Chemical Co., Ltd.) ) 20 mg / L and 100 mg / L of a detergent / dispersant (Keropur AP-95 manufactured by BFSF) were added to prepare a lead-free gasoline composition K2 (Example 2). Further, a lead-free gasoline composition L2 (Comparative Example 2) was prepared in exactly the same manner as in the preparation of the lead-free gasoline composition K2 except that the catalytic cracking light fraction C3 was used instead of using the desulfurized light fraction D3. .

実施例及び比較例としてそれぞれ調製した無鉛ガソリン組成物K1、K2、L1およびL2の性状を表5に示す。なお、全オレフィン分に占める沸点範囲25〜100℃のオレフィン分はK1、K2、L1およびL2どれも100容量%であった。   Table 5 shows the properties of the lead-free gasoline compositions K1, K2, L1, and L2 prepared as Examples and Comparative Examples, respectively. The olefin content in the boiling range of 25 to 100 ° C. in the total olefin content was 100% by volume in all of K1, K2, L1 and L2.

Figure 2004269871
Figure 2004269871

表5から、本発明によって提供される無鉛ガソリン組成物(K1及びK2)は、従来技術によって提供される無鉛ガソリン組成物(L1及びL2)と比較して、他の性状をほとんど変えることなく、硫黄分を1質量ppm以下に低減することができ、ベンゼン含有量も0.3容量%以下に低減できることが明らかである。   From Table 5, it can be seen that the unleaded gasoline compositions provided by the present invention (K1 and K2) have little change in other properties compared to the unleaded gasoline compositions provided by the prior art (L1 and L2). It is clear that the sulfur content can be reduced to 1 mass ppm or less, and the benzene content can be reduced to 0.3 volume% or less.

Claims (10)

接触分解油を分留して5容量%留出温度が25〜43℃、かつ95容量%留出温度が55〜100℃である接触分解軽質留分を得る第1工程、
第1工程で得られた接触分解軽質留分を脱硫処理して脱硫軽質留分を得る第2工程、および
第2工程で得られた脱硫軽質留分と他のガソリン基材とを混合する第3工程
を含む、硫黄分が1質量ppm以下、かつリサーチオクタン価が96.0以上である無鉛ガソリン組成物の製造方法。
A first step of fractionating the catalytic cracking oil to obtain a catalytic cracking light fraction having a 5% by volume distillation temperature of 25 to 43 ° C and a 95% by volume distillation temperature of 55 to 100 ° C;
A second step of desulfurizing the catalytically cracked light fraction obtained in the first step to obtain a desulfurized light fraction, and a second step of mixing the desulfurized light fraction obtained in the second step with another gasoline base material. A method for producing a lead-free gasoline composition having a sulfur content of 1 mass ppm or less and a research octane value of 96.0 or more, including three steps.
第3工程において、10〜45容量%の脱硫軽質留分と90〜55容量%の他のガソリン基材とを混合する請求項1記載の無鉛ガソリン組成物の製造方法。   The method for producing a lead-free gasoline composition according to claim 1, wherein in the third step, 10 to 45% by volume of the desulfurized light fraction and 90 to 55% by volume of another gasoline base material are mixed. 第2工程において、銅、亜鉛、ニッケルおよび鉄から選ばれる少なくとも1種を含む多孔質脱硫剤と接触分解軽質留分とを接触させて脱硫処理する請求項1または2記載の無鉛ガソリン組成物の製造方法。   The lead-free gasoline composition according to claim 1 or 2, wherein in the second step, a porous desulfurizing agent containing at least one selected from copper, zinc, nickel and iron is brought into contact with a catalytic cracking light fraction to perform desulfurization treatment. Production method. 第2工程において、抽出溶媒を用いる抽出処理によって接触分解軽質留分を脱硫処理する請求項1または2記載の無鉛ガソリン組成物の製造方法。   The method for producing a lead-free gasoline composition according to claim 1 or 2, wherein in the second step, the catalytic cracking light fraction is subjected to desulfurization treatment by an extraction treatment using an extraction solvent. 接触分解軽質留分のチオフェン含有量が硫黄分として2.5質量ppm以下である請求項1〜4のいずれかに記載の無鉛ガソリン組成物の製造方法。   The method for producing a lead-free gasoline composition according to any one of claims 1 to 4, wherein the thiophene content of the catalytic cracking light fraction is 2.5 mass ppm or less as a sulfur content. 第1工程の分留を行う前に、予め接触分解油に対し、含まれる硫黄化合物の分子量を大きくする前処理を行う請求項1〜5のいずれかに記載の無鉛ガソリン組成物の製造方法。   The method for producing a lead-free gasoline composition according to any one of claims 1 to 5, wherein a pretreatment for increasing the molecular weight of a sulfur compound contained in the catalytic cracking oil is performed before the fractionation in the first step. リサーチ法オクタン価が96.0以上、50容量%留出温度が105℃以下、オレフィン分が10容量%以上、および全硫黄分に占めるチオフェンの割合が硫黄分として50質量%以上であることを特徴とする無鉛ガソリン組成物。   Research method Octane number is 96.0 or more, 50% by volume Distilling temperature is 105 ° C or less, olefin content is 10% by volume or more, and the ratio of thiophene to total sulfur content is 50% by mass or more as a sulfur content. Unleaded gasoline composition. さらに、全硫黄分が1質量ppm以下である請求項7記載の無鉛ガソリン組成物。   The unleaded gasoline composition according to claim 7, wherein the total sulfur content is 1 mass ppm or less. 全オレフィン分に占める沸点範囲25〜100℃のオレフィン分が90容量%以上である請求項7または8記載の無鉛ガソリン組成物。   9. The unleaded gasoline composition according to claim 7, wherein the olefin content in the boiling range of 25 to 100 [deg.] C. in the total olefin content is 90% by volume or more. ベンゼン含有量が0.3容量%以下である請求項7〜9のいずれかに記載の無鉛ガソリン組成物。   The unleaded gasoline composition according to any one of claims 7 to 9, wherein the benzene content is 0.3% by volume or less.
JP2004042484A 2003-02-20 2004-02-19 Unleaded gasoline composition and preparation process thereof Pending JP2004269871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042484A JP2004269871A (en) 2003-02-20 2004-02-19 Unleaded gasoline composition and preparation process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003043225 2003-02-20
JP2004042484A JP2004269871A (en) 2003-02-20 2004-02-19 Unleaded gasoline composition and preparation process thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009000341A Division JP4599545B2 (en) 2003-02-20 2009-01-05 Method for producing unleaded gasoline composition
JP2009218551A Division JP2009293047A (en) 2003-02-20 2009-09-24 Method for producing unleaded gasoline composition

Publications (1)

Publication Number Publication Date
JP2004269871A true JP2004269871A (en) 2004-09-30

Family

ID=33134202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042484A Pending JP2004269871A (en) 2003-02-20 2004-02-19 Unleaded gasoline composition and preparation process thereof

Country Status (1)

Country Link
JP (1) JP2004269871A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160772A (en) * 2004-12-02 2006-06-22 Japan Energy Corp Gasoline composition, manufacturing method of gasoline base material and manufacturing method of gasoline composition
JP2006206876A (en) * 2004-12-28 2006-08-10 Japan Energy Corp Gasoline composition
JP2007009032A (en) * 2005-06-29 2007-01-18 Showa Shell Sekiyu Kk Fuel oil for gasoline engine
JP2010059437A (en) * 2003-09-26 2010-03-18 Japan Energy Corp Method for producing gasoline base, environmentally friendly gasoline and method for producing the same
CN108264932A (en) * 2017-12-28 2018-07-10 大连理工大学 Fuel oil oxidation-adsorption sulfur removal technology and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059437A (en) * 2003-09-26 2010-03-18 Japan Energy Corp Method for producing gasoline base, environmentally friendly gasoline and method for producing the same
JP2006160772A (en) * 2004-12-02 2006-06-22 Japan Energy Corp Gasoline composition, manufacturing method of gasoline base material and manufacturing method of gasoline composition
JP2006206876A (en) * 2004-12-28 2006-08-10 Japan Energy Corp Gasoline composition
JP2007009032A (en) * 2005-06-29 2007-01-18 Showa Shell Sekiyu Kk Fuel oil for gasoline engine
CN108264932A (en) * 2017-12-28 2018-07-10 大连理工大学 Fuel oil oxidation-adsorption sulfur removal technology and device
CN108264932B (en) * 2017-12-28 2020-05-19 大连理工大学 Fuel oil oxidation adsorption desulfurization process and device

Similar Documents

Publication Publication Date Title
KR20080044768A (en) Process for deep desulphurization of cracking gasolines with a small loss of octane number
JP5219247B2 (en) Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
JP5024884B2 (en) Unleaded gasoline composition and method for producing the same
JP2004269871A (en) Unleaded gasoline composition and preparation process thereof
JP2004210909A (en) Unleaded gasoline composition and method for producing the same
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4371937B2 (en) Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same
JP4855003B2 (en) Gasoline composition and method for producing the same
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4632738B2 (en) Unleaded gasoline composition and method for producing the same
JP4599545B2 (en) Method for producing unleaded gasoline composition
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP5036074B2 (en) Environmentally friendly gasoline
JP4633409B2 (en) Gasoline composition
JP5368073B2 (en) Method for producing fuel composition for gasoline engine and fuel base material for automobile engine used in the production method
JP5280624B2 (en) Unleaded gasoline composition
JP2009263681A (en) Process for producing catalytically cracked gasoline base and unleaded gasoline composition using the same
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JP4633411B2 (en) Gasoline composition
JP4553352B2 (en) Gasoline composition
JP4766655B2 (en) Gasoline composition
JP4633410B2 (en) Gasoline composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061018

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Effective date: 20081113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A02 Decision of refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A02