JP4766655B2 - Gasoline composition - Google Patents

Gasoline composition Download PDF

Info

Publication number
JP4766655B2
JP4766655B2 JP2005058394A JP2005058394A JP4766655B2 JP 4766655 B2 JP4766655 B2 JP 4766655B2 JP 2005058394 A JP2005058394 A JP 2005058394A JP 2005058394 A JP2005058394 A JP 2005058394A JP 4766655 B2 JP4766655 B2 JP 4766655B2
Authority
JP
Japan
Prior art keywords
gasoline
distillation temperature
content
octane number
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005058394A
Other languages
Japanese (ja)
Other versions
JP2006241292A (en
Inventor
英治 田中
康一 松下
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2005058394A priority Critical patent/JP4766655B2/en
Publication of JP2006241292A publication Critical patent/JP2006241292A/en
Application granted granted Critical
Publication of JP4766655B2 publication Critical patent/JP4766655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

本発明は、石油などの炭化水素及び含酸素化合物から製造するガソリン組成物に関する。   The present invention relates to a gasoline composition produced from a hydrocarbon such as petroleum and an oxygen-containing compound.

京都議定書批准によるCO排出量削減目標達成の方策の一つとして、2010年からガソリン自動車の燃費規制が強化される。これに対応するために、ガソリン自動車燃料の8割程度を占めるレギュラーガソリンのオクタン価を高めることで、自動車の圧縮比向上による燃費低減を図ることが予定されている。しかしながら、レギュラーガソリンのオクタン価を高めることは、高オレフィン化や高芳香族化を招き、排ガス性状の悪化等を引き起こす可能性がある。特に、高芳香族化による蒸留性状の重質化は、冷機時におけるエンジンの始動性悪化や、加速時のもたつきなどの運転性能の悪化を引き起こす可能性がある。
一方、大気中のCO増減に影響を与えないカーボンニュートラルのバイオ燃料であるエタノールや、これを原料としたエチルターシャリーブチルエーテル(ETBE)を導入する検討も行われており、特にオクタン価を高める手段として、注目されている(特許文献1〜3参照)。
これまでの含酸素燃料の検討においては、混合ガソリンの排ガス、運転性能及びエンジン清浄性といった実用性能への影響を対象にしたものが主である。
特開2004−285204号公報 特開2004−292510号公報 特開2004−292511号公報
As one of the measures to achieve the CO 2 emission reduction target by ratification of the Kyoto Protocol, fuel efficiency regulations of gasoline cars will be strengthened from 2010. To cope with this, it is planned to reduce fuel consumption by improving the compression ratio of automobiles by increasing the octane number of regular gasoline, which accounts for about 80% of gasoline automobile fuel. However, increasing the octane number of regular gasoline leads to higher olefins and higher aromaticity, which may cause deterioration of exhaust gas properties. In particular, the increase in distillation properties due to high aromatization may cause deterioration in engine startability when cold and deterioration in driving performance such as slack during acceleration.
On the other hand, the introduction of ethanol, which is a carbon-neutral biofuel that does not affect the increase or decrease of CO 2 in the atmosphere, and ethyl tertiary butyl ether (ETBE) using this as a raw material has also been studied. Has been attracting attention (see Patent Documents 1 to 3).
In the study of oxygen-containing fuels so far, the main focus is on the impact on practical performance such as exhaust gas, operational performance and engine cleanliness of mixed gasoline.
JP 2004-285204 A JP 2004-292510 A JP 2004-292511 A

本発明は、含酸素燃料混合ガソリンの製造にあたって炭化水素の組成を適性に調整することで、含酸素燃料混合時のオクタン価を著しく高めながら、オクタン価向上による蒸留性状の重質化を抑え、また、リサーチ法オクタン価(RON)、モーター法オクタン価(MON)ともに高くすることで、低温における加速性などの冷機時の運転性能、及び中・低速及び高速におけるアンチノック性能などを確保した、実用性能に優れたガソリンを提供することを課題とする。   The present invention appropriately adjusts the composition of the hydrocarbon in the production of the oxygenated fuel mixed gasoline, while significantly increasing the octane number at the time of mixing the oxygenated fuel, while suppressing the increase in the distillation properties due to the octane number improvement, By increasing both the research method octane number (RON) and motor method octane number (MON), it has excellent practical performance, ensuring driving performance at low temperatures such as acceleration at low temperatures, and anti-knock performance at medium, low speed, and high speed. The problem is to provide gasoline.

含酸素燃料として、エタノール又はETBEを使用し、これをガソリンに混合することでオクタン価を高めることができるが、その向上効果は炭化水素の組成により異なる。一般にオレフィンや芳香族分の少ない方が含酸素燃料のオクタン価向上効果を高めることが知られている。また、芳香族分を多くすると一般的にオクタン価は高くなるが、排ガス性状の悪化や、50%留出温度が高くなることによる冷機時運転性悪化を引き起こすことになる。
そこで、本発明者は含酸素燃料混合によるオクタン価向上効果を検討した結果、オクタン価向上効果にオレフィン以外にイソパラフィンが相当影響していること、特に炭素数6のイソパラフィンが大きく影響することを見出した。また、着火に大きく寄与するパラフィンについて、その着火特性をアンチノッキング指数で表現される炭化水素の結合状態により整理することが効果的にオクタン価向上を図る上で有効であることを見出した。また、このアンチノッキング指数を高めることによって、含酸素燃料混合後のオクタン価が顕著に増加するとの着想を得た。
Although the octane number can be increased by using ethanol or ETBE as an oxygen-containing fuel and mixing it with gasoline, the improvement effect varies depending on the composition of the hydrocarbon. Generally, it is known that the one with less olefin or aromatic content enhances the effect of improving the octane number of the oxygen-containing fuel. Further, when the aromatic content is increased, the octane number generally increases, but the exhaust gas properties deteriorate and the cold operation performance deteriorates due to an increase in the 50% distillation temperature.
Thus, as a result of examining the effect of improving the octane number by mixing the oxygen-containing fuel, the present inventor has found that isoparaffins other than olefins have a considerable influence on the octane number improvement effect, and in particular, the carbon number 6 isoparaffin has a great influence. In addition, for paraffin that greatly contributes to ignition, it has been found that it is effective to improve the octane number effectively by arranging the ignition characteristics by the hydrocarbon bonding state expressed by the anti-knocking index. Moreover, the idea that the octane number after oxygen-containing fuel mixing increases notably by raising this anti-knocking index was obtained.

すなわち、本発明によるガソリン組成物は、リサーチ法オクタン価(RON)が93以上、モーター法オクタン価(MON)が83以上であり、10%留出温度(T10)が40℃以上、50%留出温度(T50)が90〜100℃、70%留出温度(T70)が110〜134℃、90%留出温度(T90)が120〜175℃、オレフィン分は1〜15容量%、芳香族分が20〜45容量%、炭素数6のイソパラフィン分が8.9容量%以上、エタノール又はエチルt‐ブチルエーテルを酸素含有量として0.1〜2.7質量%含有し、アンチノッキング指数が−71.0〜−64.0であり、かつ、ドライバビリティ・インデックス(DI)が次の式(1)を満たすものである。
DI=1.5×T10+3×T50+T90+11×OX≦530・・・・(1)
ここで、T10は10%留出温度[℃]、T50は50%留出温度[℃]、T90は90%留出温度[℃]を示し、OXは酸素含有量[質量%]を示す。
That is, the gasoline composition according to the present invention has a research octane number (RON) of 93 or more, a motor octane number (MON) of 83 or more, a 10% distillation temperature (T 10 ) of 40 ° C. or more, and a 50% distillation. The temperature (T 50 ) is 90 to 100 ° C., the 70% distillation temperature (T 70 ) is 110 to 134 ° C., the 90% distillation temperature (T 90 ) is 120 to 175 ° C., the olefin content is 1 to 15% by volume, 20% to 45% by volume of aromatics, 8.9% by volume or more of isoparaffins having 6 carbon atoms, 0.1 to 2.7% by mass of ethanol or ethyl t-butyl ether as oxygen content, anti-knocking index There -71.0~- 64 is 2.0, and the drivability index (DI) is one that satisfies the following equation (1).
DI = 1.5 × T 10 + 3 × T 50 + T 90 + 11 × OX ≦ 530 (1)
Here, T 10 represents 10% distillation temperature [° C.], T 50 represents 50% distillation temperature [° C.], T 90 represents 90% distillation temperature [° C.], and OX represents oxygen content [mass%]. Indicates.

さらに、本発明によるガソリン組成物は、37.8℃における蒸気圧が65kPa以下であることが好ましく、また、全硫黄分が10質量ppm以下、チオール類による硫黄分が1.5質量ppm以下、銀板腐食が1以下、ドクター試験が陰性であることが、有害物質、臭気及び腐食性低減の観点から好ましい。さらに、本発明のガソリン組成物は、リサーチ法オクタン価が94以上、モーター法オクタン価が84以上である、含酸素化合物ブレンド前のガソリンと、ETBE1〜8%、又はエタノール1〜3%とをブレンドして得られる上記のガソリン組成物であることが好ましい。   Further, the gasoline composition according to the present invention preferably has a vapor pressure at 37.8 ° C. of 65 kPa or less, a total sulfur content of 10 mass ppm or less, and a sulfur content by thiols of 1.5 mass ppm or less, Silver plate corrosion is preferably 1 or less and doctor test is negative from the viewpoints of reducing harmful substances, odor and corrosivity. Further, the gasoline composition of the present invention is obtained by blending gasoline before blending an oxygen-containing compound having a research octane number of 94 or more and a motor octane number of 84 or more with ETBE 1 to 8% or ethanol 1 to 3%. The gasoline composition obtained above is preferable.

上記のように、式(1)に規定するように蒸留性状を含酸素化合物含有量に関連するある数値内におさめ、アンチノッキング指数が上記に規定した範囲内の数値になるようにパラフィン炭化水素を調整することで、50%留出温度の上昇を抑えつつ、高RON、高MONを確保することができることから、冷機始動性、運転性に優れ、エネルギー変換効率が高いガソリン組成物を提供することができる。   As described above, the paraffin hydrocarbon is adjusted so that the distillation property is within a certain value related to the oxygen-containing compound content as defined in the formula (1), and the anti-knocking index is a value within the range defined above. By adjusting the pressure, it is possible to ensure a high RON and a high MON while suppressing an increase in the distillation temperature of 50%, thereby providing a gasoline composition having excellent cold startability and operability and high energy conversion efficiency. be able to.

本発明によるガソリン組成物は、リサーチ法オクタン価(RON)が93以上であり、好ましくは94〜100、特に好ましくは95〜100である。また、モーター法オクタン価(MON)が83以上であり、好ましくは84〜100、特に好ましくは85〜100である。RON及びMONの測定法は、JIS K 2202に規定される。   The gasoline composition according to the present invention has a research octane number (RON) of 93 or more, preferably 94 to 100, particularly preferably 95 to 100. The motor method octane number (MON) is 83 or more, preferably 84 to 100, and particularly preferably 85 to 100. The measurement method of RON and MON is defined in JIS K2202.

本発明によるガソリン組成物は、37.8℃の蒸気圧は当然JIS規格の範囲内(JIS K 2202:44〜93kPa)であるが、65kPa以下であることが好ましく、より好ましくは50〜65kPa、さらに好ましくは55〜65kPaである。本明細書で蒸気圧の測定法は、JIS K 2258に規定される。   In the gasoline composition according to the present invention, the vapor pressure at 37.8 ° C. is naturally within the range of JIS standard (JIS K 2202: 44 to 93 kPa), preferably 65 kPa or less, more preferably 50 to 65 kPa, More preferably, it is 55-65 kPa. In this specification, the method for measuring the vapor pressure is defined in JIS K 2258.

本発明によるガソリン組成物は、10%留出温度(T10)が40℃以上、好ましくは47.5〜50.0℃であり、50%留出温度(T50)が89〜100℃、好ましくは90〜100℃であり、70%留出温度(T70)が110〜134℃、好ましくは112〜125℃であり、90%留出温度(T90)が120〜175℃、好ましくは125〜165℃、さらに好ましくは130〜155℃である。上記蒸留性状はJIS K 2254に規定される。 The gasoline composition according to the present invention has a 10% distillation temperature (T 10 ) of 40 ° C. or higher, preferably 47.5 to 50.0 ° C., and a 50% distillation temperature (T 50 ) of 89 to 100 ° C. preferably 90 to 100 ° C., 70% distillation temperature (T 70) is one hundred and ten to one hundred thirty-four ° C., preferably 112-125 ° C., 90% distillation temperature (T 90) is one hundred and twenty to one hundred and seventy-five ° C., preferably It is 125-165 degreeC, More preferably, it is 130-155 degreeC. The distillation properties are defined in JIS K 2254.

また、本発明によるガソリン組成物は、ドライバビリティ・インデックス(DI)が、次の関係式を満たすことが必要である。
DI=1.5×T10+3×T50+T90+11×OX≦530
ここで、T10は10%留出温度[℃]、T50は50%留出温度[℃]、T90は90%留出温度[℃]を示し、OXは配合した含酸素化合物の含有量を酸素含有量[質量%]として示す。
DIは、525以下であることが好ましい。
In addition, the gasoline composition according to the present invention is required to have a drivability index (DI) satisfying the following relational expression.
DI = 1.5 × T 10 + 3 × T 50 + T 90 + 11 × OX ≦ 530
Here, T 10 represents a 10% distillation temperature [° C.], T 50 represents a 50% distillation temperature [° C.], T 90 represents a 90% distillation temperature [° C.], and OX contains a blended oxygen-containing compound. The quantity is given as oxygen content [% by mass].
DI is preferably 525 or less.

本発明によるガソリン組成物の芳香族分は20〜45容量%、好ましくは25〜40容量%、特には27〜38容量%である。また、芳香族化合物としては、さらに有害物質低減の観点からベンゼンの含有量を1容量%以下にすることが好ましい。
また、オレフィン分は1〜15容量%、好ましくは5〜14容量%、さらに好ましくは9〜13容量%である。
また、炭素数6のイソパラフィン分は8.9容量%以上含む。炭素数6のイソパラフィン分は比較的低沸点、低蒸気圧で高いオクタン価を有することからガソリン成分としては好ましく、特に含酸素燃料を添加した際に添加後のオクタン価を高める効果を有する。好ましくは9.0%以上、さらに好ましくは9.3容量%以上である。
なお、各芳香族化合物、オレフィン化合物及び炭素数6のイソパラフィンの含有量は、JIS K 2536−2の「ガスクロによる全成分の求め方」に規定される方法で測定した。
The aromatic content of the gasoline composition according to the invention is 20 to 45% by volume, preferably 25 to 40% by volume, in particular 27 to 38% by volume. Moreover, as an aromatic compound, it is preferable to make content of benzene into 1 volume% or less from a viewpoint of a harmful substance reduction further.
The olefin content is 1 to 15% by volume, preferably 5 to 14% by volume, and more preferably 9 to 13% by volume.
The isoparaffin content having 6 carbon atoms is 8.9% by volume or more. The isoparaffin having 6 carbon atoms is preferable as a gasoline component because it has a relatively low boiling point, a low vapor pressure, and a high octane number, and has an effect of increasing the octane number after addition, particularly when an oxygen-containing fuel is added. Preferably it is 9.0% or more, More preferably, it is 9.3 volume% or more.
In addition, content of each aromatic compound, an olefin compound, and a carbon number 6 isoparaffin was measured by the method prescribed | regulated to "How to obtain | require all the components by gas chromatography" of JISK2536-2.

本発明によるガソリン組成物のアンチノッキング指数は−51.0〜−71.0であるが、アンチノッキング指数が高すぎても含酸素化合物燃料によるオクタン価向上効果が小さくなる為、好ましくは−55.0〜−71.0、より好ましくは−60.0〜−71.0、さらに好ましくは−63.0〜−71.0である。   The anti-knocking index of the gasoline composition according to the present invention is -51.0 to -71.0. However, even if the anti-knocking index is too high, the effect of improving the octane number by the oxygen-containing compound fuel is reduced. It is 0--71.0, More preferably, it is -60.0--71.0, More preferably, it is -63.0--71.0.

アンチノッキング指数は、炭化水素を構成する各炭素間のアンチノッキング指数の総和から求められる数値であり、以下のようにして求めることができる。
アンチノッキング指数は、一の炭素の結合状態と、それ以外の炭素である他の炭素の結合状態、及び、それらの間の炭素原子の数により得られる、それぞれの組合せに与えられた表1に示す数値を取るものとする。結合状態とは、第1炭素(プライマリー:p)、第2炭素(セカンダリー:s)、および、第3炭素(ターシャリー:t)の区別である。これらの組合せをp1pなどの記号で表す。つまり、一の炭素が第1炭素(p)であり、それ以外の炭素も第1炭素(p)であり、そしてこれらの第1炭素の間の炭素原子が0個の場合、記号p1pと表され、そのアンチノッキング指数は−27.47である。炭化水素化合物(1分子)に炭素がn個含まれている場合、{(n−1)+(n−2)・・・+2+1}個の炭素間の組合せがあり、それらのアンチノッキング指数の総和がその炭化水素化合物のアンチノッキング指数となる。なお、炭素鎖8以上のパラフィン炭化水素のアンチノッキング指数は、−138.8とする。
The anti-knocking index is a numerical value obtained from the sum of anti-knocking indices between carbons constituting the hydrocarbon, and can be obtained as follows.
The anti-knocking index is given in Table 1 given for each combination obtained by the bonding state of one carbon and the bonding state of the other carbon that is the other carbon, and the number of carbon atoms between them. The numerical value shown shall be taken. The bonded state is a distinction between the first carbon (primary: p), the second carbon (secondary: s), and the third carbon (tertiary: t). These combinations are represented by symbols such as p1p. That is, when one carbon is the first carbon (p), the other carbons are also the first carbon (p), and there are zero carbon atoms between these first carbons, the symbol p1p And its anti-knocking index is -27.47. When the hydrocarbon compound (one molecule) contains n carbons, there are combinations of {(n-1) + (n-2)... + 2 + 1} carbons, and their anti-knocking index The sum is the antiknock index of the hydrocarbon compound. The anti-knocking index of paraffin hydrocarbons having 8 or more carbon chains is -138.8.

Figure 0004766655
Figure 0004766655

アンチノッキング指数の求め方を、2−メチルブタンを例として説明する。説明のため、2−メチルブタンを構成する1位から4位までの炭素を、化1に示すようにC〜Cと表し、2位に分岐している炭素をCと表す。 A method for obtaining the anti-knocking index will be described by taking 2-methylbutane as an example. For the sake of explanation, the carbons from the 1st position to the 4th position constituting 2-methylbutane are represented as C 1 to C 4 as shown in Chemical Formula 1, and the carbon branched to the 2nd position is represented as C 0 .

Figure 0004766655
Figure 0004766655

まず、炭素Cを一の炭素と見なし、炭素C〜Cをそれぞれ他の炭素として、表1からアンチノッキング指数を求め、その結果を表2に示す。 First, assuming that carbon C 0 is one carbon and carbons C 1 to C 4 are other carbons, the antiknock index is obtained from Table 1, and the results are shown in Table 2.

Figure 0004766655
Figure 0004766655

同様に、炭素C〜Cをそれぞれ一の炭素と見なし、炭素C以外の炭素間のアンチノッキング指数を求める。これらの組合せを、表1の記号を用いて表3にまとめる。 Similarly, carbon C 1 to C 4 is regarded as one carbon, and an anti-knocking index between carbons other than carbon C 0 is obtained. These combinations are summarized in Table 3 using the symbols in Table 1.

Figure 0004766655
Figure 0004766655

表3に基づいて、すべての組合せにおけるアンチノッキング指数の和を算出すると、1×{p2p}+2×{p3p}+1×{p1s}+2×{p2s}+2×{p1t}+1×{p2t}+1×{s1t}=−47.15となり、すなわち2−メチルブタンのアンチノッキング指数:−47.15が求まる。   Based on Table 3, when the sum of anti-knocking indexes in all combinations is calculated, 1 × {p2p} + 2 × {p3p} + 1 × {p1s} + 2 × {p2s} + 2 × {p1t} + 1 × {p2t} +1 X {s1t} = − 47.15, that is, the anti-knocking index of 2-methylbutane: −47.15 is obtained.

なお、前記表1に規定した数値は、オクタン価が実測されている44種の飽和炭化水素の化学構造を上記のような手法でパラメータ化し、これらのパラメータをオクタン価の実測値(RON)に基づき重回帰分析により数値化したものである。   The numerical values defined in Table 1 are obtained by parameterizing the chemical structure of 44 types of saturated hydrocarbons whose octane numbers are actually measured by the above-described method, and these parameters are weighted based on the actually measured octane number (RON). It has been quantified by regression analysis.

基材のアンチノッキング指数は、基材に含まれる各飽和炭化水素化合物のアンチノッキング指数をその含有量で重みづけして求めることができる。具体的には、まず、基材に含まれるパラフィン炭化水素のアンチノッキング指数を上述の方法により求める、または、前もって各パラフィン炭化水素のアンチノッキング指数を用意しておく。次に、基材に含まれるパラフィン炭化水素の各化合物の含有量を定量分析する。その後、[各炭化水素化合物のアンチノッキング指数]×[その化合物が基材中のパラフィン炭化水素にしめる体積割合%]/100を各化合物について求めてその総和が基材のアンチノッキング指数となる。   The anti-knocking index of the substrate can be obtained by weighting the anti-knocking index of each saturated hydrocarbon compound contained in the substrate with its content. Specifically, first, the anti-knocking index of paraffin hydrocarbons contained in the substrate is obtained by the above-described method, or the anti-knocking index of each paraffin hydrocarbon is prepared in advance. Next, the content of each compound of paraffin hydrocarbon contained in the base material is quantitatively analyzed. Thereafter, [antiknocking index of each hydrocarbon compound] × [volume ratio% that the compound makes paraffin hydrocarbon in the base material] / 100 is obtained for each compound, and the sum is the antiknocking index of the base material.

燃料のアンチノッキング指数は、燃料に含まれる基材のアンチノッキング指数をその含有量で重みづけして求めることができる。具体的には、各基材のアンチノッキング指数を求めた後、[各基材のアンチノッキング指数]×[その基材が燃料全体にしめる体積割合%]/100を各基材について求めてその総和が燃料のアンチノッキング指数となる。   The anti-knocking index of the fuel can be obtained by weighting the anti-knocking index of the base material contained in the fuel by its content. Specifically, after obtaining the anti-knocking index of each base material, the [anti-knocking index of each base material] × [volume ratio% that the base material fills the entire fuel] / 100 is obtained for each base material, and the sum is obtained. Is the fuel anti-knocking index.

本発明によるガソリン組成物は、含酸素化合物を酸素含有量として0.1〜2.7質量%含有する。含酸素化合物の好ましい含有量は0.5〜2.5質量%、特には0.6〜2.3質量%である。また用いる含酸素化合物としてはアルコール或いはエーテルが好適である。好ましいアルコールとして具体的には、メタノール、エタノール、プロパノール等が挙げられ、エーテルとしては、メチルt−ブチルエーテル(MTBE)、エチルt−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)等が挙げられる。   The gasoline composition according to the present invention contains an oxygen-containing compound in an oxygen content of 0.1 to 2.7% by mass. A preferable content of the oxygen-containing compound is 0.5 to 2.5% by mass, particularly 0.6 to 2.3% by mass. As the oxygen-containing compound to be used, alcohol or ether is preferable. Specific examples of preferable alcohols include methanol, ethanol, and propanol. Examples of ethers include methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl ethyl ether (TAEE). .

本発明によるガソリン組成物の硫黄分は10質量ppm以下、特に0.1〜5質量ppmが好ましい。チオール類による硫黄分は1.5質量ppm以下、特には0.1〜1.2質量ppmが好ましく、硫黄分に占めるチオール類による硫黄分の割合が、30%以下、特には10〜30%となることが好ましい。   The sulfur content of the gasoline composition according to the present invention is preferably 10 ppm by mass or less, particularly preferably 0.1 to 5 ppm by mass. The sulfur content by thiols is preferably 1.5 ppm by mass or less, particularly preferably 0.1 to 1.2 ppm by mass, and the proportion of sulfur by thiols in the sulfur content is 30% or less, particularly 10 to 30%. It is preferable that

また、銀板腐食が1以下及びドクター試験結果が陰性であることが好ましい。銀板腐食は、極く微量の硫化水素が影響し、10ppb程度で銀板を変色させることがある。チオール類は、SH基を含む有機硫黄化合物であり、鎖状パラフィンにSH基が付加した鎖状チオール類、環状パラフィンにSH基が付加した脂環式チオール類、芳香環に直接SH基が付加した芳香族チオール類を含むものである。   Moreover, it is preferable that silver plate corrosion is 1 or less and a doctor test result is negative. Silver plate corrosion is affected by a very small amount of hydrogen sulfide, and the silver plate may be discolored at about 10 ppb. Thiols are organic sulfur compounds containing SH groups, chain thiols with SH groups added to chain paraffins, alicyclic thiols with SH groups added to cyclic paraffins, and SH groups added directly to aromatic rings. Containing aromatic thiols.

ガソリン中のチオールを含む硫黄分は流動接触分解ガソリン基材や熱分解ガソリン基材に比較的多く含有され、その低減方法の詳細については、発明者らが既に特許出願した「特願2004−178210号」に記載されている。   Sulfur containing thiol in gasoline is contained in a relatively large amount in fluid catalytic cracking gasoline base and pyrolysis gasoline base, and details of the reduction method are described in Japanese Patent Application No. 2004-178210, which has already been filed by the inventors. No. ".

本発明によるガソリン組成物は、接触改質ガソリン基材に、他のガソリン基材を80容量%未満、特には30〜70容量%、さらには40〜70容量%含むことが好ましい。他のガソリン基材としては、流動接触分解ガソリン基材、アルキレートガソリン基材、及び直留ナフサを脱硫処理した基材などを用いることができる。また、含酸素化合物は、酸素含有量として0.1〜2.7質量%含有されるように配合する。   The gasoline composition according to the present invention preferably contains less than 80% by volume, particularly 30 to 70% by volume, more preferably 40 to 70% by volume, of other gasoline substrates in the catalytically modified gasoline substrate. As other gasoline base materials, fluid catalytic cracking gasoline base materials, alkylate gasoline base materials, base materials obtained by desulfurizing straight-run naphtha, and the like can be used. Moreover, an oxygen-containing compound is mix | blended so that it may contain 0.1-2.7 mass% as oxygen content.

これらのガソリン基材の好ましい配合量は、流動接触分解ガソリン基材を0〜80容量%、特には30〜60容量%、軽質改質ガソリン基材0〜30容量%、特には5〜20容量%、重質改質ガソリン基材0〜30容量%、特には5〜10容量%、アルキレートガソリン基材0〜35容量%、特には5〜25容量%、含酸素ガソリン基材(ETBEの場合)0.5〜15容量%程度(酸素含有量として0.1〜2.7質量%の範囲内)特には0.5〜8容量%、その他の基材を合計で0〜40容量%である。   The preferred blending amount of these gasoline base materials is 0 to 80% by volume, especially 30 to 60% by volume of fluid catalytic cracking gasoline base, 0 to 30% by volume of light reformed gasoline base, particularly 5 to 20% by volume. %, Heavy reformed gasoline base material 0 to 30% by volume, especially 5 to 10% by volume, alkylate gasoline base material 0 to 35% by volume, particularly 5 to 25% by volume, oxygen-containing gasoline base material (of ETBE) Case) About 0.5 to 15% by volume (within 0.1 to 2.7% by mass as oxygen content), especially 0.5 to 8% by volume, and 0 to 40% by volume in total of other base materials It is.

さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1質量%以下に維持することが好ましい。本発明のガソリンで使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。   Furthermore, the gasoline composition of the present invention may contain one or more fuel oil additives known in the art as needed. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 mass% or less normally. Examples of fuel oil additives that can be used in the gasoline of the present invention include phenolic, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based surfaces. Anti-ignition agents, detergent dispersants such as succinimides, polyalkylamines and polyetheramines, anti-icing agents such as polyhydric alcohols or their ethers, anionic surfactants, cationic surfactants, amphoteric surfactants, etc. And anti-static agents and colorants such as azo dyes.

以下に、本発明を実施例に基づいてより詳細に説明するが、本発明は、これらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例及び比較例のガソリン組成物を調製するために、次のガソリン基材を用意した。
ETBE:市販の純度約95%のエチルt−ブチルエーテル(シェブロン化学製)。
ETOH:市販の発酵エタノール(99度1級、日本アルコール販売(株)製)。
LN:中東原油を蒸留後に脱硫した軽質ナフサで、硫黄分が1質量ppm以下に低減したガソリン基材。
FCCG:流動接触分解ガソリンで、軽質ガソリンを5%留出温度が25.0〜43.0℃であって、かつ95%留出温度が55.0〜80.0℃になるように蒸留分離し、重質ガソリンを水素化脱硫した後に、再度軽質ガソリンと混合することにより硫黄分を10質量ppm以下に低減したガソリン基材。
ALKG:ブチレンを主成分とする留分とイソブタンを主成分とする留分を硫酸触媒により反応(アルキル化)させて得た、イソパラフィン分の高い炭化水素(アルキレートガソリン)。
TOL:接触改質ガソリンをスルフォラン溶剤により、芳香族を抽出し、蒸留分離により得た純度99.98%のトルエン。
上記ガソリン基材の性状を表4に示す。
In order to prepare the gasoline compositions of Examples and Comparative Examples, the following gasoline base materials were prepared.
ETBE: commercially available ethyl t-butyl ether having a purity of about 95% (manufactured by Chevron Chemical).
ETOH: Commercial fermented ethanol (99 degrees first grade, manufactured by Nippon Alcohol Sales Co., Ltd.).
LN: A light naphtha obtained by desulfurizing Middle East crude oil after distillation and having a sulfur content reduced to 1 mass ppm or less.
FCCG: Fluid catalytic cracking gasoline, light gasoline is separated by distillation so that 5% distillation temperature is 25.0-43.0 ° C and 95% distillation temperature is 55.0-80.0 ° C. Then, after desulfurizing heavy gasoline, it is mixed with light gasoline again to reduce the sulfur content to 10 ppm by mass or less.
ALKG: A hydrocarbon having a high isoparaffin content (alkylated gasoline) obtained by reacting (alkylating) a fraction mainly containing butylene and a fraction mainly containing isobutane with a sulfuric acid catalyst.
TOL: Toluene with a purity of 99.98% obtained by extracting aromatics from a catalytically modified gasoline with a sulfolane solvent and distilling it off.
Table 4 shows the properties of the gasoline base material.

Figure 0004766655
Figure 0004766655

表4で示したガソリン基材を表5の上部に示す配合割合で配合して、比較例1、実施例1、2となるガソリンを調製した。調製したガソリンの性状を表5に示す。
なお、表2及び表3の性状について、リサーチ法オクタン価及びモーター法オクタン価は、JIS K 2202に、蒸気圧はJIS K 2258に、また、蒸留性状はJIS K 2254に準拠して測定した。硫黄分は、JIS K 2541の微量電量滴定式酸化法によって測定した。チオール類による硫黄分(硫黄換算)は、化学発光によって硫黄化合物を選択的に検出、定量するANTEK製硫黄化学発光検出器を備えた島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。芳香族、オレフィン及びイソパラフィンの炭化水素成分組成は、ヒューレッドパッカード社製PIONA装置を用いて、JIS K 2536−2「ガスクロによる全成分の求め方」に準拠して測定した。銀板腐食はJIS K2513(石油製品−銅板腐食試験方法:対応 ASTM D130)のボンベ法(ジェット燃料)で、銅板の代わりにJIS K2276(石油製品−航空燃料油試験方法)の「14.銀板腐食試験方法」に用いる銀板を使用して評価した。試験温度は50℃、試験時間は3時間である。ドクター試験は、JIS K 2276に準拠して測定した。
なお、酸素含有量は、含酸素化合物の配合量(質量換算後)に当該含酸素化合物に含まれる酸素の割合を乗じて算出した。
The gasoline base materials shown in Table 4 were blended at the blending ratio shown in the upper part of Table 5 to prepare gasolines to be Comparative Example 1 and Examples 1 and 2. Table 5 shows the properties of the prepared gasoline.
Regarding the properties shown in Tables 2 and 3, the research method octane number and motor method octane number were measured according to JIS K 2202, the vapor pressure was measured according to JIS K 2258, and the distillation property was measured according to JIS K 2254. The sulfur content was measured by the microcoulometric titration method of JIS K2541. Sulfur content (sulfur equivalent) by thiols was measured by gas chromatography using a Shimadzu gas chromatograph equipped with an ANTEK sulfur chemiluminescence detector that selectively detects and quantifies sulfur compounds by chemiluminescence. . The hydrocarbon component composition of aromatic, olefin and isoparaffin was measured in accordance with JIS K 2536-2 “How to obtain all components by gas chromatography” using a PIONA device manufactured by Hured Packard. Silver plate corrosion is the cylinder method (jet fuel) of JIS K2513 (Petroleum products-Copper plate corrosion test method: corresponding ASTM D130). Instead of the copper plate, “14. Silver plate of JIS K2276 (Petroleum product-Aviation fuel oil test method)” The silver plate used in the “corrosion test method” was evaluated. The test temperature is 50 ° C. and the test time is 3 hours. The doctor test was measured according to JIS K 2276.
The oxygen content was calculated by multiplying the blending amount of the oxygen-containing compound (after mass conversion) by the proportion of oxygen contained in the oxygen-containing compound.

さらに、実施例1、2及び比較例1のガソリンを用いてシャシダイナモ装置を用い、表6に示す仕様の3台の試験車A、B及びCによる加速性能試験を実施した。試験は、車両を冷機(25℃)状態に保持した後、自動運転装置(堀場製作所製、ADS7000)によりアクセル開度を50%上限としてアクセル開度上限まで一気に加速した時に、初速0から50(km/時間)の車速に到達するまでの時間により測定した。その結果(加速時間低減率)を、参考例の市販レギュラーガソリンを使用したときの到達時間を基準として、それとの相対的な加速時間の差異で比較した。その結果を表3に併せて示す。供試ガソリンの加速時間低減率は、次式により求めた。
加速時間低減率=(参考例の到達時間−供試ガソリンの到達時間)÷(参考例の到達時間)×100
Further, an acceleration performance test was performed using three test cars A, B, and C having the specifications shown in Table 6 using the chassis dynamometer apparatus using the gasolines of Examples 1 and 2 and Comparative Example 1. In the test, after the vehicle was kept in a cold machine (25 ° C.) state, when the accelerator opening was accelerated up to 50% by the automatic driving device (Horiba Seisakusho, ADS7000), the initial speed was 0 to 50 ( km / hour) until the vehicle speed was reached. The results (acceleration time reduction rate) were compared based on the difference in acceleration time relative to the arrival time when using the commercial regular gasoline of the reference example. The results are also shown in Table 3. The acceleration time reduction rate of the test gasoline was obtained from the following equation.
Acceleration time reduction rate = (reference example arrival time−test gasoline arrival time) ÷ (reference example arrival time) × 100

Figure 0004766655
Figure 0004766655

Figure 0004766655
Figure 0004766655

本発明のガソリン組成物は、含酸素化合物を活用し、蒸留性状、パラフィン成分の構成等について、きめ細かに調整することによって、高いオクタン価を有しながら、車両の冷機時加速性などの実用性能を保持することができる。したがって、優れた自動車用のガソリン組成物を提供することができる。   The gasoline composition of the present invention uses an oxygen-containing compound and finely adjusts the distillation properties, the composition of the paraffin component, etc., so that it has a high octane number and has practical performance such as a cold acceleration performance of a vehicle. Can be held. Therefore, an excellent gasoline composition for automobiles can be provided.

Claims (4)

10%留出温度が40℃以上、50%留出温度が90〜100℃、70%留出温度が110〜134℃、90%留出温度が120〜175℃、オレフィン分が1〜15容量%、芳香族分が20〜45容量%、炭素数6のイソパラフィン分が8.9容量%以上であり、エタノール又はエチルt‐ブチルエーテルを酸素含有量として0.1〜2.7質量%含有し、リサーチ法オクタン価が93以上、モーター法オクタン価が83以上であり、アンチノッキング指数が−71.0〜−64.0、かつ、ドライバビリティ・インデックス(DI)が次の式(1)を満たすことを特徴とするガソリン組成物、
DI=1.5×T10+3×T50+T90+11×OX≦530・・・・(1)
(ここで、T10は10%留出温度[℃]、T50は50%留出温度[℃]、T90は90%留出温度[℃]を示し、OXは酸素含有量[質量%]を示す。)
10% distillation temperature is 40 ° C or higher, 50% distillation temperature is 90-100 ° C, 70% distillation temperature is 110-134 ° C, 90% distillation temperature is 120-175 ° C, and olefin content is 1-15 volumes. %, Aromatic content is 20 to 45% by volume, carbon number 6 isoparaffin content is 8.9% by volume or more, and ethanol or ethyl t-butyl ether is contained in an oxygen content of 0.1 to 2.7% by mass. , research octane number is 93 or more, the motor octane number is 83 or more, the anti-knock index -71.0~- 64.0, and the drivability index (DI) satisfies the following formula (1) Gasoline composition, characterized by
DI = 1.5 × T 10 + 3 × T 50 + T 90 + 11 × OX ≦ 530 (1)
(Here, T 10 represents a 10% distillation temperature [° C.], T 50 represents a 50% distillation temperature [° C.], T 90 represents a 90% distillation temperature [° C.], and OX represents an oxygen content [mass%]. ]
37.8℃における蒸気圧が65kPa以下である請求項1に記載のガソリン組成物。   The gasoline composition according to claim 1, wherein the vapor pressure at 37.8 ° C is 65 kPa or less. 全硫黄分が10質量ppm以下、チオール類による硫黄分が1.5質量ppm以下、銀板腐食が1以下、及びドクター試験結果が陰性である請求項1又は2に記載のガソリン組成物。   The gasoline composition according to claim 1 or 2, wherein the total sulfur content is 10 mass ppm or less, the sulfur content by thiols is 1.5 mass ppm or less, the silver plate corrosion is 1 or less, and the doctor test result is negative. リサーチ法オクタン価が94以上、モーター法オクタン価が84以上のガソリンと、ETBE1〜8%、又はエタノール1〜3%とからなる請求項1〜3の何れかに記載のガソリン組成物。   The gasoline composition according to any one of claims 1 to 3, comprising a gasoline having a research octane number of 94 or more and a motor octane number of 84 or more and ETBE of 1 to 8% or ethanol of 1 to 3%.
JP2005058394A 2005-03-03 2005-03-03 Gasoline composition Active JP4766655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058394A JP4766655B2 (en) 2005-03-03 2005-03-03 Gasoline composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058394A JP4766655B2 (en) 2005-03-03 2005-03-03 Gasoline composition

Publications (2)

Publication Number Publication Date
JP2006241292A JP2006241292A (en) 2006-09-14
JP4766655B2 true JP4766655B2 (en) 2011-09-07

Family

ID=37048016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058394A Active JP4766655B2 (en) 2005-03-03 2005-03-03 Gasoline composition

Country Status (1)

Country Link
JP (1) JP4766655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002237A (en) * 2005-05-27 2007-01-11 Idemitsu Kosan Co Ltd Abrasion-resistant gasoline composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630358B2 (en) * 1999-01-14 2005-03-16 株式会社ジョモテクニカルリサーチセンター Fuel for gasoline engine and method for producing the same
JP3945768B2 (en) * 2002-12-27 2007-07-18 株式会社ジョモテクニカルリサーチセンター Unleaded gasoline composition and method for producing the same

Also Published As

Publication number Publication date
JP2006241292A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4510477B2 (en) Gasoline composition
JP4425606B2 (en) Unleaded high octane gasoline
JP4624142B2 (en) Ethanol blended gasoline
JP4624143B2 (en) Ethanol blended gasoline
JP4766655B2 (en) Gasoline composition
JP4766651B2 (en) Gasoline composition
JP4855003B2 (en) Gasoline composition and method for producing the same
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4633409B2 (en) Gasoline composition
JP5280624B2 (en) Unleaded gasoline composition
US8895789B2 (en) Fuel composition for use in gasoline engines
JP4633411B2 (en) Gasoline composition
JP4626954B2 (en) Gasoline composition
JP5280625B2 (en) Unleaded gasoline composition
JP4633410B2 (en) Gasoline composition
JP5280623B2 (en) Unleaded gasoline composition
JP2010138293A (en) Manufacturing method for fuel composition for gasoline engine, and fuel base material for automobile engine used for the manufacturing method
JP4553352B2 (en) Gasoline composition
JP5144729B2 (en) Production method of ethanol blended gasoline
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JP4737613B2 (en) ETBE-containing gasoline composition and method for producing the same
JP2006199754A (en) Gasoline composition
JP5368074B2 (en) Fuel composition for gasoline engines
JPH0797582A (en) Fuel oil for gasoline engine
JP2011006699A (en) Production method for ethanol-blended gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4766655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250