JP4633411B2 - Gasoline composition - Google Patents

Gasoline composition Download PDF

Info

Publication number
JP4633411B2
JP4633411B2 JP2004250122A JP2004250122A JP4633411B2 JP 4633411 B2 JP4633411 B2 JP 4633411B2 JP 2004250122 A JP2004250122 A JP 2004250122A JP 2004250122 A JP2004250122 A JP 2004250122A JP 4633411 B2 JP4633411 B2 JP 4633411B2
Authority
JP
Japan
Prior art keywords
gasoline
catalytic cracking
distillation temperature
volume
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004250122A
Other languages
Japanese (ja)
Other versions
JP2006063264A (en
Inventor
英治 田中
光明 脇田
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2004250122A priority Critical patent/JP4633411B2/en
Publication of JP2006063264A publication Critical patent/JP2006063264A/en
Application granted granted Critical
Publication of JP4633411B2 publication Critical patent/JP4633411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、石油などの炭化水素から製造するガソリン組成物、特にはオクタン価を高めた、優れた燃費性能を示すガソリン組成物に関する。   The present invention relates to a gasoline composition produced from a hydrocarbon such as petroleum, and more particularly to a gasoline composition having an improved octane number and exhibiting excellent fuel efficiency.

夏期におけるガソリンの蒸気圧は2005年から65kPa以下に規制されることが決まっており、蒸気圧の高い軽質留分であるブタンやイソペンタン等のガソリンへの配合を少なくすることとなるが、これらの軽質留分は比較的オクタン価が高いため、ガソリンのオクタン価の低下と蒸留性状の重質化を引き起こすことになる。
その一方で、2010年から自動車の燃費規制が強化されることや京都議定書批准によるCO排出量削減目標達成の方策の一つとして、ガソリン、特にはレギュラーガソリンのオクタン価を上げることによる燃費向上策が期待されている。
The vapor pressure of gasoline in summer has been decided to be regulated to 65 kPa or less since 2005, and the blending of gasoline with light fractions with high vapor pressure, such as butane and isopentane, will be reduced. Since the light fraction has a relatively high octane number, it causes a decrease in the octane number of gasoline and a heavy distillation property.
On the other hand, fuel efficiency regulations for automobiles will be strengthened from 2010, and measures to improve CO2 emissions by raising the octane number of gasoline, especially regular gasoline, as one of the measures to achieve the CO 2 emission reduction target by ratification of the Kyoto Protocol. Is expected.

しかしながら、レギュラーガソリンのオクタン価を上げるために、比較的オクタン価の高い芳香族炭化水素(以下、単に「芳香族」ともいう)をガソリンに多く混合することで、前記の蒸気圧低下による影響と合わさって、蒸留性状がさらに重質化し、燃料噴射時の揮発性が悪化することで、車両の加速性低下、駆動力低下等が懸念される。すなわち、蒸気圧を低下させ、オクタン価を向上しても、蒸留性状が重質化することなく、車両の加速性や駆動力を維持できるガソリン組成物の開発が望まれている。
そこで、本発明は、車両の加速性や駆動力を維持しながらオクタン価を高めた、優れた燃費性能を示すガソリン組成物を提供することを課題とする。
However, in order to increase the octane number of regular gasoline, by mixing a large amount of aromatic hydrocarbons with relatively high octane number (hereinafter, also simply referred to as “aromatics”) into the gasoline, this is combined with the effects of the above-mentioned decrease in vapor pressure. Further, since the distillation properties become heavier and the volatility during fuel injection deteriorates, there is a concern that the acceleration performance of the vehicle, the driving force, and the like will decrease. That is, it is desired to develop a gasoline composition that can maintain the acceleration and driving force of a vehicle without increasing the distillation properties even if the vapor pressure is reduced and the octane number is improved.
Then, this invention makes it a subject to provide the gasoline composition which shows the outstanding fuel-consumption performance which raised the octane number, maintaining the acceleration property and driving force of a vehicle.

本発明者は、レギュラーガソリン基材として流動接触分解ガソリンの軽質留分を使用し、重質留分をガソリン基材に使用しないで、レギュラーガソリンのオクタン価を上げることが出来るとの着想に至った。これにより、芳香族基材の混合量を増加させずに、比較的オクタン価が高く、軽質な留分のイソパラフィン及びオレフィンの炭素数分布を調整することで加速性を維持することができるとの着想を得、本発明に想到した。   The present inventor has come up with the idea that the light octane of fluid catalytic cracking gasoline can be used as a regular gasoline base material, and the octane number of regular gasoline can be increased without using a heavy fraction as a gasoline base material. . The idea is that the acceleration can be maintained by adjusting the carbon number distribution of isoparaffins and olefins of lighter fractions with a relatively high octane number without increasing the mixing amount of the aromatic substrate. And arrived at the present invention.

すなわち、本発明によるガソリン組成物は、リサーチ法オクタン価が92〜96であり、蒸気圧が65kPa以下であり、10%留出温度が47〜48.5℃、50%留出温度が90℃〜103℃、70%留出温度が110℃〜134℃、及び90%留出温度が165℃以下であり、芳香族分が30容量%以下であり、かつ、次の式(1)、及び(2)を満たすものである。
290≦T=3×(50%留出温度[℃])+0.3×(70%留出温度[℃])+0.03×(90%留出温度[℃])−0.6×(蒸気圧[kPa])≦310 ・・・(1)
0.610≦A=(IC6+C6O)/C6≦0.700 ・・・(2)
ここで、C6は炭素数6の炭化水素の含有量[容量%]、IC6は炭素数6のイソパラフィンの含有量[容量%]、C6Oは炭素数6のオレフィンの含有量[容量%]をそれぞれ示す。
That is, the gasoline composition according to the present invention has a research octane number of 92 to 96 , a vapor pressure of 65 kPa or less, a 10% distillation temperature of 47 to 48.5 ° C, and a 50% distillation temperature of 90 ° C to 90 ° C. 103 ° C., 70% distillation temperature of 110 ° C. to 134 ° C., 90% distillation temperature of 165 ° C. or less, aromatic content of 30% by volume or less, and the following formulas (1) and ( It satisfies 2).
290 ≦ T = 3 × (50% distillation temperature [° C.]) + 0.3 × (70% distillation temperature [° C.]) + 0.03 × (90% distillation temperature [° C.]) − 0.6 × ( Vapor pressure [kPa]) ≦ 310 (1)
0.610 ≦ A = (IC6 + C6O) /C6≦0.700 (2)
Here, C6 is the content [volume%] of the hydrocarbon having 6 carbon atoms, IC6 is the content [volume%] of the isoparaffin having 6 carbon atoms, and C6O is the content [volume%] of the olefin having 6 carbon atoms. Show.

本発明のガソリン組成物はチオール類による硫黄分が1.5質量ppm以下、及びドクター試験が陰性であることが好ましく、90%留出温度が150℃〜175℃の流動接触分解ガソリン基材を30容量%以上含むことが好ましい。また、95%留出温度が55.0〜80.0℃の軽質流動接触分解ガソリンを10〜30容量%含有することが好ましい。
Gasoline composition of the present invention, the sulfur content is more than 1.5 mass ppm by thiols, and preferably a doctor test is negative, 90% fluidized catalytic cracking gasoline base material of distillation temperature of 0.99 ° C. to 175 ° C. It is preferable to contain 30% by volume or more. Moreover, it is preferable to contain 10-30 volume% of light fluid catalytic cracking gasoline whose 95% distillation temperature is 55.0-80.0 degreeC.

式(1)に規定するように50%留出温度などの蒸留性状と、蒸気圧を所定の範囲とし、式(2)に規定するように炭素数6に占めるイソパラフィンまたはオレフィンの割合を高めることにより、蒸気圧を低下させても、蒸留性状が重質化することなく、車両の加速性や駆動力を維持することができ、オクタン価の向上も可能となる。
さらに、オクタン価を上げることによる運転性向上や燃費向上が、現行のノックセンサー付き車両だけでなく、今後想定されるレギュラー仕様の高オクタン価適合車両に対しても、大きな効果をもたらすことが見こまれる。
Distillation properties such as 50% distillation temperature as specified in formula (1) and vapor pressure within a predetermined range, and increase the proportion of isoparaffin or olefin occupying 6 carbon atoms as defined in formula (2) Thus, even if the vapor pressure is lowered, the acceleration property and driving force of the vehicle can be maintained without increasing the distillation properties, and the octane number can be improved.
Furthermore, driving performance and fuel efficiency improvement by increasing the octane number are expected to have a significant effect not only on current vehicles with knock sensors but also on regular high-octane vehicles that are expected to be in the future. .

本発明によるガソリン組成物は、リサーチ法オクタン価(以下、単に「RON」ともいう)が91.5以上であり、好ましくは92〜96、特に好ましくは93〜95である。リサーチ法オクタン価の測定法は、JIS K 2202に規定される。   The gasoline composition according to the present invention has a research octane number (hereinafter, also simply referred to as “RON”) of 91.5 or more, preferably 92 to 96, particularly preferably 93 to 95. The measuring method of the research method octane number is defined in JIS K2202.

本発明によるガソリン組成物は、37.8℃の蒸気圧が65kPa以下、好ましくは61〜65kPaである。本明細書での蒸気圧は、JIS K 2258に規定される。   The gasoline composition according to the present invention has a vapor pressure at 37.8 ° C. of 65 kPa or less, preferably 61 to 65 kPa. The vapor pressure in this specification is defined in JIS K 2258.

本発明によるガソリン組成物は、10%留出温度が47℃以上、好ましくは47.5〜48.5℃であり、50%留出温度が90〜103℃、好ましくは98〜103℃であり、70%留出温度が110〜134℃、好ましくは115〜125℃であり、90%留出温度が165℃以下、好ましくは155〜165℃である。留出温度はJIS K 2254に規定される。
T=3×(50%留出温度[℃])+0.3×(70%留出温度[℃])
+0.03×(90%留出温度[℃])−0.6×(蒸気圧[kPa])
≦315 ・・・(1)
を満たすものであり、このTは、290〜310の範囲が好ましい。
The gasoline composition according to the present invention has a 10% distillation temperature of 47 ° C or higher, preferably 47.5 to 48.5 ° C, and a 50% distillation temperature of 90 to 103 ° C, preferably 98 to 103 ° C. The 70% distillation temperature is 110 to 134 ° C, preferably 115 to 125 ° C, and the 90% distillation temperature is 165 ° C or lower, preferably 155 to 165 ° C. The distillation temperature is specified in JIS K 2254.
T = 3 × (50% distillation temperature [° C.]) + 0.3 × (70% distillation temperature [° C.])
+ 0.03 × (90% distillation temperature [° C.]) − 0.6 × (vapor pressure [kPa])
≦ 315 (1)
This T is preferably in the range of 290 to 310.

本発明によるガソリン組成物の芳香族分は30容量%以下、好ましくは20〜28容量%、特には22〜27容量%である。また、ベンゼン含有量は、1容量%以下が好ましい。   The aromatic content of the gasoline composition according to the invention is not more than 30% by volume, preferably 20 to 28% by volume, in particular 22 to 27% by volume. The benzene content is preferably 1% by volume or less.

さらに、本発明によるガソリン組成物は、炭素数6のイソパラフィン及びオレフィンの含有量に関して、次の式(2)を満たす。
A=(IC6+C6O)/(C6)≧0.600 ・・・(2)
すなわち、Aは0.600以上、好ましくは0.610〜0.700である。ここで、C6は炭素数6の炭化水素の含有量[容量%]であり、IC6は炭素数6のイソパラフィンの含有量であり、C6Oは炭素数6のオレフィンの含有量であり、JIS K 2536「ガスクロによる全成分試験方法」による含有量で規定される。なお、ここでイソパラフィンとは、直鎖構造でなく枝分かれして側鎖のある、広義のものをいう。また、オレフィンは、不飽和結合を少なくとも一つ有する炭化水素である。
Furthermore, the gasoline composition according to the present invention satisfies the following formula (2) with respect to the content of carbon 6 isoparaffin and olefin.
A = (IC6 + C6O) / (C6) ≧ 0.600 (2)
That is, A is not less than 0.600, preferably 0.610 to 0.700. Here, C6 is the content [capacity%] of hydrocarbons having 6 carbon atoms, IC6 is the content of isoparaffins having 6 carbon atoms, C6O is the content of olefins having 6 carbon atoms, and JIS K 2536 It is specified by the content according to “Test method for all components by gas chromatography”. In addition, isoparaffin means here the thing of the broad sense which is not a linear structure but has a branched side chain. The olefin is a hydrocarbon having at least one unsaturated bond.

本発明によるガソリン組成物の硫黄分は0.1〜10質量ppm、特に0.5〜5質量ppmが好ましい。チオール類による硫黄分が1.5質量ppm以下、特には0.1〜1.2質量ppmが好ましく、硫黄分に占めるチオール類による硫黄分の割合が、30%以下、特には10〜30%となることが好ましい。また、ドクター試験が陰性であることが好ましい。チオール類は、SH基を含む有機硫黄化合物であり、鎖状パラフィンにSH基が付加した鎖状チオール類、環状パラフィンにSH基が付加した脂環式チオール類、芳香環に直接SH基が付加した芳香族チオール類を含むものである。   The sulfur content of the gasoline composition according to the present invention is preferably 0.1 to 10 ppm by mass, particularly preferably 0.5 to 5 ppm by mass. Sulfur content by thiols is preferably 1.5 ppm by mass or less, particularly preferably 0.1 to 1.2 ppm by mass, and the ratio of sulfur content by thiols in the sulfur content is 30% or less, especially 10 to 30%. It is preferable that Moreover, it is preferable that a doctor test is negative. Thiols are organic sulfur compounds containing SH groups, chain thiols with SH groups added to chain paraffins, alicyclic thiols with SH groups added to cyclic paraffins, and SH groups added directly to aromatic rings. Containing aromatic thiols.

本発明によるガソリン組成物は、90%留出温度が150〜175℃の流動接触分解ガソリン基材を30容量%以上含むことが好ましい。該流動接触分解ガソリン基材は、90%留出温度が155〜170℃、50%留出温度が85〜97℃であることが好ましい。   The gasoline composition according to the present invention preferably contains 30% by volume or more of a fluid catalytic cracking gasoline base material having a 90% distillation temperature of 150 to 175 ° C. The fluid catalytic cracking gasoline base material preferably has a 90% distillation temperature of 155 to 170 ° C and a 50% distillation temperature of 85 to 97 ° C.

流動接触分解ガソリン基材を製造するプロセスは、接触分解装置、運転条件および用いる触媒を特に限定するものでなく、公知の任意の製造プロセスを採用できる。接触分解装置は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して高オクタン価ガソリン基材を得る装置である。例えば石油学会編「新石油精製プロセス」に記載のあるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などがある。また、21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, p.113-158 (2002)、Sulphur, 268, 35, (2000)、“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond”, Petroleum Refining Technology Seminar, p.4-24 (August 2001)、特開平6−277519に開示されているような、脱硫効果の高い接触分解触媒や脱硫効果をもった添加剤を接触分解触媒に添加して用いることもできる。   The process for producing the fluid catalytic cracking gasoline base material does not particularly limit the catalytic cracking apparatus, the operating conditions and the catalyst to be used, and any known production process can be adopted. The catalytic cracking unit uses a catalyst such as amorphous silica alumina, zeolite, etc., in addition to petroleum fractions from light oil to vacuum gas oil, while being obtained from heavy oil indirect desulfurization unit, it can be obtained directly from degassing oil or heavy oil direct desulfurization unit. This is a device that obtains a high octane gasoline base material by catalytically cracking degassed oil, atmospheric residue oil, etc. For example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, RCC method, HOC method, etc. Examples include fluid catalytic cracking. Also, 21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, p.113-158 (2002), Sulfur, 268, 35, (2000), “Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond” , Petroleum Refining Technology Seminar, p.4-24 (August 2001), JP-A-6-277519, catalytic cracking catalyst having high desulfurization effect and additive having desulfurization effect are added to catalytic cracking catalyst It can also be used.

接触分解装置の原料油としては、原油を常圧蒸留して得られる常圧蒸留残油、常圧蒸留残油を減圧蒸留して得られる留出油留分である減圧軽油、原油を常圧蒸留して得られる留出油留分のうちの直留軽油留分、常圧蒸留残渣油を減圧蒸留して得られる減圧蒸留残渣油を熱分解して得られる熱分解重質軽油留分等を硫黄分4000質量ppm以下、特には2000質量ppm以下、窒素分1000質量ppm以下、特には500質量ppm以下となるように水素化精製処理したものが好ましく用いられる。   As the feedstock oil for catalytic cracking equipment, atmospheric distillation residue obtained by atmospheric distillation of crude oil, vacuum gas oil that is a distillate fraction obtained by distillation of atmospheric distillation residue under reduced pressure, crude oil at atmospheric pressure Among the distillate oil fractions obtained by distillation, straight distillation gas oil fraction, pyrolysis heavy gas oil fraction obtained by pyrolyzing vacuum distillation residue oil obtained by vacuum distillation of atmospheric distillation residue oil, etc. Is preferably used by hydrorefining so that the sulfur content is 4000 mass ppm or less, particularly 2000 mass ppm or less, and the nitrogen content is 1000 mass ppm or less, particularly 500 mass ppm or less.

流動接触分解ガソリン基材は、接触分解装置から生成する留分のうち、上述の蒸留性状の留分を分取したものである。好ましくは、流動接触分解ガソリン基材はチオール類を減じる処理をなされた後にガソリン組成物に配合される。チオール類を減じる方法は、特に限定はしないが、水素化脱硫以外の方法であり、チオール類を選択的に減じることが好ましい。具体的には、アルカリ性物質と接触させて流動接触分解ガソリン中のチオール類をスイートニングする方法や硫黄化合物の吸着または収着機能をもった脱硫剤と流動接触分解ガソリンを接触させる方法によってチオール類を選択的に除去する方法が好ましい方法として挙げられる。   The fluid catalytic cracking gasoline base material is a fraction obtained by fractionating the above-mentioned distillation property fraction from fractions generated from the catalytic cracking apparatus. Preferably, the fluid catalytic cracking gasoline base is formulated into the gasoline composition after being treated to reduce thiols. The method for reducing thiols is not particularly limited, but is a method other than hydrodesulfurization, and it is preferable to selectively reduce thiols. Specifically, thiols are obtained by a method of sweetening thiols in fluid catalytic cracking gasoline by contacting with an alkaline substance or a method of contacting fluid catalytic cracking gasoline with a desulfurization agent having an adsorption or sorption function of sulfur compounds. A preferable method is a method of selectively removing.

流動接触分解ガソリンは他のガソリン基材と比較して硫黄分を多く含む基材であるため、その硫黄分を低くする方法として、接触分解装置の原料油として硫黄分を低いものを用いることや、接触分解装置において脱硫効果の高い接触分解触媒や脱硫効果をもった添加剤を接触分解触媒に添加することの他に、流動接触分解ガソリンを脱硫する方法があげられる。流動接触分解ガソリンは水素化脱硫、吸着脱硫、収着脱硫等の既存の方法で脱硫することができるが、オクタン価ロス抑制の観点から分留して重質接触分解ガソリンのみを脱硫する方法が好ましい方法として挙げられる。また、重質接触分解ガソリンを分留した残りの流動接触分解ガソリンは、すなわち、軽質接触分解ガソリンは、比較的硫黄分が少なく、脱硫する必要がなく、またオクタン価が高いので、良好なガソリン基材として用いることができる。軽質接触分解ガソリンの蒸留性状は、5%留出温度が25.0〜43.0℃、95%留出温度が55.0〜80.0℃であることが好ましい。   Since fluid catalytic cracking gasoline is a base material that contains more sulfur than other gasoline base materials, as a method of reducing the sulfur content, the use of a low sulfur content as a feedstock for catalytic cracking equipment In addition to adding a catalytic cracking catalyst having a high desulfurizing effect or an additive having a desulfurizing effect to the catalytic cracking apparatus in the catalytic cracking apparatus, there is a method of desulfurizing fluid catalytic cracking gasoline. Fluid catalytic cracking gasoline can be desulfurized by existing methods such as hydrodesulfurization, adsorptive desulfurization, and desorption / removal sulfur, but from the viewpoint of suppressing octane loss, a method of desulfurizing only heavy catalytic cracking gasoline is preferred. As a method. Further, the remaining fluid catalytic cracked gasoline obtained by fractionating heavy catalytic cracked gasoline, that is, light catalytic cracked gasoline has a relatively low sulfur content, does not need to be desulfurized, and has a high octane number. It can be used as a material. The distillation properties of light catalytic cracking gasoline are preferably 5% distillation temperature of 25.0 to 43.0 ° C and 95% distillation temperature of 55.0 to 80.0 ° C.

従来から石油精製においては、チオール類を処理して製品を無臭化するためのスイートニングが行われており、ペトロテック17(11),974(1994)や講談社サイエンティフィク社「石油精製プロセス」(1998)記載のマーロックス法などが好ましく用いられる。スイートニングにおいては、オレフィン類はそのまま保持されるのでRONは減少しない。ただし、脱硫重質接触分解ガソリン留分には重質接触分解ガソリン中のオレフィンに由来する重質なチオールが多く含まれているが、このようなチオールは従来のマーロックス法などでは反応性が低く、十分に転化できない可能性がある。その場合には、重質なチオールが除去できるスイートニングプロセスを選択する必要がある。具体的には、NPRA 2000 Annual Meeting AM-00-54記載のMERICAT−IIプロセスなどが挙げられる。   Conventionally, in petroleum refining, sweetening has been performed to treat thiols to make the product non-brominated, such as Petrotech 17 (11), 974 (1994) and Kodansha Scientific “Petroleum Refining Process”. The Marlox method described in (1998) is preferably used. In sweetening, since olefins are retained as they are, RON does not decrease. However, desulfurized heavy catalytic cracking gasoline fraction contains a lot of heavy thiols derived from olefins in heavy catalytic cracking gasoline, but such thiols have low reactivity in the conventional Marlox method. There is a possibility that it cannot be fully converted. In that case, it is necessary to select a sweetening process capable of removing heavy thiols. Specific examples include the MERICAT-II process described in NPRA 2000 Annual Meeting AM-00-54.

チオール類は苛性ソーダやアンモニア等のアルカリ性物質の存在によってジスルフィド類に転化する。このとき、添加剤や触媒を用いることによって転化効率を向上させることができる。また、抽出型のスイートニングプロセスはチオール類をアルカリ性物質と反応させ、油分から分離できるため、油中の硫黄分を減ずることができる。   Thiols are converted to disulfides by the presence of alkaline substances such as caustic soda and ammonia. At this time, conversion efficiency can be improved by using an additive and a catalyst. In addition, since the extraction type sweetening process allows thiols to react with an alkaline substance and be separated from the oil, the sulfur content in the oil can be reduced.

以上より、流動接触分解ガソリン系のガソリン基材としては、流動接触分解ガソリン自身、流動接触分解ガソリンを分留して得た軽質流動接触分解ガソリンと重質流動接触分解ガソリン、及び該重質流動接触分解ガソリンを各種の脱硫処理をして得た脱硫重質流動接触分解ガソリンが挙げられ、特に軽質流動接触分解ガソリン、脱硫重質流動接触分解ガソリンが好ましく使用できる。また、軽質流動接触分解ガソリンと脱硫重質流動接触分解ガソリンとを、任意の割合で、予め混合された脱硫流動接触分解ガソリンも好ましく、特に軽質流動接触分解ガソリンの混合比率を多くした軽質化脱硫流動接触分解ガソリンが好ましく使用できる。   As described above, the fluid catalytic cracking gasoline base material includes fluid catalytic cracking gasoline itself, light fluid catalytic cracking gasoline obtained by fractionating fluid catalytic cracking gasoline, heavy fluid catalytic cracking gasoline, and heavy fluid Desulfurized heavy fluid catalytic cracked gasoline obtained by subjecting catalytic cracked gasoline to various desulfurization treatments can be mentioned, and particularly light fluid catalytic cracked gasoline and desulfurized heavy fluid catalytic cracked gasoline can be preferably used. Further, desulfurized fluid catalytic cracking gasoline in which light fluid catalytic cracking gasoline and desulfurized heavy fluid catalytic cracking gasoline are mixed in any proportion in advance is also preferable, and particularly, lightening desulfurization with an increased mixing ratio of light fluid catalytic cracking gasoline. Fluid catalytic cracking gasoline can be preferably used.

本発明によるガソリン組成物は、流動接触分解ガソリン基材に他のガソリン基材を70容量%未満、特には10〜50容量%、さらには20〜40容量%含むことが好ましい。他のガソリン基材としては、接触改質ガソリン基材、アルキレートガソリン基材、直留ナフサを脱硫処理した基材、およびメチルt−ブチルエーテル(MTBE)、エチルt−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)、エタノール、メタノール等の含酸素ガソリン基材等用いることができる。また、接触改質ガソリン基材としてはトルエンを80容量%以上、特には95容量%以上含む留分が好ましく用いられる。   The gasoline composition according to the present invention preferably contains less than 70% by volume, in particular 10 to 50% by volume, more preferably 20 to 40% by volume, of another gasoline base in the fluid catalytic cracking gasoline base. Other gasoline base materials include catalytically modified gasoline base materials, alkylate gasoline base materials, base materials obtained by desulfurizing straight-run naphtha, and methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t- Oxygenated gasoline base materials such as amyl ethyl ether (TAEE), ethanol, methanol, etc. can be used. Further, as the catalytic reforming gasoline base, a fraction containing 80% by volume or more, particularly 95% by volume or more of toluene is preferably used.

好ましい配合量は、流動接触分解ガソリン基材を50〜90容量%、特には60〜80容量%、接触改質ガソリン基材を5〜35容量%特には7〜25容量%、その他の基材を合計で0〜30容量%、特には5〜20容量%である。   Preferred blending amounts are 50 to 90% by volume, especially 60 to 80% by volume of fluid catalytic cracked gasoline base, 5 to 35% by volume, especially 7 to 25% by volume of catalytically modified gasoline base, and other bases. Is 0 to 30% by volume, particularly 5 to 20% by volume.

さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1重量%以下に維持することが好ましい。本発明のガソリンで使用可能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。   Furthermore, the gasoline composition of the present invention may contain one or more fuel oil additives known in the art as needed. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 weight% or less normally. Examples of fuel oil additives that can be used in the gasoline of the present invention include phenolic, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based surfaces. Anti-ignition agent, detergent / dispersant such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, sulfuric acid of higher alcohol Examples include an auxiliary combustor such as an ester, an anionic surfactant, a cationic surfactant, an antistatic agent such as an amphoteric surfactant, and a colorant such as an azo dye.

以下に、本発明を実施例に基づいてより詳細に説明するが、本発明は、これらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

なお、本実施例において、蒸留性状はJIS K 2254に、また、蒸気圧はJIS K 2258に準拠して測定した。硫黄分はJIS K 2541の微量電量滴定式酸化法によって測定した。硫黄化合物の含有量(硫黄換算)は、化学発光によって硫黄化合物を選択的に検出、定量するANTEK製硫黄化学発光検出器を備えた島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。炭化水素成分組成およびRONは、ヒューレッドパッカード社製PIONA装置を用いて、ガスクロマトグラフ法で測定した。ドクター試験はJIS K 2276に準拠して測定した。   In this example, the distillation properties were measured according to JIS K 2254, and the vapor pressure was measured according to JIS K 2258. The sulfur content was measured by the microcoulometric titration method of JIS K2541. The sulfur compound content (sulfur equivalent) was measured by gas chromatography using a Shimadzu gas chromatograph equipped with an ANTEK sulfur chemiluminescence detector that selectively detects and quantifies sulfur compounds by chemiluminescence. . The hydrocarbon component composition and RON were measured by a gas chromatograph method using a PIONA apparatus manufactured by Hured Packard. The doctor test was measured according to JIS K 2276.

表1に示す性状、及び成分組成を有するガソリン基材を用意した。各基材は、次の方法で用意した。
DS−LG:直留ガソリンであり、中東系原油のナフサ留分を水素化脱硫後、その軽質分を蒸留分離することにより得た。
A gasoline base material having the properties and component composition shown in Table 1 was prepared. Each substrate was prepared by the following method.
DS-LG: straight-run gasoline, obtained by hydrodesulfurizing a naphtha fraction of Middle Eastern crude oil, and distilling and separating the lighter fraction.

FCCG:接触分解ガソリン留分を分留して5%留出温度が25.0〜43.0℃であって、かつ95%留出温度が55.0〜80.0℃である接触分解軽質ガソリン留分を得る。また、接触分解重質ガソリン留分を水素化脱硫によって硫黄分を低減した後、スイートニング処理でチオール低減処理を行い、前記の接触分解軽質ガソリン留分とを1:1の割合(容量比)で混合したものである。
FCCG(軽質):前記軽質接触分解ガソリン留分と、前記の2段脱硫処理済重質接触分解ガソリン留分とを1:0.8の割合(容量比)で混合したものである。
FL:前記軽質接触分解ガソリン留分である。すなわち、接触分解ガソリン留分を分留して得られた5%留出温度が25.0〜43.0℃、95%留出温度が55.0〜80.0℃である軽質接触分解ガソリン留分である。
FCCG: catalytic cracking light fraction obtained by fractionating a catalytic cracking gasoline fraction and having a 5% distillation temperature of 25.0 to 43.0 ° C and a 95% distillation temperature of 55.0 to 80.0 ° C Get a gasoline fraction. Moreover, after reducing sulfur content by hydrodesulfurization of catalytic cracking heavy gasoline fraction, thiol reduction treatment is performed by sweetening treatment, and the above catalytic cracking light gasoline fraction is in a ratio (volume ratio) of 1: 1. Is a mixture of
FCCG (light): The light catalytic cracking gasoline fraction and the two-stage desulfurized heavy catalytic cracking gasoline fraction are mixed in a ratio (volume ratio) of 1: 0.8.
FL: The light catalytic cracking gasoline fraction. That is, a light catalytic cracking gasoline having a 5% distillation temperature of 25.0 to 43.0 ° C and a 95% distillation temperature of 55.0 to 80.0 ° C obtained by fractionating a catalytic cracking gasoline fraction. Distillate.

ALKG:アルキレートガソリンであり、ブチレンを主成分とする留分とイソブタンを主成分とする留分を硫酸触媒により反応させて、イソパラフィン分の高い炭化水素を得た。 ALKG: alkylate gasoline, a fraction containing butylene as a main component and a fraction containing isobutane as a main component were reacted with a sulfuric acid catalyst to obtain a hydrocarbon having a high isoparaffin content.

AC7:軽質改質ガソリンであり、重質ナフサを固体触媒により移動床式反応装置を用いて反応させることにより、芳香族分の高い炭化水素に改質し、蒸留分離することにより炭素数7の炭化水素を95%以上含有する留分を得た。
AC9:重質改質ガソリンであり、重質ナフサを固体触媒により移動床式反応装置を用いて反応させることにより、芳香族分の高い炭化水素に改質し、蒸留分離することにより炭素数9以上の炭化水素を95%以上含有する留分を得た。
AC7: Light reformed gasoline, heavy naphtha is reacted with a solid catalyst using a moving bed reactor, reformed to a hydrocarbon with high aromatic content, and separated by distillation to have 7 carbon atoms. A fraction containing 95% or more of hydrocarbons was obtained.
AC9: Heavy reformed gasoline, heavy naphtha is reacted with a solid catalyst using a moving bed reactor, reformed to a hydrocarbon with a high aromatic content, and subjected to distillation separation to have a carbon number of 9 A fraction containing 95% or more of the above hydrocarbons was obtained.

Figure 0004633411
Figure 0004633411

表1に示すガソリン基材を表2の比率で配合して、実施例1、2、比較例1、2のガソリンを調製した。調製したガソリンの性状・特性を表2に併せて示す。
なお、加速時間は、シャシダイナモ装置を用い、堀場製作所の自動運転装置(ADS7000)によりアクセル開度を50%上限としてアクセル開度上限まで一気に加速した時に、初速0km/hrから10km/hrの車速に到達するまでの時間により測定した。
The gasoline bases shown in Table 1 were blended at the ratios shown in Table 2 to prepare gasolines of Examples 1 and 2 and Comparative Examples 1 and 2. The properties and characteristics of the prepared gasoline are also shown in Table 2.
The acceleration time is a vehicle speed of 0 km / hr to 10 km / hr when the chassis dynamometer device is used and the accelerator opening is set to 50% by the automatic operation device (ADS7000) of Horiba Seisakusho. Measured by the time to reach.

Figure 0004633411
Figure 0004633411

T(=3×(50%留出温度[℃])+0.3×(70%留出温度[℃])+0.03×(90%留出温度[℃])−0.6×(蒸気圧[kPa]))を315以下、A((IC6+C6O)/C6)を0.600以上とすることにより、実車試験における加速時間が速く、燃費も向上し、かつ、オクタン価(RON)も高いガソリン組成物をえることができる。   T (= 3 × (50% distillation temperature [° C.]) + 0.3 × (70% distillation temperature [° C.]) + 0.03 × (90% distillation temperature [° C.]) − 0.6 × (steam The pressure [kPa])) is 315 or less and A ((IC6 + C6O) / C6) is 0.66 or more, so that the acceleration time in the actual vehicle test is quick, the fuel consumption is improved, and the octane number (RON) is high. A composition can be obtained.

本発明のガソリン組成物は、その蒸気圧を低下させても、蒸留性状が重質化することなく、車両の加速性や駆動力を維持することができ、オクタン価の向上も可能となる。したがって、本発明のガソリン組成物は、今後想定されるレギュラー仕様の高オクタン価適合車両に対しても、運転性向上や燃費向上が見こまれ、環境にやさしく、経済性にも優れたガソリンとして有用である。   Even if the vapor pressure of the gasoline composition of the present invention is lowered, the acceleration property and driving force of the vehicle can be maintained without increasing the distillation properties, and the octane number can be improved. Therefore, the gasoline composition of the present invention is expected to improve drivability and fuel efficiency, and is useful as a gasoline that is environmentally friendly and economical, even for vehicles that meet the high-octane number of regular specifications that are expected in the future. It is.

Claims (4)

蒸気圧が65kPa以下であり、10%留出温度が47〜48.5℃、50%留出温度が90℃〜103℃、70%留出温度が110℃〜134℃、及び90%留出温度が165℃以下であり、芳香族分が30容量%以下であり、リサーチ法オクタン価が92〜96であり、かつ、次の式(1)及び(2)を満たすことを特徴とするガソリン組成物。
290≦T=3×(50%留出温度[℃])+0.3×(70%留出温度[℃])+0.03×(90%留出温度[℃])−0.6×(蒸気圧[kPa])≦310 ・・・(1)
0.610≦A=(IC6+C6O)/C6≦0.700 ・・・(2)
(ここで、C6は炭素数6の炭化水素の含有量[容量%]、IC6は炭素数6のイソパラフィンの含有量[容量%]、及びC6Oは炭素数6のオレフィンの含有量[容量%]をそれぞれ示す。)
Vapor pressure is 65kPa or less, 10% distillation temperature is 47 to 48.5 ° C, 50% distillation temperature is 90 ° C to 103 ° C, 70% distillation temperature is 110 ° C to 134 ° C, and 90% distillation. A gasoline composition having a temperature of 165 ° C. or less, an aromatic content of 30% by volume or less, a research octane number of 92 to 96 , and satisfying the following formulas (1) and (2): object.
290 ≦ T = 3 × (50% distillation temperature [° C.]) + 0.3 × (70% distillation temperature [° C.]) + 0.03 × (90% distillation temperature [° C.]) − 0.6 × ( Vapor pressure [kPa]) ≦ 310 (1)
0.610 ≦ A = (IC6 + C6O) /C6≦0.700 (2)
(Where C6 is the content of carbon 6 hydrocarbons [volume%], IC6 is the content of carbon 6 isoparaffins [volume%], and C6O is the content of carbon 6 olefins [volume%]. Is shown respectively.)
チオール類による硫黄分が1.5質量ppm以下、及びドクター試験が陰性である請求項1に記載のガソリン組成物。   The gasoline composition according to claim 1, wherein the sulfur content by thiols is 1.5 ppm by mass or less, and the doctor test is negative. 90%留出温度が150〜175℃の流動接触分解ガソリン基材を30容量%以上含む請求項1もしくは2に記載のガソリン組成物。   The gasoline composition according to claim 1 or 2, comprising 30% by volume or more of a fluid catalytic cracking gasoline base material having a 90% distillation temperature of 150 to 175 ° C. 流動接触分解ガソリンを蒸留分離して得た95%留出温度が55.0〜80.0℃の軽質流動接触分解ガソリンを10〜30容量%含有する請求項1〜3のいずれかに記載のガソリン組成物。   The 95% distillation temperature obtained by distilling and separating fluid catalytic cracking gasoline is 55.0 to 80.0 ° C, and contains 10 to 30% by volume of light fluid catalytic cracking gasoline. Gasoline composition.
JP2004250122A 2004-08-30 2004-08-30 Gasoline composition Active JP4633411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250122A JP4633411B2 (en) 2004-08-30 2004-08-30 Gasoline composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250122A JP4633411B2 (en) 2004-08-30 2004-08-30 Gasoline composition

Publications (2)

Publication Number Publication Date
JP2006063264A JP2006063264A (en) 2006-03-09
JP4633411B2 true JP4633411B2 (en) 2011-02-16

Family

ID=36110023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250122A Active JP4633411B2 (en) 2004-08-30 2004-08-30 Gasoline composition

Country Status (1)

Country Link
JP (1) JP4633411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368074B2 (en) 2008-12-11 2013-12-18 昭和シェル石油株式会社 Fuel composition for gasoline engines
JP5368072B2 (en) 2008-12-11 2013-12-18 昭和シェル石油株式会社 Fuel composition for gasoline engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111258A (en) * 1995-10-16 1997-04-28 Nippon Oil Co Ltd Lead-free gasoline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111258A (en) * 1995-10-16 1997-04-28 Nippon Oil Co Ltd Lead-free gasoline

Also Published As

Publication number Publication date
JP2006063264A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP4510477B2 (en) Gasoline composition
JP5024884B2 (en) Unleaded gasoline composition and method for producing the same
JP4633409B2 (en) Gasoline composition
JP4855003B2 (en) Gasoline composition and method for producing the same
JP4633411B2 (en) Gasoline composition
JP2010116469A (en) Gasoline composition
JP4889095B2 (en) Eco-friendly gasoline composition and method for producing the same
JP4766651B2 (en) Gasoline composition
JP4633410B2 (en) Gasoline composition
JP5280624B2 (en) Unleaded gasoline composition
JP4553352B2 (en) Gasoline composition
JP5403596B2 (en) Unleaded gasoline
JP4632738B2 (en) Unleaded gasoline composition and method for producing the same
JP5280625B2 (en) Unleaded gasoline composition
JP5280623B2 (en) Unleaded gasoline composition
JP4766655B2 (en) Gasoline composition
JP2017125213A (en) Lead-free gasoline
JP4801342B2 (en) Gasoline composition, method for producing gasoline base material, and method for producing gasoline composition
JP2017145419A (en) Unleaded gasoline
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JP5403595B2 (en) Unleaded gasoline
JP5403594B2 (en) Unleaded gasoline
JP5405170B2 (en) Unleaded gasoline
JP5702456B2 (en) Unleaded gasoline
JP2014025077A (en) Unleaded gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250