JP2010116469A - Gasoline composition - Google Patents

Gasoline composition Download PDF

Info

Publication number
JP2010116469A
JP2010116469A JP2008289958A JP2008289958A JP2010116469A JP 2010116469 A JP2010116469 A JP 2010116469A JP 2008289958 A JP2008289958 A JP 2008289958A JP 2008289958 A JP2008289958 A JP 2008289958A JP 2010116469 A JP2010116469 A JP 2010116469A
Authority
JP
Japan
Prior art keywords
content
volume
gasoline
less
gasoline composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008289958A
Other languages
Japanese (ja)
Other versions
JP5350752B2 (en
Inventor
Eiji Tanaka
英治 田中
Chiharu Kato
智春 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2008289958A priority Critical patent/JP5350752B2/en
Publication of JP2010116469A publication Critical patent/JP2010116469A/en
Application granted granted Critical
Publication of JP5350752B2 publication Critical patent/JP5350752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasoline composition that contains ETBE and/or ETOH, can reduce a CO discharge amount during a cold engine operation and is slight in the discharge amount of carbon dioxide. <P>SOLUTION: The gasoline composition contains at least either one of ethyl tertiary butyl ether and ethanol, and has a total content of ethyl tertiary butyl ether and ethanol of 1-12 vol.%, a total sulfur content of at most 10 ppm by mass, 20-40 vol.% of an aromatics content, an index X, which is represented by the formula: index X=Ar9/Ar8 [wherein Ar8 is an 8C or lower aromatics content (vol.%); and Ar9 is a 9C or higher aromatics content (vol.%)], of at least 2.0, a Reid vapor pressure of at most 65 kPa, a research octane number of 98-110, and a 50% distillation temperature of 85.0-98.0°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガソリン組成物、特には、エチルターシャリーブチルエーテル(ETBE)及び/又はエタノール(ETOH)を含有し、冷機時における排出ガス中の一酸化炭素(CO)排出量を低減し、かつ二酸化炭素排出量が少ないガソリン組成物に関するものである。   The present invention contains a gasoline composition, particularly ethyl tertiary butyl ether (ETBE) and / or ethanol (ETOH), reduces carbon monoxide (CO) emissions in exhaust gas when cold, and It relates to gasoline compositions with low carbon emissions.

ガソリンエンジンの排出ガス中のCOは、頭痛、吐き気、呼吸器障害など人体に悪影響を及ぼすため、規制物質として扱われている。これに対し、近年の自動車排気ガス浄化技術の進展に伴い、暖機時におけるCO排出量はかなり低減されているが、冷機時のCO排出量の低減は十分ではない。   CO in the exhaust gas of a gasoline engine is treated as a regulated substance because it adversely affects the human body such as headache, nausea and respiratory problems. On the other hand, with the recent progress of automobile exhaust gas purification technology, the CO emission amount at the time of warm-up is considerably reduced, but the reduction of the CO emission amount at the time of cold-down is not sufficient.

例えば、含酸素化合物であるエチルターシャリーブチルエーテル(ETBE)及びエタノール(ETOH)は、高いオクタン価を有し、ガソリンの構成基材として使用した場合、CO排出量の低減に寄与することが報告されている。また、植物由来のETBE及びETOHは、カーボンニュートラルの意味でCO2排出量の低減に寄与することも報告されている(下記特許文献1参照)。しかしながら、ETBEやETOHを配合しても、冷機時のCO排出量及び二酸化炭素排出量の低減は十分ではない。 For example, ethyl tertiary butyl ether (ETBE) and ethanol (ETOH), which are oxygen-containing compounds, have a high octane number and have been reported to contribute to the reduction of CO emissions when used as a constituent material for gasoline. Yes. It has also been reported that plant-derived ETBE and ETOH contribute to the reduction of CO 2 emissions in the sense of carbon neutral (see Patent Document 1 below). However, even if ETBE or ETOH is blended, the reduction of CO emissions and carbon dioxide emissions during cold operation is not sufficient.

一方、ガソリンの主要構成成分である芳香族化合物は、その他の炭化水素に比べて高発熱量、高オクタン価であることから、プレミアムガソリンの重要な構成基材として多く使用されている。しかしながら、芳香族化合物を多量に混合した場合、排出ガス性状が悪化することが知られている。(下記特許文献2参照)。
特開2007−270037号公報 特開平07−207286号公報
On the other hand, aromatic compounds, which are the main constituent components of gasoline, have a high calorific value and a high octane number compared to other hydrocarbons, and are therefore frequently used as important constituent base materials for premium gasoline. However, it is known that when an aromatic compound is mixed in a large amount, exhaust gas properties deteriorate. (See Patent Document 2 below).
JP 2007-270037 A Japanese Unexamined Patent Publication No. 07-207286

そこで、本発明の目的は、上記従来技術の問題を解決し、ETBE及び/又はETOHを含有し、冷機時におけるCO排出量を低減でき、かつ二酸化炭素排出量が少ないガソリン組成物を提供することにある。   Accordingly, an object of the present invention is to provide a gasoline composition that solves the above-mentioned problems of the prior art, contains ETBE and / or ETOH, can reduce CO emissions during cold operation, and has low carbon dioxide emissions. It is in.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ETBE及び/又はETOHを配合したガソリン組成物において、ある特定の性状を満足するように調整した場合に、冷機時におけるCO排出量及び二酸化炭素排出量を低減できることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention have obtained a gasoline composition containing ETBE and / or ETOH. The present inventors have found that CO emissions and carbon dioxide emissions can be reduced, and have completed the present invention.

すなわち、本発明のガソリン組成物は、エチルターシャリーブチルエーテル(ETBE)及びエタノール(ETOH)の少なくとも一方を含み、該エチルターシャリーブチルエーテル及びエタノールの合計含有量が1〜12容量%であり、全硫黄分が10質量ppm以下、芳香族分が20〜40容量%であり、次式:
指標X=Ar9÷Ar8
[式中、Ar8は炭素数8以下の芳香族分(容量%)で、Ar9は炭素数9以上の芳香族分(容量%)である]で表される指標Xが2.0以上、リード蒸気圧が65kPa以下、リサーチ法オクタン価(RON)が98〜110、50%留出温度が85.0〜98.0℃であることを特徴とする。
That is, the gasoline composition of the present invention contains at least one of ethyl tertiary butyl ether (ETBE) and ethanol (ETOH), the total content of the ethyl tertiary butyl ether and ethanol is 1 to 12% by volume, and the total sulfur The content is 10 mass ppm or less, the aromatic content is 20 to 40% by volume, and the following formula:
Index X = Ar9 ÷ Ar8
[In the formula, Ar8 is an aromatic component (capacity%) having 8 or less carbon atoms, Ar9 is an aromatic component (capacity%) having 9 or more carbon atoms], the index X is 2.0 or more, lead The vapor pressure is 65 kPa or less, the research octane number (RON) is 98 to 110, and the 50% distillation temperature is 85.0 to 98.0 ° C.

また、本発明のガソリン組成物は、オレフィン分が13.0容量%以上であることが好ましい。   Further, the gasoline composition of the present invention preferably has an olefin content of 13.0% by volume or more.

本発明によれば、ETBE及びETOHの少なくとも一方を含有し、冷機時のCO排出量を低減でき、かつ二酸化炭素排出量が少ないガソリン組成物を提供することができる。さらには、本発明のガソリン組成物は、冷機時の加速性を向上させる効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the gasoline composition which contains at least one of ETBE and ETOH, can reduce CO emission amount at the time of a cold machine, and has little carbon dioxide emission amount can be provided. Furthermore, the gasoline composition of the present invention has the effect of improving the acceleration performance when cold.

〔ガソリン組成物〕
本発明のガソリン組成物は、ETBE及びETOHの少なくとも一方を含有し、ETBE及びETOHの合計含有量が1〜12容量%である。排出ガス中のCOの低減やリサーチ法オクタン価(RON)向上効果の観点から、ETBE及びETOHの合計含有量は1容量%以上であることを要し、好ましくは3容量%以上、更に好ましくは5容量%以上である。また、排出ガス中のNOx増加を抑制する観点、更には、既販車の燃料供給系統部材への影響を抑える観点から、ETBE及びETOHの合計含有量は12容量%以下であることを要し、好ましくは10容量%以下、特には8容量%以下である。
[Gasoline composition]
The gasoline composition of the present invention contains at least one of ETBE and ETOH, and the total content of ETBE and ETOH is 1 to 12% by volume. From the viewpoint of reducing CO in the exhaust gas and improving the research octane number (RON), the total content of ETBE and ETOH needs to be 1% by volume or more, preferably 3% by volume or more, more preferably 5%. It is more than volume%. Further, from the viewpoint of suppressing the increase in NOx in the exhaust gas, and further from the viewpoint of suppressing the influence on the fuel supply system members of the already sold vehicles, the total content of ETBE and ETOH needs to be 12% by volume or less, Preferably it is 10 volume% or less, and especially 8 volume% or less.

本発明のガソリン組成物は、RON向上効果や冷機時の加速性の観点から、オレフィン分が好ましくは13.0容量%以上、さらに好ましくは13.5容量%以上、特には14.0容量%以上である。また、オレフィン分が多すぎると、ガソリン組成物の酸化安定性を悪化させ、吸気バルブデポジットを増加させる可能性があるため、本発明のガソリン組成物は、オレフィン分が好ましくは25.0容量%以下、さらに好ましくは20.0容量%以下、特には18.0容量%以下である。   In the gasoline composition of the present invention, the olefin content is preferably 13.0% by volume or more, more preferably 13.5% by volume or more, particularly 14.0% by volume, from the viewpoint of RON improvement effect and acceleration performance during cold operation. That's it. Further, if the olefin content is too much, the oxidation stability of the gasoline composition may be deteriorated and the intake valve deposit may be increased. Therefore, the gasoline composition of the present invention preferably has an olefin content of 25.0% by volume. In the following, it is more preferably 20.0% by volume or less, particularly 18.0% by volume or less.

本発明のガソリン組成物は、芳香族分が20〜40容量%である。芳香族分は、オクタン価を向上させる効果を有するが、芳香族分が40容量%を超えるとプラグの燻りや揮発性の悪化を引き起こし、冷機時の加速性が悪化する。また、芳香族分が多すぎると排出ガス性状が悪化するため、本発明のガソリン組成物中の芳香族分は、40容量%以下であり、好ましくは38容量%以下、さらに好ましくは35容量%以下である。また、芳香族分が20容量%より少ないと発熱量低下により燃費悪化を引き起こすことがあるため好ましくなく、燃費向上の観点から、本発明のガソリン組成物中の芳香族分は、好ましくは25容量%以上、さらに好ましくは27容量%以上である。   The gasoline composition of the present invention has an aromatic content of 20 to 40% by volume. The aromatic component has an effect of improving the octane number. However, if the aromatic component exceeds 40% by volume, the plug is turned up and the volatility is deteriorated, and the acceleration performance during cooling is deteriorated. Further, since the exhaust gas properties are deteriorated when the aromatic content is too much, the aromatic content in the gasoline composition of the present invention is 40% by volume or less, preferably 38% by volume or less, more preferably 35% by volume. It is as follows. Further, if the aromatic content is less than 20% by volume, it is not preferable because the fuel consumption may be deteriorated due to a decrease in the calorific value. From the viewpoint of improving the fuel consumption, the aromatic content in the gasoline composition of the present invention is preferably 25% by volume. % Or more, more preferably 27% by volume or more.

また、ガソリン組成物中のベンゼン分は、品質確保法で1容量%以下と定められているが、排ガス性状の悪化防止の観点から、本発明のガソリン組成物のベンゼン分は0.5容量%以下が好ましく、特には0.4容量%以下が好ましい。   The benzene content in the gasoline composition is defined as 1% by volume or less according to the Quality Assurance Law, but from the viewpoint of preventing deterioration of exhaust gas properties, the benzene content in the gasoline composition of the present invention is 0.5% by volume. The following is preferable, and 0.4% by volume or less is particularly preferable.

本発明のガソリン組成物は、次式(1):
指標X=Ar9÷Ar8≧2.0 ・・・ (1)
を満たすガソリン組成物である。ここで、Ar8は炭素数8以下の芳香族化合物の含有量(容量%)であり、Ar9は炭素数9以上の芳香族化合物の含有量(容量%)である。
The gasoline composition of the present invention has the following formula (1):
Index X = Ar9 ÷ Ar8 ≧ 2.0 (1)
It is a gasoline composition that satisfies Here, Ar8 is the content (volume%) of an aromatic compound having 8 or less carbon atoms, and Ar9 is the content (volume%) of an aromatic compound having 9 or more carbon atoms.

前記式の値は、ガソリン組成物中の各組成の量と冷機時のCO排出量及び二酸化炭素排出量との関係について検討を行い、因子間の内部相関が高い因子を変数として整理した結果、本発明者らが見出した指標である。式(1)の値(即ち、指標X)が2.0未満であると、冷機時のCO排出量及び二酸化炭素排出量が大幅に悪化するため、本発明のガソリン組成物は、指標Xが2.0以上であり、好ましくは2.5以上、さらに好ましくは2.7以上、特には3.0以上である。なお、特に限定されるものではないが、本発明のガソリン組成物の指標Xは、10.0以下であることが好ましく、8.0以下であることが更に好ましい。   The value of the above formula is the result of examining the relationship between the amount of each composition in the gasoline composition and the amount of CO emissions and carbon dioxide emissions during cold operation, and arranging the factors having a high internal correlation between factors as variables, This is an index found by the present inventors. When the value of the formula (1) (that is, the index X) is less than 2.0, the CO emission amount and the carbon dioxide emission amount at the time of cold cooling are greatly deteriorated. Therefore, the gasoline composition of the present invention has an index X of 2.0 or more, preferably 2.5 or more, more preferably 2.7 or more, particularly 3.0 or more. Although not particularly limited, the index X of the gasoline composition of the present invention is preferably 10.0 or less, and more preferably 8.0 or less.

本発明のガソリン組成物は、硫黄分が10質量ppm以下、好ましくは5質量ppm以下、より好ましくは1質量ppm以下である。ガソリン組成物中の硫黄分は、排気ガス中で硫黄酸化物となって、窒素酸化物除去触媒を被毒する。そのため、硫黄分が多いほど、窒素酸化物除去触媒の活性を回復すべく還元雰囲気を形成するために燃料がより多く消費され、燃費悪化の原因となっている。従って、ガソリン組成物中の硫黄分が少ないほど燃費が向上する。   The gasoline composition of the present invention has a sulfur content of 10 mass ppm or less, preferably 5 mass ppm or less, more preferably 1 mass ppm or less. The sulfur content in the gasoline composition becomes sulfur oxides in the exhaust gas and poisons the nitrogen oxide removal catalyst. Therefore, as the sulfur content increases, more fuel is consumed to form a reducing atmosphere in order to restore the activity of the nitrogen oxide removal catalyst, causing deterioration in fuel consumption. Therefore, the fuel efficiency improves as the sulfur content in the gasoline composition decreases.

本発明のガソリン組成物のリード蒸気圧は、蒸発ガス低減のため65kPa以下、より好ましくは60kPa以下、特に好ましくは58kPa以下である。ここで、蒸気圧はJIS K 2258「原油及び燃料油−蒸気圧試験方法−リード法」により測定される37.5℃での蒸気圧である。なお、特に限定されるものではないが、本発明のガソリン組成物のリード蒸気圧は、45kPa以上であることが好ましく、50kPa以上であることが更に好ましい。   The lead vapor pressure of the gasoline composition of the present invention is 65 kPa or less, more preferably 60 kPa or less, and particularly preferably 58 kPa or less for reducing evaporative gas. Here, the vapor pressure is a vapor pressure at 37.5 ° C. measured according to JIS K 2258 “Crude oil and fuel oil—Vapor pressure test method—Reed method”. Although not particularly limited, the lead vapor pressure of the gasoline composition of the present invention is preferably 45 kPa or more, and more preferably 50 kPa or more.

本発明のガソリン組成物のリサーチ法オクタン価(RON)は98〜110であり、燃費向上効果の観点から好ましくは99以上、さらに好ましくは100以上である。また、RONが高すぎると芳香族分の増加により排気ガス品質が悪化したり、蒸留性状が重質化することにより冷機時の加速性に悪影響が及ぶことから、本発明のガソリン組成物のRONは110以下であり、好ましくは105以下、さらに好ましくは101以下、特には100以下である。   The research method octane number (RON) of the gasoline composition of the present invention is 98 to 110, preferably 99 or more, and more preferably 100 or more, from the viewpoint of fuel efficiency improvement effect. In addition, if the RON is too high, the exhaust gas quality deteriorates due to an increase in aromatic content, or the distillation properties become heavier, which adversely affects the acceleration performance when cold, so the RON of the gasoline composition of the present invention Is 110 or less, preferably 105 or less, more preferably 101 or less, and particularly 100 or less.

本発明のガソリン組成物の蒸留性状における50%留出温度は、冷機時の加速性や排ガスの性状の観点から、98.0℃以下であり、好ましくは97.0℃以下、さらに好ましくは96.0℃以下、特には95.0℃以下である。また、50%留出温度が低すぎると燃費が悪化するため、本発明のガソリン組成物は、50%留出温度が85.0℃以上であり、好ましくは87.0℃以上、さらに好ましくは90.0℃以上である。   The 50% distillation temperature in the distillation properties of the gasoline composition of the present invention is 98.0 ° C. or less, preferably 97.0 ° C. or less, more preferably 96, from the viewpoints of acceleration during cooling and properties of exhaust gas. 0.0 ° C. or lower, particularly 95.0 ° C. or lower. Further, if the 50% distillation temperature is too low, the fuel efficiency is deteriorated. Therefore, the gasoline composition of the present invention has a 50% distillation temperature of 85.0 ° C or higher, preferably 87.0 ° C or higher, more preferably. 90.0 ° C or higher.

上述した本発明のガソリン組成物の調製方法は、特に限定されず、上述した各成分含有量、物性を満たすように、脱硫直留軽質ナフサ、アルキレートガソリン、接触分解ガソリン等の公知のガソリン基材に、ETBEやETOHを適宜配合することで調製できる。   The method for preparing the gasoline composition of the present invention described above is not particularly limited, and a known gasoline group such as desulfurized straight-run light naphtha, alkylate gasoline, catalytic cracked gasoline, or the like so as to satisfy the above-described component contents and physical properties. It can be prepared by appropriately blending ETBE or ETOH with the material.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例及び比較例となるガソリン組成物を調製するに際して用いたガソリン基材は、次のものである。   The gasoline base materials used in preparing the gasoline compositions as Examples and Comparative Examples are as follows.

・DS−LG:脱硫直留軽質ナフサであり、中東系原油のナフサ留分を水素化脱硫後、その軽質分を蒸留分離することにより得た。 DS-LG: A straight desulphurization naphtha obtained by hydrodesulfurizing a naphtha fraction of Middle Eastern crude oil and distilling off the light fraction.

・IMFL:中東系原油の減圧軽油留分を水素化精製処理して得られた間接脱硫軽油を固体触媒により流動床式反応装置を用いて接触分解して得られるガソリン留分の100℃以下軽質留分を蒸留分離して得た。 IMFL: Gasoline fraction of 100 ° C or less obtained by catalytic cracking of indirect desulfurized gas oil obtained by hydrorefining a Middle Eastern crude oil with a fluidized bed reactor using a solid catalyst The fraction was obtained by distillation separation.

・ALKG:ブチレンを主成分とする留分とイソブタンを主成分とする留分とを硫酸触媒によりアルキル化反応させて得た、いわゆるアルキレートガソリンであり、炭素数8のイソパラフィン分の高い炭化水素を主成分とする。 ALKG: A so-called alkylate gasoline obtained by alkylating a fraction containing butylene as a main component and a fraction containing isobutane as a main component using a sulfuric acid catalyst, and having a high carbon content of isoparaffin having 8 carbon atoms. Is the main component.

・RFG:中東系原油由来の接触改質ガソリンである。 RFG: catalytic reforming gasoline derived from Middle Eastern crude oil.

・TOL:99.5%純度のトルエンの試薬品[和光純薬工業(株)製]を用いた。 -TOL: 99.5% purity toluene reagent product [Wako Pure Chemical Industries, Ltd.] was used.

・AC−7:脱硫重質ナフサを固体触媒により移動床式反応装置を用いて改質反応させることにより、芳香族分の高い炭化水素、すなわち改質ガソリンを得、更に、該改質ガソリンを蒸留分離することにより得た軽質留分、すなわち軽質改質ガソリン(AC−7)であり、炭素数7の炭化水素を95容量%以上含有する。 AC-7: Desulfurized heavy naphtha is reformed with a solid catalyst using a moving bed reactor to obtain a hydrocarbon having a high aromatic content, that is, reformed gasoline. This is a light fraction obtained by distillation separation, that is, light reformed gasoline (AC-7), and contains 95% by volume or more of hydrocarbons having 7 carbon atoms.

・AC−9:脱硫重質ナフサを接触改質して得られた改質ガソリンを蒸留分離することにより得られた重質留分、すなわち重質改質ガソリン(AC−9)であり、炭素数9及び10の炭化水素を90容量%以上含有し、炭素数11以上の炭化水素の含有量は5容量%以下である。 AC-9: Heavy fraction obtained by distillation separation of reformed gasoline obtained by catalytic reforming of desulfurized heavy naphtha, that is, heavy reformed gasoline (AC-9), carbon The number 9 and 10 hydrocarbons are contained in 90% by volume or more, and the content of hydrocarbons having 11 or more carbon atoms is 5% by volume or less.

・ETBE:95%純度の試薬品[和光純薬工業(株)製]を用いた。 -ETBE: 95% pure reagent product [manufactured by Wako Pure Chemical Industries, Ltd.] was used.

・ETOH:ブラジル産バイオエタノールを用いた。 -ETOH: Brazilian bioethanol was used.

上記ガソリン基材の性状を表1に示す。これらのガソリン基材を、表2の上部に示す混合割合(容量%)でブレンドし、実施例1〜2及び比較例1〜3のガソリン組成物(それぞれ、供試ガソリン1〜5とする)を調製し、冷機時の排出ガス性状と加速性を評価した。   Table 1 shows the properties of the gasoline base material. These gasoline base materials were blended at a mixing ratio (volume%) shown in the upper part of Table 2, and gasoline compositions of Examples 1-2 and Comparative Examples 1-3 (referred to as test gasolines 1-5, respectively). Were prepared, and the exhaust gas properties and the acceleration performance during cold cooling were evaluated.

なお、表1及び表2に示すガソリン基材の性状、並びに実施例及び比較例のガソリン組成物の性状は、次の方法により測定した。   In addition, the property of the gasoline base material shown in Table 1 and Table 2, and the property of the gasoline composition of an Example and a comparative example were measured with the following method.

・密度:JIS K 2249「原油及び石油製品−密度試験方法」
・オクタン価(RON):JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」のリサーチ法オクタン価試験方法
・蒸気圧(RVP):JIS K 2258「原油及び燃料油−蒸気圧試験方法−リード法」
・蒸留性状:JIS K 2254「石油製品−蒸留試験法」
・組成成分(炭化水素化合物:オレフィン分、全芳香族分、炭素数8以下の芳香族分及び炭素数9以上の芳香族分):JIS K 2536「石油製品−成分試験方法」のガスクロマトグラフィー法
Density: JIS K 2249 "Crude oil and petroleum products-Density test method"
-Octane number (RON): JIS K 2280 "Petroleum products-Fuel oil-Octane number and cetane number test method and cetane index calculation method" research method octane number test method-Vapor pressure (RVP): JIS K 2258 "Crude oil and fuel oil- Vapor Pressure Test Method-Lead Method "
・ Distillation properties: JIS K 2254 "Petroleum products-Distillation test method"
Composition component (hydrocarbon compound: olefin content, total aromatic content, aromatic content having 8 or less carbon atoms and aromatic content having 9 or more carbon atoms): Gas chromatography according to JIS K 2536 “Petroleum products-component test method” Law

また、道路運送車両の保安基準に係る技術基準について(昭和58年10月1日 自車第899号)の「ガソリン自動車10モード及び11モード排出ガス測定の技術基準」に基づいて走行させ、排出ガスを測定した。表2に11modeと表記して数値を記載した。   In addition, as for the technical standards related to the safety standards for road transport vehicles (October 1, 1981, Automobile No. 899), the vehicle was run based on the “Technical Standards for Gasoline Vehicle 10-Mode and 11-Mode Exhaust Gas Measurement” and discharged. The gas was measured. In Table 2, the value is described as 11 mode.

更に、冷機時の加速性(以下、加速時間)を評価するために、実施例1〜2、及び比較例1〜3のガソリン組成物について、シャシダイナモ装置を用い、MPI試験車による加速性能試験を実施した。試験は、車両を冷機(25℃)状態に保持した後、自動運転装置(堀場製作所製、ADS7000)によりアクセル開度を50%上限としてアクセル開度上限まで一気に加速した時に、初速0から50(km/時間)の車速に到達するまでの時間により測定した。その結果(加速時間増加率)を、市販プレミアムガソリンを使用したときの到達時間を基準として、それとの相対的な加速時間の差異で比較した。結果を表2に併せて示す。なお、供試ガソリンの加速時間増加率は、次式:
加速時間増加率(%)=(供試ガソリンの到達時間−市販プレミアムガソリンの到達時間)÷(市販プレミアムガソリンの到達時間)×100
により求めた。
Furthermore, in order to evaluate the acceleration performance at the time of cold (hereinafter referred to as acceleration time), the gasoline composition of Examples 1 and 2 and Comparative Examples 1 to 3 was subjected to an acceleration performance test by an MPI test vehicle using a chassis dynamo device. Carried out. In the test, after the vehicle was kept in a cold machine (25 ° C.) state, when the accelerator opening was accelerated up to 50% by the automatic driving device (Horiba Seisakusho, ADS7000), the initial speed was 0 to 50 ( km / hour) until the vehicle speed was reached. The results (acceleration time increase rate) were compared based on the difference in acceleration time relative to the arrival time when commercial premium gasoline was used. The results are also shown in Table 2. The rate of increase in the acceleration time of the test gasoline is as follows:
Acceleration time increase rate (%) = (arrival time of test gasoline-arrival time of commercial premium gasoline) / (arrival time of commercial premium gasoline) x 100
Determined by

Figure 2010116469
Figure 2010116469

Figure 2010116469
Figure 2010116469

表2から、実施例1及び2は、上述した指標Xが2.0以上と大きく、一酸化炭素排出量及び二酸化炭素排出量が非常に低かった。一方、比較例1〜3は、指標Xが2.0未満と低く、一酸化炭素排出量及び二酸化炭素排出量が実施例1及び2に比べて多いことが分かる。   From Table 2, in Examples 1 and 2, the index X described above was as large as 2.0 or more, and the carbon monoxide emission and the carbon dioxide emission were very low. On the other hand, in Comparative Examples 1 to 3, the index X is as low as less than 2.0, and it can be seen that the carbon monoxide emission and the carbon dioxide emission are larger than those in Examples 1 and 2.

また、実施例1及び2は、芳香族分が40容量%以下、RONが110以下、50%留出温度が98.0℃以下、オレフィン分が13.0容量%以上であることから、加速時間増加率が極めて低い値であり、冷機時の加速性が非常に良好であった。一方、比較例3は、50%留出温度が98.0℃を超え、オレフィン分が13.0容量%未満であることから、実施例1及び2に比べて加速時間増加率が極めて高い値であり、冷機時の加速性が悪いことが分かる。   Examples 1 and 2 were accelerated because the aromatic content was 40% by volume or less, the RON was 110 or less, the 50% distillation temperature was 98.0 ° C. or less, and the olefin content was 13.0% by volume or more. The rate of time increase was a very low value, and the acceleration performance when cold was very good. On the other hand, in Comparative Example 3, the 50% distillation temperature exceeds 98.0 ° C. and the olefin content is less than 13.0% by volume, so that the acceleration time increase rate is extremely high compared to Examples 1 and 2. It can be seen that the acceleration performance when cold is bad.

Claims (2)

エチルターシャリーブチルエーテル及びエタノールの少なくとも一方を含み、該エチルターシャリーブチルエーテル及びエタノールの合計含有量が1〜12容量%であり、全硫黄分が10質量ppm以下、芳香族分が20〜40容量%であり、次式:
指標X=Ar9÷Ar8
[式中、Ar8は炭素数8以下の芳香族分(容量%)で、Ar9は炭素数9以上の芳香族分(容量%)である]で表される指標Xが2.0以上、リード蒸気圧が65kPa以下、リサーチ法オクタン価が98〜110、50%留出温度が85.0〜98.0℃であるガソリン組成物。
It contains at least one of ethyl tertiary butyl ether and ethanol, the total content of the ethyl tertiary butyl ether and ethanol is 1 to 12% by volume, the total sulfur content is 10 mass ppm or less, and the aromatic content is 20 to 40% by volume. And the following formula:
Index X = Ar9 ÷ Ar8
[In the formula, Ar8 is an aromatic component (capacity%) having 8 or less carbon atoms, Ar9 is an aromatic component (capacity%) having 9 or more carbon atoms], the index X is 2.0 or more, lead A gasoline composition having a vapor pressure of 65 kPa or less, a research octane number of 98 to 110, and a 50% distillation temperature of 85.0 to 98.0 ° C.
オレフィン分が13.0容量%以上である請求項1に記載のガソリン組成物。   The gasoline composition according to claim 1, wherein the olefin content is 13.0% by volume or more.
JP2008289958A 2008-11-12 2008-11-12 Gasoline composition Active JP5350752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289958A JP5350752B2 (en) 2008-11-12 2008-11-12 Gasoline composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289958A JP5350752B2 (en) 2008-11-12 2008-11-12 Gasoline composition

Publications (2)

Publication Number Publication Date
JP2010116469A true JP2010116469A (en) 2010-05-27
JP5350752B2 JP5350752B2 (en) 2013-11-27

Family

ID=42304321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289958A Active JP5350752B2 (en) 2008-11-12 2008-11-12 Gasoline composition

Country Status (1)

Country Link
JP (1) JP5350752B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161017A1 (en) * 2011-05-26 2012-11-29 Jx日鉱日石エネルギー株式会社 Gasoline composition and method for manufacturing same
JP2012246354A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Gasoline composition and method for manufacturing the same
JP2012246353A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Gasoline composition and method for manufacturing the same
JP2014525976A (en) * 2011-08-17 2014-10-02 湖南中創化工股分有限公司 Gasoline composition and method for preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182981A (en) * 2004-12-28 2006-07-13 Japan Energy Corp Gasoline composition
JP2007177236A (en) * 2005-12-01 2007-07-12 Japan Energy Corp Unleaded gasoline composition
JP2007177237A (en) * 2005-12-01 2007-07-12 Japan Energy Corp Unleaded gasoline composition
JP2008063382A (en) * 2006-09-05 2008-03-21 Cosmo Oil Co Ltd Lead-free gasoline
JP2008138187A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Method for producing gasoline composition
JP2008138185A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Gasoline composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182981A (en) * 2004-12-28 2006-07-13 Japan Energy Corp Gasoline composition
JP2007177236A (en) * 2005-12-01 2007-07-12 Japan Energy Corp Unleaded gasoline composition
JP2007177237A (en) * 2005-12-01 2007-07-12 Japan Energy Corp Unleaded gasoline composition
JP2008063382A (en) * 2006-09-05 2008-03-21 Cosmo Oil Co Ltd Lead-free gasoline
JP2008138187A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Method for producing gasoline composition
JP2008138185A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Gasoline composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161017A1 (en) * 2011-05-26 2012-11-29 Jx日鉱日石エネルギー株式会社 Gasoline composition and method for manufacturing same
JP2012246354A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Gasoline composition and method for manufacturing the same
JP2012246353A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Gasoline composition and method for manufacturing the same
JP2014525976A (en) * 2011-08-17 2014-10-02 湖南中創化工股分有限公司 Gasoline composition and method for preparing the same

Also Published As

Publication number Publication date
JP5350752B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5153147B2 (en) Gasoline composition
JP4510477B2 (en) Gasoline composition
JP5350752B2 (en) Gasoline composition
JP2004277457A (en) Fuel oil composition
JP4429940B2 (en) Unleaded gasoline
JP5367149B2 (en) Unleaded high octane gasoline
JP4766651B2 (en) Gasoline composition
JP5543122B2 (en) Gasoline composition
JP4429880B2 (en) Unleaded gasoline
JP4855003B2 (en) Gasoline composition and method for producing the same
JP5367148B2 (en) Unleaded high octane gasoline
JP5357098B2 (en) Gasoline composition
JP4920185B2 (en) Gasoline composition
JP4633409B2 (en) Gasoline composition
JP4801342B2 (en) Gasoline composition, method for producing gasoline base material, and method for producing gasoline composition
JP4429881B2 (en) Unleaded high octane gasoline
JP2017125213A (en) Lead-free gasoline
JP2017145419A (en) Unleaded gasoline
JP5495868B2 (en) Gasoline composition
JP5153146B2 (en) Gasoline composition
JP4766655B2 (en) Gasoline composition
JP2007063353A (en) Gasoline compound and method for producing the same
JP4633410B2 (en) Gasoline composition
JP2006199754A (en) Gasoline composition
JP4553352B2 (en) Gasoline composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250