WO2012161017A1 - Gasoline composition and method for manufacturing same - Google Patents

Gasoline composition and method for manufacturing same Download PDF

Info

Publication number
WO2012161017A1
WO2012161017A1 PCT/JP2012/062310 JP2012062310W WO2012161017A1 WO 2012161017 A1 WO2012161017 A1 WO 2012161017A1 JP 2012062310 W JP2012062310 W JP 2012062310W WO 2012161017 A1 WO2012161017 A1 WO 2012161017A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
volume
gasoline
vol
content
Prior art date
Application number
PCT/JP2012/062310
Other languages
French (fr)
Japanese (ja)
Inventor
青木 剛
忠豪 曽根
泰之 岩佐
柳川 真一朗
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011117597A external-priority patent/JP5667513B2/en
Priority claimed from JP2011117598A external-priority patent/JP5639531B2/en
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2012161017A1 publication Critical patent/WO2012161017A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a gasoline composition useful as a fuel for automobiles and a method for producing the same.
  • deposits in the combustion chamber of a gasoline engine can cause deterioration of power performance, fuel consumption, exhaust gas, and carbon knock due to disturbance of the combustion state of the engine.
  • Examination of the relationship between fuel properties and combustion chamber deposits has pointed out that when conventional reformate gasoline is blended, the deposits in the combustion chamber are significantly increased (see Non-Patent Document 1, for example). If the amount of reformed gasoline in the product gasoline can be reduced, the combustion chamber deposit may be reduced.
  • the reformed gasoline base material is a main base material for achieving a high octane number, and the reduction causes a decrease in the octane number.
  • the octane number decreases, the engine may be damaged due to knocking, and the engine performance may not be maximized in a premium gasoline specification vehicle.
  • the distillation property of gasoline changes greatly, there is a risk that the drivability and acceleration of the vehicle will deteriorate.
  • the present invention has been made in view of such circumstances, and a method for producing a gasoline composition having a low combustion gas deposit generation ability and low exhaust gas (NOx) performance while maintaining an octane number and distillation properties. The purpose is to provide.
  • the inventors of the present invention have found that in a method for producing a gasoline composition, a cracked and reformed gasoline base material, a catalytic cracked gasoline base material, and a hydrocarbon base material having 4 carbon atoms having predetermined properties. It is found that by adding a predetermined amount of the fuel, the combustion chamber deposit can be reduced, the engine performance can be maximized, and further, high-performance gasoline with less carbon dioxide emission can be obtained, and the present invention has been completed. It came to do. That is, the present invention is as follows.
  • Aromatic content is 90 vol% or more
  • Olefin content is 5 vol% or less
  • C8 aromatic content is 5-50 vol%
  • Aromatic content of 9 or more carbon atoms is 30 vol% or less
  • Sulfur content is 20 mass ppm or less
  • Research octane number is 110 or more (7)
  • Density at 15 ° C. is 0.8 to 0.95 g / cm 3
  • Catalytic reforming gasoline base material having the following properties (1) to (7) 1 to 40% by volume, light catalytic cracking gasoline base material 25 to 50% by volume, and contact containing light catalytic cracking gasoline base material
  • Aromatic content is 90 vol% or more
  • Olefin content is 5 vol% or less
  • C8 aromatic content is 5-50 vol%
  • Aromatic content of 9 or more carbon atoms is 30 vol% or less
  • Sulfur content is 20 mass ppm or less
  • Research octane number is 110 or more
  • Density at 15 ° C. is 0.8 to 0.95 g / cm 3
  • Distillation temperature 70 [5] The method for producing a gasoline composition according to the above [3], wherein the amount of distillation (E70) at 40 ° C. is 40% by volume or less [5]
  • the gasoline composition satisfies the following (1) to (8): .
  • (1) Density at 15 ° C. is 0.783 g / cm 3 or less
  • Sulfur content is 10 mass ppm or less
  • Total aromatic content is 45% by volume or less
  • Benzene is 1% by volume or less
  • 10% by volume distillation temperature is 70 ° C. or less, 50% by volume distillation temperature is 110 ° C. or less, and 90% by volume distillation temperature is 180 ° C. or less.
  • Distillation temperature 70 Distillation amount at 70 ° C. (E70) is 45% by volume or less (8)
  • the content of the cleaning dispersant is 80 mg / L or more and 500 mg / L or less
  • [6] The gasoline composition according to any one of [1] to [5], wherein the cracked and reformed gasoline base material is blended so as to satisfy 0.10 ⁇ A / B ⁇ 1.0.
  • Production method. (A represents the content (volume%) of the aromatic component derived from the cracked and reformed gasoline base material, and B represents the content (volume%) of the total aromatic content in the gasoline composition.)
  • the cracked and reformed gasoline base material contains medium-pore zeolite and / or large-pore zeolite containing 10% by volume distillation temperature of 140 ° C. or more and 90% by volume distillation temperature of 380 ° C. or less. Characterized in that it is produced by contacting with a catalyst for cracking and reforming reaction, and performing a cracking and reforming reaction at a reaction temperature of 400 to 650 ° C., a reaction pressure of 1.5 MPaG or less, and a contact time of 1 to 300 seconds.
  • a method for producing a gasoline composition according to any one of [6].
  • the present invention is described in detail below.
  • the method for producing a gasoline composition of the present invention comprises a cracked and reformed gasoline base material having a predetermined property of 1 to 40% by volume, a catalytic cracked gasoline base material of 10 to 90% by volume, and a hydrocarbon base material having 4 carbon atoms. It is characterized by containing 0.1 to 10% by volume.
  • the cracked and reformed gasoline base material is blended in an amount of 1 to 40% by volume based on the total amount of the gasoline composition.
  • the cracked and reformed gasoline base material is preferably 3% by volume or more, more preferably 5% by volume or more, and further preferably 15% by volume or more.
  • the ratio (A / B) of the aromatic content A (volume%) derived from the cracked and reformed gasoline base to the total aromatic content B (volume%) in the gasoline composition is 0 in terms of suppressing increase in combustion chamber deposits. It is preferable to mix
  • the cracked and reformed gasoline base material according to the present invention contains medium-oil zeolite and / or large-pore zeolite in a feed oil having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower. It is produced by contacting with a catalyst for cracking reforming reaction to be performed, and performing a cracking reforming reaction at a reaction temperature of 400 to 650 ° C., a reaction pressure of 1.5 MPaG or less, and a contact time of 1 to 300 seconds.
  • the cracking / reforming substrate used in the present invention is produced by fractional distillation from the cracking / reforming reaction product obtained by the following cracking / reforming reaction.
  • the feedstock oil is brought into contact with the catalyst for cracking and reforming reaction, the saturated hydrocarbon contained in the feedstock oil is used as a hydrogen donor source, and polycyclic aromatic hydrocarbons are converted by hydrogen transfer reaction from the saturated hydrocarbon.
  • polycyclic aromatic hydrocarbons are converted by hydrogen transfer reaction from the saturated hydrocarbon.
  • the fuel base material mainly containing aromatic hydrocarbons can be produced.
  • the feed oil for the cracking and reforming reaction is preferably an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower, and the 10 vol% distillation temperature of the raw oil is 150 ° C or higher. More preferably, the 90 vol% distillation temperature of the feedstock is more preferably 360 ° C or lower.
  • the 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”. Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or higher and a 90% by volume distillation temperature of 380 ° C.
  • LCO cracked light oil
  • Examples include coal liquefied oil, heavy oil hydrocracked refined oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil.
  • a fixed bed, a moving bed, a fluidized bed and the like can be mentioned.
  • a fluidized bed capable of continuously removing the coke component adhering to the catalyst and performing the reaction stably is preferable, and the space between the reactor and the regenerator is preferable.
  • a continuous regenerative fluidized bed in which the catalyst circulates and allows continuous reaction-regeneration is particularly preferred.
  • the feedstock oil in contact with the cracking reforming reaction catalyst is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed.
  • the catalyst for the cracking reforming reaction contains crystalline aluminosilicate.
  • the crystalline aluminosilicate is preferably a medium pore zeolite and / or a large pore zeolite because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the medium pore zeolite is a zeolite having a 10-membered ring skeleton structure. Examples of the medium pore zeolite include AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, and TON type. And zeolite having a WEI type crystal structure. Among these, the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the large pore zeolite is a zeolite having a 12-membered ring skeleton structure.
  • Examples of the large pore zeolite include AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, and MOR type. , Zeolites of MTW type and OFF type crystal structures.
  • BEA type, FAU type, and MOR type are preferable in terms of industrial use, and the BEA type is more preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the crystalline aluminosilicate may contain, in addition to the medium pore zeolite and the large pore zeolite, a small pore zeolite having a skeleton structure having a 10-membered ring or less, and a very large pore zeolite having a skeleton structure having a 14-membered ring or more.
  • examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
  • Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
  • the content of the crystalline aluminosilicate in the cracking and reforming reaction catalyst is 60 to 100% by weight when the entire catalyst for cracking and reforming reaction is 100% by weight. Preferably, 70 to 100% by mass is more preferable, and 90 to 100% by mass is particularly preferable. If the content of the crystalline aluminosilicate is 60% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
  • the content of crystalline aluminosilicate in the cracking and reforming reaction catalyst is 20 to 60% by weight when the entire catalyst for cracking and reforming reaction is 100% by weight.
  • the content of the crystalline aluminosilicate is 20% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
  • the content of the crystalline aluminosilicate exceeds 60% by mass, the content of the binder that can be blended with the catalyst is reduced, which may be unsuitable for fluidized beds.
  • the catalyst for decomposition reforming reaction preferably contains phosphorus and / or boron.
  • the catalyst for cracking and reforming reaction contains phosphorus and / or boron, it is possible to prevent the yield of monocyclic aromatic hydrocarbons from decreasing with time and to suppress the formation of coke on the catalyst surface.
  • Examples of the method for incorporating phosphorus into the cracking reforming reaction catalyst include an ion exchange method and an impregnation method. Specifically, a method in which phosphorus is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate, a phosphorus compound is contained during zeolite synthesis, and a part of the crystalline aluminosilicate skeleton is incorporated with phosphorus. Examples include a replacement method, a method using a crystal accelerator containing phosphorus during zeolite synthesis, and the like.
  • the phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.
  • Examples of the method for incorporating boron into the cracking reforming reaction catalyst include an ion exchange method and an impregnation method. Specifically, a method in which boron is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminosilicate, a part of the skeleton of crystalline aluminosilicate is incorporated with boron at the time of zeolite synthesis. Examples include a replacement method, a method using a crystal accelerator containing boron at the time of zeolite synthesis, and the like.
  • the phosphorus and / or boron content in the cracking reforming reaction catalyst is preferably 0.1 to 10% by mass relative to the total weight of the catalyst, and more preferably the lower limit is 0.5% by mass or more.
  • the upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less.
  • the cracking and reforming reaction catalyst may contain gallium and / or zinc as necessary. If gallium and / or zinc is contained, the production rate of monocyclic aromatic hydrocarbons can be increased.
  • the gallium-containing form in the catalyst for cracking and reforming reaction includes those in which gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), and those in which gallium is supported on crystalline aluminosilicate (gallium) Supported crystalline aluminosilicate) and those containing both.
  • Zinc-containing forms in the catalyst for cracking and reforming reaction include those in which zinc is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminodin silicate), and in which zinc is supported on crystalline aluminosilicate (zinc Supported crystalline aluminosilicate) and those containing both.
  • Crystalline aluminogallosilicate and crystalline aluminodine silicate have a structure in which SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures are present in the skeleton.
  • the crystalline aluminogallosilicate and the crystalline aluminodine silicate can be obtained by, for example, gel crystallization by hydrothermal synthesis, or a method of inserting gallium or zinc into the lattice skeleton of the crystalline aluminosilicate.
  • Crystalline aluminogallosilicate and crystalline aluminozine silicate can be obtained by a method of inserting aluminum into the lattice skeleton of crystalline gallosilicate or crystalline zincosilicate.
  • the gallium-supporting crystalline aluminosilicate is obtained by supporting gallium on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source used in this case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.
  • the zinc-supporting crystalline aluminosilicate is obtained by supporting zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. Although it does not specifically limit as a zinc source used in that case, Zinc salts, such as zinc nitrate and zinc chloride, zinc oxide, etc. are mentioned.
  • the content of gallium and / or zinc in the cracking reforming reaction catalyst is 0.01-5.
  • the content is preferably 0% by mass, and more preferably 0.05 to 2.0% by mass. If the content of gallium and zinc is 0.01% by mass or more, the production rate of monocyclic aromatic hydrocarbons can be increased, and if it is 5.0% by mass or less, the yield of monocyclic aromatic hydrocarbons Can be higher.
  • the catalyst for cracking and reforming reaction is made into, for example, a powder form, a granular form, a pellet form or the like according to the reaction format.
  • a fluidized bed it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
  • the average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc.
  • the average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification with a sieve, and the bulk density is a value measured by the method of JIS standard R9301-2-3.
  • an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
  • the cracking reforming reaction catalyst contains an inorganic oxide such as a binder, a binder containing phosphorus may be used.
  • the reaction temperature when the raw material oil is brought into contact with and reacted with the cracking reforming reaction catalyst is not particularly limited, but is preferably 400 to 650 ° C. If the minimum of reaction temperature is 400 degreeC or more, raw material oil can be made to react easily, More preferably, it is 450 degreeC or more. Moreover, if the upper limit of reaction temperature is 650 degrees C or less, the yield of monocyclic aromatic hydrocarbon can be made high enough, More preferably, it is 600 degrees C or less.
  • the reaction pressure when the raw material oil is brought into contact with and reacted with the cracking reforming reaction catalyst is preferably 1.5 MPaG or less, more preferably 1.0 MPaG or less. If the reaction pressure is 1.5 MPaG or less, the by-product of light gas can be suppressed and the pressure resistance of the reactor can be lowered.
  • the contact time between the feedstock and the cracking reforming reaction catalyst is not particularly limited as long as the desired reaction proceeds substantially.
  • the gas passage time on the cracking reforming reaction catalyst is 1 to 300 seconds.
  • the lower limit is more preferably 5 seconds or more
  • the upper limit is more preferably 150 seconds or less. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition
  • the cracking and reforming gasoline base material according to the present invention can be produced.
  • a known distillation apparatus or gas-liquid separation apparatus can be used.
  • a distillation apparatus what can distill and isolate
  • the cracked and reformed gasoline base material according to the present invention is preferably a fraction mainly containing hydrocarbons having 7 and 8 carbon atoms.
  • the cracked and reformed gasoline base material according to the present invention is obtained by the above-described production method and has the following properties.
  • the total aromatic content of the cracked and reformed gasoline base material according to the present invention is 90% by volume or more, preferably 98% by volume or more, and more preferably 99% by volume or more.
  • the total aromatic content here means the content of the aromatic content measured by JIS K2536 “Petroleum product-component test method”.
  • the aromatic component having 8 carbon atoms of the cracked and reformed gasoline base material according to the present invention is 5% by volume or more and 50% by volume or less.
  • the aromatic component having 9 or more carbon atoms of the cracked and reformed gasoline base material according to the present invention is 30% by volume or less, preferably 25% by volume or less, more preferably 20% by volume or less.
  • the aromatic content having 8 or 9 or more carbon atoms means the content of the aromatic content measured by JIS K2536 “Petroleum product-component test method”.
  • the olefin content of the cracked and reformed gasoline base material according to the present invention is 5% by volume or less, preferably 3% by volume or less, and more preferably 1% by volume or less.
  • the olefin content here is a value measured by JIS K2536 “Petroleum products—component test method”.
  • the sulfur content of the cracked and reformed gasoline base material according to the present invention is 20 mass ppm or less, preferably 10 mass ppm or less, more preferably 5 mass ppm or less.
  • the sulfur content here is a value measured by JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
  • the research octane number of the cracked and reformed gasoline base material according to the present invention is 110 or more.
  • the research octane number referred to here is a value measured by JIS K2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.
  • the density at 15 ° C. of the cracked and reformed gasoline base material according to the present invention is 0.8 g / cm 3 or more and 0.95 g / cm 3 or less.
  • the density at 15 ° C. is a value measured according to JIS K2249 “Crude oil and petroleum products—density test method and density / mass / capacity conversion table”.
  • the cracked and reformed gasoline base is 1 to 40% by volume based on the total amount of gasoline composition
  • the catalytic cracked gasoline base is 10 to 90% by volume based on the total amount of gasoline composition
  • carbon The hydrocarbon base material of Formula 4 is blended in an amount of 0.1 to 10% by volume based on the total amount of the gasoline composition.
  • catalytic cracking gasoline full range cracking gasoline obtained by the catalytic cracking method, light fraction of catalytic cracking gasoline (light catalytic cracking gasoline), medium fraction of catalytic cracking gasoline (medium cracking gasoline) ), Heavy fraction of catalytic cracking gasoline (heavy cracking gasoline), and hydrocarbon base having 4 carbon atoms
  • butane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc.
  • straight-cut butane fraction centered on methane straight-run desulfurized butane fraction centered on butane desulfurized from them, cracked butane fraction centered on butane / butene obtained from catalytic cracking equipment, etc.
  • it is a base material containing normal butane, isobutane, 1 butene, 2 butene, iso-2-butene, butadiene and butyne.
  • the cracked and reformed gasoline base is 1 on the basis of the total amount of the gasoline composition.
  • light catalytic cracking gasoline base is 25-50% by volume based on total gasoline composition
  • catalytic cracking gasoline base containing the above light catalytic cracking gasoline base is 25-90% based on total gasoline composition %
  • a hydrocarbon base having 4 carbon atoms is blended in an amount of 0.1 to 10% by volume based on the total amount of gasoline composition.
  • the light catalytic cracking gasoline base material is a base material obtained by distilling and separating a light fraction in the catalytic cracking gasoline obtained by the catalytic cracking method, and is sometimes referred to as light cracked gasoline.
  • An example of the distillation range is a fraction at 20 to 120 ° C.
  • the above-mentioned catalytic cracking gasoline base containing 25 to 90% by volume including the light catalytic cracking gasoline base includes 25 to 50% by volume of the light catalytic cracking gasoline base based on the total amount of the gasoline composition.
  • catalytically cracked gasoline base material containing 0 to 65% by volume (totally 25 to 90% by volume as a catalytically cracked gasoline base material) of the catalytically cracked gasoline base material other than the material based on the total amount of the gasoline composition.
  • gasoline bases are blended.
  • propane fractions mainly composed of propane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc.
  • straight-run desulfurization propane fractions obtained by desulfurizing them are not particularly limited, but specifically, for example, straight-run propane fractions mainly composed of propane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc., straight-run desulfurization propane fractions obtained by desulfurizing them.
  • Propane / propylene cracked propane fraction obtained from catalytic crackers naphtha fraction (full range naphtha) obtained by atmospheric distillation of crude oil, naphtha light fraction (light naphtha), naphtha Heavy fraction (heavy naphtha), desulfurized full range naphtha desulfurized full range naphtha, desulfurized light naphtha desulfurized light naphtha, desulfurized heavy desulfurized heavy naphtha
  • Alkaline obtained by adding (alkylating) lower olefins to hydrocarbons such as isomerized gasoline and isobutane obtained by converting fusa and light naphtha into isoparaffin using an isomerizer, modified by catalytic reforming method Quality raffinate, a residue of aromatics extracted from reformed gasoline, light fraction of reformed gasoline (light reformed gasoline), medium heavy fraction of reformed gasoline (medium heavy reformed gasoline) FT (Fischer-Tropsch) after
  • a regular gasoline composition having a research octane number (RON) of 89 or more and less than 96 and a premium gasoline composition having a research method octane number (RON) of 96 or more and less than 105 can be produced.
  • the research octane number (RON) of the gasoline composition used in the premium gasoline specification vehicle is required to be 96 or more from the viewpoint of preventing knocking and improving the acceleration performance and driving performance, and is 98 or more. It is preferable.
  • it is less than 105.
  • the motor octane number (MON) is preferably 85 or more from the viewpoint of improving the anti-knocking performance during high-speed traveling.
  • the research method octane number (RON) of the gasoline composition used in the regular gasoline specification vehicle is required to be 89 or more and 90 or more from the viewpoint of preventing knocking and improving acceleration performance and driving performance. It is preferable.
  • the motor octane number (MON) is preferably 80 or more from the viewpoint of improving the anti-knocking performance during high-speed traveling.
  • the research method octane number and the motor method octane number referred to in the present invention mean the research method octane number and the motor method octane number measured by JIS K2280 “Octane number and cetane number test method”, respectively.
  • the density at 15 ° C. of a fraction having a boiling point range of 100 to 150 ° C. is preferably 0.730 g / cm 3 or more, It is preferably 0.860 g / cm 3 or less.
  • the density at 15 °C gasoline compositions of the present invention (the density of the overall composition) is preferably 0.783g / cm 3 or less, 0.765 g / cm 3 or less is more preferable.
  • the lower limit is preferably 0.710 g / cm 3 or more. If the density of the gasoline is less than 0.710 g / cm 3 , the fuel efficiency may be deteriorated.
  • the density as used in the field of this invention means the density measured by JISK2249 "The density test method and density / mass / capacity conversion table of crude oil and petroleum products".
  • the sulfur content of the gasoline composition of the present invention is preferably 10 mass ppm or less, and more preferably 8 mass ppm or less. If the sulfur content exceeds 10 ppm by mass, the performance of the exhaust gas treatment catalyst may be adversely affected, and the concentration of NOx, CO, and HC in the exhaust gas may increase, and the amount of benzene emitted is also high. May increase.
  • the sulfur content in the present invention means the sulfur content measured by JIS K2541 “Crude oil and petroleum products—Sulfur content test method”.
  • the total aromatic content in the gasoline composition is preferably 45% by volume or less, and more preferably 44% by volume or less.
  • the total aromatic content in the gasoline composition is preferably 35% by volume or less.
  • the aromatic component contained in the gasoline composition of the present invention includes, for example, benzene having 6 carbon atoms, toluene having 7 carbon atoms, xylene and ethylbenzene having 8 carbon atoms, and 1,2 having 9 carbon atoms. , 4-trimethylbenzene, 1-methyl-3-ethylbenzene and the like, and C10-containing 1,3-diethylbenzene and the like are included.
  • the aromatic content derived from the cracked and reformed gasoline base relative to the total aromatic content in the gasoline composition satisfies the following formula (1).
  • aromatic content derived from cracked and reformed gasoline base material and “content of total aromatic content in gasoline composition” are based on JIS K2536 “Petroleum products-component test method”. Means the aromatic content (unit: volume%) derived from the cracked and reformed gasoline base material and the total aromatic content (unit: volume%) in the gasoline composition. 0.1 ⁇ A / B ⁇ 1.0 (1) (In the formula, A represents the content (volume%) of the aromatic component derived from the cracked and reformed gasoline base material, and B represents the content (volume%) of the total aromatic content in the gasoline composition.)
  • the content of aromatics derived from cracked and reformed gasoline base relative to the content of total aromatics in the gasoline composition represented by the above formula (1) is more preferably 0.2 or more, and further preferably 0.3 or more.
  • the aromatic content of the gasoline composition of the present invention if the content of the aromatic component derived from the cracked and reformed gasoline base relative to the total aromatic content in the gasoline composition satisfies the above formula (1), the aromatic content
  • the breakdown is not particularly limited, but when the gasoline composition according to the present invention is a premium gasoline composition, the proportion of aromatic hydrocarbons having 9 or more carbon atoms in the gasoline composition is 30% by volume or less with respect to the total amount of gasoline. It is preferably 25% by volume or less. Further, when the gasoline composition according to the present invention is a regular gasoline composition, the proportion of aromatic hydrocarbons having 9 or more carbon atoms in the gasoline composition is preferably 20% by volume or less with respect to the total amount of gasoline. More preferably, it is not more than 15% by volume, and still more preferably not more than 15% by volume.
  • Benzene content in the gasoline composition of the present invention is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the benzene content referred to in the present invention means a value measured by JIS K2536 “Petroleum product-component test method”.
  • the content of olefin in the gasoline composition of the present invention is preferably 30% by volume or less, and more preferably 25% by volume or less.
  • the olefin content referred to in the present invention means the content (volume%) of the olefin content in the gasoline composition measured in accordance with JIS K2536 “Petroleum product-component test method”.
  • the 10% by volume distillation temperature (T10) is preferably 70 ° C. or lower, more preferably 65 ° C. or lower.
  • T10 exceeds 70 ° C., there is a possibility that a problem occurs in the low-temperature startability.
  • T10 is preferably 35 ° C. or higher. If T10 is less than 35 ° C., hydrocarbons in the exhaust gas may increase, and vapor lock may cause a problem in high-temperature operability.
  • the 50 volume% distillation temperature (T50) of the gasoline composition of the present invention is preferably 110 ° C. or lower from the viewpoint of improving acceleration and suppressing increase in hydrocarbons (HC) in the exhaust gas. ° C or lower is more preferable, 100 ° C or lower is further preferable, and 90 ° C or lower is most preferable. T50 is preferably 75 ° C. or higher from the viewpoint of preventing deterioration of fuel consumption.
  • the 90 volume% distillation temperature (T90) of the gasoline composition of the present invention prevents malfunctions in low-temperature operability during cold operation, suppresses increase in hydrocarbons in exhaust gas, and increases dilution of engine oil with gasoline.
  • the temperature is preferably 180 ° C or lower, and 170 ° C or lower. Is more preferable.
  • T90 is preferably 115 ° C. or higher from the viewpoint of preventing deterioration of fuel consumption.
  • the distillation end point (EP) of the gasoline composition of the present invention is preferably 220 ° C. or less, preferably from 220 ° C. or less, from the viewpoints of suppressing an increase in intake valve deposits and combustion chamber deposits and preventing plug smoldering. Is more preferably 210 ° C. or less, and particularly preferably 200 ° C. or less.
  • the 70 ° C. distillate (E70) of the gasoline composition of the present invention is preferably 45% by volume or less from the viewpoint of improving acceleration and suppressing increase in hydrocarbons (HC) in the exhaust gas, and is 40 volumes. % Or less is more preferable. Moreover, it is preferable that E70 is 25 volume% or more from a viewpoint of preventing a fuel consumption deterioration.
  • T10, T50, T90, EP and E70 in the present invention mean T10, T50, T90, EP and E70 measured by JIS K2254 “Petroleum product-distillation test method”, respectively.
  • the content of dienes is preferably 0.1% by volume or less based on the total amount of the composition from the viewpoint of ensuring the storage stability of the gasoline composition. It is more preferably at most 05% by volume, still more preferably at most 0.01% by volume.
  • the manganese content is preferably 2 mass ppm or less
  • the iron content is preferably 2 mass ppm or less
  • the sodium content is 2 mass ppm or less.
  • the potassium content is preferably 2 mass ppm or less
  • the phosphorus content is preferably 2 mass ppm or less. If these metal components exceed the upper limit, the efficiency of the exhaust gas purification system may be reduced due to an increase in the amount accumulated on the exhaust gas purification catalyst, deterioration of the catalyst carrier, deterioration of the air-fuel ratio sensor, or the like.
  • the contents of manganese, iron, and sodium are “combustion ashing—inductively coupled plasma emission method”
  • the potassium content is “combustion ashing—atomic absorption method”
  • the phosphorus content is ASTM D3231 “Standard”. It means the value measured by “Test Method for Phosphorus in Gasoline”.
  • combustion ashing-inductively coupled plasma emission method and “combustion ashing-atomic absorption method” can be measured according to the procedures shown in the following (i) to (vi).
  • (I) A 20 g sample is taken on a platinum dish.
  • (Ii) 0.4 g of powdered sulfur is added to suppress the volatilization of the component elements, and the volatile matter is removed at 150 ° C. for 1 hour on a sand bath.
  • Ashing in an electric furnace at 500 ° C. for 2 to 3 hours.
  • V Dissolve in 2 to 3 mL of concentrated sulfuric acid and make up to 20 mL.
  • the lead vapor pressure (RVP) of the gasoline composition of the present invention needs to be adjusted depending on the season and region in which the gasoline is used. However, in general, the summer ( In the period from May to September, it is desirable to adjust to 44 to 65 kPa, more preferably 50 to 65 kPa, and most preferably 55 to 65 kPa. On the other hand, in the winter season (October to April), it is desirable to adjust to 65 to 93 kPa, more preferably 70 to 93 kPa, and most preferably 70 to 90 kPa.
  • the reed vapor pressure in the present invention means a reed vapor pressure (RVP) measured by JIS K2258 “Crude oil and fuel oil vapor pressure test method (reed method)”.
  • the oxidation stability of the gasoline composition of the present invention is preferably 240 minutes or more, more preferably 480 minutes or more, and most preferably 900 minutes or more. If the oxidative stability is less than 240 minutes, gums can form during storage.
  • the oxidation stability as used in the field of this invention means the value measured by JIS K2287 "gasoline oxidation stability test method (induction period method)".
  • the copper plate corrosion (50 ° C., 3 h) of the gasoline composition of the invention is preferably 1 or less, more preferably 1a. If the copper plate corrosion exceeds 1, the fuel system conduit may corrode.
  • the copper plate corrosion referred to in the present invention means a value measured according to JIS K2513 “Petroleum products—copper plate corrosion test method” (test temperature 50 ° C., test time 3 hours).
  • the unwashed actual gum content of the gasoline composition of the present invention is preferably 20 mg / 100 mL or less, and more preferably 18 mg / 100 mL or less. Moreover, it is preferable that it is 5 mg / 100 mL or less, it is more preferable that it is 2 mg / 100 mL or less, and it is still more preferable that it is less than 1 mg / 100 mL.
  • the unwashed actual gum amount and the washed actual gum amount in the present invention mean values measured by JIS K2261 “Petroleum products—automobile gasoline and aviation fuel oil—existing gum test method—injection evaporation method”.
  • the amount of kerosene mixed in the gasoline composition of the present invention is preferably 4% by volume or less, and more preferably 1% by volume or less.
  • the amount of kerosene mixed in the present invention means a value measured by JIS K2536 “Petroleum product-component test method”.
  • an oxygen-containing compound may be further blended as necessary in addition to the oxygen-containing compound that can be inherently contained in a gasoline base material.
  • the oxygen-containing compound to be blended include alcohols having 2 to 4 carbon atoms and ethers having 4 to 8 carbon atoms.
  • Specific examples of the oxygen-containing compound include ethanol, methyl-tert-butyl ether (MTBE), ethyl-tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-amyl ethyl ether.
  • Methanol is not preferable because the aldehyde concentration in the exhaust gas may be high and corrosive.
  • the content of the oxygen-containing compound in the gasoline composition of the present invention is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, most preferably in terms of oxygen element, based on the total amount of the composition. Preferably it is 2.0 mass% or less. When it exceeds 5.0 mass%, NOx in exhaust gas may increase.
  • the content of oxygen-containing compounds referred to here is the sum of the contents of oxygen-containing compounds that can be inherently contained in gasoline base materials and the like, and the contents of the oxygen-containing compounds added as additives. means.
  • an antioxidant in order to improve the oxidation stability.
  • the antioxidant include N, N′-diisopropyl-p-phenylenediamine, N, N′-diisobutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, Known compounds such as hindered phenols can be used as gasoline antioxidants.
  • a metal deactivator examples include amine carbonyl condensed compounds such as N, N′-disalicylidene-1,2-diaminopropane.
  • the compounding amount of the metal deactivator is preferably 0 to 100 g / kL, more preferably 0 to 10 g / kL based on the total amount of the gasoline composition.
  • the effect of preventing the intake valve deposit and the effect of reducing the combustion chamber deposit can be improved.
  • the cleaning dispersant include gasoline cleaning dispersants such as succinimide, polyalkylamine, and polyetheramine. Among these, those having no residue when thermally decomposing at 300 ° C. in air are preferable, and polyisobutenylamine and / or polyetheramine are particularly preferable.
  • the content of the cleaning dispersant is preferably 80 to 500 mg / L based on the total amount of the composition. 100 to 450 mg / L is more preferable, and 200 to 300 mg / L is more preferable from the viewpoint of preventing the intake valve deposit and further reducing the combustion chamber deposit.
  • a surface ignition preventing agent such as an organic phosphorus compound; an anti-icing agent such as a polyhydric alcohol or an ether thereof; an alkali metal salt or an alkaline earth metal salt of an organic acid; Ancillary surfactants; cationic surfactants; antistatic agents such as amphoteric surfactants; colorants such as azo dyes; organic carboxylic acids or their derivatives; alkenyl succinic acid Rust preventive agents such as esters; draining agents such as sorbitan esters; discriminating agents such as kilyzanine and coumarin; and odorants such as natural essential oil synthetic fragrances may be blended as necessary.
  • These additives can be added singly or in combination of two or more. The total content of these additives is preferably 0.1% by mass or less based on the total amount of the composition.
  • gasoline base material As base materials for preparing gasoline compositions, butane, light cracked gasoline, medium cracked gasoline, heavy cracked gasoline, full range cracked gasoline, light straight run gasoline, heavy straight run gasoline, medium reformed gasoline, heavy Quality reformed gasoline and cracked reformed gasoline base material were prepared. The properties of each substrate are shown in Tables 1 and 2.
  • the cracking reformed gasoline base material shown in Table 2 is a base material obtained by the following method.
  • Fluid catalytic cracking light oil LCO (10 vol% distillation temperature is 215 ° C, 90 vol% distillation temperature is 318 ° C, density at 15 ° C is 0.9258 g / cm 3 , saturation is 23 vol%, olefin content is 2 vol %, Total aromatic content is 75 vol%)
  • reaction pressure 0.3 MPaG
  • contact time between LCO and catalyst is 60 seconds in a fluidized bed reactor.
  • the catalyst was brought into contact with and reacted with a catalyst for use (MFI type zeolite carrying 0.2% by mass of gallium and 0.7% by mass of phosphorus and containing a binder) to carry out a decomposition and reforming reaction. Subsequently, the cracking and reforming reaction product was fractionated to produce cracking and reforming gasoline base materials having the properties shown in Table 2.
  • a catalyst for use MFI type zeolite carrying 0.2% by mass of gallium and 0.7% by mass of phosphorus and containing a binder
  • Examples 1 to 5 and Comparative Examples 1 and 3 gasoline compositions having the properties shown in Table 3 were prepared using the base materials shown in Tables 1 and 2, respectively.
  • gasoline composition of Comparative Example 2 commercially available regular gasoline was prepared.
  • the property measurement of the gasoline base material and the gasoline composition was performed based on the above-described test method and measurement method.
  • Example 6 to 10 Comparative Examples 4 to 6
  • gasoline compositions having the properties shown in Table 4 were prepared using the base materials shown in Tables 1 and 2, respectively.
  • gasoline composition of Comparative Example 5 commercially available high-octane gasoline was prepared.
  • Comparative Example 1 commercially available regular gasoline (Comparative Example 2)
  • Comparative Example 3 commercially available high-octane gasoline (Comparative Example 5)
  • Comparative Example 6 are gasoline compositions whose combustion chamber deposits and exhaust gases are examples. It is getting worse or it is out of the standard of automobile gasoline specified in JIS K2202.
  • the method of the present invention makes it possible to produce a gasoline composition that enables reduction of combustion chamber deposits and reduction of discharged carbon dioxide while maintaining the octane number and distillation properties, which is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Provided is method for manufacturing a gasoline composition having low exhaust gas (NOx) performance and a low incidence of depositing on the combustion chamber without any change in the octane value or distillation characteristics, the method for manufacturing a gasoline composition being characterized in that 1 to 40 vol% of a pyrolysis-modified gasoline base material having the properties (1) through (7), 10 to 90 vol% of a catalytically cracked gasoline base material, and 0.1 to 10 vol% of a C4 hydrocarbon base material are compounded at a minimum. (1) The aromatic fraction is 90 vol% or higher; (2) the olefin fraction is 5 vol% or lower; (3) the C8 aromatic fraction is 5 to 50 vol%; (4) the aromatic fraction having 9 or more carbon atoms is 30 vol% or less; (5) the sulfur content is 20 mass ppm or less; (6) the research octane number is 110 or higher; and (7) the density at 15°C is 0.8 to 0.95 g/cm3.

Description

ガソリン組成物およびその製造方法Gasoline composition and method for producing the same
 本発明は、自動車用燃料として有用なガソリン組成物およびその製造方法に関する。 The present invention relates to a gasoline composition useful as a fuel for automobiles and a method for producing the same.
 ガソリンには、原油を常圧蒸留して得られるナフサ留分や、接触分解法による接触分解ガソリン、アルキル化によって得られるアルキレート、接触改質法で得られる改質ガソリン、改質ガソリンより芳香族分を抽出した残分であるラフィネート、更にはイソオレフィンなどの様々な基材が用いられている(例えば、特許文献1、2を参照。)。最適な自動車用燃料を製造するためには、これらの基材を上手く配合することが必要とされる。
 一方、現在の自動車に関わる問題としては、エンジンにデポジットが蓄積することによる性能の悪化や、二酸化炭素や規制排出ガスの低減といった環境問題などがある。特に、ガソリンエンジンの燃焼室内デポジットは、エンジンの燃焼状態を乱すことによる動力性能の悪化、燃費の悪化、排出ガスの悪化や、カーボンノックを引き起こす原因となり得る。
 燃料性状と燃焼室デポジットの関係についての検討により、従来の改質ガソリンを配合すると燃焼室内のデポジットが大幅に増加してしまうことが指摘されている(例えば非特許文献1参照)。製品ガソリン中の改質ガソリンの配合量を削減できれば、燃焼室デポジットを低減できる可能性があると考えられる。
For gasoline, naphtha fraction obtained by atmospheric distillation of crude oil, catalytic cracked gasoline by catalytic cracking method, alkylate obtained by alkylation, reformed gasoline obtained by catalytic reforming method, aroma from reformed gasoline Various base materials, such as raffinate which is the residue which extracted the group, and isoolefin, are used (for example, refer patent documents 1 and 2). In order to produce the optimum automotive fuel, it is necessary to blend these substrates well.
On the other hand, current automobile-related problems include deterioration of performance due to deposits accumulated in the engine and environmental problems such as reduction of carbon dioxide and regulated exhaust gas. In particular, deposits in the combustion chamber of a gasoline engine can cause deterioration of power performance, fuel consumption, exhaust gas, and carbon knock due to disturbance of the combustion state of the engine.
Examination of the relationship between fuel properties and combustion chamber deposits has pointed out that when conventional reformate gasoline is blended, the deposits in the combustion chamber are significantly increased (see Non-Patent Document 1, for example). If the amount of reformed gasoline in the product gasoline can be reduced, the combustion chamber deposit may be reduced.
特表2004-507576号公報JP-T-2004-507576 特表2003-523453号公報Special table 2003-523453 gazette
 しかしながら、改質ガソリン基材は高オクタン価を達成するための主要基材であり、その低減はオクタン価の低下を招く。また、密度減少による燃費の悪化、ガソリンの蒸留性状の変化などを招くおそれがある。特に、オクタン価が低下すると、ノッキングを引き起こしてエンジンが損傷を与えるおそれがあり、さらに、プレミアムガソリン仕様車においてはエンジンの性能を最大限に発揮できなくなる可能性がある。また、ガソリンの蒸留性状が大きく変化すると、車両の運転性や加速性等の悪化を招くおそれがある。
 本発明は、このような実情に鑑みてなされたものであり、オクタン価や蒸留性状を維持したまま、燃焼室デポジットの生成能が小さく、低排出ガス(NOx)性能を有するガソリン組成物の製造方法を提供することを目的とする。
However, the reformed gasoline base material is a main base material for achieving a high octane number, and the reduction causes a decrease in the octane number. Moreover, there is a risk of causing deterioration in fuel consumption due to a decrease in density and a change in distillation properties of gasoline. In particular, when the octane number decreases, the engine may be damaged due to knocking, and the engine performance may not be maximized in a premium gasoline specification vehicle. Further, if the distillation property of gasoline changes greatly, there is a risk that the drivability and acceleration of the vehicle will deteriorate.
The present invention has been made in view of such circumstances, and a method for producing a gasoline composition having a low combustion gas deposit generation ability and low exhaust gas (NOx) performance while maintaining an octane number and distillation properties. The purpose is to provide.
 本発明者らは、前記課題について鋭意研究を重ねた結果、ガソリン組成物の製造方法において、所定の性状を有する分解改質ガソリン基材、接触分解ガソリン基材、炭素数4の炭化水素基材を所定量配合することにより、燃焼室デポジットを低減し、エンジン性能を最大限に発揮することができ、さらには排出する二酸化炭素の少ない高性能なガソリンを得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
As a result of intensive studies on the above problems, the inventors of the present invention have found that in a method for producing a gasoline composition, a cracked and reformed gasoline base material, a catalytic cracked gasoline base material, and a hydrocarbon base material having 4 carbon atoms having predetermined properties. It is found that by adding a predetermined amount of the fuel, the combustion chamber deposit can be reduced, the engine performance can be maximized, and further, high-performance gasoline with less carbon dioxide emission can be obtained, and the present invention has been completed. It came to do.
That is, the present invention is as follows.
[1]下記の(1)~(7)の性状を有する分解改質ガソリン基材1~40容量%、接触分解ガソリン基材10~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴するガソリン組成物の製造方法。
 (1)芳香族分が90容量%以上
 (2)オレフィン分が5容量%以下
 (3)炭素数8の芳香族分が5~50容量%
 (4)炭素数9以上の芳香族分が30容量%以下
 (5)硫黄分が20質量ppm以下
 (6)リサーチオクタン価が110以上
 (7)15℃における密度が0.8~0.95g/cm
[1] Cracked and reformed gasoline base material having the following properties (1) to (7) 1 to 40% by volume, catalytic cracked gasoline base material 10 to 90% by volume, and C4 hydrocarbon base material A method for producing a gasoline composition comprising blending at least 1 to 10% by volume.
(1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
(4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
[2]下記の(1)~(7)の性状を有する分解改質ガソリン基材1~35容量%、接触分解ガソリン基材10~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴とするリサーチ法オクタン価が89以上96未満であるガソリン組成物の製造方法。
 (1)芳香族分が90容量%以上
 (2)オレフィン分が5容量%以下
 (3)炭素数8の芳香族分が5~50容量%
 (4)炭素数9以上の芳香族分が30容量%以下
 (5)硫黄分が20質量ppm以下
 (6)リサーチオクタン価が110以上
 (7)15℃における密度が0.8~0.95g/cm
[2] 1 to 35% by volume of cracked and reformed gasoline base material having the following properties (1) to (7), 10 to 90% by volume of catalytic cracked gasoline base material, and hydrocarbon base material having 4 carbon atoms. A method for producing a gasoline composition having a research octane number of 89 or more and less than 96, wherein at least 1 to 10% by volume is blended.
(1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
(4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
[3]下記の(1)~(7)の性状を有する分解改質ガソリン基材1~40容量%、軽質接触分解ガソリン基材25~50容量%、かつ軽質接触分解ガソリン基材を含む接触分解ガソリン基材25~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴するリサーチ法オクタン価が96以上105未満であるガソリン組成物の製造方法。
 (1)芳香族分が90容量%以上
 (2)オレフィン分が5容量%以下
 (3)炭素数8の芳香族分が5~50容量%
 (4)炭素数9以上の芳香族分が30容量%以下
 (5)硫黄分が20質量ppm以下
 (6)リサーチオクタン価が110以上
 (7)15℃における密度が0.8~0.95g/cm
[3] Catalytic reforming gasoline base material having the following properties (1) to (7) 1 to 40% by volume, light catalytic cracking gasoline base material 25 to 50% by volume, and contact containing light catalytic cracking gasoline base material A method for producing a gasoline composition having a research octane number of 96 or more and less than 105, comprising blending at least 25 to 90% by volume of cracked gasoline base and 0.1 to 10% by volume of hydrocarbon base having 4 carbon atoms .
(1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
(4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
[4]前記ガソリン組成物が以下の(1)~(7)を満たすことを特徴とする前記[1]または[2]に記載のガソリン組成物の製造方法。
 (1)15℃における密度が0.783g/cm以下
 (2)硫黄分が10質量ppm以下
 (3)全芳香族分が35容量%以下
 (4)ベンゼンが1容量%以下
 (5)オレフィン分が30容量%以下
 (6)10容量%留出温度が70℃以下、かつ50容量%留出温度が110℃以下、かつ90容量%留出温度が180℃以下
 (7)留出温度70℃における留出量(E70)が40容量%以下
[5]前記ガソリン組成物が以下の(1)~(8)を満たすことを特徴とする前記[3]に記載のガソリン組成物の製造方法。
 (1)15℃における密度が0.783g/cm以下
 (2)硫黄分が10質量ppm以下
 (3)全芳香族分が45容量%以下
 (4)ベンゼンが1容量%以下
 (5)オレフィン分が30容量%以下
 (6)10容量%留出温度が70℃以下、かつ50容量%留出温度が110℃以下、かつ90容量%留出温度が180℃以下
 (7)留出温度70℃における留出量(E70)が45容量%以下
 (8)清浄分散剤の含有量が80mg/L以上500mg/L以下
[4] The method for producing a gasoline composition according to [1] or [2], wherein the gasoline composition satisfies the following (1) to (7).
(1) Density at 15 ° C. is 0.783 g / cm 3 or less (2) Sulfur content is 10 mass ppm or less (3) Total aromatic content is 35% by volume or less (4) Benzene is 1% by volume or less (5) Olefin 30% by volume or less (6) 10% by volume distillation temperature is 70 ° C. or less, 50% by volume distillation temperature is 110 ° C. or less, and 90% by volume distillation temperature is 180 ° C. or less. (7) Distillation temperature 70 [5] The method for producing a gasoline composition according to the above [3], wherein the amount of distillation (E70) at 40 ° C. is 40% by volume or less [5] The gasoline composition satisfies the following (1) to (8): .
(1) Density at 15 ° C. is 0.783 g / cm 3 or less (2) Sulfur content is 10 mass ppm or less (3) Total aromatic content is 45% by volume or less (4) Benzene is 1% by volume or less (5) Olefin 30% by volume or less (6) 10% by volume distillation temperature is 70 ° C. or less, 50% by volume distillation temperature is 110 ° C. or less, and 90% by volume distillation temperature is 180 ° C. or less. (7) Distillation temperature 70 Distillation amount at 70 ° C. (E70) is 45% by volume or less (8) The content of the cleaning dispersant is 80 mg / L or more and 500 mg / L or less
[6]0.10≦A/B≦1.0を満たすように分解改質ガソリン基材を配合することを特徴とする前記[1]~[5]のいずれかに記載のガソリン組成物の製造方法。
(Aは分解改質ガソリン基材由来の芳香族分の含有量(容量%)、Bはガソリン組成物中の全芳香族分の含有量(容量%)を示す。)
[6] The gasoline composition according to any one of [1] to [5], wherein the cracked and reformed gasoline base material is blended so as to satisfy 0.10 ≦ A / B ≦ 1.0. Production method.
(A represents the content (volume%) of the aromatic component derived from the cracked and reformed gasoline base material, and B represents the content (volume%) of the total aromatic content in the gasoline composition.)
[7]前記分解改質ガソリン基材が、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の原料油を中細孔ゼオライトおよび/または大細孔ゼオライトを含有する分解改質反応用触媒と接触させ、反応温度400~650℃、反応圧力1.5MPaG以下、接触時間1~300秒で分解改質反応を行うことにより製造されることを特徴とする前記[1]~[6]のいずれかに記載のガソリン組成物の製造方法。 [7] The cracked and reformed gasoline base material contains medium-pore zeolite and / or large-pore zeolite containing 10% by volume distillation temperature of 140 ° C. or more and 90% by volume distillation temperature of 380 ° C. or less. Characterized in that it is produced by contacting with a catalyst for cracking and reforming reaction, and performing a cracking and reforming reaction at a reaction temperature of 400 to 650 ° C., a reaction pressure of 1.5 MPaG or less, and a contact time of 1 to 300 seconds. [1] A method for producing a gasoline composition according to any one of [6].
[8]前記[1]~[7]のいずれかに記載のガソリン組成物の製造方法により得られるガソリン組成物。 [8] A gasoline composition obtained by the method for producing a gasoline composition according to any one of [1] to [7].
 本発明の方法により、オクタン価や蒸留性状を維持したまま、燃焼室デポジットの低減及び排出される二酸化炭素の低減を可能とするガソリン組成物を製造することができる。 By the method of the present invention, it is possible to produce a gasoline composition that enables reduction of combustion chamber deposits and emission of carbon dioxide while maintaining the octane number and distillation properties.
 以下に、本発明を詳細に説明する。
 本発明のガソリン組成物の製造方法は、所定の性状を有する分解改質ガソリン基材を1~40容量%、接触分解ガソリン基材を10~90容量%、炭素数4の炭化水素基材を0.1~10容量%配合することを特徴とする。
The present invention is described in detail below.
The method for producing a gasoline composition of the present invention comprises a cracked and reformed gasoline base material having a predetermined property of 1 to 40% by volume, a catalytic cracked gasoline base material of 10 to 90% by volume, and a hydrocarbon base material having 4 carbon atoms. It is characterized by containing 0.1 to 10% by volume.
 本発明に係るガソリン組成物の製造方法においては、分解改質ガソリン基材をガソリン組成物全量基準で1~40容量%配合する。オクタン価の向上と二酸化炭素の排出量削減の観点から、分解改質ガソリン基材は、好ましくは3容量%以上、より好ましくは5容量%以上であり、さらに好ましくは15容量%以上である。一方、蒸発特性の維持の観点から、40容量%以下であることが必要であり、特に、リサーチ法オクタン価が89以上96未満のレギュラーガソリン組成物を製造するときは、35容量%以下であることが必要である。
 さらに、燃焼室デポジット増加抑制の点でガソリン組成物中の全芳香族分B(容量%)に対する分解改質ガソリン基材由来の芳香族分A(容量%)の比(A/B)が0.1以上1.0以下となるように配合することが好ましい。
In the method for producing a gasoline composition according to the present invention, the cracked and reformed gasoline base material is blended in an amount of 1 to 40% by volume based on the total amount of the gasoline composition. From the viewpoint of improving the octane number and reducing carbon dioxide emissions, the cracked and reformed gasoline base material is preferably 3% by volume or more, more preferably 5% by volume or more, and further preferably 15% by volume or more. On the other hand, from the viewpoint of maintaining evaporation characteristics, it is necessary to be 40% by volume or less, and in particular, when producing a regular gasoline composition having a research octane number of 89 or more and less than 96, it should be 35% by volume or less. is required.
Furthermore, the ratio (A / B) of the aromatic content A (volume%) derived from the cracked and reformed gasoline base to the total aromatic content B (volume%) in the gasoline composition is 0 in terms of suppressing increase in combustion chamber deposits. It is preferable to mix | blend so that it may become 1 or more and 1.0 or less.
 本発明に係る分解改質ガソリン基材は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の原料油を中細孔ゼオライトおよび/または大細孔ゼオライトを含有する分解改質反応用触媒と接触させ、反応温度400~650℃、反応圧力1.5MPaG以下、接触時間1~300秒で分解改質反応を行うことにより製造されることを特徴とする。
 具体的には以下の分解改質反応より得られる分解改質反応生成物から分留により本発明で用いる分解改質基材を製造する。
The cracked and reformed gasoline base material according to the present invention contains medium-oil zeolite and / or large-pore zeolite in a feed oil having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower. It is produced by contacting with a catalyst for cracking reforming reaction to be performed, and performing a cracking reforming reaction at a reaction temperature of 400 to 650 ° C., a reaction pressure of 1.5 MPaG or less, and a contact time of 1 to 300 seconds.
Specifically, the cracking / reforming substrate used in the present invention is produced by fractional distillation from the cracking / reforming reaction product obtained by the following cracking / reforming reaction.
 分解改質反応は、原料油を分解改質反応用触媒に接触させて、原料油に含まれる飽和炭化水素を水素供与源とし、飽和炭化水素からの水素移行反応によって多環芳香族炭化水素を部分的に水素化し、開環させて単環芳香族炭化水素に転換する反応、原料油中もしくは分解過程で得られる飽和炭化水素を環化、脱水素することによって単環芳香族炭化水素に転換する反応であり、芳香族炭化水素を主として含有する燃料基材を製造することができる。 In the cracking and reforming reaction, the feedstock oil is brought into contact with the catalyst for cracking and reforming reaction, the saturated hydrocarbon contained in the feedstock oil is used as a hydrogen donor source, and polycyclic aromatic hydrocarbons are converted by hydrogen transfer reaction from the saturated hydrocarbon. Partially hydrogenated, ring-opened to convert to monocyclic aromatic hydrocarbons, converted to monocyclic aromatic hydrocarbons by cyclizing and dehydrogenating saturated hydrocarbons obtained in feedstock or in the cracking process The fuel base material mainly containing aromatic hydrocarbons can be produced.
 分解改質反応の原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油が好ましく、原料油の10容量%留出温度は150℃以上であることがより好ましく、原料油の90容量%留出温度は360℃以下であることがより好ましい。
 なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値を意味する。
 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油としては、例えば、流動接触分解装置で生成する分解軽油(LCO)、LCOの水素化精製油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
The feed oil for the cracking and reforming reaction is preferably an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower, and the 10 vol% distillation temperature of the raw oil is 150 ° C or higher. More preferably, the 90 vol% distillation temperature of the feedstock is more preferably 360 ° C or lower.
The 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”.
Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or higher and a 90% by volume distillation temperature of 380 ° C. or lower include cracked light oil (LCO) produced by a fluid catalytic cracker, LCO hydrorefined oil, Examples include coal liquefied oil, heavy oil hydrocracked refined oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil.
 原料油を分解改質反応用触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。なかでも、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましく、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。分解改質反応用触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。 As the reaction mode when the raw material oil is brought into contact with and reacted with the catalyst for the cracking reforming reaction, a fixed bed, a moving bed, a fluidized bed and the like can be mentioned. Among them, since the heavy component is used as a raw material, a fluidized bed capable of continuously removing the coke component adhering to the catalyst and performing the reaction stably is preferable, and the space between the reactor and the regenerator is preferable. A continuous regenerative fluidized bed in which the catalyst circulates and allows continuous reaction-regeneration is particularly preferred. The feedstock oil in contact with the cracking reforming reaction catalyst is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed.
 分解改質反応用触媒は、結晶性アルミノシリケートを含有する。
 結晶アルミノシリケートは、単環芳香族炭化水素の収率をより高くできることから、中細孔ゼオライトおよび/または大細孔ゼオライトであることが好ましい。
 中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
 大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、単環芳香族炭化水素の収率をより高くできることから、BEA型がより好ましい。
The catalyst for the cracking reforming reaction contains crystalline aluminosilicate.
The crystalline aluminosilicate is preferably a medium pore zeolite and / or a large pore zeolite because the yield of monocyclic aromatic hydrocarbons can be further increased.
The medium pore zeolite is a zeolite having a 10-membered ring skeleton structure. Examples of the medium pore zeolite include AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, and TON type. And zeolite having a WEI type crystal structure. Among these, the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
The large pore zeolite is a zeolite having a 12-membered ring skeleton structure. Examples of the large pore zeolite include AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, and MOR type. , Zeolites of MTW type and OFF type crystal structures. Among these, BEA type, FAU type, and MOR type are preferable in terms of industrial use, and the BEA type is more preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
 結晶性アルミノシリケートは、中細孔ゼオライトおよび大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
 ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
 超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
The crystalline aluminosilicate may contain, in addition to the medium pore zeolite and the large pore zeolite, a small pore zeolite having a skeleton structure having a 10-membered ring or less, and a very large pore zeolite having a skeleton structure having a 14-membered ring or more. Good.
Here, examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
 分解改質反応を固定床の反応とする場合、分解改質反応用触媒における結晶性アルミノシリケートの含有量は、分解改質反応用触媒全体を100質量%とした際の60~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%が特に好ましい。結晶性アルミノシリケートの含有量が60質量%以上であれば、単環芳香族炭化水素の収率を充分に高くできる。分解改質反応を流動床の反応とする場合、分解改質反応用触媒における結晶性アルミノシリケートの含有量は、分解改質反応用触媒全体を100質量%とした際の20~60質量%が好ましく、30~60質量%がより好ましく、35~60質量%が特に好ましい。結晶性アルミノシリケートの含有量が20質量%以上であれば、単環芳香族炭化水素の収率を充分に高くできる。結晶性アルミノシリケートの含有量が60質量%を超えると、触媒に配合できるバインダーの含有量が少なくなり、流動床用として適さないものになることがある。 When the cracking and reforming reaction is a fixed bed reaction, the content of the crystalline aluminosilicate in the cracking and reforming reaction catalyst is 60 to 100% by weight when the entire catalyst for cracking and reforming reaction is 100% by weight. Preferably, 70 to 100% by mass is more preferable, and 90 to 100% by mass is particularly preferable. If the content of the crystalline aluminosilicate is 60% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased. When the cracking and reforming reaction is a fluidized bed reaction, the content of crystalline aluminosilicate in the cracking and reforming reaction catalyst is 20 to 60% by weight when the entire catalyst for cracking and reforming reaction is 100% by weight. Preferably, 30 to 60% by mass is more preferable, and 35 to 60% by mass is particularly preferable. If the content of the crystalline aluminosilicate is 20% by mass or more, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased. When the content of the crystalline aluminosilicate exceeds 60% by mass, the content of the binder that can be blended with the catalyst is reduced, which may be unsuitable for fluidized beds.
 分解改質反応用触媒においては、リンおよび/またはホウ素を含有することが好ましい。分解改質反応用触媒がリンおよび/またはホウ素を含有すれば、単環芳香族炭化水素の収率の経時的な低下を防止でき、また、触媒表面のコーク生成を抑制できる。  The catalyst for decomposition reforming reaction preferably contains phosphorus and / or boron. When the catalyst for cracking and reforming reaction contains phosphorus and / or boron, it is possible to prevent the yield of monocyclic aromatic hydrocarbons from decreasing with time and to suppress the formation of coke on the catalyst surface. *
 分解改質反応用触媒にリンを含有させる方法としては、例えば、イオン交換法、含浸法等がある。具体的には、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液は特に限定されないが、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。 Examples of the method for incorporating phosphorus into the cracking reforming reaction catalyst include an ion exchange method and an impregnation method. Specifically, a method in which phosphorus is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate, a phosphorus compound is contained during zeolite synthesis, and a part of the crystalline aluminosilicate skeleton is incorporated with phosphorus. Examples include a replacement method, a method using a crystal accelerator containing phosphorus during zeolite synthesis, and the like. The phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.
 分解改質反応用触媒にホウ素を含有させる方法としては、例えば、イオン交換法、含浸法等がある。具体的には、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにホウ素を担持する方法、ゼオライト合成時にホウ素化合物を含有させて結晶性アルミノシリケートの骨格内の一部をホウ素と置き換える方法、ゼオライト合成時にホウ素を含有した結晶促進剤を用いる方法、などが挙げられる。 Examples of the method for incorporating boron into the cracking reforming reaction catalyst include an ion exchange method and an impregnation method. Specifically, a method in which boron is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminosilicate, a part of the skeleton of crystalline aluminosilicate is incorporated with boron at the time of zeolite synthesis. Examples include a replacement method, a method using a crystal accelerator containing boron at the time of zeolite synthesis, and the like.
 分解改質反応用触媒におけるリンおよび/またはホウ素の含有量は、触媒全重量に対して0.1~10質量%であることが好ましく、さらには、下限は0.5質量%以上がより好ましく、上限は9質量%以下であることがより好ましく、8質量%以下が特に好ましい。触媒全重量に対するリンの含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、10質量%以下であることで、単環芳香族炭化水素の収率を高くできる。 The phosphorus and / or boron content in the cracking reforming reaction catalyst is preferably 0.1 to 10% by mass relative to the total weight of the catalyst, and more preferably the lower limit is 0.5% by mass or more. The upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less. When the content of phosphorus with respect to the total weight of the catalyst is 0.1% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and by 10% by mass or less, the monocyclic aromatics The yield of hydrocarbons can be increased.
 分解改質反応用触媒には、必要に応じて、ガリウムおよび/または亜鉛を含有させることができる。ガリウムおよび/または亜鉛を含有させれば、単環芳香族炭化水素の生成割合をより多くできる。 
 分解改質反応用触媒におけるガリウム含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 分解改質反応用触媒における亜鉛含有の形態としては、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートに亜鉛が担持されたもの(亜鉛担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
The cracking and reforming reaction catalyst may contain gallium and / or zinc as necessary. If gallium and / or zinc is contained, the production rate of monocyclic aromatic hydrocarbons can be increased.
The gallium-containing form in the catalyst for cracking and reforming reaction includes those in which gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), and those in which gallium is supported on crystalline aluminosilicate (gallium) Supported crystalline aluminosilicate) and those containing both.
Zinc-containing forms in the catalyst for cracking and reforming reaction include those in which zinc is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminodin silicate), and in which zinc is supported on crystalline aluminosilicate (zinc Supported crystalline aluminosilicate) and those containing both.
 結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、SiO、AlOおよびGaO/ZnO構造が骨格中に存在する構造を有する。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムまたは亜鉛を挿入する方法により得られる。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、結晶性ガロシリケートまたは結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。 Crystalline aluminogallosilicate and crystalline aluminodine silicate have a structure in which SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures are present in the skeleton. The crystalline aluminogallosilicate and the crystalline aluminodine silicate can be obtained by, for example, gel crystallization by hydrothermal synthesis, or a method of inserting gallium or zinc into the lattice skeleton of the crystalline aluminosilicate. Crystalline aluminogallosilicate and crystalline aluminozine silicate can be obtained by a method of inserting aluminum into the lattice skeleton of crystalline gallosilicate or crystalline zincosilicate.
 ガリウム担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムをイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いるガリウム源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム等が挙げられる。
 亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートに亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いる亜鉛源としては、特に限定されないが、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。 
The gallium-supporting crystalline aluminosilicate is obtained by supporting gallium on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. The gallium source used in this case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.
The zinc-supporting crystalline aluminosilicate is obtained by supporting zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. Although it does not specifically limit as a zinc source used in that case, Zinc salts, such as zinc nitrate and zinc chloride, zinc oxide, etc. are mentioned.
 分解改質反応用触媒がガリウムおよび/または亜鉛を含有する場合、分解改質反応用触媒におけるガリウムおよび/または亜鉛の含有量は、触媒全体を100質量%とした際の0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましい。ガリウムおよび亜鉛の含有量が0.01質量%以上であれば、単環芳香族炭化水素の生成割合をより多くでき、5.0質量%以下であれば、単環芳香族炭化水素の収率をより高くできる。 When the cracking reforming reaction catalyst contains gallium and / or zinc, the content of gallium and / or zinc in the cracking reforming reaction catalyst is 0.01-5. The content is preferably 0% by mass, and more preferably 0.05 to 2.0% by mass. If the content of gallium and zinc is 0.01% by mass or more, the production rate of monocyclic aromatic hydrocarbons can be increased, and if it is 5.0% by mass or less, the yield of monocyclic aromatic hydrocarbons Can be higher.
 分解改質反応用触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。なお、平均粒子径はふるいによる分級によって得た粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301-2-3の方法により測定した値である。 粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
 分解改質反応用触媒がバインダー等の無機酸化物を含有する場合、バインダーとしてリンを含むものを用いても構わない。
The catalyst for cracking and reforming reaction is made into, for example, a powder form, a granular form, a pellet form or the like according to the reaction format. For example, in the case of a fluidized bed, it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets. The average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 μm, more preferably 50 to 100 μm. The bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc. The average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification with a sieve, and the bulk density is a value measured by the method of JIS standard R9301-2-3. When obtaining a granular or pellet-shaped catalyst, if necessary, an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
When the cracking reforming reaction catalyst contains an inorganic oxide such as a binder, a binder containing phosphorus may be used.
 原料油を分解改質反応用触媒と接触、反応させる際の反応温度については、特に制限されないものの、400~650℃とすることが好ましい。反応温度の下限は400℃以上であれば原料油を容易に反応させることができ、より好ましくは450℃以上である。また、反応温度の上限は650℃以下であれば単環芳香族炭化水素の収率を十分に高くでき、より好ましくは600℃以下である。 The reaction temperature when the raw material oil is brought into contact with and reacted with the cracking reforming reaction catalyst is not particularly limited, but is preferably 400 to 650 ° C. If the minimum of reaction temperature is 400 degreeC or more, raw material oil can be made to react easily, More preferably, it is 450 degreeC or more. Moreover, if the upper limit of reaction temperature is 650 degrees C or less, the yield of monocyclic aromatic hydrocarbon can be made high enough, More preferably, it is 600 degrees C or less.
 原料油を分解改質反応用触媒と接触、反応させる際の反応圧力は1.5MPaG以下とすることが好ましく、1.0MPaG以下とすることがより好ましい。反応圧力が1.5MPaG以下であれば、軽質ガスの副生を抑制できる上に、反応装置の耐圧性を低くできる。 The reaction pressure when the raw material oil is brought into contact with and reacted with the cracking reforming reaction catalyst is preferably 1.5 MPaG or less, more preferably 1.0 MPaG or less. If the reaction pressure is 1.5 MPaG or less, the by-product of light gas can be suppressed and the pressure resistance of the reactor can be lowered.
 原料油と分解改質反応用触媒との接触時間は、実質的に所望する反応が進行すれば特に制限はされないが、例えば、分解改質反応用触媒上のガス通過時間で1~300秒が好ましく、さらに下限は5秒以上、上限は150秒以下がより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、コーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。 The contact time between the feedstock and the cracking reforming reaction catalyst is not particularly limited as long as the desired reaction proceeds substantially. For example, the gas passage time on the cracking reforming reaction catalyst is 1 to 300 seconds. Further, the lower limit is more preferably 5 seconds or more, and the upper limit is more preferably 150 seconds or less. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition | disassembly can be suppressed.
 上述の分解改質反応から生成した分解改質反応生成物を所定の性状を有する留分に分離することにより、本発明に係る分解改質ガソリン基材を製造することができる。
 分解改質反応生成物を所定の留分に分離するには、公知の蒸留装置、気液分離装置を用いることができる。蒸留装置の一例としては、ストリッパーのような多段蒸留装置により複数の留分を蒸留分離できるものが挙げられる。気液分離装置の一例としては、気液分離槽と、該気液分離槽に生成物を導入する生成物導入管と、前記気液分離槽の上部に設けられたガス成分流出管と、前記気液分離槽の下部に設けられた液成分流出管とを具備するものが挙げられる。
 本発明に係る分解改質ガソリン基材は、主として炭素数7および炭素数8の炭化水素を含む留分であることが好ましい。
By separating the cracking and reforming reaction product generated from the cracking and reforming reaction into fractions having predetermined properties, the cracking and reforming gasoline base material according to the present invention can be produced.
In order to separate the cracking and reforming reaction product into predetermined fractions, a known distillation apparatus or gas-liquid separation apparatus can be used. As an example of a distillation apparatus, what can distill and isolate | separate a some fraction with a multistage distillation apparatus like a stripper is mentioned. As an example of the gas-liquid separation device, a gas-liquid separation tank, a product introduction pipe for introducing a product into the gas-liquid separation tank, a gas component outflow pipe provided at an upper part of the gas-liquid separation tank, What comprises the liquid component outflow pipe | tube provided in the lower part of the gas-liquid separation tank is mentioned.
The cracked and reformed gasoline base material according to the present invention is preferably a fraction mainly containing hydrocarbons having 7 and 8 carbon atoms.
 本発明に係る分解改質ガソリン基材は上述の製造方法により得られるものであり、以下の性状を有する。 The cracked and reformed gasoline base material according to the present invention is obtained by the above-described production method and has the following properties.
 本発明に係る分解改質ガソリン基材の全芳香族分は90容量%以上であり、98容量%以上であることが好ましく、99容量%以上がより好ましい。なお、ここでいう全芳香族分とはJIS K2536「石油製品―成分試験方法」で測定される芳香族分の含有量を意味する。 The total aromatic content of the cracked and reformed gasoline base material according to the present invention is 90% by volume or more, preferably 98% by volume or more, and more preferably 99% by volume or more. In addition, the total aromatic content here means the content of the aromatic content measured by JIS K2536 “Petroleum product-component test method”.
 本発明に係る分解改質ガソリン基材の炭素数8の芳香族分は5容量%以上50容量%以下である。
 本発明に係る分解改質ガソリン基材の炭素数9以上の芳香族分は30容量%以下であり、好ましくは25容量%以下、より好ましくは20容量%以下である。なお、ここでいう炭素数8、または炭素数9以上の芳香族分とは、JIS K2536「石油製品―成分試験方法」で測定される芳香族分の含有量を意味する。
The aromatic component having 8 carbon atoms of the cracked and reformed gasoline base material according to the present invention is 5% by volume or more and 50% by volume or less.
The aromatic component having 9 or more carbon atoms of the cracked and reformed gasoline base material according to the present invention is 30% by volume or less, preferably 25% by volume or less, more preferably 20% by volume or less. Here, the aromatic content having 8 or 9 or more carbon atoms means the content of the aromatic content measured by JIS K2536 “Petroleum product-component test method”.
 本発明に係る分解改質ガソリン基材のオレフィン分は5容量%以下であり、3容量%以下であることが好ましく、1容量%以下がより好ましい。なお、ここでいうオレフィン分とはJIS K2536「石油製品―成分試験方法」で測定される値である。 The olefin content of the cracked and reformed gasoline base material according to the present invention is 5% by volume or less, preferably 3% by volume or less, and more preferably 1% by volume or less. In addition, the olefin content here is a value measured by JIS K2536 “Petroleum products—component test method”.
 本発明に係る分解改質ガソリン基材の硫黄分は20質量ppm以下であり、10質量ppm以下であることが好ましく、5質量ppm以下がより好ましい。なお、ここでいう硫黄分とはJIS K2541「原油及び石油製品―硫黄分試験方法」で測定される値である。 The sulfur content of the cracked and reformed gasoline base material according to the present invention is 20 mass ppm or less, preferably 10 mass ppm or less, more preferably 5 mass ppm or less. In addition, the sulfur content here is a value measured by JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
 本発明に係る分解改質ガソリン基材のリサーチオクタン価は110以上である。なお、ここでいうリサーチオクタン価とはJIS K2280「石油製品―燃料油―オクタン価及びセタン価試験方法並びにセタン指数算出方法」で測定される値である。 The research octane number of the cracked and reformed gasoline base material according to the present invention is 110 or more. The research octane number referred to here is a value measured by JIS K2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.
 本発明に係る分解改質ガソリン基材の15℃における密度は0.8g/cm以上0.95g/cm以下である。なお、ここでいう15℃における密度とはJIS K2249「原油及び石油製品―密度試験方法及び密度・質量・容量換算表」で測定される値である。 The density at 15 ° C. of the cracked and reformed gasoline base material according to the present invention is 0.8 g / cm 3 or more and 0.95 g / cm 3 or less. Here, the density at 15 ° C. is a value measured according to JIS K2249 “Crude oil and petroleum products—density test method and density / mass / capacity conversion table”.
 本発明のガソリン組成物の製造方法においては、分解改質ガソリン基材をガソリン組成物全量基準で1~40容量%、接触分解ガソリン基材をガソリン組成物全量基準で10~90容量%、炭素数4の炭化水素基材をガソリン組成物全量基準で0.1~10容量%配合するものである。
 接触分解ガソリン基材としては、接触分解法で得られる接触分解ガソリン(フルレンジ分解ガソリン)、接触分解ガソリンの軽質留分(軽質接触分解ガソリン)、接触分解ガソリンの中質留分(中質分解ガソリン)、接触分解ガソリンの重質留分(重質分解ガソリン)を挙げることができ、炭素数4の炭化水素基材とは、原油蒸留装置、ナフサ改質装置、アルキレーション装置等から得られるブタンを中心とした直留系ブタン留分、それらを脱硫したブタンを中心とした直留系脱硫ブタン留分、接触分解装置等から得られるブタン・ブテンを中心とした分解系ブタン留分等が挙げられ、具体的にはノルマルブタン、イソブタン、1ブテン、2ブテン、イソ2ブテン、ブタジエン、ブチンを含有する基材である。
In the method for producing a gasoline composition of the present invention, the cracked and reformed gasoline base is 1 to 40% by volume based on the total amount of gasoline composition, the catalytic cracked gasoline base is 10 to 90% by volume based on the total amount of gasoline composition, carbon The hydrocarbon base material of Formula 4 is blended in an amount of 0.1 to 10% by volume based on the total amount of the gasoline composition.
As catalytic cracking gasoline base materials, catalytic cracking gasoline (full range cracking gasoline) obtained by the catalytic cracking method, light fraction of catalytic cracking gasoline (light catalytic cracking gasoline), medium fraction of catalytic cracking gasoline (medium cracking gasoline) ), Heavy fraction of catalytic cracking gasoline (heavy cracking gasoline), and hydrocarbon base having 4 carbon atoms is butane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc. For example, straight-cut butane fraction centered on methane, straight-run desulfurized butane fraction centered on butane desulfurized from them, cracked butane fraction centered on butane / butene obtained from catalytic cracking equipment, etc. Specifically, it is a base material containing normal butane, isobutane, 1 butene, 2 butene, iso-2-butene, butadiene and butyne.
 本発明のガソリン組成物の製造方法において、特に、リサーチ法オクタン価が96以上105未満であるハイオクタン価のプレミアムガソリン組成物を製造するときは、分解改質ガソリン基材をガソリン組成物全量基準で1~40容量%、軽質接触分解ガソリン基材をガソリン組成物全量基準で25~50容量%、かつ前記軽質接触分解ガソリン基材を含む接触分解ガソリン基材をガソリン組成物全量基準で25~90容量%、炭素数4の炭化水素基材をガソリン組成物全量基準で0.1~10容量%配合する。
 ここで、軽質接触分解ガソリン基材とは、接触分解法で得られる接触分解ガソリンのなかの軽質留分を蒸留分離した基材であり、軽質分解ガソリンということもある。その蒸留範囲の一例として20~120℃の留分が挙げられる。
 上記の軽質接触分解ガソリン基材を含む接触分解ガソリン基材25~90容量%とは、軽質接触分解ガソリン基材をガソリン組成物全量基準で25~50容量%を含み、この軽質接触分解ガソリン基材以外の接触分解ガソリン基材をガソリン組成物全量基準で0~65容量%(接触分解ガソリン基材として合計で25~90容量%)含む接触分解ガソリン基材という意味である。
In the method for producing a gasoline composition of the present invention, particularly when producing a high-octane premium gasoline composition having a research octane number of 96 or more and less than 105, the cracked and reformed gasoline base is 1 on the basis of the total amount of the gasoline composition. ~ 40% by volume, light catalytic cracking gasoline base is 25-50% by volume based on total gasoline composition, and catalytic cracking gasoline base containing the above light catalytic cracking gasoline base is 25-90% based on total gasoline composition %, And a hydrocarbon base having 4 carbon atoms is blended in an amount of 0.1 to 10% by volume based on the total amount of gasoline composition.
Here, the light catalytic cracking gasoline base material is a base material obtained by distilling and separating a light fraction in the catalytic cracking gasoline obtained by the catalytic cracking method, and is sometimes referred to as light cracked gasoline. An example of the distillation range is a fraction at 20 to 120 ° C.
The above-mentioned catalytic cracking gasoline base containing 25 to 90% by volume including the light catalytic cracking gasoline base includes 25 to 50% by volume of the light catalytic cracking gasoline base based on the total amount of the gasoline composition. This means a catalytically cracked gasoline base material containing 0 to 65% by volume (totally 25 to 90% by volume as a catalytically cracked gasoline base material) of the catalytically cracked gasoline base material other than the material based on the total amount of the gasoline composition.
 本発明に係るガソリン組成物の製造方法においては、所定の分解改質ガソリン基材、接触分解ガソリン基材、炭素数4の炭化水素基材を所定量配合する限り、その他のガソリン基材の配合は特に制限されないが、具体的には例えば、原油蒸留装置、ナフサ改質装置、アルキレーション装置等から得られるプロパンを中心とした直留系プロパン留分、それらを脱硫した直留系脱硫プロパン留分、接触分解装置等から得られるプロパン・プロピレンを中心とした分解系プロパン留分、原油を常圧蒸留して得られるナフサ留分(フルレンジナフサ)、ナフサの軽質留分(軽質ナフサ)、ナフサの重質留分(重質ナフサ)、フルレンジナフサを脱硫した脱硫フルレンジナフサ、軽質ナフサを脱硫した脱硫軽質ナフサ、重質ナフサを脱硫した脱硫重質ナフサ、軽質ナフサを異性化装置でイソパラフィンに転化して得られる異性化ガソリン、イソブタン等の炭化水素に低級オレフィンを付加(アルキル化)することによって得られるアルキレート、接触改質法で得られる改質ガソリン、改質ガソリンより芳香族分を抽出した残分であるラフィネート、改質ガソリンの軽質留分(軽質改質ガソリン)、改質ガソリンの中重質留分(中重質改質ガソリン)、改質ガソリンの重質留分(重質改質ガソリン)、水素化分解法で得られる水素化分解ガソリン、及び天然ガス等を一酸化炭素と水素に分解した後にF-T(Fischer-Tropsch)合成で得られるGTL(Gas to Liquids)の軽質留分等の基材を1種又は2種以上を混合することができる。これらのガソリン基材の中でも、重質ナフサ、軽質改質ガソリン、中質改質ガソリン、アルキレートなどの基材が好ましく用いられる。 In the method for producing a gasoline composition according to the present invention, as long as a predetermined amount of a predetermined cracked reformed gasoline base, a catalytic cracked gasoline base, and a hydrocarbon base having 4 carbon atoms is blended in a predetermined amount, other gasoline bases are blended. Are not particularly limited, but specifically, for example, straight-run propane fractions mainly composed of propane obtained from crude oil distillation equipment, naphtha reforming equipment, alkylation equipment, etc., straight-run desulfurization propane fractions obtained by desulfurizing them. , Propane / propylene cracked propane fraction obtained from catalytic crackers, naphtha fraction (full range naphtha) obtained by atmospheric distillation of crude oil, naphtha light fraction (light naphtha), naphtha Heavy fraction (heavy naphtha), desulfurized full range naphtha desulfurized full range naphtha, desulfurized light naphtha desulfurized light naphtha, desulfurized heavy desulfurized heavy naphtha Alkaline obtained by adding (alkylating) lower olefins to hydrocarbons such as isomerized gasoline and isobutane obtained by converting fusa and light naphtha into isoparaffin using an isomerizer, modified by catalytic reforming method Quality raffinate, a residue of aromatics extracted from reformed gasoline, light fraction of reformed gasoline (light reformed gasoline), medium heavy fraction of reformed gasoline (medium heavy reformed gasoline) FT (Fischer-Tropsch) after cracking heavy fraction of reformed gasoline (heavy reformed gasoline), hydrocracked gasoline obtained by hydrocracking process, and natural gas into carbon monoxide and hydrogen ) A substrate such as a light fraction of GTL (Gas to Liquids) obtained by synthesis can be mixed with one or more. Among these gasoline base materials, base materials such as heavy naphtha, light reformed gasoline, medium quality reformed gasoline and alkylate are preferably used.
 本発明のガソリン組成物の製造方法により、リサーチ法オクタン価(RON)が89以上96未満のレギュラーガソリン組成物、リサーチ法オクタン価(RON)が96以上105未満のプレミアムガソリン組成物を製造することができる。
 プレミアムガソリン仕様車で使用されるガソリン組成物のリサーチ法オクタン価(RON)は、ノッキングを防止し、加速性及び運転性を向上させる点から、96以上であることが必要であり、98以上であることが好ましい。一方、走行時の二酸化炭素排出量の低減量をガソリン組成物の製造時の二酸化炭素排出量の増加量よりも大きくするために、105未満である。また、モーター法オクタン価(MON)は、高速走行中の耐ノッキング性能の改善の点から、85以上であることが好ましい。
 レギュラーガソリン仕様車で使用されるガソリン組成物のリサーチ法オクタン価(RON)は、ノッキングを防止し、加速性及び運転性を向上させる点から、89以上であることが必要であり、90以上であることが好ましい。一方、走行時の二酸化炭素排出量の低減量をガソリン組成物の製造時の二酸化炭素排出量の増加量よりも大きくするために、96未満である。また、モーター法オクタン価(MON)は、高速走行中の耐ノッキング性能の改善の点から、80以上であることが好ましい。
 なお、本発明でいうリサーチ法オクタン価及びモーター法オクタン価とは、それぞれJIS K2280「オクタン価及びセタン価試験方法」により測定されるリサーチ法オクタン価およびモーター法オクタン価を意味する。
According to the method for producing a gasoline composition of the present invention, a regular gasoline composition having a research octane number (RON) of 89 or more and less than 96 and a premium gasoline composition having a research method octane number (RON) of 96 or more and less than 105 can be produced. .
The research octane number (RON) of the gasoline composition used in the premium gasoline specification vehicle is required to be 96 or more from the viewpoint of preventing knocking and improving the acceleration performance and driving performance, and is 98 or more. It is preferable. On the other hand, in order to make the reduction amount of the carbon dioxide emission amount at the time of traveling larger than the increase amount of the carbon dioxide emission amount during the production of the gasoline composition, it is less than 105. In addition, the motor octane number (MON) is preferably 85 or more from the viewpoint of improving the anti-knocking performance during high-speed traveling.
The research method octane number (RON) of the gasoline composition used in the regular gasoline specification vehicle is required to be 89 or more and 90 or more from the viewpoint of preventing knocking and improving acceleration performance and driving performance. It is preferable. On the other hand, in order to make the reduction amount of the carbon dioxide emission amount at the time of traveling larger than the increase amount of the carbon dioxide emission amount at the time of manufacturing the gasoline composition, it is less than 96. Further, the motor octane number (MON) is preferably 80 or more from the viewpoint of improving the anti-knocking performance during high-speed traveling.
The research method octane number and the motor method octane number referred to in the present invention mean the research method octane number and the motor method octane number measured by JIS K2280 “Octane number and cetane number test method”, respectively.
 本発明のガソリン組成物においては、エンジンの出力性能を確保する観点から、沸点範囲が100~150℃にある留分の15℃における密度が、0.730g/cm以上であることが好ましく、0.860g/cm以下であることが好ましい。
 また、本発明のガソリン組成物の15℃における密度(組成物全体の密度)は、0.783g/cm以下であることが好ましく、0.765g/cm以下がより好ましい。また、下限は0.710g/cm以上であることが好ましい。ガソリンの密度が0.710g/cmに満たない場合は燃費が悪化する可能性があり、一方、0.783g/cmを超える場合は加速性の悪化やプラグのくすぶりを生じる可能性がある。
 なお、本発明でいう密度とは、JIS K2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を意味する。
In the gasoline composition of the present invention, from the viewpoint of securing the output performance of the engine, the density at 15 ° C. of a fraction having a boiling point range of 100 to 150 ° C. is preferably 0.730 g / cm 3 or more, It is preferably 0.860 g / cm 3 or less.
The density at 15 ℃ gasoline compositions of the present invention (the density of the overall composition) is preferably 0.783g / cm 3 or less, 0.765 g / cm 3 or less is more preferable. The lower limit is preferably 0.710 g / cm 3 or more. If the density of the gasoline is less than 0.710 g / cm 3 , the fuel efficiency may be deteriorated. On the other hand, if it exceeds 0.783 g / cm 3 , the acceleration performance may be deteriorated and the plug may be smoldered. .
In addition, the density as used in the field of this invention means the density measured by JISK2249 "The density test method and density / mass / capacity conversion table of crude oil and petroleum products".
 本発明のガソリン組成物の硫黄分の含有量は10質量ppm以下であることが好ましく、8質量ppm以下であることがより好ましい。硫黄分の含有量が10質量ppmを超える場合、排出ガス処理触媒の性能に悪影響を及ぼし、排出ガス中のNOx、CO、HCの濃度が高くなる可能性があり、また、ベンゼンの排出量も増加する可能性がある。なお、本発明でいう硫黄分の含有量とは、JIS K2541「原油及び石油製品-硫黄分試験方法」により測定される硫黄含有量を意味する。 The sulfur content of the gasoline composition of the present invention is preferably 10 mass ppm or less, and more preferably 8 mass ppm or less. If the sulfur content exceeds 10 ppm by mass, the performance of the exhaust gas treatment catalyst may be adversely affected, and the concentration of NOx, CO, and HC in the exhaust gas may increase, and the amount of benzene emitted is also high. May increase. The sulfur content in the present invention means the sulfur content measured by JIS K2541 “Crude oil and petroleum products—Sulfur content test method”.
 本発明に係るガソリン組成物がプレミアムガソリン組成物のときは、ガソリン組成物中の全芳香族分は45容量%以下であることが好ましく、44容量%以下がより好ましい。
 また本発明に係るガソリン組成物がレギュラーガソリン組成物のときは、ガソリン組成物中の全芳香族分は35容量%以下であることが好ましい。
 本発明のガソリン組成物に含まれる芳香族分には、例えば、ガソリン基材に由来する炭素数6のベンゼン、炭素数7のトルエン、炭素数8のキシレンやエチルベンゼン、炭素数9の1,2,4-トリメチルベンゼンや1-メチル-3-エチルベンゼン等、炭素数10の1,3-ジエチルベンゼン等が包含される。
When the gasoline composition according to the present invention is a premium gasoline composition, the total aromatic content in the gasoline composition is preferably 45% by volume or less, and more preferably 44% by volume or less.
When the gasoline composition according to the present invention is a regular gasoline composition, the total aromatic content in the gasoline composition is preferably 35% by volume or less.
The aromatic component contained in the gasoline composition of the present invention includes, for example, benzene having 6 carbon atoms, toluene having 7 carbon atoms, xylene and ethylbenzene having 8 carbon atoms, and 1,2 having 9 carbon atoms. , 4-trimethylbenzene, 1-methyl-3-ethylbenzene and the like, and C10-containing 1,3-diethylbenzene and the like are included.
 本発明のガソリン組成物において、ガソリン組成物中の全芳香族分の含有量に対する分解改質ガソリン基材由来の芳香族分の含有量が下記式(1)を満たすことが好ましい。なお、本発明でいう「分解改質ガソリン基材由来の芳香族分」及び「ガソリン組成物中の全芳香族分の含有量」とは、JIS K2536「石油製品-成分試験方法」に準拠して測定した分解改質ガソリン基材由来の芳香族分の含有量(単位:容量%)及びガソリン組成物中の全芳香族分の含有量(単位:容量%)を意味する。
   0.1≦A/B≦1.0   (1)
(式中、Aは分解改質ガソリン基材由来の芳香族分の含有量(容量%)、Bはガソリン組成物中の全芳香族分の含有量(容量%)を示す。)
In the gasoline composition of the present invention, it is preferable that the aromatic content derived from the cracked and reformed gasoline base relative to the total aromatic content in the gasoline composition satisfies the following formula (1). In the present invention, “aromatic content derived from cracked and reformed gasoline base material” and “content of total aromatic content in gasoline composition” are based on JIS K2536 “Petroleum products-component test method”. Means the aromatic content (unit: volume%) derived from the cracked and reformed gasoline base material and the total aromatic content (unit: volume%) in the gasoline composition.
0.1 ≦ A / B ≦ 1.0 (1)
(In the formula, A represents the content (volume%) of the aromatic component derived from the cracked and reformed gasoline base material, and B represents the content (volume%) of the total aromatic content in the gasoline composition.)
 また、燃焼室デポジットの低減と排出ガスの低減の観点から、上記式(1)で示されるガソリン組成物中の全芳香族分の含有量に対する分解改質ガソリン基材由来の芳香族分の含有量の比(A/B)が0.2以上であることがより好ましく、0.3以上がさらに好ましい。 In addition, from the viewpoint of reduction of combustion chamber deposits and reduction of exhaust gas, the content of aromatics derived from cracked and reformed gasoline base relative to the content of total aromatics in the gasoline composition represented by the above formula (1) The ratio (A / B) of the amount is more preferably 0.2 or more, and further preferably 0.3 or more.
 本発明のガソリン組成物においては、ガソリン組成物中の全芳香族分の含有量に対する分解改質ガソリン基材由来の芳香族分の含有量が上記式(1)を満たせば、芳香族分の内訳は特に制限されないが、本発明に係るガソリン組成物がプレミアムガソリン組成物のときは、ガソリン組成物中の炭素数9以上の芳香族炭化水素の割合はガソリン全量に対し30容量%以下であることが好ましく、25容量%以下であることがより好ましい。また、本発明に係るガソリン組成物がレギュラーガソリン組成物のときは、ガソリン組成物中の炭素数9以上の芳香族炭化水素の割合はガソリン全量に対し20容量%以下であることが好ましく、18容量%以下であることがより好ましく、15容量%以下であることがさらに好ましい。 In the gasoline composition of the present invention, if the content of the aromatic component derived from the cracked and reformed gasoline base relative to the total aromatic content in the gasoline composition satisfies the above formula (1), the aromatic content The breakdown is not particularly limited, but when the gasoline composition according to the present invention is a premium gasoline composition, the proportion of aromatic hydrocarbons having 9 or more carbon atoms in the gasoline composition is 30% by volume or less with respect to the total amount of gasoline. It is preferably 25% by volume or less. Further, when the gasoline composition according to the present invention is a regular gasoline composition, the proportion of aromatic hydrocarbons having 9 or more carbon atoms in the gasoline composition is preferably 20% by volume or less with respect to the total amount of gasoline. More preferably, it is not more than 15% by volume, and still more preferably not more than 15% by volume.
 本発明のガソリン組成物におけるベンゼン含有量は1容量%以下であることが好ましく、0.5容量%以下であることがより好ましい。なお、本発明でいうベンゼン含有量とは、JIS K2536「石油製品-成分試験方法」により測定した値を意味する。 Benzene content in the gasoline composition of the present invention is preferably 1% by volume or less, and more preferably 0.5% by volume or less. The benzene content referred to in the present invention means a value measured by JIS K2536 “Petroleum product-component test method”.
 本発明のガソリン組成物のオレフィン分の含有量は30容量%以下であることが好ましく、25容量%以下であることがより好ましい。オレフィン分が30容量%を超えると、ガソリンの酸化安定性を悪化させ吸気バルブデポジットを増加させる、また、エンジン排ガスを悪化させる可能性がある。なお、本発明でいうオレフィン分とは、JIS K2536「石油製品-成分試験方法」に準拠して測定されるガソリン組成物中のオレフィン分の含有量(容量%)を意味する。 The content of olefin in the gasoline composition of the present invention is preferably 30% by volume or less, and more preferably 25% by volume or less. When the olefin content exceeds 30% by volume, there is a possibility that the oxidation stability of gasoline is deteriorated and intake valve deposit is increased, and engine exhaust gas is deteriorated. The olefin content referred to in the present invention means the content (volume%) of the olefin content in the gasoline composition measured in accordance with JIS K2536 “Petroleum product-component test method”.
 本発明のガソリン組成物の蒸留性状に関し、その10容量%留出温度(T10)は、70℃以下であることが好ましく、65℃以下であることがより好ましい。T10が70℃を超える場合には、低温始動性に不具合を生じる可能性がある。一方、T10は35℃以上であることが好ましい。T10が35℃に満たない場合は排出ガス中の炭化水素が増加する可能性があり、また、ベーパーロックにより高温運転性の不具合を生じる可能性がある。 Regarding the distillation properties of the gasoline composition of the present invention, the 10% by volume distillation temperature (T10) is preferably 70 ° C. or lower, more preferably 65 ° C. or lower. When T10 exceeds 70 ° C., there is a possibility that a problem occurs in the low-temperature startability. On the other hand, T10 is preferably 35 ° C. or higher. If T10 is less than 35 ° C., hydrocarbons in the exhaust gas may increase, and vapor lock may cause a problem in high-temperature operability.
 本発明のガソリン組成物の50容量%留出温度(T50)は、加速性の向上及び排出ガス中の炭化水素(HC)の増加の抑制の観点から、110℃以下であることが好ましく、105℃以下がより好ましく、100℃以下がさらに好ましく、90℃以下が最も好ましいい。また、T50は、燃費の悪化を防止する観点から、75℃以上であることが好ましい。 The 50 volume% distillation temperature (T50) of the gasoline composition of the present invention is preferably 110 ° C. or lower from the viewpoint of improving acceleration and suppressing increase in hydrocarbons (HC) in the exhaust gas. ° C or lower is more preferable, 100 ° C or lower is further preferable, and 90 ° C or lower is most preferable. T50 is preferably 75 ° C. or higher from the viewpoint of preventing deterioration of fuel consumption.
 本発明のガソリン組成物の90容量%留出温度(T90)は、冷機時の中低温運転性における不具合の防止、排出ガス中の炭化水素の増加の抑制、エンジンオイルのガソリンによる希釈の増加の抑制、吸気バルブデポジットの増加の抑制、燃焼室デポジットの増加の抑制、エンジンオイルの劣化の抑制、及びスラッジの発生の抑制の観点から、180℃以下であることが好ましく、170℃以下であることがより好ましい。また、T90は、燃費の悪化を防止する観点から、115℃以上であることが好ましい。 The 90 volume% distillation temperature (T90) of the gasoline composition of the present invention prevents malfunctions in low-temperature operability during cold operation, suppresses increase in hydrocarbons in exhaust gas, and increases dilution of engine oil with gasoline. From the viewpoints of suppression, suppression of increase in intake valve deposit, suppression of increase in combustion chamber deposit, suppression of engine oil deterioration, and generation of sludge, the temperature is preferably 180 ° C or lower, and 170 ° C or lower. Is more preferable. Further, T90 is preferably 115 ° C. or higher from the viewpoint of preventing deterioration of fuel consumption.
 本発明のガソリン組成物の蒸留終点(EP)は、吸気バルブデポジット及び燃焼室デポジットの増加の抑制、並びにプラグくすぶりの防止の観点から、220℃以下であることが好ましく、215℃以下であることがより好ましく、210℃以下であることがさらに好ましく、200℃以下であることが特に好ましい。 The distillation end point (EP) of the gasoline composition of the present invention is preferably 220 ° C. or less, preferably from 220 ° C. or less, from the viewpoints of suppressing an increase in intake valve deposits and combustion chamber deposits and preventing plug smoldering. Is more preferably 210 ° C. or less, and particularly preferably 200 ° C. or less.
 本発明のガソリン組成物の70℃留出量(E70)は、加速性の向上及び排出ガス中の炭化水素(HC)の増加の抑制の観点から45容量%以下であることが好ましく、40容量%以下であることがより好ましい。また、E70は燃費悪化を防止する観点から25容量%以上であることが好ましい。 The 70 ° C. distillate (E70) of the gasoline composition of the present invention is preferably 45% by volume or less from the viewpoint of improving acceleration and suppressing increase in hydrocarbons (HC) in the exhaust gas, and is 40 volumes. % Or less is more preferable. Moreover, it is preferable that E70 is 25 volume% or more from a viewpoint of preventing a fuel consumption deterioration.
 なお、本発明でいうT10、T50、T90、EPおよびE70とは、それぞれJIS K2254「石油製品-蒸留試験方法」によって測定されるT10、T50、T90、EPおよびE70を意味する。 In addition, T10, T50, T90, EP and E70 in the present invention mean T10, T50, T90, EP and E70 measured by JIS K2254 “Petroleum product-distillation test method”, respectively.
 本発明のガソリン組成物においては、ジエン類の含有量は、ガソリン組成物の貯蔵安定性を確保する観点から、組成物全量を基準として、0.1容量%以下であることが好ましく、0.05容量%以下であることがより好ましく、0.01容量%以下であることが更に好ましい。 In the gasoline composition of the present invention, the content of dienes is preferably 0.1% by volume or less based on the total amount of the composition from the viewpoint of ensuring the storage stability of the gasoline composition. It is more preferably at most 05% by volume, still more preferably at most 0.01% by volume.
 本発明のガソリン組成物において、マンガンの含有量は2質量ppm以下であることが好ましく、鉄の含有量は2質量ppm以下であることが好ましく、ナトリウムの含有量は2質量ppm以下であることが好ましく、カリウムの含有量は2質量ppm以下であることが好ましく、リンの含有量は2質量ppm以下であることが好ましい。これら金属分が上記上限値を超えた場合は、排出ガス浄化触媒上への蓄積量の増加、触媒担体の劣化、空燃比センサの劣化等により排出ガス浄化システムの効率を低下させる恐れがある。なお、本発明でいうマンガン、鉄、ナトリウムの含有量は「燃焼灰化-誘導結合プラズマ発光法」、カリウムの含有量は「燃焼灰化-原子吸光法」、リンの含有量はASTMD3231”Standard Test Method for Phosphorus in Gasoline”により測定される値を意味する。 In the gasoline composition of the present invention, the manganese content is preferably 2 mass ppm or less, the iron content is preferably 2 mass ppm or less, and the sodium content is 2 mass ppm or less. The potassium content is preferably 2 mass ppm or less, and the phosphorus content is preferably 2 mass ppm or less. If these metal components exceed the upper limit, the efficiency of the exhaust gas purification system may be reduced due to an increase in the amount accumulated on the exhaust gas purification catalyst, deterioration of the catalyst carrier, deterioration of the air-fuel ratio sensor, or the like. In the present invention, the contents of manganese, iron, and sodium are “combustion ashing—inductively coupled plasma emission method”, the potassium content is “combustion ashing—atomic absorption method”, and the phosphorus content is ASTM D3231 “Standard”. It means the value measured by “Test Method for Phosphorus in Gasoline”.
 「燃焼灰化-誘導結合プラズマ発光法」及び「燃焼灰化-原子吸光法」の測定は、下記(i)~(vi)に示す手順に従って行うことができる。
(i)試料20gを白金皿に採取する。
(ii)成分元素の揮散を抑えるために粉末硫黄0.4gを加え、サンドバス上で150℃で1時間おき、揮発分を除く。
(iii)残留分を燃焼させる。
(iv)500℃の電気炉で2~3時間灰化する。
(v)2~3mLの濃硫酸で溶解し、20mLに定容する。
(vi)マンガン、鉄、ナトリウムの含有量は誘導結合プラズマ発光分光分析計(島津製作所社製ICPS-8000)、リンの含有量は原子吸光光度計(日立製作所社製Z6100)を用いて分析する。
The “combustion ashing-inductively coupled plasma emission method” and “combustion ashing-atomic absorption method” can be measured according to the procedures shown in the following (i) to (vi).
(I) A 20 g sample is taken on a platinum dish.
(Ii) 0.4 g of powdered sulfur is added to suppress the volatilization of the component elements, and the volatile matter is removed at 150 ° C. for 1 hour on a sand bath.
(Iii) Burn the residue.
(Iv) Ashing in an electric furnace at 500 ° C. for 2 to 3 hours.
(V) Dissolve in 2 to 3 mL of concentrated sulfuric acid and make up to 20 mL.
(Vi) Manganese, iron, and sodium contents are analyzed using an inductively coupled plasma emission spectrometer (ICPS-8000 manufactured by Shimadzu Corporation), and phosphorus contents are analyzed using an atomic absorption photometer (Hitachi Z6100). .
 本発明のガソリン組成物のリード蒸気圧(RVP)はガソリンが使用される季節や地域によって調整する必要があるが、低温始動性やベーパーロックなどによる運転性の不具合防止の点から、一般に夏期(5月~9月)には好ましくは44~65kPa、より好ましくは50~65kPa、最も好ましくは55~65kPaに調整することが望ましい。一方、冬期(10月~4月)では、好ましくは65~93kPa、より好ましくは70~93kPa、最も好ましくは70~90kPaに調整することが望ましい。なお、本発明でいうリード蒸気圧とは、JIS K2258「原油及び燃料油蒸気圧試験方法(リード法)」により測定されるリード蒸気圧(RVP)を意味する。 The lead vapor pressure (RVP) of the gasoline composition of the present invention needs to be adjusted depending on the season and region in which the gasoline is used. However, in general, the summer ( In the period from May to September, it is desirable to adjust to 44 to 65 kPa, more preferably 50 to 65 kPa, and most preferably 55 to 65 kPa. On the other hand, in the winter season (October to April), it is desirable to adjust to 65 to 93 kPa, more preferably 70 to 93 kPa, and most preferably 70 to 90 kPa. The reed vapor pressure in the present invention means a reed vapor pressure (RVP) measured by JIS K2258 “Crude oil and fuel oil vapor pressure test method (reed method)”.
 本発明のガソリン組成物の酸化安定度は240分以上であることが好ましく、480分以上であることがより好ましく、900分以上であることが最も好ましい。酸化安定度が240分に満たない場合は、貯蔵中にガムが生成する可能性がある。なお、本発明でいう酸化安定度とは、JIS K2287「ガソリン酸化安定度試験方法(誘導期間法)」によって測定した値を意味する。 The oxidation stability of the gasoline composition of the present invention is preferably 240 minutes or more, more preferably 480 minutes or more, and most preferably 900 minutes or more. If the oxidative stability is less than 240 minutes, gums can form during storage. In addition, the oxidation stability as used in the field of this invention means the value measured by JIS K2287 "gasoline oxidation stability test method (induction period method)".
 発明のガソリン組成物の銅板腐食(50℃、3h)は1以下であることが好ましく、1aであるのがより好ましい。銅板腐食が1を超える場合は、燃料系統の導管が腐食する可能性がある。なお、本発明でいう銅板腐食とは、JIS K2513「石油製品-銅板腐食試験方法」(試験温度50℃、試験時間3時間)に準拠して測定した値を意味する。 The copper plate corrosion (50 ° C., 3 h) of the gasoline composition of the invention is preferably 1 or less, more preferably 1a. If the copper plate corrosion exceeds 1, the fuel system conduit may corrode. The copper plate corrosion referred to in the present invention means a value measured according to JIS K2513 “Petroleum products—copper plate corrosion test method” (test temperature 50 ° C., test time 3 hours).
 本発明のガソリン組成物の未洗実在ガム量は20mg/100mL以下であることが好ましく、18mg/100mL以下であることがより好ましい。また洗浄実在ガム量は、5mg/100mL以下であることが好ましく、2mg/100mL以下であることがより好ましく、1mg/100mL未満であることが更に好ましい。未洗実在ガム量及び洗浄実在ガム量が上記上限値を超えた場合は、燃料導入系統において析出物が生成したり、吸入バルブが膠着したりするおそれがある。なお、本発明でいう未洗実在ガム量および洗浄実在ガム量とは、JIS K2261「石油製品-自動車ガソリン及び航空燃料油-実在ガム試験方法-噴射蒸発法」により測定した値を意味する。 The unwashed actual gum content of the gasoline composition of the present invention is preferably 20 mg / 100 mL or less, and more preferably 18 mg / 100 mL or less. Moreover, it is preferable that it is 5 mg / 100 mL or less, it is more preferable that it is 2 mg / 100 mL or less, and it is still more preferable that it is less than 1 mg / 100 mL. When the unwashed actual gum amount and the washed actual gum amount exceed the above upper limit, precipitates may be generated in the fuel introduction system, or the suction valve may become stuck. The unwashed actual gum amount and the washed actual gum amount in the present invention mean values measured by JIS K2261 “Petroleum products—automobile gasoline and aviation fuel oil—existing gum test method—injection evaporation method”.
 本発明のガソリン組成物の灯油混入量は4容量%以下であることが好ましく、1容量%以下であることがより好ましい。なお、本発明でいう灯油混入量とは、JIS K2536「石油製品-成分試験方法」により測定される値を意味する。 The amount of kerosene mixed in the gasoline composition of the present invention is preferably 4% by volume or less, and more preferably 1% by volume or less. The amount of kerosene mixed in the present invention means a value measured by JIS K2536 “Petroleum product-component test method”.
 また、本発明に係るガソリン組成物の製造方法において、ガソリン基材等に本来的に含まれ得る含酸素化合物の他に、必要に応じて含酸素化合物を更に配合してもよい。配合する含酸素化合物としては、例えば、炭素数2~4のアルコール類、炭素数4~8のエーテル類などが含まれる。具体的な含酸素化合物としては、例えば、エタノール、メチル-tert-ブチルエーテル(MTBE)、エチル-tert-ブチルエーテル(ETBE)、tert-アミルメチルエーテル(TAME)、tert-アミルエチルエーテルなどが挙げられる。なお、メタノールは排出ガス中のアルデヒド濃度が高くなる可能性があり、腐食性もあるので好ましくない。 Further, in the method for producing a gasoline composition according to the present invention, an oxygen-containing compound may be further blended as necessary in addition to the oxygen-containing compound that can be inherently contained in a gasoline base material. Examples of the oxygen-containing compound to be blended include alcohols having 2 to 4 carbon atoms and ethers having 4 to 8 carbon atoms. Specific examples of the oxygen-containing compound include ethanol, methyl-tert-butyl ether (MTBE), ethyl-tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-amyl ethyl ether. Methanol is not preferable because the aldehyde concentration in the exhaust gas may be high and corrosive.
 本発明のガソリン組成物における含酸素化合物の含有量は、組成物全量を基準として、酸素元素換算で、5.0質量%以下であることが好ましく、より好ましくは3.0質量%以下、最も好ましくは2.0質量%以下である。5.0質量%を超える場合は、排出ガス中のNOxが増加する可能性がある。なお、ここでいう含酸素化合物の含有量とは、ガソリン基材等に本来的に含まれ得る含酸素化合物の含有量と、添加剤として添加される上記含酸素化合物の含有量との合計を意味する。 The content of the oxygen-containing compound in the gasoline composition of the present invention is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, most preferably in terms of oxygen element, based on the total amount of the composition. Preferably it is 2.0 mass% or less. When it exceeds 5.0 mass%, NOx in exhaust gas may increase. The content of oxygen-containing compounds referred to here is the sum of the contents of oxygen-containing compounds that can be inherently contained in gasoline base materials and the like, and the contents of the oxygen-containing compounds added as additives. means.
 また、本発明に係るガソリン組成物の製造方法において、その酸化安定度を向上させるために、酸化防止剤をさらに配合することが好ましい。酸化防止剤としては、具体的には、N,N’-ジイソプロピル-p-フェニレンジアミン、N,N’-ジイソブチル-p-フェニレンジアミン、2,6-ジ-t-ブチル-4-メチルフェノール、ヒンダードフェノール類などのガソリン酸化防止剤として公知の化合物が用いることができる。 Further, in the method for producing a gasoline composition according to the present invention, it is preferable to further add an antioxidant in order to improve the oxidation stability. Specific examples of the antioxidant include N, N′-diisopropyl-p-phenylenediamine, N, N′-diisobutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, Known compounds such as hindered phenols can be used as gasoline antioxidants.
 さらに、本発明に係るガソリン組成物の製造方法において、金属不活性化剤を配合することが好ましい。金属不活性化剤としては、N,N’-ジサリチリデン-1,2-ジアミノプロパンのようなアミンカルボニル縮合化合物等が挙げられる。金属不活性化剤の配合量は、ガソリン組成物全量を基準として、好ましくは0~100g/kL、より好ましくは0~10g/kLである。 Furthermore, in the method for producing a gasoline composition according to the present invention, it is preferable to add a metal deactivator. Examples of the metal deactivator include amine carbonyl condensed compounds such as N, N′-disalicylidene-1,2-diaminopropane. The compounding amount of the metal deactivator is preferably 0 to 100 g / kL, more preferably 0 to 10 g / kL based on the total amount of the gasoline composition.
 また、本発明に係るガソリン組成物の製造方法において、本発明に係るガソリン組成物がプレミアムガソリン組成物のときは、吸気バルブデポジットの防止効果及び燃焼室デポジットの低減効果を向上できる点から、清浄分散剤を含有することが好ましい。清浄分散剤としては、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどのガソリン清浄分散剤などが挙げられる。これらの中でも空気中300℃で熱分解を行った場合にその残分が無いものが好ましく、ポリイソブテニルアミン及び/またはポリエーテルアミンが特に好ましい。
 清浄分散剤の含有量は、組成物全量基準で、80~500mg/Lであることが好ましい。吸気バルブデポジットを防止し、燃焼室デポジットをより低減させる点から、100~450mg/Lがより好ましく、200~300mg/Lがさらに好ましい。
Further, in the method for producing a gasoline composition according to the present invention, when the gasoline composition according to the present invention is a premium gasoline composition, the effect of preventing the intake valve deposit and the effect of reducing the combustion chamber deposit can be improved. It is preferable to contain a dispersing agent. Examples of the cleaning dispersant include gasoline cleaning dispersants such as succinimide, polyalkylamine, and polyetheramine. Among these, those having no residue when thermally decomposing at 300 ° C. in air are preferable, and polyisobutenylamine and / or polyetheramine are particularly preferable.
The content of the cleaning dispersant is preferably 80 to 500 mg / L based on the total amount of the composition. 100 to 450 mg / L is more preferable, and 200 to 300 mg / L is more preferable from the viewpoint of preventing the intake valve deposit and further reducing the combustion chamber deposit.
 また、本発明に係るガソリン組成物の製造方法において、有機リン系化合物などの表面着火防止剤;多価アルコールあるいはそのエーテルなどの氷結防止剤;有機酸のアルカリ金属塩またはアルカリ土類金属塩;高級アルコール硫酸エステルなどの助燃剤;アニオン系界面活性剤;カチオン系界面活性剤;両性界面活性剤などの帯電防止剤;アゾ染料などの着色剤;有機カルボン酸あるいはそれらの誘導体類;アルケニルコハク酸エステル等の防錆剤;ソルビタンエステル類等の水抜き剤;キリザニン、クマリンなどの識別剤;天然精油合成香料などの着臭剤等を必要に応じて配合しても構わない。これらの添加剤は、1種を単独で、または、2種以上を組み合せて添加することができる。これらの添加剤の含有量の合計は組成物全量基準で0.1質量%以下であることが好ましい。 Further, in the method for producing a gasoline composition according to the present invention, a surface ignition preventing agent such as an organic phosphorus compound; an anti-icing agent such as a polyhydric alcohol or an ether thereof; an alkali metal salt or an alkaline earth metal salt of an organic acid; Ancillary surfactants; cationic surfactants; antistatic agents such as amphoteric surfactants; colorants such as azo dyes; organic carboxylic acids or their derivatives; alkenyl succinic acid Rust preventive agents such as esters; draining agents such as sorbitan esters; discriminating agents such as kilyzanine and coumarin; and odorants such as natural essential oil synthetic fragrances may be blended as necessary. These additives can be added singly or in combination of two or more. The total content of these additives is preferably 0.1% by mass or less based on the total amount of the composition.
 以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(ガソリン基材)
 ガソリン組成物を調製するための基材として、ブタン、軽質分解ガソリン、中質分解ガソリン、重質分解ガソリン、フルレンジ分解ガソリン、軽質直留ガソリン、重質直留ガソリン、中質改質ガソリン、重質改質ガソリンおよび分解改質ガソリン基材を準備した。各基材の性状を表1、2に示す。
(Gasoline base material)
As base materials for preparing gasoline compositions, butane, light cracked gasoline, medium cracked gasoline, heavy cracked gasoline, full range cracked gasoline, light straight run gasoline, heavy straight run gasoline, medium reformed gasoline, heavy Quality reformed gasoline and cracked reformed gasoline base material were prepared. The properties of each substrate are shown in Tables 1 and 2.
 なお、表2に示す分解改質ガソリン基材は以下の方法により得られた基材である。
 流動接触分解軽油LCO(10容量%留出温度が215℃、90容量%留出温度が318℃、15℃における密度が0.9258g/cm、飽和分が23容量%、オレフィン分が2容量%、全芳香族分が75容量%)を、反応温度:538℃、反応圧力:0.3MPaG、LCOと触媒との接触時間が60秒の条件で、流動床反応器にて分解改質反応用触媒(ガリウム0.2質量%およびリン0.7質量%を担持したMFI型ゼオライトにバインダーを含有させたもの)と接触、反応させ、分解改質反応を行った。次いで、分解改質反応生成物を分留し、表2に示す性状を有する分解改質ガソリン基材を製造した。
In addition, the cracking reformed gasoline base material shown in Table 2 is a base material obtained by the following method.
Fluid catalytic cracking light oil LCO (10 vol% distillation temperature is 215 ° C, 90 vol% distillation temperature is 318 ° C, density at 15 ° C is 0.9258 g / cm 3 , saturation is 23 vol%, olefin content is 2 vol %, Total aromatic content is 75 vol%), reaction temperature: 538 ° C., reaction pressure: 0.3 MPaG, contact time between LCO and catalyst is 60 seconds in a fluidized bed reactor. The catalyst was brought into contact with and reacted with a catalyst for use (MFI type zeolite carrying 0.2% by mass of gallium and 0.7% by mass of phosphorus and containing a binder) to carry out a decomposition and reforming reaction. Subsequently, the cracking and reforming reaction product was fractionated to produce cracking and reforming gasoline base materials having the properties shown in Table 2.
[実施例1~5、比較例1~3]
 実施例1~5及び比較例1および比較例3においては、それぞれ表1、2に示す基材用いて表3に示す性状を有するガソリン組成物を調製した。また、比較例2のガソリン組成物として、市販されているレギュラーガソリンを準備した。
 なお、ガソリン基材およびガソリン組成物の性状測定は、上述の試験方法、測定法に準拠して行った。
[Examples 1 to 5, Comparative Examples 1 to 3]
In Examples 1 to 5 and Comparative Examples 1 and 3, gasoline compositions having the properties shown in Table 3 were prepared using the base materials shown in Tables 1 and 2, respectively. In addition, as the gasoline composition of Comparative Example 2, commercially available regular gasoline was prepared.
In addition, the property measurement of the gasoline base material and the gasoline composition was performed based on the above-described test method and measurement method.
[実施例6~10、比較例4~6]
 実施例6~10及び比較例4および比較例6においては、それぞれ表1、2に示す基材用いて表4に示す性状を有するガソリン組成物を調製した。また、比較例5のガソリン組成物として、市販されているハイオクガソリンを準備した。
[Examples 6 to 10, Comparative Examples 4 to 6]
In Examples 6 to 10 and Comparative Examples 4 and 6, gasoline compositions having the properties shown in Table 4 were prepared using the base materials shown in Tables 1 and 2, respectively. Moreover, as a gasoline composition of Comparative Example 5, commercially available high-octane gasoline was prepared.
[燃費測定・排出二酸化炭素測定]
 実施例1~5及び比較例1~3の各ガソリン組成物について、下記の試験車両Aを使用して10・15モード走行による燃費測定および排出二酸化炭素の測定を実施した。得られた結果を表3に示す。なお、燃料性状の影響をきちんと把握するため、排出ガス測定値はエンジンアウトの結果である。
 実施例6~10及び比較例4~6の各ガソリン組成物について、下記の試験車両Bを使用して10・15モード走行による燃費測定および排出二酸化炭素の測定を実施した。得られた結果を表3に示す。なお、燃料性状の影響をきちんと把握するため、排出ガス測定値はエンジンアウトの結果である。
[Measurement of fuel consumption and emission carbon dioxide]
For each of the gasoline compositions of Examples 1 to 5 and Comparative Examples 1 to 3, the fuel consumption measurement and the measurement of exhaust carbon dioxide were carried out by the 10.15 mode running using the following test vehicle A. The obtained results are shown in Table 3. In addition, in order to grasp the influence of fuel properties properly, the exhaust gas measurement value is a result of engine out.
For the gasoline compositions of Examples 6 to 10 and Comparative Examples 4 to 6, the fuel consumption measurement and the measurement of exhausted carbon dioxide were carried out by the 10.15 mode running using the following test vehicle B. The obtained results are shown in Table 3. In addition, in order to grasp the influence of fuel properties properly, the exhaust gas measurement value is a result of engine out.
(試験車両A)
 エンジン:直列4気筒
 排気量 :1795cc
 噴射方式:マルチポイント式
 駆動方式:FF
(Test vehicle A)
Engine: Inline 4-cylinder Displacement: 1795cc
Injection system: Multi-point system Drive system: FF
(試験車両B)
 エンジン:直列4気筒
 排気量 :1769cc
 噴射方式:マルチポイント式
 駆動方式:FF
(Test vehicle B)
Engine: Inline 4-cylinder Displacement: 1769cc
Injection system: Multi-point system Drive system: FF
[燃焼室デポジット試験]
 実施例1~10及び比較例1~6の各ガソリン組成物について、下記の試験エンジンを使用し、JASO法による燃焼室デポジット試験を実施した。試験後のデポジット量を表3、表4に示す。
(試験エンジン)
 エンジン:直列4気筒
 排気量:2156cc
 噴射方式:マルチポイント式。
[Combustion chamber deposit test]
Each gasoline composition of Examples 1 to 10 and Comparative Examples 1 to 6 was subjected to a combustion chamber deposit test by the JASO method using the following test engine. The deposit amounts after the test are shown in Tables 3 and 4.
(Test engine)
Engine: Inline 4-cylinder Displacement: 2156cc
Injection method: Multipoint type.
 表3、表4に示す通り、実施例1~10のガソリン組成物は、JIS K2202に規定する自動車ガソリンの規格を満足するものであり、また、蒸留性状を維持したまま、燃焼室デポジットを低減するとともに排出ガス(NOx、THC,CO)やCO等の排出ガスも少なくすることを可能としていることが分かる。
 一方、比較例1、市販のレギュラーガソリン(比較例2)、比較例3~4、市販のハイオクガソリン(比較例5)および比較例6は、燃焼室デポジット、排出ガスが実施例のガソリン組成物より悪化していたり、JIS K2202に規定する自動車ガソリンの規格を外れたものとなったりしている。
As shown in Tables 3 and 4, the gasoline compositions of Examples 1 to 10 satisfy the standards for automobile gasoline specified in JIS K2202, and reduce combustion chamber deposits while maintaining distillation properties. It can be seen that exhaust gases (NOx, THC, CO), CO 2 and other exhaust gases can be reduced.
On the other hand, Comparative Example 1, commercially available regular gasoline (Comparative Example 2), Comparative Examples 3 to 4, commercially available high-octane gasoline (Comparative Example 5), and Comparative Example 6 are gasoline compositions whose combustion chamber deposits and exhaust gases are examples. It is getting worse or it is out of the standard of automobile gasoline specified in JIS K2202.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の方法により、オクタン価や蒸留性状を維持したまま、燃焼室デポジットの低減及び排出される二酸化炭素の低減を可能とするガソリン組成物を製造することができるため、産業上きわめて有用である。 The method of the present invention makes it possible to produce a gasoline composition that enables reduction of combustion chamber deposits and reduction of discharged carbon dioxide while maintaining the octane number and distillation properties, which is extremely useful industrially.

Claims (8)

  1.  下記の(1)~(7)の性状を有する分解改質ガソリン基材1~40容量%、接触分解ガソリン基材10~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴するガソリン組成物の製造方法。
     (1)芳香族分が90容量%以上
     (2)オレフィン分が5容量%以下
     (3)炭素数8の芳香族分が5~50容量%
     (4)炭素数9以上の芳香族分が30容量%以下
     (5)硫黄分が20質量ppm以下
     (6)リサーチオクタン価が110以上
     (7)15℃における密度が0.8~0.95g/cm
    Cracked and reformed gasoline base material having the following properties (1) to (7): 1 to 40% by volume, catalytic cracked gasoline base material of 10 to 90% by volume, and C4 hydrocarbon base material of 0.1 to 10 A method for producing a gasoline composition comprising blending at least volume%.
    (1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
    (4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
  2.  下記の(1)~(7)の性状を有する分解改質ガソリン基材1~35容量%、接触分解ガソリン基材10~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴とするリサーチ法オクタン価が89以上96未満であるガソリン組成物の製造方法。
     (1)芳香族分が90容量%以上
     (2)オレフィン分が5容量%以下
     (3)炭素数8の芳香族分が5~50容量%
     (4)炭素数9以上の芳香族分が30容量%以下
     (5)硫黄分が20質量ppm以下
     (6)リサーチオクタン価が110以上
     (7)15℃における密度が0.8~0.95g/cm
    1 to 35% by volume of a cracked and reformed gasoline base material having the following properties (1) to (7), 10 to 90% by volume of a catalytically cracked gasoline base material, and 0.1 to 10 hydrocarbon base material having 4 carbon atoms A method for producing a gasoline composition having a research octane number of 89 or more and less than 96, wherein at least vol% is blended.
    (1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
    (4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
  3.  下記の(1)~(7)の性状を有する分解改質ガソリン基材1~40容量%、軽質接触分解ガソリン基材25~50容量%、かつ軽質接触分解ガソリン基材を含む接触分解ガソリン基材25~90容量%、および炭素数4の炭化水素基材0.1~10容量%を少なくとも配合することを特徴するリサーチ法オクタン価が96以上105未満であるガソリン組成物の製造方法。
     (1)芳香族分が90容量%以上
     (2)オレフィン分が5容量%以下
     (3)炭素数8の芳香族分が5~50容量%
     (4)炭素数9以上の芳香族分が30容量%以下
     (5)硫黄分が20質量ppm以下
     (6)リサーチオクタン価が110以上
     (7)15℃における密度が0.8~0.95g/cm
    A catalytically cracked gasoline base comprising 1 to 40% by volume of a cracked and reformed gasoline base material having the following properties (1) to (7), 25 to 50% by volume of a light catalytic cracked gasoline base material, and a light catalytic cracked gasoline base material A method for producing a gasoline composition having a research octane number of 96 or more and less than 105, characterized by blending at least 25 to 90% by volume of a material and 0.1 to 10% by volume of a hydrocarbon base having 4 carbon atoms.
    (1) Aromatic content is 90 vol% or more (2) Olefin content is 5 vol% or less (3) C8 aromatic content is 5-50 vol%
    (4) Aromatic content of 9 or more carbon atoms is 30 vol% or less (5) Sulfur content is 20 mass ppm or less (6) Research octane number is 110 or more (7) Density at 15 ° C. is 0.8 to 0.95 g / cm 3
  4.  前記ガソリン組成物が以下の(1)~(7)を満たすことを特徴とする請求項1または2に記載のガソリン組成物の製造方法。
     (1)15℃における密度が0.783g/cm以下
     (2)硫黄分が10質量ppm以下
     (3)全芳香族分が35容量%以下
     (4)ベンゼンが1容量%以下
     (5)オレフィン分が30容量%以下
     (6)10容量%留出温度が70℃以下、かつ50容量%留出温度が110℃以下、かつ90容量%留出温度が180℃以下
     (7)留出温度70℃における留出量(E70)が40容量%以下
    The method for producing a gasoline composition according to claim 1 or 2, wherein the gasoline composition satisfies the following (1) to (7).
    (1) Density at 15 ° C. is 0.783 g / cm 3 or less (2) Sulfur content is 10 mass ppm or less (3) Total aromatic content is 35% by volume or less (4) Benzene is 1% by volume or less (5) Olefin 30% by volume or less (6) 10% by volume distillation temperature is 70 ° C. or less, 50% by volume distillation temperature is 110 ° C. or less, and 90% by volume distillation temperature is 180 ° C. or less. (7) Distillation temperature 70 Distillation volume at 70 ℃ (E70) is 40% or less
  5.  前記ガソリン組成物が以下の(1)~(8)を満たすことを特徴とする請求項3に記載のガソリン組成物の製造方法。
     (1)15℃における密度が0.783g/cm以下
     (2)硫黄分が10質量ppm以下
     (3)全芳香族分が45容量%以下
     (4)ベンゼンが1容量%以下
     (5)オレフィン分が30容量%以下
     (6)10容量%留出温度が70℃以下、かつ50容量%留出温度が110℃以下、かつ90容量%留出温度が180℃以下
     (7)留出温度70℃における留出量(E70)が45容量%以下
     (8)清浄分散剤の含有量が80mg/L以上500mg/L以下
    The method for producing a gasoline composition according to claim 3, wherein the gasoline composition satisfies the following (1) to (8).
    (1) Density at 15 ° C. is 0.783 g / cm 3 or less (2) Sulfur content is 10 mass ppm or less (3) Total aromatic content is 45% by volume or less (4) Benzene is 1% by volume or less (5) Olefin 30% by volume or less (6) 10% by volume distillation temperature is 70 ° C. or less, 50% by volume distillation temperature is 110 ° C. or less, and 90% by volume distillation temperature is 180 ° C. or less. (7) Distillation temperature 70 Distillation amount at 70 ° C. (E70) is 45% by volume or less (8) The content of the cleaning dispersant is 80 mg / L or more and 500 mg / L or less
  6.  0.10≦A/B≦1.0を満たすように分解改質ガソリン基材を配合することを特徴とする請求項1~5のいずれかに記載のガソリン組成物の製造方法。
    (Aは分解改質ガソリン基材由来の芳香族分の含有量(容量%)、Bはガソリン組成物中の全芳香族分の含有量(容量%)を示す。)
    6. The method for producing a gasoline composition according to claim 1, wherein the cracked and reformed gasoline base material is blended so as to satisfy 0.10 ≦ A / B ≦ 1.0.
    (A represents the content (volume%) of the aromatic component derived from the cracked and reformed gasoline base material, and B represents the content (volume%) of the total aromatic content in the gasoline composition.)
  7.  前記分解改質ガソリン基材が、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の原料油を中細孔ゼオライトおよび/または大細孔ゼオライトを含有する分解改質反応用触媒と接触させ、反応温度400~650℃、反応圧力1.5MPaG以下、接触時間1~300秒で分解改質反応を行うことにより製造されることを特徴とする請求項1~6のいずれかに記載のガソリン組成物の製造方法。 The cracked and reformed gasoline base material contains a medium oil zeolite and / or a large pore zeolite containing a feedstock having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower. 7. The catalyst according to claim 1, wherein the catalyst is contacted with a catalyst for quality reaction, and subjected to a cracking and reforming reaction at a reaction temperature of 400 to 650 ° C., a reaction pressure of 1.5 MPaG or less, and a contact time of 1 to 300 seconds. The manufacturing method of the gasoline composition in any one of.
  8.  請求項1~7のいずれかに記載のガソリン組成物の製造方法により得られるガソリン組成物。 A gasoline composition obtained by the method for producing a gasoline composition according to any one of claims 1 to 7.
PCT/JP2012/062310 2011-05-26 2012-05-14 Gasoline composition and method for manufacturing same WO2012161017A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011117597A JP5667513B2 (en) 2011-05-26 2011-05-26 Gasoline composition and method for producing the same
JP2011117598A JP5639531B2 (en) 2011-05-26 2011-05-26 Gasoline composition and method for producing the same
JP2011-117597 2011-05-26
JP2011-117598 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161017A1 true WO2012161017A1 (en) 2012-11-29

Family

ID=47217097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062310 WO2012161017A1 (en) 2011-05-26 2012-05-14 Gasoline composition and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012161017A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982734A1 (en) 2014-08-01 2016-02-10 Ekobenz So. z o. o. Fuel mixture, especially for spark ignition engines
WO2018106397A1 (en) * 2016-12-07 2018-06-14 Exxonmobil Research And Engineering Company Combined olefin and oxygenate conversion for aromatics production
US10590353B2 (en) 2016-12-07 2020-03-17 Exxonmobil Research And Engineering Company Integrated oxygenate conversion and olefin oligomerization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124056A (en) * 2002-08-05 2004-04-22 Idemitsu Kosan Co Ltd Unleaded gasoline and gasoline base material used for unleaded gasoline
JP2009227693A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2010116469A (en) * 2008-11-12 2010-05-27 Japan Energy Corp Gasoline composition
JP2010235694A (en) * 2009-03-30 2010-10-21 Jx Nippon Oil & Energy Corp Unleaded gasoline composition for cylinder direct injection type gasoline engine
JP2010275486A (en) * 2009-05-29 2010-12-09 Idemitsu Kosan Co Ltd Gasoline composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124056A (en) * 2002-08-05 2004-04-22 Idemitsu Kosan Co Ltd Unleaded gasoline and gasoline base material used for unleaded gasoline
JP2009227693A (en) * 2008-03-19 2009-10-08 Cosmo Oil Co Ltd Gasoline composition
JP2010116469A (en) * 2008-11-12 2010-05-27 Japan Energy Corp Gasoline composition
JP2010235694A (en) * 2009-03-30 2010-10-21 Jx Nippon Oil & Energy Corp Unleaded gasoline composition for cylinder direct injection type gasoline engine
JP2010275486A (en) * 2009-05-29 2010-12-09 Idemitsu Kosan Co Ltd Gasoline composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982734A1 (en) 2014-08-01 2016-02-10 Ekobenz So. z o. o. Fuel mixture, especially for spark ignition engines
WO2018106397A1 (en) * 2016-12-07 2018-06-14 Exxonmobil Research And Engineering Company Combined olefin and oxygenate conversion for aromatics production
US10590353B2 (en) 2016-12-07 2020-03-17 Exxonmobil Research And Engineering Company Integrated oxygenate conversion and olefin oligomerization

Similar Documents

Publication Publication Date Title
JP5114164B2 (en) Method for producing gasoline composition
JP5142588B2 (en) Method for producing gasoline composition
JP5265435B2 (en) Unleaded gasoline composition for in-cylinder direct injection gasoline engine
JP5639532B2 (en) C heavy oil composition and method for producing the same
JP4585175B2 (en) gasoline
JP5137335B2 (en) Method for producing gasoline composition
WO2012161017A1 (en) Gasoline composition and method for manufacturing same
JP5285221B2 (en) Unleaded gasoline composition
JP5116967B2 (en) gasoline
JP5667513B2 (en) Gasoline composition and method for producing the same
JP5639531B2 (en) Gasoline composition and method for producing the same
JP5285222B2 (en) Unleaded gasoline composition
JP5116966B2 (en) gasoline
JP4948018B2 (en) Method for producing unleaded gasoline composition
JP5403596B2 (en) Unleaded gasoline
JP5667271B2 (en) Unleaded gasoline
JP2017125213A (en) Lead-free gasoline
JP2017145419A (en) Unleaded gasoline
JP5046596B2 (en) Method for producing gasoline composition
JP5499396B2 (en) Unleaded gasoline
JP5702456B2 (en) Unleaded gasoline
JP5403595B2 (en) Unleaded gasoline
JP5405171B2 (en) Unleaded gasoline
JP5403594B2 (en) Unleaded gasoline
JP2007284646A (en) Gasoline composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789700

Country of ref document: EP

Kind code of ref document: A1