JP2004124056A - Unleaded gasoline and gasoline base material used for unleaded gasoline - Google Patents
Unleaded gasoline and gasoline base material used for unleaded gasoline Download PDFInfo
- Publication number
- JP2004124056A JP2004124056A JP2003160509A JP2003160509A JP2004124056A JP 2004124056 A JP2004124056 A JP 2004124056A JP 2003160509 A JP2003160509 A JP 2003160509A JP 2003160509 A JP2003160509 A JP 2003160509A JP 2004124056 A JP2004124056 A JP 2004124056A
- Authority
- JP
- Japan
- Prior art keywords
- gasoline
- volume
- catalytic reforming
- base material
- desulfurized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、無鉛ガソリン及びガソリン基材に関し、特には蒸気圧の低い無鉛ガソリン及び該無鉛ガソリンの基材として最適なガソリン基材に関する。
【0002】
【従来の技術】
自動車排ガス中には大気汚染物質が含まれており、大気環境改善のために、その低減化が求められている。具体的には、エンジン排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)及び燃料の蒸発ガスなどがあり、ガソリン中の硫黄分が多いと、排出ガス処理触媒に悪影響を及ぼし、排出ガス中のNOx、CO、HCの濃度が高くなる可能性がある。また、燃料の蒸発ガスは光化学スモッグの原因となるオゾン生成に影響を及ぼすと考えられている。この燃料の蒸発ガスは自動車の燃料タンクを含む燃料系統から蒸発して大気中に放出されている。このため、硫黄分が少なく、かつ蒸発ガスの少ないガソリンが求められている。
【0003】
一般に、燃料からの蒸発ガスを低減することによってオゾン生成を低減するには、燃料の蒸気圧を低くし、オゾン生成性が高い成分である軽質炭化水素を除くことが考えられる。しかしながら、燃料の軽質分を少なくすると、自動車の始動性や暖気過程の加速性等の運転性能に悪影響が出るため、蒸気圧が低く、かつ自動車の運転性能に十分に優れたガソリンはないのが現状である。
【0004】
特許文献1には、物性を特定することにより、自動車の燃料油として求められる各種性能をバランス良く満たすことができる無鉛ガソリンが開示されているが、性能的に未だ改良の余地があった。
【0005】
【特許文献1】
特開2000−73074号公報(第2頁)
【0006】
【発明が解決しようとする課題】
本発明は、上記観点からなされたもので、硫黄分が少なく、また蒸気圧が低く、かつ自動車の運転性能に優れた無鉛ガソリン及び該ガソリンの製造に最適なガソリン基材を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、
(1)70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下であるリサーチ法オクタン価が89〜96の無鉛ガソリン、
(2)接触改質ガソリン基材30〜60容量%、流動接触分解ガソリン基材0〜70容量%及び脱硫ナフサ0〜40容量%を含有し、70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下であるリサーチ法オクタン価が89〜96の無鉛ガソリン、
(3)脱硫重質ナフサを接触改質して得られる70℃までの留出量が14容量%以上である改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が89〜96の無鉛ガソリン、
(4)脱硫重質ナフサを接触改質し、その後脱ベンゼン処理を行なった接触改質ガソリン基材であって、脱硫重質ナフサの初留点が75〜80℃である接触改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が89〜96の無鉛ガソリン、
(5)脱硫重質ナフサを接触改質して得た接触改質ガソリン基材を第一の分留塔で軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Bに分留し、次いで該重質接触改質ガソリン基材Bを第二分留塔で中質接触改質ガソリン基材Cと重質接触改質ガソリン基材Dに分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して得る接触改質ガソリン基材であって、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.5〜2.0容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%以下となるように分留した接触改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が89〜96の無鉛ガソリン、
(6)前記脱硫ナフサが脱硫軽質ナフサである上記(2)に記載の無鉛ガソリン、
が上記目的を達成し得ることを見出し、本発明を完成したものである。
【0008】
【発明の実施の形態】
本発明に係るガソリン組成物は、70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下で、リサーチ法オクタン価が89〜96の無鉛ガソリンである。
70℃までの留出量とは、本発明に係る無鉛ガソリンを室温から昇温していき、70℃に達するまでに留出する量をいう。本発明では、70℃までの留出量が26〜40容量%の範囲にある。26容量%未満であると始動性や暖気過程の運転性が低下することがあり、40容量%を超えると高温時の運転性が低下することがある。また、これらの観点からさらに70℃までの留出量が27〜32容量%の範囲にあることが好ましい。
【0009】
本発明に係る無鉛ガソリンは、JIS K 2258に準拠して測定したリード蒸気圧が60kPa以下である。リード蒸気圧が60kPa以下であると、オゾン生成に影響を及ぼす軽質の炭化水素の蒸発を十分に抑制することができる。また、本発明のガソリン組成物は環境汚染を防止するとの観点から、ベンゼンの含有量を1容量%以下、硫黄分含有量を10ppm以下とすることが好ましい。
【0010】
本発明の無鉛ガソリンを製造する方法としては種々あるが、脱ベンゼン処理を行なった接触改質ガソリン基材30〜60容量%、流動接触分解ガソリン基材0〜70容量%及び脱硫ナフサ0〜40容量%を含有させることで製造することができる。
その際に、接触改質ガソリン基材の70℃までの留出分は14容量%以上であることが好ましい。該留分が14容量%未満であると、低温時での始動性、暖気過程の加速性が低く、自動車の運転性能に劣る場合があるからである。
接触改質ガソリン基材(以下「PG」という)とは、炭素数5〜9程度の主として直鎖状の炭化水素からなるナフサ留分、特には炭素数7〜9の重質ナフサを、接触改質することで得られる。ここで接触改質反応の反応条件としては、通常反応温度450〜540℃、反応圧力0.3〜5MPa、使用する触媒としては、Pt,Pt−Re等の金属をアルミナ、ゼオライト等の酸化物担体に担持したものがある。
【0011】
PG中の70℃までの留出分を14容量%以上とするには、種々の方法があるが、例えば接触改質反応の原料である重質ナフサの初留点を軽質化することで達成される。通常重質ナフサの初留点は80〜90℃程度であるが、本発明においては、75〜80℃の範囲とすることが好ましい。
【0012】
また、別の方法としては、PGをさらに分留して、いくつかの留分に分け、これらの留分を組み合わせて、PG中の70℃までの留出分量をコントロールし、本発明に適したPGを製造することができる。
具体的には、脱硫重質ナフサを接触改質して得た接触改質ガソリン基材を第一の分留塔で軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Bに分留し、次いで該重質接触改質ガソリン基材Bを第二分留塔で中質接触改質ガソリン基材Cと重質接触改質ガソリン基材Dに分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して接触改質ガソリン基材を製造することが好ましい。ここで、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.5〜2.0容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%以下となるように分留することが好ましく、この条件でPGを製造することにより、本発明の効果を奏する接触改質ガソリン基材が効率よく得られる。
【0013】
本発明にかかる無鉛ガソリンは、前記PG30〜60容量%含むことが好ましい。PGの含有量が30容量%以下では、オクタン価が低下する場合があり、60容量%以上では、低温始動性が低下する場合がある。
【0014】
本発明のガソリンは、流動接触分解ガソリン基材(以下「FG」という場合がある。)を0〜70容量%の範囲で配合することが好ましい。70容量%を超えると、低温始動性、暖気性が悪化する場合があり、実用性能を考慮すると該基材の配合量は、10〜60容量%の範囲がより好ましい。
流動接触分解ガソリン基材とは、一般には軽油留分及び/又は重質留分を流動接触分解(以下「(R)FCC」という)装置で分解したガソリン留分をいう。
ここで、(R)FCC装置とは、常圧重質軽油、減圧軽油、常圧残油などの重質留分を流動する触媒と高温で接触させ、重質留分を分解して、ガソリン留分を得る装置をいう。ここで使用する触媒としては、通常(R)FCC触媒として使用されるものであれば限定されないが、特にSiO2−Al2O3やゼオライト等の固体酸触媒が好適である。反応条件としては、反応温度450〜550℃、反応圧力0.1〜0.5MPa、接触時間0.1〜2秒、触媒/油比5〜20kg/kgの範囲が好ましい。また、(R)FCC装置では、流動する触媒が反応塔から連続的に抜き出され、再生塔にて空気燃焼により再生される。
【0015】
通常流動接触分解ガソリンは脱ブタン処理が行なわれるが、本発明においては、流動接触分解ガソリンを、脱ブタン塔で脱ブタン処理した脱ブタン流動接触分解ガソリンを、さらに分留塔で軽質流動接触分解ガソリン基材(LFG)と重質流動接触分解ガソリン基材(HFG)に分留し、該HFGと分留前の脱ブタン流動接触分解ガソリンを混合して得た基材を使用することが好ましい。
尚、通常流動接触分解ガソリンに含まれるマーカプタン硫黄分を除去するために、苛性ソーダ洗浄処理が用いられるが、図1〜図3に示すように、脱ブタン流動接触分解ガソリンを分留塔で分留する前に苛性ソーダ洗浄処理する方法(図1)、分留塔で分留した軽質流動接触分解ガソリン基材(LFG)と重質流動接触分解ガソリン基材(HFG)をそれぞれ苛性ソーダ処理する方法(図2)、軽質流動接触分解ガソリン基材と重質流動接触分解ガソリン基材をそれぞれ処理する場合、分留塔をバイパスした脱ブタン流動接触分解ガソリンの一部を重質流動接触分解ガソリンと混合して、苛性ソーダ洗浄処理する方法(図3)等があるが、本発明においてはいずれのケースを用いてもよく、設備コスト、処理効率、要求製品性状等により、いずれかのケースが選択される。尚、初期投資コストを削減するとの観点からは図1に示す方法が好ましい。
【0016】
また、本発明にかかる無鉛ガソリンでは、40容量%以下の範囲内で脱硫ナフサを配合することが好ましい。該留分を40容量%以下含むことで、低温始動性、暖気性等の実用性に優れるという利点が得られる。以上の観点から脱硫ナフサの含有量は15〜30容量%の範囲がより好ましい。
ここで、脱硫ナフサとは原油を常圧蒸留して得られるナフサ留分を脱硫触媒によって、脱硫したナフサ留分である。脱硫の条件としては、特に限定されないが、触媒としてはコバルト/モリブデン系、又はニッケル/モリブデン系が好ましく、反応温度270〜330℃、反応圧力1.5〜3.5MPaの範囲が好ましい。
また、脱硫ナフサには脱硫軽質ナフサと脱硫重質ナフサがあるが、本発明にかかる無鉛ガソリンに配合される脱硫ナフサとしては脱硫軽質ナフサが好ましい。
【0017】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(評価方法)夏場低温時(20℃)での加速性評価試験
排気量660cc、キャブレター仕様の自動車エンジンを用い、室温20℃にてエンジンをスタートさせ、アイドリングを10秒間保った後に、アクセル開度を日本の排出ガス試験の走行モードである「11モード」における最初のアクセル開度と同じとし、エンジン回転数3500rpmに到達するまでの時間(秒)で評価した。この時間が短いほど燃料の加速応答性が良好である。
【0018】
各種基材の製造方法
製造実施例1(PGの製造方法)
初留点75.5℃の脱硫重質ナフサを反応温度506℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.4容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して、第1表に示す性状を有するPG(1)を得た。
【0019】
製造実施例2(PGの製造方法)
初留点80℃の脱硫重質ナフサを反応温度508℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を1.5容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して第1表に示す性状を有するPG(2)を得た。
【0020】
製造実施例3(PGの製造方法)
初留点75.5℃の脱硫重質ナフサを反応温度506℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を1.5容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して第1表に示す性状を有するPG(3)を得た。
【0021】
製造実施例4(FGの製造方法)
流動接触分解装置から得られる分解ガソリンを脱ブタン塔にて脱ブタン処理を行った。脱ブタン塔では脱ブタン流動接触分解ガソリン中に含まれる炭素数4の炭化水素濃度を1.9容量%となるように分留した。脱ブタン処理された分解ガソリン(脱ブタンFG)を分留塔にて軽質流動接触分解ガソリン(LFG)と重質流動接触分解ガソリン(HFG)に分留した。分留塔はLFGの蒸留終点が90℃となるように制御した。次いで脱ブタンFGとHFGを10:3(容量比)の割合で混合し、流動接触分解ガソリン基材FGを得た。
【0022】
製造実施例5(脱硫ナフサの製造方法)
原油の常圧蒸留によって得られた直留ナフサを反応温度300℃、反応圧力2MPa、触媒としてコバルト/モリブデン系触媒を用いて脱硫し、脱硫軽質ナフサDLNを得た。尚、コバルト/モリブデン系触媒は以下の方法により調製した。
パラモリブデン酸アンモニウム[(NH4)6Mo7O24・4H2O)]32.1g、硝酸コバルト[Co(NO3)3]27.1g、ポリエチレングリコール400[HO−(CH2CH2O)n−H;分子量約400]10.0g及びリンゴ酸[HOCOCH2CH(OH)COOH;分子量134]16.0gをイオン交換水に溶解し、全量が86mlの水溶液(含浸液)を調製した。この含浸液を比表面積220m2/gの円柱状アルミナ担体(粒径2mm)200gに真空含浸法によって担持した。この担持物を、120℃で3時間乾燥後、空気気流中550℃で3時間焼成することによって触媒を得た。該触媒は、その乾燥重量当たり、CoをCoOとして約4重量%、MoをMoO3として約15重量%含んでいた。
各基材の性状を第1表に示す。
【0023】
【表1】
【0024】
実施例1
製造実施例1に従って製造したPG(1)31.5容量%、製造実施例4に従って製造したFG42.0容量%及び製造実施例5に従って製造したDLN26.5容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。このガソリン組成物について夏場低温時(20℃)での加速性について評価した。評価結果を第2表に示す。
【0025】
実施例2
製造実施例2に従って製造したPG(2)32.0容量%、製造実施例4に従って製造したFG42.0容量%及び製造実施例5に従って製造したDLN26.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。このガソリン組成物について夏場低温時(20℃)での加速性について評価した。評価結果を第2表に示す。
【0026】
実施例3
製造実施例3に従って製造したPG(3)31.0容量%、製造実施例4に従って製造したFG44.0容量%及び製造実施例5に従って製造したDLN25.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。このガソリン組成物について夏場低温時(20℃)での加速性について評価した。評価結果を第2表に示す。
【0027】
比較例1
製造実施例1に従って製造したPG(1)について、夏場低温時(20℃)での加速性について評価した。評価結果を第2表に示す。
【0028】
【表2】
【0029】
【発明の効果】
本発明の無鉛ガソリンは、蒸気圧が低く、かつ自動車の運転性能に優れ、また本発明のガソリン基材は該無鉛ガソリンの製造に好適である。
【図面の簡単な説明】
【図1】本発明における流動接触分解ガソリンの洗浄工程を示す概略図である。
【図2】本発明における流動接触分解ガソリンの洗浄工程を示す概略図である。
【図3】本発明における流動接触分解ガソリンの洗浄工程を示す概略図である。
【符号の説明】
1:脱ブタン塔
2:苛性ソーダ洗浄塔
3:再蒸留塔
4:バイパス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an unleaded gasoline and a gasoline base material, and more particularly to an unleaded gasoline having a low vapor pressure and a gasoline base material optimal as a base material for the unleaded gasoline.
[0002]
[Prior art]
Automobile exhaust gases contain air pollutants, and their reduction is required to improve the air environment. Specifically, there are nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and fuel vapors in engine exhaust gas, and when gasoline contains a large amount of sulfur, the exhaust gas treatment catalyst And the concentrations of NOx, CO, and HC in the exhaust gas may increase. It is also believed that fuel vapors affect ozone generation, which causes photochemical smog. The fuel gas evaporates from a fuel system including a vehicle fuel tank and is released into the atmosphere. For this reason, gasoline with low sulfur content and low evaporative gas is demanded.
[0003]
In general, in order to reduce ozone generation by reducing evaporative gas from fuel, it is conceivable to lower the vapor pressure of fuel and remove light hydrocarbons, which are components having high ozone generation. However, reducing the light weight of the fuel adversely affects the driving performance such as the startability of the car and the acceleration of the warm-up process.Therefore, there is no gasoline with low vapor pressure and sufficiently excellent driving performance of the car. It is the current situation.
[0004]
[0005]
[Patent Document 1]
JP-A-2000-73074 (page 2)
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and has an object to provide an unleaded gasoline having a low sulfur content, a low vapor pressure, and excellent driving performance of an automobile, and a gasoline base material optimal for producing the gasoline. It is to be.
[0007]
[Means for Solving the Problems]
The present inventors have conducted various studies to achieve the above object, and as a result,
(1) unleaded gasoline having a research octane number of 89 to 96, having a distillate amount of up to 70 ° C. of 26 to 40% by volume and a Reid vapor pressure of 60 kPa or less,
(2) It contains 30 to 60% by volume of catalytic reforming gasoline base material, 0 to 70% by volume of fluid catalytic cracking gasoline base material and 0 to 40% by volume of desulfurized naphtha, and the distillate amount up to 70 ° C is 26 to 40 volumes. % Unleaded gasoline having a research octane number of 89 to 96 and a Reid vapor pressure of 60 kPa or less,
(3) A reformed gasoline base material having a distillation amount up to 70 ° C. obtained by catalytic reforming of desulfurized heavy naphtha having a volume of 14% by volume or more, and a Reid vapor pressure using the gasoline base material is 60 kPa or less. Unleaded gasoline with a research octane number of 89 to 96,
(4) A catalytic reforming gasoline base material obtained by subjecting desulfurized heavy naphtha to catalytic reforming and then performing debenzene treatment, wherein the initial boiling point of the desulfurized heavy naphtha is 75 to 80 ° C. Unleaded gasoline having a research octane number of 89 to 96, having a Reid vapor pressure of 60 kPa or less using the material and the gasoline base material,
(5) Catalytic reforming gasoline base material obtained by catalytic reforming of desulfurized heavy naphtha is fractionated into a light catalytic reforming gasoline base material A and a heavy catalytic reforming gasoline base material B in a first fractionation tower. Then, the heavy catalytic reforming gasoline substrate B is fractionated into a medium catalytic reforming gasoline substrate C and a heavy catalytic reforming gasoline substrate D in a second fractionation tower, A catalytic reforming gasoline substrate obtained by mixing the substrate A and the heavy catalytic reforming gasoline substrate D, wherein the benzene concentration of the light catalytic reforming gasoline substrate A in the first fractionator is 0.5 to 0.5%. A catalytic reforming gasoline base fractionated so as to be 2.0% by volume and fractionated in a second fractionation tower such that the toluene concentration of the medium catalytic reforming gasoline base material C becomes 0.5% by volume or less. Unleaded gasoline having a research octane number of 89 to 96 and a lead vapor pressure of 60 kPa or less using the gasoline base material
(6) The unleaded gasoline according to (2), wherein the desulfurized naphtha is desulfurized light naphtha.
Have found that the above object can be achieved, and have completed the present invention.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The gasoline composition according to the present invention is an unleaded gasoline having a distillation amount up to 70 ° C. of 26 to 40% by volume, a Reid vapor pressure of 60 kPa or less, and a research octane number of 89 to 96.
The distilling amount up to 70 ° C. means the amount of distilling the unleaded gasoline according to the present invention from room temperature up to 70 ° C. In the present invention, the distillation amount up to 70 ° C. is in the range of 26 to 40% by volume. If it is less than 26% by volume, the startability and drivability in the warm-up process may be reduced, and if it exceeds 40% by volume, the drivability at high temperatures may be reduced. From these viewpoints, it is preferable that the distillate amount up to 70 ° C. is in the range of 27 to 32% by volume.
[0009]
The lead-free gasoline according to the present invention has a Reid vapor pressure of 60 kPa or less measured according to JIS K 2258. When the Reid vapor pressure is 60 kPa or less, evaporation of light hydrocarbons that affect ozone generation can be sufficiently suppressed. From the viewpoint of preventing environmental pollution, the gasoline composition of the present invention preferably has a benzene content of 1% by volume or less and a sulfur content of 10 ppm or less.
[0010]
Although there are various methods for producing the unleaded gasoline of the present invention, 30 to 60% by volume of a catalytically reformed gasoline substrate subjected to debenzene treatment, 0 to 70% by volume of a fluid catalytic cracking gasoline substrate, and 0 to 40% of desulfurized naphtha It can be manufactured by containing the volume%.
At that time, the fraction of the catalytic reforming gasoline base material up to 70 ° C. is preferably 14% by volume or more. If the fraction is less than 14% by volume, the startability at low temperatures and the acceleration of the warming-up process are low, and the driving performance of the automobile may be poor.
Catalytic reforming gasoline base material (hereinafter referred to as "PG") is a naphtha fraction mainly composed of linear hydrocarbons having about 5 to 9 carbon atoms, particularly heavy naphtha having 7 to 9 carbon atoms. It is obtained by reforming. Here, the reaction conditions for the catalytic reforming reaction are usually a reaction temperature of 450 to 540 ° C. and a reaction pressure of 0.3 to 5 MPa. As a catalyst to be used, a metal such as Pt or Pt-Re is an oxide such as alumina or zeolite. Some are carried on carriers.
[0011]
There are various methods for increasing the distillate content of PG up to 70 ° C. to 14% by volume or more. For example, this can be achieved by reducing the initial boiling point of heavy naphtha, which is a raw material for the catalytic reforming reaction. Is done. Normally, the initial boiling point of heavy naphtha is about 80 to 90 ° C, but in the present invention, it is preferably in the range of 75 to 80 ° C.
[0012]
As another method, PG is further fractionated, divided into several fractions, and these fractions are combined to control the amount of distillate in PG up to 70 ° C., which is suitable for the present invention. PG can be produced.
Specifically, the catalytic reforming gasoline base material obtained by catalytic reforming of the desulfurized heavy naphtha is converted into a light catalytic reforming gasoline substrate A and a heavy catalytic reforming gasoline substrate B in a first fractionation tower. Then, the heavy catalytic reforming gasoline substrate B is fractionated into a medium catalytic reforming gasoline substrate C and a heavy catalytic reforming gasoline substrate D in a second fractionation tower. It is preferable to produce a catalytic reforming gasoline substrate by mixing a high quality gasoline substrate A and a heavy catalytic reforming gasoline substrate D. Here, the light catalytic reforming gasoline base material A is fractionated in the first fractionating tower such that the benzene concentration of the base material A is 0.5 to 2.0% by volume, and the medium catalytic reforming gasoline is fractionated in the second fractionating tower. It is preferable to fractionate so that the toluene concentration of the substrate C is 0.5% by volume or less. By producing PG under these conditions, a catalytic reforming gasoline substrate exhibiting the effects of the present invention can be efficiently obtained. Can be
[0013]
The unleaded gasoline according to the present invention preferably contains 30 to 60% by volume of the PG. If the PG content is 30% by volume or less, the octane number may decrease, and if it is 60% by volume or more, the low-temperature startability may decrease.
[0014]
The gasoline of the present invention preferably contains a fluid catalytic cracking gasoline base material (hereinafter sometimes referred to as “FG”) in a range of 0 to 70% by volume. If it exceeds 70% by volume, low-temperature startability and warm-up properties may be deteriorated. In consideration of practical performance, the blending amount of the substrate is more preferably in the range of 10 to 60% by volume.
The fluid catalytic cracking gasoline base material generally refers to a gasoline fraction obtained by cracking a gas oil fraction and / or a heavy fraction with a fluid catalytic cracking (hereinafter referred to as “(R) FCC”) device.
Here, the (R) FCC unit refers to a method in which a heavy fraction such as heavy gas oil at normal pressure, reduced pressure gas oil, or residual oil under normal pressure is brought into contact with a flowing catalyst at a high temperature to decompose the heavy fraction to obtain gasoline. Refers to a device for obtaining a fraction. The catalyst used here is not particularly limited as long as it is usually used as an (R) FCC catalyst, but a solid acid catalyst such as SiO 2 —Al 2 O 3 or zeolite is particularly suitable. The reaction conditions are preferably a reaction temperature of 450 to 550 ° C., a reaction pressure of 0.1 to 0.5 MPa, a contact time of 0.1 to 2 seconds, and a catalyst / oil ratio of 5 to 20 kg / kg. In the (R) FCC device, the flowing catalyst is continuously extracted from the reaction tower, and is regenerated by air combustion in the regenerator.
[0015]
Normally, fluidized catalytic cracking gasoline is subjected to debutane treatment, but in the present invention, fluidized catalytic cracking gasoline, debutanized debutaneized fluidized catalytic cracking gasoline in a debutanizer, and light fluid catalytic cracking in a fractionation tower It is preferable to use a base material obtained by fractionating into a gasoline base material (LFG) and a heavy fluid catalytic cracking gasoline base material (HFG), and mixing the HFG with debutane fluidized catalytic cracking gasoline before fractionation. .
Incidentally, caustic soda washing treatment is usually used to remove the sulfur content of marcaptan contained in the fluid catalytic cracking gasoline. As shown in FIGS. 1 to 3, the debutane fluid catalytic cracking gasoline is fractionated in a fractionation tower. Before carrying out the treatment with caustic soda (FIG. 1), and the method of treating each of the light fluid catalytic cracking gasoline base material (LFG) and the heavy fluid catalytic cracking gasoline base material (HFG) fractionated by the fractionation tower with caustic soda (FIG. 1). 2) When the light fluid catalytic cracking gasoline base material and the heavy fluid catalytic cracking gasoline base material are respectively processed, a part of the debutane fluid catalytic cracking gasoline bypassing the fractionation tower is mixed with the heavy fluid catalytic cracking gasoline. Although there is a method of performing a caustic soda cleaning treatment (FIG. 3) and the like, any case may be used in the present invention, and depending on equipment cost, treatment efficiency, required product properties, etc. Re one of the cases is selected. The method shown in FIG. 1 is preferable from the viewpoint of reducing the initial investment cost.
[0016]
In the unleaded gasoline according to the present invention, desulfurized naphtha is preferably blended within a range of 40% by volume or less. By including the fraction in an amount of 40% by volume or less, advantages such as excellent low-temperature startability and warm-up properties can be obtained. From the above viewpoint, the content of the desulfurized naphtha is more preferably in the range of 15 to 30% by volume.
Here, the desulfurized naphtha is a naphtha fraction obtained by desulfurizing a naphtha fraction obtained by distilling crude oil under normal pressure with a desulfurization catalyst. The conditions for desulfurization are not particularly limited, but the catalyst is preferably a cobalt / molybdenum system or a nickel / molybdenum system, and the reaction temperature is preferably 270 to 330 ° C and the reaction pressure is preferably 1.5 to 3.5 MPa.
In addition, desulfurized naphtha includes desulfurized light naphtha and desulfurized heavy naphtha, but desulfurized light naphtha is preferable as the desulfurized naphtha to be blended in the unleaded gasoline according to the present invention.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Evaluation method) Acceleration evaluation test at low temperature in summer (20 ° C) Using a car engine with a displacement of 660cc and a carburetor, start the engine at room temperature of 20 ° C, keep idling for 10 seconds, and then open the accelerator. Was set to be the same as the first accelerator opening in the "11 mode" which is a traveling mode of the exhaust gas test in Japan, and evaluated by the time (second) until the engine speed reached 3500 rpm. The shorter this time is, the better the fuel acceleration response is.
[0018]
Production method of various base materials Production Example 1 (Production method of PG)
Desulfurized heavy naphtha having an initial boiling point of 75.5 ° C is reformed under the conditions of a reaction temperature of 506 ° C and a reaction pressure of 0.75 MPa, and the benzene concentration of the light catalytic reforming gasoline base material A is reduced to 0.1 in the first fractionation tower. 4% by volume, and in a second fractionation tower, the toluene of the medium catalytic reforming gasoline base material C was fractionated to 0.5% by volume. Material A and heavy catalytic reforming gasoline base material D were mixed to obtain PG (1) having the properties shown in Table 1.
[0019]
Production Example 2 (Production method of PG)
Desulfurized heavy naphtha having an initial boiling point of 80 ° C. is reformed under the conditions of a reaction temperature of 508 ° C. and a reaction pressure of 0.75 MPa. %, And in the second fractionation tower, the medium-concentration reformed gasoline base material C is fractionated to a toluene concentration of 0.5% by volume. And heavy contact reforming gasoline base material D were mixed to obtain PG (2) having properties shown in Table 1.
[0020]
Production Example 3 (Production method of PG)
Desulfurized heavy naphtha having an initial distillation point of 75.5 ° C. is reformed under the conditions of a reaction temperature of 506 ° C. and a reaction pressure of 0.75 MPa, and the benzene concentration of the light catalytic reforming gasoline base material A is set to 1. 5% by volume, and in the second fractionation tower, the toluene in the medium catalytic reforming gasoline base material C was fractionated to 0.5% by volume. Material A and heavy catalytic reforming gasoline base material D were mixed to obtain PG (3) having the properties shown in Table 1.
[0021]
Production Example 4 (FG production method)
Cracked gasoline obtained from the fluid catalytic cracking device was debutanized in a debutane tower. In the debutanizer, fractionation was performed so that the concentration of hydrocarbons having 4 carbon atoms contained in the debutane fluidized catalytic cracking gasoline was 1.9% by volume. Cracked gasoline debutane treated (debutane FG) was fractionated into a light fluid catalytic cracked gasoline (LFG) and a heavy fluid catalytic cracked gasoline (HFG) in a fractionation tower. The fractionation tower was controlled so that the LFG distillation end point was 90 ° C. Next, debutane FG and HFG were mixed at a ratio of 10: 3 (volume ratio) to obtain a fluid catalytic cracking gasoline base material FG.
[0022]
Production Example 5 (Method for producing desulfurized naphtha)
The straight-run naphtha obtained by atmospheric distillation of crude oil was desulfurized at a reaction temperature of 300 ° C., a reaction pressure of 2 MPa, and a cobalt / molybdenum catalyst as a catalyst to obtain a desulfurized light naphtha DLN. The cobalt / molybdenum catalyst was prepared by the following method.
Ammonium paramolybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O)] 32.1g, cobalt nitrate [Co (NO 3) 3] 27.1g, polyethylene glycol 400 [HO- (CH 2 CH 2 O ) n -H; molecular weight about 400] 10.0 g and malate [HOCOCH 2 CH (OH) COOH ; molecular weight 134] 16.0 g was dissolved in deionized water, the total amount to prepare an aqueous solution of 86 ml (impregnating solution) . This impregnating liquid was supported on 200 g of a columnar alumina carrier (particle diameter: 2 mm) having a specific surface area of 220 m 2 / g by a vacuum impregnation method. The support was dried at 120 ° C. for 3 hours, and then calcined in an air stream at 550 ° C. for 3 hours to obtain a catalyst. The catalyst contained about 4% by weight of Co as CoO and about 15% by weight of Mo as MoO 3 based on its dry weight.
Table 1 shows the properties of each base material.
[0023]
[Table 1]
[0024]
Example 1
31.5% by volume of PG (1) prepared according to Preparation Example 1, 42.0% by volume of FG prepared according to Preparation Example 4, and 26.5% by volume of DLN prepared according to Preparation Example 5 were mixed. A gasoline composition having the properties shown was produced. This gasoline composition was evaluated for acceleration at a low temperature in summer (20 ° C.). Table 2 shows the evaluation results.
[0025]
Example 2
32.0% by volume of PG (2) prepared according to Preparation Example 2, 42.0% by volume of FG prepared according to Preparation Example 4, and 26.0% by volume of DLN prepared according to Preparation Example 5 were mixed. A gasoline composition having the properties shown was produced. This gasoline composition was evaluated for acceleration at a low temperature in summer (20 ° C.). Table 2 shows the evaluation results.
[0026]
Example 3
31.0% by volume of PG (3) prepared according to Preparation Example 3, 44.0% by volume of FG prepared according to Preparation Example 4, and 25.0% by volume of DLN prepared according to Preparation Example 5 were mixed. A gasoline composition having the properties shown was produced. This gasoline composition was evaluated for acceleration at a low temperature in summer (20 ° C.). Table 2 shows the evaluation results.
[0027]
Comparative Example 1
PG (1) produced according to Production Example 1 was evaluated for acceleration at a low temperature in summer (20 ° C.). Table 2 shows the evaluation results.
[0028]
[Table 2]
[0029]
【The invention's effect】
The unleaded gasoline of the present invention has a low vapor pressure and excellent driving performance of an automobile, and the gasoline base material of the present invention is suitable for producing the unleaded gasoline.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a step of washing a fluid catalytic cracking gasoline in the present invention.
FIG. 2 is a schematic view showing a step of washing a fluid catalytic cracking gasoline in the present invention.
FIG. 3 is a schematic view showing a step of washing a fluid catalytic cracking gasoline in the present invention.
[Explanation of symbols]
1: Debutanizer tower 2: Caustic soda washing tower 3: Redistillation tower 4: Bypass
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003160509A JP2004124056A (en) | 2002-08-05 | 2003-06-05 | Unleaded gasoline and gasoline base material used for unleaded gasoline |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002227914 | 2002-08-05 | ||
JP2003160509A JP2004124056A (en) | 2002-08-05 | 2003-06-05 | Unleaded gasoline and gasoline base material used for unleaded gasoline |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010006892A Division JP5204134B2 (en) | 2002-08-05 | 2010-01-15 | Gasoline base material used for unleaded gasoline and unleaded gasoline |
JP2010006890A Division JP5204133B2 (en) | 2002-08-05 | 2010-01-15 | Gasoline base material used for unleaded gasoline and unleaded gasoline |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004124056A true JP2004124056A (en) | 2004-04-22 |
Family
ID=32300841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003160509A Pending JP2004124056A (en) | 2002-08-05 | 2003-06-05 | Unleaded gasoline and gasoline base material used for unleaded gasoline |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004124056A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328357A (en) * | 2005-04-26 | 2006-12-07 | Cosmo Oil Co Ltd | Catalytically reformed gasoline and unleaded gasoline |
WO2012161017A1 (en) * | 2011-05-26 | 2012-11-29 | Jx日鉱日石エネルギー株式会社 | Gasoline composition and method for manufacturing same |
JP2012246353A (en) * | 2011-05-26 | 2012-12-13 | Jx Nippon Oil & Energy Corp | Gasoline composition and method for manufacturing the same |
JP2012246354A (en) * | 2011-05-26 | 2012-12-13 | Jx Nippon Oil & Energy Corp | Gasoline composition and method for manufacturing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0393894A (en) * | 1989-09-06 | 1991-04-18 | Cosmo Sogo Kenkyusho:Kk | Lead-free high-performance gasoline |
JPH0913051A (en) * | 1995-06-26 | 1997-01-14 | Idemitsu Kosan Co Ltd | Gasoline base and unleaded gasoline using the same |
JPH10316980A (en) * | 1997-03-17 | 1998-12-02 | Idemitsu Kosan Co Ltd | Unleaded gasoline composition |
JPH11236580A (en) * | 1997-12-18 | 1999-08-31 | Idemitsu Kosan Co Ltd | Unleaded gasoline composition |
JP2000117112A (en) * | 1998-10-14 | 2000-04-25 | Idemitsu Kosan Co Ltd | Catalyst for hydrogenation and desulfurization of gasoline fraction, method for producing thereof, and gasoline composition |
JP2000234092A (en) * | 1999-02-16 | 2000-08-29 | Idemitsu Kosan Co Ltd | Production of gasoline base |
JP2000248287A (en) * | 1999-03-03 | 2000-09-12 | Nippon Mitsubishi Oil Corp | Low-vapor pressure lead-free gasoline |
JP2000256682A (en) * | 1999-03-10 | 2000-09-19 | Nippon Mitsubishi Oil Corp | Unleaded gasoline |
WO2001091899A1 (en) * | 2000-05-30 | 2001-12-06 | Phillips Petroleum Company | Desulfurization and sorbents for same |
-
2003
- 2003-06-05 JP JP2003160509A patent/JP2004124056A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0393894A (en) * | 1989-09-06 | 1991-04-18 | Cosmo Sogo Kenkyusho:Kk | Lead-free high-performance gasoline |
JPH0913051A (en) * | 1995-06-26 | 1997-01-14 | Idemitsu Kosan Co Ltd | Gasoline base and unleaded gasoline using the same |
JPH10316980A (en) * | 1997-03-17 | 1998-12-02 | Idemitsu Kosan Co Ltd | Unleaded gasoline composition |
JPH11236580A (en) * | 1997-12-18 | 1999-08-31 | Idemitsu Kosan Co Ltd | Unleaded gasoline composition |
JP2000117112A (en) * | 1998-10-14 | 2000-04-25 | Idemitsu Kosan Co Ltd | Catalyst for hydrogenation and desulfurization of gasoline fraction, method for producing thereof, and gasoline composition |
JP2000234092A (en) * | 1999-02-16 | 2000-08-29 | Idemitsu Kosan Co Ltd | Production of gasoline base |
JP2000248287A (en) * | 1999-03-03 | 2000-09-12 | Nippon Mitsubishi Oil Corp | Low-vapor pressure lead-free gasoline |
JP2000256682A (en) * | 1999-03-10 | 2000-09-19 | Nippon Mitsubishi Oil Corp | Unleaded gasoline |
WO2001091899A1 (en) * | 2000-05-30 | 2001-12-06 | Phillips Petroleum Company | Desulfurization and sorbents for same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328357A (en) * | 2005-04-26 | 2006-12-07 | Cosmo Oil Co Ltd | Catalytically reformed gasoline and unleaded gasoline |
WO2012161017A1 (en) * | 2011-05-26 | 2012-11-29 | Jx日鉱日石エネルギー株式会社 | Gasoline composition and method for manufacturing same |
JP2012246353A (en) * | 2011-05-26 | 2012-12-13 | Jx Nippon Oil & Energy Corp | Gasoline composition and method for manufacturing the same |
JP2012246354A (en) * | 2011-05-26 | 2012-12-13 | Jx Nippon Oil & Energy Corp | Gasoline composition and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101441129B1 (en) | Process for deep desulphurization of cracking gasolines with a small loss of octane number | |
JP4484412B2 (en) | Sorbent composition, process for its production and use in desulfurization | |
JP2000515575A (en) | Synthetic diesel fuel with reduced particulate matter emissions | |
US9926495B2 (en) | Method for desulfurizing diesel fuel | |
JP5142588B2 (en) | Method for producing gasoline composition | |
JP4429941B2 (en) | Unleaded high octane gasoline | |
JP4115861B2 (en) | Fuel oil composition | |
JP2004124056A (en) | Unleaded gasoline and gasoline base material used for unleaded gasoline | |
JP4429940B2 (en) | Unleaded gasoline | |
JP4138335B2 (en) | gasoline | |
JP5137335B2 (en) | Method for producing gasoline composition | |
JP5350752B2 (en) | Gasoline composition | |
JP2004124055A (en) | Unleaded high-performance gasoline, gasoline base material, and production method for gasoline base material | |
JP5204133B2 (en) | Gasoline base material used for unleaded gasoline and unleaded gasoline | |
JP5032605B2 (en) | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material | |
JP4429880B2 (en) | Unleaded gasoline | |
JPH0995688A (en) | Gasoline | |
JP4913444B2 (en) | Unleaded gasoline | |
JP4429881B2 (en) | Unleaded high octane gasoline | |
JP4913443B2 (en) | Unleaded gasoline | |
JP4856992B2 (en) | Unleaded gasoline | |
JP2007246753A (en) | Unleaded gasoline | |
CN116064078A (en) | Method for selectively removing sulfides in hydrocarbon oil | |
JP5623611B2 (en) | Gasoline composition | |
JP5398635B2 (en) | Method for producing gasoline composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110308 |