JP2000248287A - Low-vapor pressure lead-free gasoline - Google Patents

Low-vapor pressure lead-free gasoline

Info

Publication number
JP2000248287A
JP2000248287A JP11055228A JP5522899A JP2000248287A JP 2000248287 A JP2000248287 A JP 2000248287A JP 11055228 A JP11055228 A JP 11055228A JP 5522899 A JP5522899 A JP 5522899A JP 2000248287 A JP2000248287 A JP 2000248287A
Authority
JP
Japan
Prior art keywords
gasoline
vapor pressure
less
temperature
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055228A
Other languages
Japanese (ja)
Other versions
JP4020524B2 (en
Inventor
Kenichiro Saito
健一郎 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mitsubishi Oil Corp filed Critical Nippon Mitsubishi Oil Corp
Priority to JP05522899A priority Critical patent/JP4020524B2/en
Publication of JP2000248287A publication Critical patent/JP2000248287A/en
Application granted granted Critical
Publication of JP4020524B2 publication Critical patent/JP4020524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fuel oil for automobile having excellent vehicle practical performances such as low-temperature driving performances, normal-temperature driving performances, reducing volatilization of light hydrocarbon and contributing to improvement in air pollution. SOLUTION: This lead-free gasoline has >=50 kpa to <=72 kpa lead vapor pressure, 10 vol.% distillation temperature at <=60 deg.C, preferably 50 vol.% distillation temperature at <=100 deg.C and more preferably <=7 vol.% content of <=4C hydrocarbon and >=35 vol.% content of <=6C hydrocarbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガソリンエンジン用
無鉛ガソリンに関し、詳しくは環境汚染物質の排出量を
低減し、且つ、低温始動性、運転性、酸化安定性に優れ
たガソリンエンジン用無鉛ガソリンに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to unleaded gasoline for gasoline engines, and more particularly to unleaded gasoline for gasoline engines that reduces the emission of environmental pollutants and is excellent in low-temperature startability, drivability, and oxidation stability. Things.

【0002】[0002]

【従来の技術】近来、大気環境改善への要求は高まる一
方であり、特に都市部の光化学オキシダントについて
は、ここ数年で顕著な改善が為されていないこともあ
り、その対策が急務とされている。この光化学オキシダ
ントは、大気中に存在する軽質炭化水素がその誘因物質
であり、その軽質炭化水素(以下「HC」ということが
ある。)の発生元としては、ガソリン流通・給油時及び
ガソリン車走行時等におけるガソリン揮発によるものが
無視できない割合を占めているとされる。この揮発分、
つまりHC排出量の主な低減対策としては、車両及び給
油機での蒸気回収機構等、設備対応によるものが挙げら
れる。一方、このHC排出はガソリン自身の揮発性を抑
えることによっても低減は可能である。しかし、安易な
揮発性の低減は低温始動性・運転性等の実車性能の悪化
につながることが懸念され、その点がガソリン側からの
対策を妨げる大きな要因となっている。
2. Description of the Related Art In recent years, demands for improving the atmospheric environment have been increasing, and in particular, photochemical oxidants in urban areas have not been remarkably improved in the last few years. ing. In the photochemical oxidant, light hydrocarbons present in the atmosphere are the trigger substance, and the light hydrocarbons (hereinafter sometimes referred to as “HC”) are generated at the time of gasoline distribution / refueling and running of gasoline vehicles. It is said that gasoline volatilization at times accounts for a considerable proportion. This volatile,
In other words, the main measures for reducing the amount of HC emission include measures for equipment such as a steam recovery mechanism in a vehicle and a refueling machine. On the other hand, this HC emission can also be reduced by suppressing the volatility of gasoline itself. However, there is a concern that easy reduction of volatility may lead to deterioration of actual vehicle performance such as low-temperature startability and drivability, which is a major factor hindering measures from the gasoline side.

【0003】[0003]

【発明が解決しようとする課題】本発明はこの様な背景
に鑑み、ガソリンが使用される様々な状況での軽質炭化
水素分(HC)の排出を低減、ひいては光化学オキシダ
ントの発生を抑制しつつ、なお且つ、満足できる実車実
用性能を兼ね備えたガソリンエンジン用無鉛ガソリンを
提供するものである。
SUMMARY OF THE INVENTION In view of such a background, the present invention reduces the emission of light hydrocarbons (HC) in various situations in which gasoline is used, and thus suppresses the generation of photochemical oxidants. Still another object of the present invention is to provide an unleaded gasoline for a gasoline engine which has satisfactory actual vehicle practical performance.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、リード蒸気圧、
10容量%留出温度、50容量%留出温度、及び炭化水
素組成において特定の性状を有するガソリンが、課題を
解決しうる高性能ガソリンであることを見出した。すな
わち、リード蒸気圧が50kpa以上72kpa以下で
あり、且つ10容量%留出温度が60℃以下であるガソ
リンであり、好ましくは50容量%留出温度が100℃
以下のガソリンであり、更に好ましくは、炭素数4以下
の炭化水素含有量が7容量%以下、且つ炭素数6以下の
炭化水素含有量が35容量%以上であるガソリンによっ
て、軽質炭化水素の大気への排出を抑えると同時に、及
び優れた実車性能が得られることになる。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the Reid vapor pressure,
It has been found that gasoline having specific properties in the 10% by volume distillation temperature, the 50% by volume distillation temperature, and the hydrocarbon composition is a high-performance gasoline that can solve the problem. That is, gasoline having a Reid vapor pressure of 50 kPa or more and 72 kPa or less and a 10% by volume distillation temperature of 60 ° C. or less, preferably a 50% by volume distillation temperature of 100 ° C.
The following gasoline, more preferably gasoline having a hydrocarbon content of not more than 4 carbon atoms of 7% by volume or less and a hydrocarbon content of 6 or less carbon atoms of not less than 35% by volume, provides an atmosphere of light hydrocarbons. And at the same time, excellent vehicle performance can be obtained.

【0005】[0005]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明の低蒸気圧無鉛ガソリンは、 (1)リード蒸気圧が50kpa以上72kpa以下 (2)10容量%留出温度が60℃以下 の双方の条件を満たすことが必要であり、好ましくは (3)50容量%留出温度が100℃以下の条件を満た
すものであり、更に好ましくは、 (4)炭素数4以下の炭化水素の含有量が7容量%以下 (5)炭素数6以下の炭化水素の含有量が35容量%以
上 の双方の条件を二つながら満たすものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The low vapor pressure unleaded gasoline of the present invention is required to satisfy both conditions of (1) a lead vapor pressure of 50 kPa or more and 72 kpa or less, and (2) a 10% by volume distillation temperature of 60 ° C. or less. ) 50% by volume distilling temperature satisfies the condition of 100 ° C. or less, and more preferably (4) content of hydrocarbon having 4 or less carbon atoms is 7% by volume or less (5) carbonization of 6 or less carbon atoms It satisfies both of the two conditions that the hydrogen content is 35% by volume or more.

【0006】ここで言う、リード蒸気圧とはJIS K
2258「原油及び燃料油蒸気圧試験方法(リード
法)」により測定される蒸気圧(リード蒸気圧、RV
P)を意味する。本発明によって蒸気圧を72kpa以
下、好ましくは60kpa以下とすることによって、製
油所・油槽所等のガソリン出荷設備からのガソリンロー
リー車への積み込み、ガソリンローリー車より給油所
(サービスステーション)の貯蔵タンクへの充填、給油
所におけるガソリン貯蔵、給油所におけるガソリン車へ
の給油、ガソリン車走行時、ガソリン車駐車時等におけ
る、軽質炭化水素分の大気中への排出を抑えることが可
能となる。
The reed vapor pressure referred to here is JIS K
2258 “Vapor pressure measured by the crude oil and fuel oil vapor pressure test method (Lead method)” (Lead vapor pressure, RV
P). By setting the vapor pressure to 72 kpa or less, preferably 60 kpa or less according to the present invention, loading gasoline trucks from gasoline shipping facilities such as refineries and oil depots, and storing tanks at gas stations (service stations) from gasoline trucks It is possible to suppress the emission of light hydrocarbons into the atmosphere during filling of fuel, storage of gasoline at gas stations, refueling of gasoline vehicles at gas stations, running of gasoline vehicles, parking of gasoline vehicles, and the like.

【0007】一方、その蒸気圧を50kpa以上とする
ことによって、冬期等の低温時においてもエンジン燃焼
室内での安定燃焼に最適な混合気の形成が可能となり、
始動性の悪化、場合によっては始動不可、あるいは始動
直後のアイドリング不調、極端な場合にはストールとい
った、実車性能の不具合を防ぐことができる。
On the other hand, by setting the vapor pressure to 50 kpa or more, it is possible to form an air-fuel mixture optimal for stable combustion in the engine combustion chamber even at a low temperature such as winter.
It is possible to prevent problems in actual vehicle performance such as deterioration of startability, in some cases, inability to start, or in the case of idling malfunction immediately after start, and in extreme cases, stall.

【0008】また、一方の必要条件である10容量%留
出温度及び、更に好ましい条件である50容量%留出温
度とは、JIS K 2254「石油製品−蒸留試験
法」によって測定されるものである。本発明によって1
0容量%留出温度を60℃以下とすることにより、更に
50容量%留出温度を100℃以下とすることによっ
て、燃焼室に流入する混合気の気液比が最適化、燃料粒
子の分散状態が良好となり、エンジン始動直後の加速に
発生することの多い、ヘジテーション(アクセルレスポ
ンスの遅れ)、スタンブル(加速のもたつき)、サージ
(車両の前後振動)等の冷態時運転性の不具合を防止す
ることが可能となり、速やかな暖機性が得られる。
[0008] On the other hand, the 10% by volume distillation temperature, which is one of the necessary conditions, and the 50% by volume distillation temperature, which is more preferable, are measured according to JIS K 2254 "Petroleum products-distillation test method". is there. According to the present invention,
By setting the 0% by volume distillation temperature to 60 ° C. or lower and the 50% by volume distillation temperature to 100 ° C. or lower, the gas-liquid ratio of the air-fuel mixture flowing into the combustion chamber is optimized, and the dispersion of the fuel particles is achieved. The condition is good, preventing problems such as hesitation (acceleration response delay), stumbling (acceleration), and surge (vehicle longitudinal vibration) that often occur during acceleration immediately after engine start. And quick warm-up can be obtained.

【0009】更に、前記の炭素数4以下並びに6以下の
含有量は、以下に示すガスクロマトグラフィー法により
定量される値である。すなわち、カラムには長さ10〜
60m、内径0.1〜0.6mmであるジメチルシリコ
ンのキャピラリーカラムを用い、検出器は水素イオン化
検出器(FID)、キャリアガスは流量0.3〜1.5
ml/minのヘリウム、スプリット比1:50〜1:
250、注入口温度150〜270℃、検出器温150
〜270℃の条件において、カラム温度を初期温−10
〜10℃より終期温150〜250℃まで昇温させて測
定した値である。
Further, the content of the carbon atoms of 4 or less and 6 or less is a value determined by a gas chromatography method shown below. That is, the column has a length of 10
A dimethyl silicon capillary column having an inner diameter of 60 m and an inner diameter of 0.1 to 0.6 mm is used, a detector is a hydrogen ionization detector (FID), and a carrier gas is a flow rate of 0.3 to 1.5.
helium at ml / min, split ratio 1:50 to 1:
250, inlet temperature 150-270 ° C, detector temperature 150
Under the conditions of 2270 ° C., the column temperature was set to the initial temperature −10.
This is a value measured by raising the temperature from -10 ° C to the final temperature of 150-250 ° C.

【0010】そこで測定される炭素数4以下の炭化水素
とは、プロパン、プロペン、イソブタン、ノルマルブタ
ン、1ブテン、イソブテン、トランス2ブテン、シス2
ブテン等であり、また炭素数6以下の炭化水素とは、上
記の炭素数4以下の炭化水素に加えて、ノルマルペンタ
ン、イソペンタン、2,2ジメチルプロパン、1ペンテ
ン、トランス2ペンテン、シス2ペンテン、3メチル1
ブテン、2メチル1ブテン、シクロペンタン、シクロペ
ンテン、ノルマルヘキサン、2,2ジメチルブタン、
2,3ジメチルブタン、2メチルペンタン、3メチルペ
ンタン、3,3ジメチル1ブテン、4メチル1ペンテ
ン、3メチル1ペンテン、2,3ジメチル1ブテン、4
メチルシス2ペンテン、4メチルトランス2ペンテン、
2メチル1ペンテン、1ヘキセン、2エチル1ブテン、
トランス3ヘキセン、シス3ヘキセン、トランス2ヘキ
セン、シス2ヘキセン、2メチル2ペンテン、3メチル
シス2ペンテン、3メチルトランス2ペンテン、2,3
ジメチル2ブテン、ベンゼン、シクロヘキサン、シクロ
ヘキセン等である。
The hydrocarbons having 4 or less carbon atoms measured therein include propane, propene, isobutane, normal butane, 1-butene, isobutene, trans 2-butene, and cis 2
And hydrocarbons having 6 or less carbon atoms, in addition to the above-mentioned hydrocarbons having 4 or less carbon atoms, normal pentane, isopentane, 2,2 dimethylpropane, 1 pentene, trans 2 pentene, cis 2 pentene 3 methyl 1
Butene, 2-methyl-1-butene, cyclopentane, cyclopentene, normal hexane, 2,2 dimethylbutane,
2,3 dimethyl butane, 2 methyl pentane, 3 methyl pentane, 3,3 dimethyl 1 butene, 4 methyl 1 pentene, 3 methyl 1 pentene, 2,3 dimethyl 1 butene, 4
Methyl cis 2 pentene, 4 methyl trans 2 pentene,
2 methyl 1 pentene, 1 hexene, 2 ethyl 1 butene,
Trans 3 hexene, cis 3 hexene, trans 2 hexene, cis 2 hexene, 2 methyl 2 pentene, 3 methyl cis 2 pentene, 3 methyl trans 2 pentene, 2, 3
Dimethyl 2-butene, benzene, cyclohexane, cyclohexene and the like.

【0011】その様に定量された炭素数4以下の炭化水
素分を7容量%以下にすることによって、製油所・油槽
所等のガソリン出荷設備からのガソリンローリー車への
積み込み、ガソリンローリー車より給油所(サービスス
テーション)の貯蔵タンクへの充填、給油所におけるガ
ソリン貯蔵、給油所におけるガソリン車への給油、ガソ
リン車走行時、ガソリン車駐車時等における、軽質炭化
水素分の大気中への排出を抑えることが可能となる。
By reducing the amount of hydrocarbons having 4 or less carbon atoms thus determined to 7% by volume or less, loading on gasoline trucks from gasoline shipping facilities such as refineries and oil depots, and loading from gasoline trucks Filling storage tanks at gas stations (service stations), storing gasoline at gas stations, refueling gasoline cars at gas stations, running gasoline cars, parking gasoline cars, and releasing light hydrocarbons into the atmosphere. Can be suppressed.

【0012】一方、C6以下の炭化水素分を35容量%
以上にすることによって、冬期等の低温時、また始動直
後の燃焼室内におけるガソリン空気比の改善、点火プラ
グ近傍での良好な燃焼混合気の形成が実現され、始動
性、アイドリング安定性、加速性、低温運転性、暖機性
の著しい改善が得られる。
On the other hand, the hydrocarbon content of C6 or less is 35% by volume.
By the above, the gasoline-air ratio is improved in the combustion chamber at the time of low temperature such as in winter and immediately after the start, and a good combustion air-fuel mixture is formed in the vicinity of the ignition plug, and the startability, the idling stability, and the acceleration performance are realized. In addition, remarkable improvements in low-temperature operation and warm-up can be obtained.

【0013】本発明の低蒸気圧無鉛ガソリンは、その他
の性状において何ら制限するものではないが、アンチノ
ック性確保の為にリサーチオクタン価(JIS K 2
280)は89.0以上、燃費維持の為に密度(JIS
K 2249)は0.71以上、中低温運転性維持の
為には50容量%留出温度は100℃以下としさらに望
ましくは、良好な高温運転性維持の為に50容量%留出
温度は75℃以上とする。又、潤滑油のガソリンによる
希釈並びにエンジン吸気系へのデポジット付着を防ぐ為
に90容量%留出温度は180℃以下で、蒸留終点が2
20℃以下、エンジン排気ガス触媒の劣化を防ぐ為に硫
黄分(JIS K 2541)は100質量ppm以下
が望ましい。
[0013] The low vapor pressure unleaded gasoline of the present invention is not limited in other properties at all, but it has a research octane number (JIS K 2
280) is 89.0 or more, the density (JIS
K 2249) is 0.71 or more, and the 50% by volume distillation temperature is preferably 100 ° C. or less for maintaining the medium / low temperature operability. More preferably, the 50% by volume distillation temperature is 75% for maintaining the good high temperature operability. C or higher. In order to prevent the lubricating oil from being diluted with gasoline and to prevent deposits from adhering to the engine intake system, the 90% by volume distillation temperature is 180 ° C. or less, and the distillation end point is 2 ° C.
The sulfur content (JIS K2541) is desirably 100% by mass or less in order to prevent the engine exhaust gas catalyst from deteriorating.

【0014】低温時におけるプラグくすぶり防止並びに
排気ガス浄化の為に芳香族分は45容量%以下、排気ガ
ス浄化並びに貯蔵によるガソリン中不溶解物の生成とそ
の生成物の燃料系統への付着を防ぐ為にオレフィン分
(JIS K 2536)は30容量%以下、貯蔵によ
るガソリン中不溶解物の生成並びに生成物のエンジン燃
料系統への付着を防ぐ為に酸化安定度(JIS K 2
287)は480分以上、エンジン燃料系統を清浄に保
つ為に実在ガム(JIS K 2261)は5mg/1
00ml以下、更に大気環境浄化の観点からベンゼン分
(JIS K 2536)は1.0容量%以下であるこ
とが望ましい。
An aromatic content of 45% by volume or less for preventing plug smoldering at low temperature and purifying exhaust gas. Prevents generation of insoluble matter in gasoline by purifying and storing exhaust gas and adhesion of the product to a fuel system. Therefore, the olefin content (JIS K 2536) is 30% by volume or less, and the oxidative stability (JIS K 2) in order to prevent the formation of insolubles in gasoline by storage and the adhesion of the product to the engine fuel system.
287) is 480 minutes or more, and real gum (JIS K 2261) is 5 mg / 1 to keep the engine fuel system clean.
It is preferable that the content of benzene (JIS K 2536) is 1.0% by volume or less from the viewpoint of purification of the air environment.

【0015】本発明の低蒸気圧無鉛ガソリンは、その製
造方法になんら制限は無く、任意の方法で製造すること
ができる。ここで用いられるガソリン基材としては、例
えば、原油を蒸留して得られる液化ガス・軽質ナフサ・
重質ナフサ、接触分解法・水素化分解法などで得られる
分解ガソリン、接触改質法で得られる改質ガソリン、オ
レフィンの重合によって得られる重合ガソリン、イソブ
タンなどの炭化水素をアルキル化したアルキレート、軽
質ナフサをイソパラフィンに異性化して得られる異性化
ガソリン(アイソメレート)、芳香族炭化水素化合物、
ベンゼンをアルキル化して得られる芳香族化合物、ベン
ゼンを水素化して得られるナフテン炭化水素化合物、メ
タノールとイソブテンの反応によって得られるMTBE
等が挙げられる。
[0015] The low vapor pressure lead-free gasoline of the present invention is not limited in its production method, and can be produced by any method. As the gasoline base material used here, for example, liquefied gas obtained by distilling crude oil, light naphtha,
Heavy naphtha, cracked gasoline obtained by catalytic cracking / hydrocracking, etc., reformed gasoline obtained by catalytic reforming, polymerized gasoline obtained by olefin polymerization, alkylate alkylated hydrocarbons such as isobutane , Isomerized gasoline (isomerate) obtained by isomerizing light naphtha to isoparaffin, aromatic hydrocarbon compound,
Aromatic compounds obtained by alkylating benzene, naphthenic hydrocarbon compounds obtained by hydrogenating benzene, MTBE obtained by reacting methanol with isobutene
And the like.

【0016】また、これらの基材は任意の蒸留範囲で分
取して用いることもできる。その蒸留により分取された
基材とは、例えば、改質ガソリンを炭素数5以下・炭素
数6・炭素数7以上の3成分に分けた後に炭素数5以下
の留分と炭素数7以上の留分を混ぜた基材、或いは軽質
ナフサ、分解ガソリン、改質ガソリン等から蒸留により
炭素数4以下の留分をとり除いた基材等が挙げられる。
Further, these base materials can be fractionated and used in an arbitrary distillation range. The base material fractionated by the distillation means, for example, that a reformed gasoline is divided into three components having 5 or less carbon atoms, 6 or more carbon atoms, and 7 or more carbon atoms, and then a fraction having 5 or less carbon atoms and 7 or more carbon atoms. Or a base material obtained by removing a fraction having 4 or less carbon atoms by distillation from light naphtha, cracked gasoline, reformed gasoline, or the like.

【0017】これらの基材の代表的な配合分量を挙げる
と下記のとおり例示できる。代表的には、これらのもの
を適宜状況に応じて混合して低蒸気圧無鉛ガソリンを調
整できるが、基材相互の影響を考慮して組合せには十分
留意されなければならない。例えば、液化ガスを使用す
る場合、多用するとHC揮発の増加を招き、本発明の目
的に反することになるので、好ましく2.0%未満とす
る。又、重質ナフサはオクタン価を下げる原因となるの
で、10%未満とする。更に分解ガソリンを多用する
と、実在ガム発生の原因となるので不利である。又改質
ガソリンの多用はエンジン内での燃焼を悪化させ、燃焼
室内残さ物の生成、点火プラグのくすぶり不具合の発生
等の原因となる。 (1)液化ガス:0〜7容量% (2)軽質ナフサ及びその蒸留分取留分:0〜25容量% (3)重質ナフサ:0〜10容量% (4)改質ガソリン及びその蒸留分取留分:0〜80容量% (5)分解ガソリン及びその蒸留分取留分:0〜70容量% (6)アルキレート及びその蒸留分取留分:0〜40容量% (7)異性化ガソリン:0〜30容量% (8)芳香族炭化水素化合物:0〜45容量%
Typical amounts of these base materials can be exemplified as follows. Typically, these can be appropriately mixed according to the situation to prepare a low vapor pressure unleaded gasoline, but the combination must be carefully considered in consideration of the influence of the base materials. For example, when a liquefied gas is used, if it is frequently used, HC volatilization is increased, which is contrary to the object of the present invention. In addition, heavy naphtha causes a decrease in octane number, so it is set to less than 10%. Further, heavy use of cracked gasoline is disadvantageous because it causes the generation of actual gum. Also, heavy use of reformed gasoline deteriorates combustion in the engine, and causes the generation of residues in the combustion chamber and the occurrence of smoldering problems of the spark plug. (1) Liquefied gas: 0 to 7% by volume (2) Light naphtha and its distillation fraction: 0 to 25% by volume (3) Heavy naphtha: 0 to 10% by volume (4) Reformed gasoline and its distillation Fractionated fraction: 0 to 80% by volume (5) Cracked gasoline and its distillation fraction: 0 to 70% by volume (6) Alkylate and its fractionated distillation fraction: 0 to 40% by volume (7) Isomerism Gasoline: 0 to 30% by volume (8) Aromatic hydrocarbon compound: 0 to 45% by volume

【0018】その混合は、最終的に得られる無鉛ガソリ
ンが、本発明の規定を満足するようになされれば良く、
その基材の種類、混合割合に格別制限されるものではな
いことはもちろんである。また、これにエンジン燃料系
統の清浄性を維持する為に、任意にアミン系(例えば、
ポリエ−テルアミン、ポリイソブテンアミン等)又はイ
ミド系(コハク酸イミド等)の清浄剤を0〜300容量
ppm添加することもできる。
The mixing may be carried out so that the finally obtained unleaded gasoline satisfies the requirements of the present invention.
It goes without saying that the type and mixing ratio of the base material are not particularly limited. In addition, in order to maintain the cleanliness of the engine fuel system, an amine system (for example,
A detergent of polyetheramine, polyisobutenamine or the like or an imide type (succinimide or the like) may be added at 0 to 300 ppm by volume.

【0019】[0019]

【実施例】[実施例1〜4、及び比較例1〜3]以下
に、実施例1〜4及び比較例1、2によって本発明を更
に詳細に説明する。尚、本発明はこれらの例によって何
ら限定されるものではないことを申し添える。各実施例
及び比較例で用いたガソリン基材の組成、性状を表1に
示す。
EXAMPLES Examples 1 to 4 and Comparative Examples 1 to 3 Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 4 and Comparative Examples 1 and 2. It should be noted that the present invention is not limited by these examples. Table 1 shows the composition and properties of the gasoline base materials used in the examples and comparative examples.

【0020】[表1 ガソリン基材の組成及び性状][Table 1 Composition and properties of gasoline base material]

【表1】 表1に示した基材を用いて、表2に示す基材と混合割合
に従って実施例1〜4及び比較例1〜3のガソリン試料
を調整した。
[Table 1] Using the base materials shown in Table 1, the gasoline samples of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared in accordance with the mixing ratios of the base materials shown in Table 2.

【0021】[表2 各実施例と比較例に用いたガソリ
ン試料]
[Table 2] Gasoline samples used in Examples and Comparative Examples

【表2】 表2の基材とその混合割合に従って得られたガソリン試
料の組成、性状を表3に示す(表中成分量は容量%を表
す)。
[Table 2] Table 3 shows the composition and properties of gasoline samples obtained according to the base materials in Table 2 and their mixing ratios (the component amounts in the table represent% by volume).

【0022】[表3 ガソリン試料の性状と特性値][Table 3 Properties and characteristic values of gasoline sample]

【表3】 これらの試料を用いて、揮発試験並びに運転性試験を実
施し、その結果を表4として示す。尚、各試験方法は以
下の通りである。
[Table 3] Using these samples, a volatilization test and an operability test were performed, and the results are shown in Table 4. In addition, each test method is as follows.

【0023】(1)揮発試験 20Lのガソリン携行缶の給油口にガソリン充填用ホー
スを装着し、装着部を完全にシールする。缶の空気抜き
バルブは開けたまま、試験ガソリンを5L充填する。充
填後に空気抜きバルブを閉め、30分間放置する。放置
後、空気抜きバルブの先に活性炭吸着装置を取付けてバ
ルブを開ける。直ちに給油口から試験ガソリンを10L
給油する。給油後5分間、空気抜きバルブを開けたまま
(活性炭吸着装置により蒸気吸収)放置し、その後に活
性炭の重量増を測定する。試験は25℃の一定温度下で
行う。
(1) Volatility test A gasoline filling hose is attached to the filler port of a 20-liter gasoline carrying can, and the attachment portion is completely sealed. While the air vent valve of the can is open, charge 5 L of test gasoline. After filling, close the air vent valve and leave for 30 minutes. After standing, attach an activated carbon adsorption device to the end of the air release valve and open the valve. Immediately 10L of test gasoline from filler port
Refuel. Five minutes after refueling, the system is allowed to stand with the air vent valve open (steam absorption by the activated carbon adsorption device), and then the weight increase of the activated carbon is measured. The test is performed at a constant temperature of 25 ° C.

【0024】(2)運転性試験 排気量1.5Lのキャブレター燃料供給式商用車(A
車)と排気量2.0Lのインジェクター燃料供給式乗用
車(B)を実験車として用い、試験温度20℃及び−1
5℃において、米国CRC(Coordinating
Research Council) の定める低温
又は常温運転性試験法に準拠したモードで運転し、始動
時間、アイドリング安定性(体感)、体感運転性デメリ
ット点で評価を行った。
(2) Drivability test A carburetor fuel-supplied commercial vehicle with a displacement of 1.5 L (A
Car) and an injector fuel-supplied passenger car (B) having a displacement of 2.0 L were used as test vehicles.
At 5 ° C., CRC (Coordinating)
The operation was performed in a mode based on the low-temperature or normal-temperature drivability test method specified by Research Research), and the evaluation was made in terms of starting time, idling stability (bodily sensation), and demerit in sensation drivability.

【0025】[表4 揮発性試験及び運転性試験結果][Table 4 Results of Volatility Test and Drivability Test]

【表4】 [Table 4]

【0026】試験結果から、低温運転性試験及び常温運
転性試験に関しては、実施例1〜4及び比較例1では、
共に満足できるものである(実施例1〜4及び比較例1
のデメリット点の差は、実質的差を生むほどのものでは
ない。)。
From the test results, regarding the low-temperature operability test and the normal-temperature operability test, in Examples 1 to 4 and Comparative Example 1,
Both are satisfactory (Examples 1 to 4 and Comparative Example 1
The disadvantages are not significant enough to make a substantial difference. ).

【0027】一方、リード蒸気圧が50〜72kpa及
び10%蒸留温度が60℃以下を共に満足しない比較例
2(リード蒸気圧48.2kpa及び10%蒸留温度6
1.5)では、低温運転性試験及び常温運転性試験共に
問題があり、リード蒸気圧・10%蒸留温度を満足する
ものの、50%蒸留温度が100℃を超える比較例3
(リード蒸気圧60.5kpa、10%蒸留温度54.
0及び50%蒸留温度102.5℃)においては、比較
例1より改善は見られるが、やはり運転性は満足できる
ものではない。又、蒸気圧が50〜72kpa及び炭素
数4以下の炭化水素量7容量%以下を満足しない比較例
1(リード蒸気圧77.3kpa、10%蒸留温度4
5.0及び50%蒸留温度92.0℃、及び炭素数4以
下の炭化水素量7.1容量%)においては、ガソリン給
油を再現した揮発性試験に於いて揮発ガソリン(炭化水
素)量が多く、問題があることが分かる。
On the other hand, Comparative Example 2 in which the Reid vapor pressure was 50 to 72 kpa and the 10% distillation temperature was less than 60 ° C. both (Reed vapor pressure 48.2 kPa and 10% distillation temperature 6
In the case of 1.5), both the low-temperature operability test and the normal-temperature operability test have a problem, and although the Reid vapor pressure and the 10% distillation temperature are satisfied, Comparative Example 3 in which the 50% distillation temperature exceeds 100 ° C.
(Lead vapor pressure 60.5 kpa, 10% distillation temperature 54.
At 0 and 50% distillation temperature of 102.5 ° C.), an improvement is seen from Comparative Example 1, but the operability is still unsatisfactory. Comparative Example 1 having a vapor pressure of 50 to 72 kpa and an amount of hydrocarbons having 4 or less carbon atoms of 7% by volume or less (Reed vapor pressure of 77.3 kpa, 10% distillation temperature of 4%)
5.0 and 50% distillation temperature of 92.0 ° C. and the amount of hydrocarbons having 4 or less carbon atoms of 7.1% by volume), the volatile gasoline (hydrocarbon) amount was reduced in the volatility test reproducing gasoline refueling. There are many problems.

【0028】ところが、実施例1〜4の場合、活性炭吸
着量で示される揮発量は、比較例1と比較して、非常に
改善されている。更に、リード蒸気圧60kpa以下を
満足する実施例3(蒸気圧58.0kpa)及び実施例
4(蒸気圧53.2kpa)では、その揮発量の更なる
減少が図れている。比較例2のガソリンは、揮発性で問
題はないが、運転性で大きな問題があることは上記のと
おりである。
However, in the case of Examples 1 to 4, the amount of volatilization indicated by the amount of activated carbon adsorbed is significantly improved as compared with Comparative Example 1. Furthermore, in Example 3 (vapor pressure 58.0 kpa) and Example 4 (vapor pressure 53.2 kpa) satisfying the Reid vapor pressure of 60 kpa or less, the volatilization amount is further reduced. The gasoline of Comparative Example 2 has no problem in volatility, but has a large problem in drivability as described above.

【0029】[0029]

【発明の効果】本発明の低蒸気圧無鉛ガソリンは、車両
の低温、常温運転性を損なうことなく、軽質炭化水素の
揮発量を低減しうるものであり、実用性能を維持しつつ
大気環境の改善に寄与するものである。
The low vapor pressure unleaded gasoline of the present invention can reduce the amount of light hydrocarbons volatilized without impairing the low-temperature and normal-temperature driving performance of a vehicle. It contributes to improvement.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リード蒸気圧が50kpa以上〜72k
pa以下であり、10容量%留出温度が60℃以下であ
るガソリンエンジン用無鉛ガソリン。
1. Reed vapor pressure of 50 kPa or more to 72 k
Pa or less and a 10% by volume distillation temperature of 60 ° C. or less.
【請求項2】 リード蒸気圧が50kpa以上〜72k
pa以下であり、10容量%留出温度が60℃以下で、
50容量%留出温度が100℃以下であるガソリンエン
ジン用無鉛ガソリン。
2. Reed vapor pressure is 50 kPa or more to 72 kPa
Pa or less, 10% by volume distillation temperature is 60 ° C or less,
An unleaded gasoline for a gasoline engine having a 50% by volume distillation temperature of 100 ° C or lower.
【請求項3】 炭素数4以下の炭化水素の含有量が7容
量%以下であり、かつ炭素数6以下の炭化水素の含有量
が35容量%以上である、請求項1又は2記載のガソリ
ンエンジン用無鉛ガソリン。
3. The gasoline according to claim 1, wherein the content of hydrocarbons having 4 or less carbon atoms is 7% by volume or less, and the content of hydrocarbons having 6 or less carbon atoms is 35% by volume or more. Unleaded gasoline for engines.
JP05522899A 1999-03-03 1999-03-03 Low vapor pressure unleaded gasoline Expired - Lifetime JP4020524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05522899A JP4020524B2 (en) 1999-03-03 1999-03-03 Low vapor pressure unleaded gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05522899A JP4020524B2 (en) 1999-03-03 1999-03-03 Low vapor pressure unleaded gasoline

Publications (2)

Publication Number Publication Date
JP2000248287A true JP2000248287A (en) 2000-09-12
JP4020524B2 JP4020524B2 (en) 2007-12-12

Family

ID=12992761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05522899A Expired - Lifetime JP4020524B2 (en) 1999-03-03 1999-03-03 Low vapor pressure unleaded gasoline

Country Status (1)

Country Link
JP (1) JP4020524B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124056A (en) * 2002-08-05 2004-04-22 Idemitsu Kosan Co Ltd Unleaded gasoline and gasoline base material used for unleaded gasoline
JP2004238576A (en) * 2003-02-07 2004-08-26 Nippon Oil Corp Gasoline
JP2005281590A (en) * 2004-03-30 2005-10-13 Nippon Oil Corp Gasoline
JP2006063262A (en) * 2004-08-30 2006-03-09 Japan Energy Corp Gasoline composition
JP2006213898A (en) * 2005-02-07 2006-08-17 Cosmo Oil Co Ltd Lead-free high-octane gasoline
JP2010106285A (en) * 2002-08-05 2010-05-13 Idemitsu Kosan Co Ltd Lead-free gasoline and base material of gasoline used for lead-free gasoline

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124056A (en) * 2002-08-05 2004-04-22 Idemitsu Kosan Co Ltd Unleaded gasoline and gasoline base material used for unleaded gasoline
JP2010106285A (en) * 2002-08-05 2010-05-13 Idemitsu Kosan Co Ltd Lead-free gasoline and base material of gasoline used for lead-free gasoline
JP2010132912A (en) * 2002-08-05 2010-06-17 Idemitsu Kosan Co Ltd Unleaded gasoline and gasoline base material used for unleaded gasoline
JP2004238576A (en) * 2003-02-07 2004-08-26 Nippon Oil Corp Gasoline
JP2005281590A (en) * 2004-03-30 2005-10-13 Nippon Oil Corp Gasoline
JP4629991B2 (en) * 2004-03-30 2011-02-09 Jx日鉱日石エネルギー株式会社 gasoline
JP2006063262A (en) * 2004-08-30 2006-03-09 Japan Energy Corp Gasoline composition
JP4633409B2 (en) * 2004-08-30 2011-02-16 Jx日鉱日石エネルギー株式会社 Gasoline composition
JP2006213898A (en) * 2005-02-07 2006-08-17 Cosmo Oil Co Ltd Lead-free high-octane gasoline
JP4611049B2 (en) * 2005-02-07 2011-01-12 コスモ石油株式会社 Unleaded gasoline

Also Published As

Publication number Publication date
JP4020524B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP3782139B2 (en) Unleaded gasoline
EP0596611B1 (en) Lead-free, high-octane gasoline
JP3782140B2 (en) Unleaded gasoline
JP4429941B2 (en) Unleaded high octane gasoline
JP2000248287A (en) Low-vapor pressure lead-free gasoline
JP4913436B2 (en) Unleaded high octane gasoline
JPH11236580A (en) Unleaded gasoline composition
JP5367149B2 (en) Unleaded high octane gasoline
JP5367148B2 (en) Unleaded high octane gasoline
JP4913434B2 (en) Unleaded high octane gasoline
JP4913444B2 (en) Unleaded gasoline
JP3785204B2 (en) Unleaded gasoline
JP4429881B2 (en) Unleaded high octane gasoline
JP4913435B2 (en) Unleaded high octane gasoline
JP5191110B2 (en) Unleaded gasoline
JP4913441B2 (en) Unleaded gasoline
JP3067934B2 (en) Unleaded high octane gasoline
JP5367146B2 (en) Unleaded high octane gasoline
JP3155699B2 (en) Lead-free automotive fuel
JP5367147B2 (en) Unleaded high octane gasoline
JP5005989B2 (en) Unleaded gasoline
JP5117020B2 (en) Unleaded gasoline
JP4913452B2 (en) Unleaded gasoline
JP4808523B2 (en) Unleaded gasoline and method for producing the same
JP4913449B2 (en) Unleaded gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term