EP0832301B1 - Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen und vorrichtung zur durchfuhrung des verfahrens. - Google Patents

Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen und vorrichtung zur durchfuhrung des verfahrens. Download PDF

Info

Publication number
EP0832301B1
EP0832301B1 EP96919573A EP96919573A EP0832301B1 EP 0832301 B1 EP0832301 B1 EP 0832301B1 EP 96919573 A EP96919573 A EP 96919573A EP 96919573 A EP96919573 A EP 96919573A EP 0832301 B1 EP0832301 B1 EP 0832301B1
Authority
EP
European Patent Office
Prior art keywords
air
reaction vessel
reaction
steel
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96919573A
Other languages
English (en)
French (fr)
Other versions
EP0832301A1 (de
Inventor
Karl Brotzmann
Heinz Holtermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technometal Gesellschaft fuer Metalltechnologie mbH
Original Assignee
Technometal Gesellschaft fuer Metalltechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technometal Gesellschaft fuer Metalltechnologie mbH filed Critical Technometal Gesellschaft fuer Metalltechnologie mbH
Publication of EP0832301A1 publication Critical patent/EP0832301A1/de
Application granted granted Critical
Publication of EP0832301B1 publication Critical patent/EP0832301B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/02Treatment of the exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • F27D2019/0015Monitoring the composition of the exhaust gases or of one of its components

Definitions

  • the invention relates to a method for the afterburning of when decarburizing liquid steel in under vacuum reaction gases arising from standing reaction vessels, being opposite to the direction of flow of the reaction gases Air flow is introduced into the reaction vessel.
  • DE 41 30 590 C2 describes a degassing vessel as Reaction vessel for the vacuum treatment of liquid steel described; as can be seen from this document, become particles by the degassing stream of the reaction gases carried away, which leads to the fact that in the upper part of the Reaction vessel and in the area of the connecting line for the Vacuum pump to a strong buildup of Steel splashes comes, such collections also as "Steel bears" are called. These steel bears can be a have considerable weight and finally the upper one Close part of the reaction vessel largely, so that in the general the steel bear in an elaborate manner Burning out must be eliminated.
  • FR 1 575 991 used to form the genus describes a method in which a Reaction vessel against the flow direction of the Reaction gases an air stream by means of the bath surface directed lances with a short distance to them is blown in. Blowing in air is one Afterburn is associated, however, due to the Ambient temperature of the blown air generated energy for the prevention of steel deposits in the Reaction vessel not sufficient.
  • the invention is therefore based on the object To improve methods of the type mentioned at the outset in such a way that the danger of the formation of steel approaches - bears - in Reaction vessel is further reduced; Furthermore, one should Implementation of an improved process Device can be specified.
  • the basic idea of the invention provides that the one arranged in the refractory delivery Air flow from hot air with a There is a temperature between 800 ° C and 1400 ° C.
  • the invention has the advantage that hot air due to their own high blowing speed has much higher energy impulse and thus over the Length / height of the reaction vessel against the Direction of flow of the reaction gases penetrates very deep. This creates a sufficiently strong swirling of the Reaction gases associated with the hot air jet, resulting in a better combustion of the reaction gases and a better one Heat transfer to the inside of the wall of the Reaction vessel leads.
  • the reason for this is that Air under the usual conditions only with maximum The speed of sound is blown into the reaction vessel can be; the speed of sound is for cold air only at 330 m / s, whereas the speed of sound for Air with a temperature of For example, 1200 ° C is about 800 m / s. Through the So using hot air it is possible to use the air much higher speed into the reaction vessel bring in.
  • the amount of air introduced is such that the air from the degassing steel batch calculated amount of reaction gases is completely burned stoichiometrically; it understands yourself that in order to achieve this goal the blow-in Air volume of the amount of reaction gases generated is to be adjusted.
  • first period for example, within the first three minutes vacuum decarburization lasting about 12 minutes, about 50% of the Reaction gases are sucked out and during the subsequent another three minutes, another 25% can be suctioned off, it can expedient according to an embodiment of the invention be that introducing air at first Period of vacuum treatment of the liquid steel is concentrated, this first period with the Half of the total duration of treatment can be measured.
  • the introduction of air into the Reaction tube only for every 2nd or 3rd batch is made because it may be desirable that the Protect the refractory lining of the reaction vessel thin steel shirt left on the vessel lining should.
  • a convenient device for performing the method is aimed at a suitable generator for To provide generation of hot air, and according to the invention the generator is a bed of heat heatable balls made of a refractory material Heating of the air led through the ball bed.
  • the ball bed can be heated up after a Embodiment of the invention, a separate burner be provided, or it can be the generator Waste heat can be connected to the reaction vessel, so that the hot air there after the treatment for Heating the ball bed can be used.
  • the reaction vessel 10 instructs at its lower end two dip tubes 11 with which the Reaction vessel connected to a steel pan in which there is liquid steel; is in the Reaction vessel via connection 16 for a vacuum pump Vacuum applied, so rises from the not shown Steel pan on the steel bath 12 in the direction of arrow 13 and enters the reaction vessel 10 and continues to flow appropriate treatment or degassing in Direction of arrow 14 back into the steel pan; at this treatment emerge from the steel bath 12 Reaction gases 15, which are directed towards the connection opening 16 flow for the vacuum pump.
  • Injection opening 17 In the upper cover of the reaction vessel 10 there is one Injection opening 17, through which in the described Embodiment hot air in the reaction vessel 10 blown in or via that in the reaction vessel 10 current vacuum is sucked into the reaction vessel 10, a flame 19 extending from the injection opening 17 forms, which is surrounded by a hot air column 18 or continues in this.
  • the in the Figure 1 relationships are based on a Blown hot air speed of 600 m / s at a flow rate of the reaction gases of 15 m / s, with a total height of the reaction vessel from 10 - 12 m the hot air deep into the reaction vessel 10 penetrates and thus a heat transfer into the lower Ensures the area of the reaction vessel.
  • the corresponding vacuum treatment is shown in FIG or the hot air blowing shown each the amount of reaction gas or hot air is plotted over the duration of treatment; this
  • the illustration shows the vacuum treatment of a 280 t steel batch basis, and this results in curve 20 of extracted amount of reaction gas over the treatment period of about 12 minutes; the hot air is at a temperature of 1200 ° C in an amount corresponding to curve 21 blown in the time axis, being shown in the Embodiment blowing the hot air on the Half of the treatment time, i.e. limited to 6 minutes is.
  • the measured exhaust gas temperature was 1800 ° C, and from this one is calculated for melting one Steel bears available energy of 0.88 GJ, which is sufficient is a steel bear weighing approximately 1.5 tons to melt.
  • FIG 3 is an appropriate generator arrangement for Generation of hot air is shown, the associated Generator 22 via a connecting line 23 to the Injection opening 17 for the hot air in the reaction vessel 10 connected; the connecting line 23 is via a Valve 24 can be shut off.
  • the generator 22 has a bed 25 of one fireproof material existing balls, being used for Heating of the ball bed 25 a separate, for example, gas-operated burner 26 is provided is, which in turn is connected to the connecting line 23 is.
  • An air line 27 also leads into the generator into a lockable by means of a valve 29 Exhaust line 28 and into one by means of a valve 31 lockable inlet line 30 branches.
  • the valve is 24 closed, as well as the valve 31 in the inlet line 30; this means that the gas burner 26 is called Exhaust gases flow through the ball bed 25 and over the Exhaust pipe 28 exit with valve 29 open; for the Blowing in hot air, the valve 29 is closed, and valves 31 and 24 are opened; due to the im Reaction vessel 10 prevailing vacuum, the air can now enter generator 22 via lines 30 and 27 and is here on the heated ball bed 25 Brought temperature; the heated hot air then comes out via the connecting line 23 with the valve 24 open in the Reaction vessel 10 via the injection opening 17; is there it is appropriate that the connecting line 23 between the generator 22 and reaction vessel 10 is dimensioned as short as possible.
  • the injection opening 17 in the reaction vessel is also like this dimensioned that at the internal pressure to be applied in each case or vacuum in the reaction vessel in each case best possible flow conditions for the entry of the Hot air exist.
  • the valve 24 is in both Embodiments depending on the in Reaction vessel 10 prevailing vacuum regulation of amount of hot air to be admitted into the reaction vessel 10 given.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Nachverbrennung von bei der Entkohlung von flüssigem Stahl in unter Vakuum stehenden Reaktionsgefäßen entstehenden Reaktionsgasen, wobei entgegen der Strömungsrichtung der Reaktionsgase ein Luftstrom in das Reaktionsgefäß eingebracht wird.
In der DE 41 30 590 C2 ist ein Entgasungsgefäß als Reaktionsgefäß für die Vakuumbehandlung von flüssigem Stahl beschrieben; wie dieser Druckschrift zu entnehmen ist, werden durch den Entgasungsstrom der Reaktionsgase Partikel mitgerissen, was dazu führt, daß es im oberen Teil des Reaktionsgefäßes und im Bereich der Anschlußleitung für die Vakuumpumpe zu einer starken Ansatzbildung von Stahlspritzern kommt, wobei derartige Ansammlungen auch als "Stahlbären" bezeichnet werden. Diese Stahlbären können ein erhebliches Gewicht aufweisen und schließlich den oberen Teil des Reaktionsgefäßes weitgehend verschließen, so daß im allgemeinen der Stahlbär in aufwendiger Weise durch Herausbrennen beseitigt werden muß.
Zur Vermeidung einer derartigen Bärenbildung ist in der insoweit zur Bildung der Gattung herangezogenen EP 0 347 884 B1 ein Verfahren vorgeschlagen, mittels dessen eine Nachverbrennung der entstehenden Reaktionsgase angestrebt wird. Im Rahmen dieses bekannten Verfahrens wird über eine in das Reaktionsgefäß bis auf einen definierten Abstand zur Oberfläche des Stahlbades des flüssigen Stahls einfahrbare Lanze Sauerstoff beziehungsweise ein sauerstoffhaltiges Gas in einer im einzelnen zu berechnenden Menge auf das Stahlbad geblasen; mit diesem bekannten Verfahren sollen drei Effekte gemeinsam erreicht werden, nämlich eine Entkohlung des Stahls über die Sauerstoffzufuhr, eine Aufheizung des Stahlbades sowie eine Nachverbrennung der bei der Vakuumbehandlung entstehenden Reaktiongsgase. Dabei hat es sich in der Praxis gezeigt, daß mit dem bekannten Verfahren das Entstehen von Stahlbären insbesondere in langgestreckten beziehungsweise hohen Reaktionsgefäßen nicht ausreichend sicher verhindert werden kann.
In der zur Bildung der Gattung herangezogenen FR 1 575 991 ist ein Verfahren beschrieben, bei welchem in ein Reaktionsgefäß entgegen der Strömungsrichtung der Reaktionsgase ein Luftstrom mittels auf die Badoberfläche gerichteter und mit geringem Abstand dazu endender Lanzen eingeblasen wird. Zwar geht mit dem Einblasen von Luft eine Nachverbrennung einher, jedoch ist aufgrund der Umgebungstemperatur der eingeblasenen Luft die damit erzeugte Energie für die Verhinderung von Stahlansätzen im Reaktionsgefäß nicht ausreichend.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art derart zu verbessern, daß die Gefahr der Bildung von Stahlansätzen - Bären - im Reaktionsgefäß weiter verringert ist; ferner soll eine zur Durchführung eines verbesserten Verfahrens geeignete Vorrichtung angegeben werden.
Die Lösung dieser Aufgabe ergibt sich einschließlich vorteilhafter Ausgestaltungen und Weiterbildungen aus dem Inhalt der Patentansprüche, welche dieser Beschreibung nachgestellt sind.
Die Erfindung sieht in ihrem Grundgedanken vor, daß der über eine in der Feuerfestzustellung angeordnete Einblasöffnung eingebrachte Luftstrom aus Heißluft mit einer Temperatur zwischen 800° C bis 1400° C besteht.
Mit der Erfindung ist der Vorteil verbunden, daß Heißluft aufgrund der ihr eigenen hohen Einblasgeschwindigkeit einen wesentlich höheren Energieimpuls aufweist und damit über die Länge/Höhe des Reaktionsgefäßes entgegen der Strömungsrichtung der Reaktionsgase sehr tief eindringt. Damit geht eine ausreichend starke Verwirbelung der Reaktionsgase mit dem Heißluftstrahl einher, was zu einer besseren Verbrennung der Reaktionsgase und zu einer besseren Wärmeübertragung an die Innenseite der Wand des Reaktionsgefäßes führt. Der Grund hierfür liegt darin, daß Luft unter den üblichen Bedingungen nur maximal mit Schallgeschwindigkeit in das Reaktionsgefäß eingeblasen werden kann; für kalte Luft liegt die Schallgeschwindigkeit nur bei 330 m/s, wohingegen die Schallgeschwindigkeit für Luft mit einer Temperatur von beispielsweise 1200° C bei ca. 800 m/s liegt. Durch die Verwendung heißer Luft ist es also möglich, die Luft mit wesentlich höherer Geschwindigkeit in das Reaktionsgefäß einzubringen.
Vereinfacht entsteht durch das Einbringen von Luft in das Reaktionsgefäß bei Zutritt der Reaktionsgase eine langgestreckte große Flamme, die über die Einblasmenge sowie die Einblasgeschwindigkeit regelbar ist; mittels dieser großen Flamme lassen sich auch gegebenenfalls bereits bestehende Stahlbären größeren Ausmaßes verhältnismäßig schnell wieder abschmelzen. Vorteilhaft ist aber, daß die Abgase der durch das Einblasen von Luft herbeigeführten Nachverbrennung der Reaktionsgase verhältnismäßig kalt sind, so daß auch die Abgasbehandlung der aus dem Reaktionsgefäß abgesaugten Gase vereinfacht ist.
Nach einem Ausführungsbeispiel der Erfindung ist die eingebrachte Luftmenge so bemessen, daß die aus der zu entgasenden Stahlcharge berechnete Menge an Reaktionsgasen stöchiometrisch vollständig verbrannt wird; es versteht sich, daß zur Erreichung dieses Zieles die einzublasende Luftmenge der Menge der entstehenden Reaktionsgase anzupassen ist.
Hierbei ist nach einem Ausführungsbeispiel der Erfindung vorgesehen, daß das Einbringen von Luft über die gesamte Zeitdauer der Vakuumentgasung des flüssigen Stahls erfolgt; diese Maßnahme dient dazu, während der gesamten Vakuumbehandlung des Stahls möglichst ein CO-freies Abgas zu erzielen.
Da bekanntlich innerhalb eines ersten Zeitabschnitts, beispielsweise innerhalb der ersten drei Minuten einer etwa zwölf Minuten dauernden Vakuumentkohlung etwa 50 % der Reaktionsgase abgesaugt und während der nachfolgenden weiteren drei Minuten weitere 25 % abgesaugt werden, kann es nach einem Ausführungsbeispiel der Erfindung zweckmäßig sein, daß das Einbringen von Luft auf den ersten Zeitabschnitt der Vakuumbehandlung des flüssigen Stahls konzentriert ist, wobei dieser erste Zeitabschnitt mit der Hälfte der gesamten Behandiungsdauer bemessen sein kann.
Nach alternativen Ausführungsbeispielen der Erfindung kann vorgesehen sein, daß das Einbringen von Luft in das Reaktionsgefäß nur bei jeder 2. beziehungsweise 3. Charge vorgenommen wird, weil es erwünscht sein kann, daß zum Schutze der feuerfesten Auskleidung des Reaktionsgefäßes ein dünnes Stahlhemd auf der Gefäßauskleidung belassen werden soll.
In an sich bekannter Weise ist das erfindungsgemäße Verfahren zur Nachverbrennung der Reaktionsgase auch zu kombinieren mit einer beschleunigten Entkohlungsbehandlung des flüssigen Stahls, bei welcher über eine einfahrbare Lanze Sauerstoff in das Stahlbad eingebracht wird.
Eine zweckmäßige Vorrichtung zur Durchführung des Verfahrens ist darauf gerichtet, einen geeigneten Generator zur Erzeugung der Heißluft vorzusehen, und erfindungsgemäß weist der Generator eine Schüttung von durch Wärmezufuhr aufheizbaren Kugeln aus einem feuerfesten Material zur Aufheizung der durch die Kugelschüttung geführten Luft auf. Zur Aufheizung der Kugelschüttung kann nach einem Ausführungsbeispiel der Erfindung ein gesonderter Brenner vorgesehen sein, oder es kann der Generator zur Abwärmenutzung an das Reaktionsgefäß angeschlossen sein, so daß die dort nach der Behandlung anstehende heiße Luft zur Aufheizung der Kugelschüttung herangezogen werden kann.
In der Zeichnung sind Ausführungsbeispiel der Erfindung wiedergegeben, welche nachstehend beschrieben sind; es zeigen:
Fig. 1
ein Reaktionsgefäß während des Einblasens von Heißluft in einer schematischer Darstellung,
Fig. 2
in einem Diagramm das Verhältnis von entstehenden Reaktionsgasen und eingeblasener Luftmenge zur Behandlungsdauer,
Fig. 3
einen Generator zur Heißlufterzeugung in Verbindung mit dem Reaktionsgefäß in einer schematischen Darstellung,
Fig. 4
den Gegenstand der Figur 3 in einem anderen Ausführungsbeispiel.
Wie aus Figur 1 ersichtlich, weist das Reaktionsgefäß 10 an seinem unteren Ende zwei Tauchrohre 11 auf, mit denen das Reaktionsgefäß in Verbindung mit einer Stahlpfanne gebracht wird, in der sich flüssiger Stahl befindet; wird in dem Reaktionsgefäß über den Anschluß 16 für eine Vakuumpumpe Unterdruck angelegt, so steigt aus der nicht dargestellten Stahlpfanne das Stahlbad 12 in Richtung des Pfeiles 13 auf und tritt in das Reaktionsgefäß 10 ein und fließt nach entsprechender Behandlung beziehungsweise Entgasung in Richtung des Pfeiles 14 in die Stahlpfanne zurück; bei dieser Behandlung entstehen aus dem Stahlbad 12 austretende Reaktionsgase 15, die in Richtung auf die Anschlußöffnung 16 für die Vakuumpumpe strömen.
Im oberen Deckel des Reaktionsgefäßes 10 befindet sich eine Einblasöffnung 17, über die bei dem beschriebenen Ausführungsbeispiel Heißluft in das Reaktionsgefäß 10 eingeblasen beziehungsweise über das im Reaktionsgefäß 10 anstehende Vakuum in das Reaktionsgefäß 10 eingesaugt wird, wobei sich von der Einblasöffnung 17 aus eine Flamme 19 ausbildet, die von einer Heißluftsäule 18 umgeben ist beziehungsweise sich in diese fortsetzt. Die in der Figur 1 dargestellten Verhältnisse beruhen auf einer Geschwindigkeit der eingeblasenen Heißluft in Höhe von 600 m/s bei einer Strömungsgeschwindigkeit der Reaktionsgase von 15 m/s, wobei bei einer Gesamthöhe des Reaktionsgefäßes von 10 - 12 m die Heißluft tief in das Reaktionsgefäß 10 eindringt und damit eine Wärmeübertragung bis in den unteren Bereich des Reaktionsgefäßes sicherstellt.
In Figur 2 ist die entsprechende Vakuumbehandlung beziehungsweise das Heißlufteinblasen dargestellt, wobei jeweils die Menge an Reaktionsgas beziehungsweise Heißluft über der Behandlungsdauer aufgetragen ist; dieser Darstellung liegt die Vakuumbehandlung einer 280 t-Stahlcharge zugrunde, und dabei ergibt sich die Kurve 20 der abgesaugten Menge an Reaktionsgas über der Behandlungsdauer von etwa 12 Minuten; die Heißluft wird mit einer Temperatur von 1200° C in einer der Kurve 21 entsprechenden Menge über der Zeitachse eingeblasen, wobei in dem dargestellten Ausführungsbeispiel das Einblasen der Heißluft auf die Hälfte der Behandlungsdauer, also auf 6 Minuten, beschränkt ist. Die gemessene Abgastemperatur betrug dabei 1800° C, und hieraus errechnet sich eine für das Abschmelzen eines Stahlbären verfügbare Energie von 0,88 GJ, was ausreichend ist, um einen Stahlbären von ungefähr 1,5 t Gewicht abzuschmelzen.
In Figur 3 ist eine zweckmäßige Generatoranordnung für die Erzeugung der Heißluft dargestellt, wobei der zugehörige Generator 22 über eine Anschlußleitung 23 an die Einblasöffnung 17 für die Heißluft im Reaktionsgefäß 10 angeschlossen ist; die Anschlußleitung 23 ist über ein Ventil 24 absperrbar.
Der Generator 22 weist eine Schüttung 25 von aus einem feuerfesten Material bestehenden Kugeln auf, wobei zur Aufheizung der Kugelschüttung 25 ein gesonderter, beispielsweise mit Gas betriebener Brenner 26 vorgesehen ist, der seinerseits an die Anschlußleitung 23 angeschlossen ist. In den Generator führt ferner eine Luftleitung 27, die sich in eine mittels eines Ventils 29 absperrbare Abgasleitung 28 und in eine mittels eines Ventils 31 absperrbare Einlaßleitung 30 verzweigt.
Während des Aufheizens der Kugelschüttung 25 ist das Ventil 24 geschlossen, ebenso das Ventil 31 in der Einlaßleitung 30; damit können die vom Gasbrenner 26 eingebrachten heißen Abgase die Kugelschüttung 25 durchströmen und über die Abgasleitung 28 bei geöffnetem Ventil 29 austreten; für das Einblasen von Heißluft wird das Ventil 29 geschlossen, und es werden die Ventile 31 und 24 geöffnet; aufgrund des im Reaktionsgefäß 10 herrschenden Vakuums kann die Luft nun über die Leitungen 30 und 27 in den Generator 22 eintreten und wird hier über die aufgeheizte Kugelschüttung 25 auf Temperatur gebracht; die aufgeheizte Heißluft tritt alsdann über die Anschlußleitung 23 bei geöffnetem Ventil 24 in das Reaktionsgefäß 10 über die Einblasöffnung 17 ein; dabei ist es zweckmäßig, daß die Anschlußleitung 23 zwischen Generator 22 und Reaktionsgefäß 10 möglichst kurz bemessen ist. Weiterhin ist die Einblasöffnung 17 im Reaktionsgefäß so dimensioniert, daß bei dem jeweils anzulegenden Innendruck beziehungsweise Vakuum im Reaktionsgefäß jeweils bestmögliche Strömungsbedingungen für das Eintreten der Heißluft bestehen.
Bei dem in Figur 4 dargestellten Ausführungsbeispiel ist eine Nutzung der Abwärme im Reaktionsgefäß eingerichtet, indem sich die Luftleitung 27 in die Einlaßleitung 30 und in eine Verbindungsleitung 32 zum Reaktionsgefäß 10 verzweigt, wobei die Verbindungsleitung 32 über ein Ventil 33 absperrbar ist und in diese Leitung ebenfalls ein Sauggebläse 34 eingeschaltet ist. Bei diesem Ausführungsbeispiel ist ferner das Ventil 24 nicht mehr in der Anschlußleitung 23 zwischen Generator 22 und Reaktionsgefäß 10 angeordnet, sondern befindet sich in der Luftleitung 27.
Bei diesem Ausführungsbeispiel erfolgt das Aufheizen der Kugelschüttung 25 bei geöffnetem Ventil 24 sowie geöffnetem Ventil 33 und laufendem Sauggebläse 34 durch das Einleiten der im Reaktionsgefäß 10 befindlichen heißen Gase, wobei nach dem Aufheizen der Kugelschüttung 25 das Ventil 33 geschlossen und das Ventil 31 in der Einlaßleitung geöffnet wird, so daß nun die Luft über die Luftleitung 27 in die aufgeheizte Kugelschüttung 25 eintreten und von hier aus über die Anschlußleitung 23 zum Reaktionsgefäß 10 strömen kann. Über das Ventil 24 ist bei beiden Ausführungsbeispielen in Abhängigkeit von dem im Reaktionsgefäß 10 herrschenden Unterdruck eine Regelung der in das Reaktionsgefäß 10 einzulassenden Menge an Heißluft gegeben.

Claims (11)

  1. Verfahren zur Nachverbrennung von bei der Entkohlung von flüssigem Stahl in unter Vakuum stehenden Reaktionsgefäßen entstehenden Reaktionsgasen, wobei entgegen der Strömungsrichtung der Reaktionsgase (15) ein Luftstrom (18) in das Reaktionsgefäß (10) eingebracht wird, dadurch gekennzeichnet, daß der über eine in der Feuerfestzustellung angeordnete Einblasöffnung (17) eingebrachte Luftstrom (18) aus Heißluft mit einer Temperatur zwischen 800° C bis 1400° C besteht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die eingebrachte Luftmenge derart bemessen ist, daß die aus der zu entgasenden Stahlcharge berechnete Menge an Reaktionsgasen stöchiometrisch vollständig verbrannt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Einbringen von Luft über die gesamte Zeitdauer der Vakuumentgasung des flüssigen Stahls erfolgt.
  4. Verfahren nach Anpruch 1 oder 2, dadurch gekennzeichnet, daß das Einbringen von Luft auf einen ersten Zeitabschnitt der Vakuumentgasung des flüssigen Stahls beschränkt ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der erste Zeitabschnitt für das Einbringen von Luft etwa auf die Hälfte der Zeitdauer der Vakuumentkohlung des flüssigen Stahls bemessen ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Einbringen von Luft in das Reaktionsgefäß (10) bei jeder zweiten Charge vorgenommen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Einbringen von Luft in das Reaktionsgefäß (10) bei jeder dritten Charge vorgenommen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur beschleunigten Entkohlung des flüssigen Stahls zusätzlich über eine in das Reaktionsgefäß (10) einfahrbare Lanze Sauerstoff in das Stahlbad eingeblasen wird.
  9. Vorrichtung zur Durchführung des Verfahrens zur Nachverbrennung von bei der Entkohlung von flüssigem Stahl in unter Vakuum stehenden Reaktionsgefäßen entstehenden Reaktionsgasen nach Anspruch 1, dadurch gekennzeichnet, daß ein der Erzeugung der Heißluft dienender Generator (22) an das Reaktionsgefäß (10) angeschlossen ist und daß der Generator (22) eine Schüttung (25) von durch Wärmezufuhr aufheizbaren Kugeln aus einem feuerfesten Material zur Aufheizung der durch die Kugelschüttung (25) geführten und anschließend in das Reaktionsgefäß (10) eingebrachten Luft aufweist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß zur Aufheizung der Kugelschüttung (25) ein gesonderter Brenner (26) vorgesehen ist.
  11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß zur Aufheizung der Kugelschüttung der Generator (22) zur Abwärmenutzung an das Reaktionsgefäß (10) angeschlossen ist.
EP96919573A 1995-05-26 1996-05-18 Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen und vorrichtung zur durchfuhrung des verfahrens. Expired - Lifetime EP0832301B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19518900 1995-05-26
DE19518900A DE19518900C1 (de) 1995-05-26 1995-05-26 Verfahren zur Nachverbrennung von bei der Vakuumbehandlung von Stahl entstehenden Reaktionsgasen
PCT/DE1996/000902 WO1996037633A1 (de) 1995-05-26 1996-05-18 Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen

Publications (2)

Publication Number Publication Date
EP0832301A1 EP0832301A1 (de) 1998-04-01
EP0832301B1 true EP0832301B1 (de) 1999-03-24

Family

ID=7762662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96919573A Expired - Lifetime EP0832301B1 (de) 1995-05-26 1996-05-18 Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen und vorrichtung zur durchfuhrung des verfahrens.

Country Status (7)

Country Link
US (1) US6042633A (de)
EP (1) EP0832301B1 (de)
KR (1) KR19990021996A (de)
CN (1) CN1060526C (de)
AU (1) AU5809896A (de)
DE (1) DE19518900C1 (de)
WO (1) WO1996037633A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020214667A1 (de) * 2019-11-27 2021-05-27 Sms Group Gmbh Verfahren zur Nachverbrennung von kohlenmonoxidhaltigen Abgasen aus thermischen Prozessen sowie Nachverbrennungseinrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1014827A (en) * 1961-08-23 1965-12-31 Yawata Iron & Steel Co Method of accelerating decarburization of a molten steel by a degassing process using a vacuum container
FR1575991A (de) * 1968-07-08 1969-07-25
JPH01195239A (ja) * 1988-01-29 1989-08-07 Kawasaki Steel Corp 真空脱ガス槽内加熱方法およびその装置
CA1337846C (en) * 1988-06-21 1996-01-02 Hiroshi Nishikawa Process for vacuum degassing and decarbonization with temperature drop compensating feature
JPH0737644B2 (ja) * 1990-01-31 1995-04-26 川崎製鉄株式会社 真空脱ガス装置排ガスダクト内スプラツシユ付着防止方法
DE4130590C2 (de) * 1991-09-12 1993-11-04 Mannesmann Ag Entgasungsgefaess fuer die vakuumbehandlung von fluessigem stahl
DE4221266C1 (de) * 1992-06-26 1993-10-21 Mannesmann Ag Verfahren und Vorrichtung zum Aufblasen von Sauerstoff auf Metallschmelzen

Also Published As

Publication number Publication date
US6042633A (en) 2000-03-28
KR19990021996A (ko) 1999-03-25
DE19518900C1 (de) 1996-08-08
CN1190996A (zh) 1998-08-19
CN1060526C (zh) 2001-01-10
AU5809896A (en) 1996-12-11
EP0832301A1 (de) 1998-04-01
WO1996037633A1 (de) 1996-11-28

Similar Documents

Publication Publication Date Title
DE69922441T2 (de) Kohärenter Überschallgasstrahl zum Zuführen von Gas in eine Flüssigkeit
EP0341436A2 (de) Verfahren und Vorrichtung zum Kühlen eines heissen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält
DE1401853C3 (de) Gasbrenner für Tieföfen
DE2952065A1 (de) Verfahren zur trockenkuehlung von koks und kokskuehleinrichtung zur durchfuehrung des verfahrens
DE3931392A1 (de) Verfahren und vorrichtung zum zumindest zeitweise gleichzeitigen beaufschlagen einer metallschmelze mit einem gas und feinkoernigen feststoffen
DE1408802B1 (de) Einrichtung zum Gewinnen von Konverterabgasen
DE1286525B (de) Verfahren und Vorrichtung zum Behandeln eines schlackenbedeckten geschmolzenen Metallbades mittels eines Gasstromes
EP1080236B1 (de) Variabel einsetzbare kombilanze mit verschiebbaren brenner- und blaslanzenkörpern
DE3041467A1 (en) Method of torch gunite of linings of metallurgical installations
EP0066539A1 (de) Vorrichtung zur Wärmebehandlung von Schrott
EP0832301B1 (de) Verfahren zur nachverbrennung von bei der vakuumbehandlung von stahl entstehenden reaktionsgasen und vorrichtung zur durchfuhrung des verfahrens.
DE1924812C3 (de) Brennerlanze für einen metallurgischen Ofen und Verfahren zum Betreiben eines solchen Ofens mit dieser Brennerlanze
DE1178767B (de) Verfahren zur Beheizung von Brennoefen der Grobkeramik und Brennofen mit Vorrichtung zur Durchfuehrung dieses Verfahrens
DE3819803C1 (de)
DE2018044B2 (de) Verfahren und vorrichtung zum thermochemischen flaemmen
DE1904442B2 (de) Verfahren zum vakuumfrischen von metallschmelzen
DE3043127A1 (de) Anordnung zur regelung der konvertergasabsaugung
DE2040824C2 (de) Verfahren zur Verhinderung der Entwicklung von braunem Rauch beim Frischen von Roheisen in einem bodenblasenden Konverter
DE1270059B (de) Herdofen, insbesondere Siemens-Martin-Ofen
AT233037B (de) Lanze zur Behandlung schlackenbedeckter Metallbäder mit einem gasförmigen oder gasgetragenen Behandlungsmittel
DE2953897C1 (de) Verfahren zur Sauerstoff-Flussmittel-Reinigung von Metallen und Vorrichtung zu seiner Durchfuehrung
DE2026586C3 (de) Verfahren zum Härten eines Turbinenläüfers oder einer Walze
DE252457C (de)
DE3819031C1 (de)
DE2404288A1 (de) Verfahren zur wiedergewinnung von reaktionsgassen aus mittels reinem sauerstoff bodengeblasenen und mit kohlenwasserstoffen gekuehlten stahlkonvertern sowie vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE FR GB IT LU

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980703

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB IT LU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990518

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990514

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090713

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090731

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090728

Year of fee payment: 14

BERE Be: lapsed

Owner name: SIEMENS VAI METALS TECHNOLOGIES G.M.B.H.

Effective date: 20100531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100518

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100518