EP0820371B1 - Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen - Google Patents

Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen Download PDF

Info

Publication number
EP0820371B1
EP0820371B1 EP97902338A EP97902338A EP0820371B1 EP 0820371 B1 EP0820371 B1 EP 0820371B1 EP 97902338 A EP97902338 A EP 97902338A EP 97902338 A EP97902338 A EP 97902338A EP 0820371 B1 EP0820371 B1 EP 0820371B1
Authority
EP
European Patent Office
Prior art keywords
mat
press
continuously
heating
panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97902338A
Other languages
English (en)
French (fr)
Other versions
EP0820371A1 (de
Inventor
Jürgen Dr. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0820371A1 publication Critical patent/EP0820371A1/de
Application granted granted Critical
Publication of EP0820371B1 publication Critical patent/EP0820371B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/24Moulding or pressing characterised by using continuously acting presses having endless belts or chains moved within the compression zone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/65Processes of preheating prior to molding

Definitions

  • the invention relates to a method for producing Sheets of particles containing lignocellulose, with binders is continuously applied to the particles, the Particles are continuously formed into a mat, the Mat is continuously pre-compacted, the mat being continuous by exposure to a high-frequency high-voltage field is warmed up and being guided in one plane is pressed under further heat to the plates.
  • the invention relates to a device for Implementation of such a method with a gluing machine for the continuous application of binder on the Particles, with a mat former for continuous shaping of the Particles into a mat, with a pre-press for continuous Pre-compact the mat with an HF heater for continuous heating of the mat by the action of a high-frequency high-voltage field and with a hot press for Pressing the between two press plates in one plane guided mat under further heat to the plates.
  • the invention thus relates only to methods and devices which at least including the prepress and the HF heating work completely continuously, which means until then no intermittent facilities for Come into play.
  • the invention relates only to methods and corresponding devices in which the in one plane guided mat is pressed hot to the plates. This closes the use of so-called calender presses, with which only Slabs of small thickness and made from certain materials are.
  • the invention is not limited to a specific binder or a certain size and composition of the Lignocellulosic particles restricted. That is, it comes does not depend on whether the binder is for example a urea resin or a formaldehyde-free binder is. Nor is it decisive whether the manufactured boards around chipboard, MDF boards or OSB boards is. However, the invention is in the making certain plates with special advantages.
  • the heating power of an HF heater depends on the field strength of the effective alternating field. This means that to achieve the same heating output with double electrode spacing twice the AC voltage must be used. Size However, tensions are always with the special danger of Breakthroughs connected, causing serious damage to the HF heater being able to lead. In addition, those with the punctures accompanying electro-magnetic impulses also others damage electrical or electronic equipment. Ultimately, it can be in the manufacture of panels by the Breakthroughs also for igniting the mat or for damage come on the finished panels.
  • RF heaters are also found in batch work Plants for the production of boards made from lignocellulose Particle use.
  • HF heating of the mat known in hot pressing in a stack press. Because stack presses with HF heating are technically very complex and the efficiency of the HF heating is limited, the economy applies of hot presses with HF heating as not given.
  • the invention has for its object the use of an HF heater in the continuous manufacture of panels Optimize lignocellulose-containing material.
  • this object is achieved in a method of Type described above solved in that the mat at continuous pre-compression by exposure to the high-frequency High voltage field is warmed.
  • the RF heater can have minimal electrode spacing, so that only a minimal AC voltage is used. That way not just the risk of breakdowns and the associated Reduces interference, but it also goes from the HF heating outgoing electromagnetic stray radiation. Basically, it is only a comparatively minor technical one Expenses for the HF heating to operate, since this only must be designed for comparatively low voltages.
  • Lignocellulose-containing material can clearly show their capacity be increased. This requires the integration of the HF heating no additional space in the pre-press, it is included comparatively low technical effort can be realized.
  • the high-frequency high-voltage field of the HF heater preferably acts on the mat where it has its smallest thickness reached during pre-compression.
  • the HF heating can be implemented.
  • Heating the mat in the has a special advantage Pre-press using a high-frequency high-voltage field in the production of OSB panels from flat Pieces of wood.
  • Thin OSB boards are due to the large Restoring forces of the flat pieces of wood used so far cannot be produced commercially continuously because the press belts would be too heavily loaded by continuous hot presses.
  • the HF heating in the pre-press becomes the lignin in the Plasticized mat and the binders already start to show adhesive properties, so that the restoring forces of the flat pieces of wood decrease sharply.
  • the result is a very little rebound of the mat after the pre-press observed and the mat can also be in a continuous working hot press to be pressed to the OSB boards.
  • the slight cracking of the mat after the pre-press is general a special feature of the method according to the invention.
  • the electrodes of the HF heating on the backs of the plates that act on both sides Press belts of the pre-press can be arranged.
  • the Electrodes of the HF heater are preferably arranged where the Press belts have their smallest distance from each other.
  • One electrode of the RF heater can be grounded, which is the grounded electrode on the other side of the mat opposite Press belt is designed to be radio frequency resistant. If an electrode of an HF heater is grounded an asymmetrical RF feed.
  • the grounded Electrode also called a cold electrode. In the area of this cold electrode, the material stresses are less than on the "hot" electrode. It is therefore sufficient to convert one existing device for the production of plates from lignocellulose-containing Material if at least the press belt Prepress, which is assigned to the hot electrode, see above is converted that it is radio frequency resistant.
  • binder is first used in a gluing machine 1 continuously on lignocellulose-containing Particle 2 applied. Then be the particles 2 in a mat former 3 continuously into one Mat 4 shaped. In a pre-press 5, the mat 4 continuously pre-compressed. At the same time acts in the pre-press 5 an RF heater for continuous heating by a high-frequency high-voltage field on the mat 4. The warmed up and pre-compacted mat 4 is then in a hot press 6 continuously pressed into a plate 7, which then in individual plates can be cut.
  • the gluing machine used in the new process is known in its construction.
  • the pre-press has a special structure 5, whose inner structure is shown schematically in FIG. 2 is.
  • the inlet thickness 27 of the mat 4 is in the pre-press between two rollers 8 and 9 rotating press belts 10 and 11 reduced to a thickness of 12. Behind the press belts 10 and 11 the mat 4 jumps again to an outlet thickness 13 on.
  • An HF heater is located in the area of the minimum thickness 12 of the mat 4 14 arranged. A possible location for one second HF heater 14 is indicated by a dashed line.
  • the existing HF heater 14 has two behind each the press belts 10 and 11 arranged electrodes 15 and 16.
  • the electrode 16 is grounded, so that the HF heating after Principle of asymmetrical feeding works. Accordingly the electrode 16 is also called the cold electrode and the electrode 15 referred to as the hot electrode. Because the RF heater 14 in Area of minimum thickness 12 acts on the mat 4 is sufficient a comparatively low voltage to the for the desired energy transfer to the mat 4 required To achieve field strength. This also eliminates the risk of Breakthroughs kept within narrow limits.
  • At least the press belt 10 of the pre-press 5 is designed to be radio frequency resistant. At which the cold electrode 16 associated press belt 11, this is not absolutely necessary, but also recommended.
  • the hot press 6 outlined in FIG. 3 has the usual structure a continuously operating hot press, in which the Mat 4 between endless on rollers 17 and 18 supporting Press plates 19 and 20 is guided and under the action of heat is pressed to the plate 7.
  • the corresponding Heating elements are not shown in Figure 3.
  • the vertical distance between the press plates 19 and 20 is about Length of a hot press is not constant, as in FIG. 4 can be seen in the for a discontinuous hot press this distance as the thickness d of the plate 4 in its path s through the hot press 6 is applied.
  • Via a first section 21 the mat 4 is compressed, thereby heating the Cover layers of the mat 4 by the press plates 19 and 20th excess contact heat.
  • the thickness of the plate d becomes somewhat larger kept constant, the contact heat of the press plates 19 and 20 penetrates into the middle of the plate.
  • the temperature curve in the middle of the plate is Plate 4 in the hot press 6 for two examples of the invention Process and for two comparative examples over the absolute pressing time t.
  • the empty triangles and the empty diamonds correspond to MDF boards with a nominal thickness of 16 or 30 mm, according to the invention using an HF heater 14 were produced in the pre-press 5.
  • the filled squares and the filled circles correspond to comparative examples, where MDF boards with a nominal thickness of 16 or 30 mm without using the HF heater 14 were.
  • mats preheated to 50 ° C for 16 mm plates the temperature in the middle of the plate rises fairly quickly and reaches 80 ° C after only 60 seconds, d. H.
  • the temperature penetration curves according to FIG. 5 belong to the following examples:
  • MDF boards with a nominal thickness of 16 mm were produced once with and once without heating the mats in the pre-press using a high-frequency high-voltage field: Species 100% softwood approx. 90 - 95% pine and 5 to 10% spruce original shape wood chips binder Urea resin (Leuna 5554) Beleimungsart blowline Rohdicke 17.8 / 17.5 mm Dick shrinkage approx. 0.3 mm after cooling density 770 kg per cubic meter solid resin 10% on atro fibers Harder without addition of hardener humidity approx. 8 - 10% Mattentemp. without HF about 30 ° C ' Mattentemp. with HF approx. 50 ° C Heating times without HF 10 s / mm Heating times with HF 7.5 - 5.5 s / mm pressing temperature 227 ° C (hot plates)
  • the transverse tensile strengths achieved were evaluated after EMB standard, with each measuring point in that shown in Figure 6 Diagram represents an average of 5 transverse tensile tests per plate.
  • Figure 6 are the right over the heating time of 10 s / mm Cross tensile strengths shown, which are without HF heating Heating of the mat resulted.
  • On the left over the The heating time range from 5.5 - 7.5 s / mm are the transverse tensile strengths reproduced with HF heating.
  • the heating time range from 7 to 7.5 s / mm, which corresponds to a heating time reduction of 25 to 30%, the strength level with HF heating is significantly higher than the values without HF heating.
  • the spreading areas are also significantly lower compared to the initial values without HF heating.
  • the strength level is slightly lower but still above the Initial values without HF heating. With a heating time of 5.5 s / mm the strength level is approx. 20% compared to the initial values dropped, but is still above the EMB standard.
  • MDF boards with a nominal thickness of 30 mm were produced under the following conditions: Species 100% softwood approx. 90 - 95% pine and 5 - 10% spruce original shape wood chips binder Urea resin (BASF 570 / NESTE 36 75) nominal thickness 30 mm Rohdicke 32.0 / 32.6 mm Dick shrinkage approx. 0.6 mm after cooling density 750 kg per cubic meter solid resin 12% on atro fibers Harder without addition of hardener humidity approx. 10% Mattentemp. without HF approx. 30 ° C Mattentemp. with HF approx. 50 ° C Heating times without HF 13 s / mm Heating times with HF 11 to 8 s / mm pressing temperature 227 ° C (hot plates)
  • the HF heating which was used in the examples according to the invention, has the following technical data: RF power output 15 kW at 100% duty cycle frequency 27.12 MHz + - 0.6% mains connection 400 V three-phase current + 6% - 10% 50 Hz control voltage 230 V / 50 Hz Power consumption at full load 32 kVA High voltage rectification silicon diodes transmitting tube - Make: ABB - Type: IQL 12-1 electrode plate - Length: 500 mm - Width: 800 mm

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Platten aus Lignocellulose-haltigen Teilchen, wobei Bindemittel kontinuierlich auf die Teilchen aufgebracht wird, wobei die Teilchen kontinuierlich zu einer Matte geformt werden, wobei die Matte kontinuierlich vorverdichtet wird, wobei die Matte kontinuierlich durch Einwirken eines hochfrequenten Hochspannungsfelds angewärmt wird und wobei die in einer Ebene geführte Matte unter weiterer Wärmeeinwirkung zu den Platten verpreßt wird. Weiterhin bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung eines solchen Verfahrens mit einer Beleimmaschine zum kontinuierlichen Aufbringen von Bindemittel auf die Teilchen, mit einem Mattenformer zum kontinuierlichen Formen der Teilchen zu einer Matte, mit einer Vorpresse zum kontinuierlichen Vorverdichten der Matte, mit einer HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds und mit einer Heißpresse zum Verpressen der zwischen zwei Preßblechen in einer Ebene geführten Matte unter weiterer Wärmeeinwirkung zu den Platten.
Die Erfindung bezieht sich damit nur auf Verfahren und Vorrichtungen, die zumindest einschließlich der Vorpresse und der HF-Heizung vollständig kontinuierlich arbeiten, bei denen also bis dahin keine schlagweise arbeitenden Einrichtungen zum Einsatz kommen.
Überdies bezieht sich die Erfindung ausschließlich auf Verfahren und entsprechende Vorrichtungen, bei denen die in einer Ebene geführte Matte heiß zu den Platten verpreßt wird. Dies schließt die Anwendung sogenannter Kalander-Pressen aus, mit denen nur Platten geringer Dicke und aus bestimmten Materialien herstellbar sind.
Demgegenüber ist die Erfindung nicht auf ein bestimmtes Bindemittel oder eine bestimmte Größe und Zusammensetzung der Lignocellulose-haltigen Teilchen beschränkt. D. h., es kommt nicht darauf an, ob es sich bei dem Bindemittel beispielsweise um ein Harnstoffharz oder ein formaldehydfreies Bindemittel handelt. Ebensowenig ist entscheidend, ob es sich bei den hergestellten Platten um Spanplatten, MDF-Platten oder OSB-Platten handelt. Allerdings ist die Erfindung bei der Herstellung bestimmter Platten mit besonderen Vorteilen verbunden.
Ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art sind aus "Proceedings 27th International Particleboard/Composite Materials Symposium W.S.U. 1993, Seiten 55 bis 66: SUCCESS STORY: MODERN PARTICLEBOARD USING EASTERN HARDWOODS" bekannt. Dort ist eine Vorrichtung zur kontinuierlichen Herstellung von Spanplatten beschrieben bei der der Vorpresse zum kontinuierlichen Vorverdichten der Matte eine HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds vorgeschaltet ist. Die HF-Heizung erhöht die Temperatur der Matte ausgehend von Raumtemperatur um etwa 40 °C. Es wird berichtet, daß durch den Einsatz der HF-Heizung vor der Heißpresse die Produktivität der Vorrichtung deutlich gesteigert werden konnte, weil die angewärmte Matte eine erheblich kürzere Preßzeit in der Heißpresse benötigt.
Die Heizleistung einer HF-Heizung hängt von der Feldstärke des wirksamen Wechselfelds ab. Dies bedeutet, daß zum Erreichen der gleichen Heizleistung bei doppeltem Elektrodenabstand eine doppelt so große Wechselspannung zur Anwendung kommen muß. Große Spannungen sind jedoch immer mit der besonderen Gefahr von Durchschlägen verbunden, die zu schweren Beschädigungen der HF-Heizung führen können. Darüberhinaus können die mit den Durchschlägen einhergehenden elektro-magnetischen Impulse auch andere elektrische oder elektronische Einrichtungen beschädigen. Letztlich kann es bei der Herstellung von Platten durch die Durchschläge auch zum Entzünden der Matte oder zu Schadstellen an den fertigen Platten kommen.
Zur Berücksichtigung dieser Problematik ist es daher bekannt, eine HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds auch hinter der Vorpresse zum kontinuierlichen Vorverdichten der Matte anzuordnen, wo die Matte nur noch eine reduzierte Dicke aufweist und daher ein deutlich geringerer Elektrodenabstand der HF-Heizung möglich ist. Beispielsweise sind in US 4216179 Verfahren und Vorrichtungen beschrieben, bei denen eine Matte aus Lignocellulose-haltigen Teilchen zunächst vorverpreßt wird, um die Einlaufdicke um etwa ein Drittel zu reduzieren, dann mit Hilfe einer HF-Heizung angewärmt und schließlich weiter verpresst wird, um die Matte auf die endgültige Dicke der zu fertigenden Platte zu reduzieren.
In dem "Taschenbuch der Spanplattentechnik, Deppe/Ernst, 3. Auflage" wird auf Seite 175 eine HF-Vorpresse im Zusammenhang mit einer Kalander-Anlage erwähnt, bei der die Matte beim Heißverpressen nicht in einer Ebene sondern um eine im Querschnitt runde Heiztrommel herumgeführt wird. Kalander-Anlagen sind wie bereits erwähnt nur zur Herstellung dünner Platten geeignet. Eine Herstellung von OSB-Platten kommt mit einer Kalander-Anlage durch die Rückspringeigenschaften der zugrundeliegenden flächigen Holzstücke überhaupt nicht in Frage. wie eine HF-Vorpresse für eine Kalander-Anlage aufgebaut sein soll, geht weder aus dem unmittelbaren Zusammenhang noch aus den an dieser Stelle in dem Taschenbuch der Spanplattentechnik zitierten Druckschriften hervor. Es ist jedoch davon auszugehen, daß es sich um die auch bei Kalander-Anlagen bekannte Anordnung handelt, bei der einer Vorpresse eine HF-Heizung nachgeschaltet ist. Grundsätzlich ist der Einbau einer HF-Presse in eine Kalander-Anlage relativ unproblematisch, weil die Matte für die damit herstellbaren dünnen Platten ebenfalls nur dünn ist und so einen geringen Elektrodenabstand der HF-Heizung erlaubt.
HF-Heizungen finden auch in diskontinuierlich arbeitenden Anlagen zur Herstellung von Platten aus Lignocellulose-haltigen Teilchen Verwendung. Zum einen ist die HF-Erwärmung der Matte beim Heißverpressen in einer Stapelpresse bekannt. Da Stapelpressen mit HF-Heizung technisch jedoch sehr aufwendig sind und der Wirkungsgrad der HF-Heizung begrenzt ist, gilt die Wirtschaftlichkeit von Heißpressen mit HF-Heizung als nicht gegeben.
Weiterhin sind diskontinuierliche Vorpressen mit einer HF-Heizung für die Matte beim Vorverdichten bekannt. Hierbei handelt es sich um Einetagenpressen, die einen komplizierten technischen Aufbau aufweisen, weil sich die Elektroden der HF-Heizung zur gleichmäßigen Anwärmung der Matte über die gesamte Länge und Breite der Presse erstrecken müssen, wobei die Länge in der Größenordnung von 20 m liegen kann. Dies bedeutet beispielsweise, daß in der HF-Heizung relativ große Ströme fließen müssen, die nur mit großem Aufwand beherrschbar sind.
Der Erfindung liegt die Aufgabe zugrunde, den Einsatz einer HF-Heizung bei der kontinuierlichen Herstellung von Platten aus Lignocellulose-haltigem Material zu optimieren.
Erfindungsgemäß wird diese Aufgabe bei einem Verfahren der eingangs beschriebenen Art dadurch gelöst, daß die Matte beim kontinuierlichen Vorverdichten durch Einwirken des hochfrequenten Hochspannungsfelds angewärmt wird. Dies bedeutet für eine Vorrichtung der eingangs beschriebenen Art, daß die HF-Heizung innerhalb der Vorpresse angeordnet ist. Durch das Zusammenfassen des Vorverdichtens und des Anwärmens der Matte mit der HF-Heizung an einem Ort kann die HF-Heizung einen minimalen Elektrodenabstand aufweisen, so daß nur eine minimale Wechselspannung zur Anwendung kommt. Auf diese Weise werden nicht nur die Gefahr von Durchschlägen und die damit verbundenen Störeinflüsse reduziert, sondern es geht auch die von der HF-Heizung ausgehende elektro-magnetische Streustrahlung zurück. Ganz grundsätzlich ist nur ein vergleichsweise geringer technischer Aufwand für die HF-Heizung zu betreiben, da diese nur für vergleichsweise geringe Spannungen ausgelegt sein muß. Im Gegensatz zu einer diskontinuierlich arbeitenden Vorpresse mit HF-Heizung, ist der apparative Aufwand ebenfalls sehr gering, da die HF-Heizung bei der Erfindung theoretisch nur in einer Linie auf die kontinuierlich durchlaufende Matte einwirken muß. D.h., die Fläche der Elektroden kann klein gehalten werden und durch die geringe erforderliche Spannung in Verbindung mit den kleinen Elektrodenflächen müssen nur relativ kleine Ströme in der HF-Heizung fließen. Hieraus ergeben sich insgesamt auch Vorteile beim Wirkungsgrad der eingesetzten elektrischen Energie, da diese dem Produkt aus Spannung und Strom proportional ist.
Durch den Einbau der HF-Heizung in die Vorpresse einer bestehenden Vorrichtung zum Herstellen von Platten aus Lignocellulose-haltigem Material kann deren Kapazität deutlich gesteigert werden. Dabei erfordert die Integration der HF-Heizung in die Vorpresse keinen zusätzlichen Platz, sie ist mit vergleichsweise geringem technischen Aufwand realisierbar.
Vorzugsweise wirkt das hochfrequente Hochspannungsfeld der HF-Heizung dort auf die Matte ein, wo diese ihre geringste Dicke beim Vorverdichten erreicht. Hier ist der geringste Elektrodenabstand der HF-Heizung realisierbar.
Eine große Steigerung der Produktivität bei der Herstellung von Platten aus Lignocellulose-haltigem Material ist bereits dann erreichbar, wenn die Matte nur auf eine Temperatur von unter 60 °C, insbesondere zwischen 45 und 55 °C angewärmt wird. Bei diesen vergleichsweise geringen Temperaturen treten auch keine unerwünschten Kondensationen von Wasser oder Bindemittel an der Vorpresse auf, selbst wenn die Bindemittel keine speziell auf das neue Verfahren abgestimmte Zusammensetzung aufweisen.
Besonders große Steigerungen der Kapazität einer Vorrichtung zum Herstellen von Platten aus Lignocellulose-haltigem Material haben sich bei Platten mit einer Dicke von 12 bis 22 mm ergeben. Bei geringeren und größeren Plattendicken ist der Kapazitätsvorteil nicht so ausgeprägt, weil dort beim Heißverpressen der Matte in der Heißpresse unter Übertragung von Kontaktwärme der Vorteil der angewärmten Matte durch den Verlauf der Temperatureindringkurven nicht voll ausgenutzt werden kann.
Einen besonderen Vorteil weist das Anwärmen der Matte in der Vorpresse mittels Einwirken eines hochfrequenten Hochspannungsfelds bei der Herstellung von OSB-Platten aus flächigen Holzstücken auf. Dünne OSB-Platten sind aufgrund der großen Rückstellkräfte der verwendeten flächigen Holzstücke bislang nicht kommerziell kontinuierlich herstellbar, da die Preßbänder von kontinuierlichen Heißpressen zu stark belastet würden. Durch die HF-Heizung in der Vorpresse wird jedoch das Lignin in der Matte plastifiziert und die Bindemittel beginnen bereits haftende Eigenschaften zu zeigen, so daß die Rückstellkräfte der flächigen Holzstücke stark zurückgehen. Im Ergebnis wird ein sehr geringes wiederaufspringen der Matte nach der Vorpresse beobachtet und die Matte kann auch in einer kontinuierlich arbeitenden Heißpresse zu den OSB-Platten verpreßt werden. Das geringe Aufspringen der Matte nach der vorpresse ist generell ein besonderes Merkmal des erfindungsgemäßen Verfahrens.
Bei der neuen Vorrichtung können die Elektroden der HF-Heizung an den Rückseiten von die Platte beiderseits beaufschlagenden Preßbändern der Vorpresse angeordnet sein. Dabei sind die Elektroden der HF-Heizung vorzugsweise dort angeordnet, wo die Preßbänder ihren geringsten Abstand voneinander aufweisen.
Eine Elektrode der HF-Heizung kann geerdet sein, wobei das der geerdeten Elektrode auf der anderen Seite der Matte gegenüberliegende Preßband hochfrequenzfest ausgebildet ist. Wenn eine Elektrode eine HF-Heizung geerdet ist, spricht man von einer unsymmetrischen HF-Einspeisung. Hierbei wird die geerdete Elektrode auch als kalte Elektrode bezeichnet. Im Bereich dieser kalten Elektrode sind die Materialbeanspruchungen geringer als an der "heißen" Elektrode. Es reicht daher beim Umrüsten einer bestehenden Vorrichtung zur Herstellung von Platten aus Lignocellulose-haltigem Material aus, wenn zumindest das Preßband der Vorpresse, welches der heißen Elektrode zugeordnet ist, so umgerüstet wird, daß es hochfrequenzfest ausgebildet ist.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert und beschrieben, dabei zeigt
Figur 1
ein Flußdiagramm zur Durchführung des neuen Verfahrens,
Figur 2
den schematischen Aufbau einer Vorpresse bei der neuen Vorrichtung,
Figur 3
den schematischen Aufbau einer kontinuierlichen Heißpresse bei der neuen Vorrichtung,
Figur 4
ein Preßwegdiagramm einer diskontinuierlichen Heißpresse bei der neuen Vorrichtung,
Figur 5
zwei Temperatureindringkurven und zwei Vergleichskurven zu dem neuen Verfahren und die
Figuren 6 und 7
Auftragungen der Querzugfestigkeit für zwei Herstellungsbeispiele und Vergleichsbeispiele.
Bei dem in Figur 1 skizziertem Verfahren wird zunächst Bindemittel in einer Beleimmaschine 1 kontinuierlich auf Lignocellulose-haltige Teilchen 2 aufgebracht. Anschließend werden die Teilchen 2 in einem Mattenformer 3 kontinuierlich zu einer Matte 4 geformt. In einer Vorpresse 5 wird die Matte 4 kontinuierlich vorverdichtet. Gleichzeitig wirkt in der Vorpresse 5 eine HF-Heizung zum kontinuierlichen Erwärmen durch ein hochfrequentes Hochspannungsfeld auf die Matte 4 ein. Die angewärmte und vorverdichtete Matte 4 wird dann in einer Heißpresse 6 kontinuierlich zu einer Platte 7 verpreßt, die anschließend in einzelne Platten zerteilt werden kann.
Die bei dem neuen Verfahren zum Einsatz kommende Beleimmaschine 1 ist ebenso wie der Mattenformer in seinem Aufbau bekannt. Hier sind gegenüber bekannten Vorrichtungen zur Herstellung von Platten aus Lignocellulose-haltigen Teilchen keine Veränderungen vorgesehen. Einen besonderen Aufbau weist jedoch die Vorpresse 5 auf, deren innerer Aufbau in Figur 2 schematisch wiedergegeben ist. Die Einlaufdicke 27 der Matte 4 wird in der Vorpresse zwischen zwei um Rollen 8 und 9 umlaufenden Preßbändern 10 und 11 bis auf eine Dicke 12 reduziert. Hinter den Preßbändern 10 und 11 springt die Matte 4 wieder bis auf eine Auslaufdicke 13 auf. Im Bereich der minimalen Dicke 12 der Matte 4 ist eine HF-Heizung 14 angeordnet. Ein möglicher Anbringungsort für eine zweite HF-Heizung 14 ist durch eine gestrichelte Linie angedeutet. Die vorhandene HF-Heizung 14 weist zwei jeweils hinter den Preßbändern 10 und 11 angeordnete Elektroden 15 und 16 auf. Die Elektrode 16 ist geerdet, so daß die HF-Heizung nach dem Prinzip der unsymmetrisch Einspeisung arbeitet. Dementsprechend wird die Elektrode 16 auch als kalte Elektrode und die Elektrode 15 als heiße Elektrode bezeichnet. Weil die HF-Heizung 14 im Bereich der minimalen Dicke 12 auf die Matte 4 einwirkt, reicht eine vergleichsweise geringe Spannung aus, um die für den gewünschten Energieübertrag auf die Matte 4 erforderliche Feldstärke zu erreichen. Damit wird gleichzeitig die Gefahr von Durchschlägen in engen Grenzen gehalten. Zumindest das Preßband 10 der Vorpresse 5 ist hochfrequenzfest ausgebildet. Bei dem der kalten Elektrode 16 zugeordneten Preßband 11 ist dies nicht unbedingt erforderlich, jedoch auch empfehlenswert. Im Vergleich zu Vorpressen, die nicht mit einer HF-Heizung 14 ausgerüstet sind, ist die Auslaufdicke 13 der Matte 4 nach der Vorpresse 5 vergleichsweise gering, weil die Rückstellkräfte in der Matte 4 durch die HF-Heizung reduziert werden. Dies ist auf ein Plastifizieren von Lignin und ein Wirksamwerden des Bindemittels durch das Anwärmen der Matte 4 zurückzuführen.
Die in Figur 3 skizzierte Heißpresse 6 weist den üblichen Aufbau einer kontinuierlich arbeitenden Heißpresse auf, bei der die Matte 4 zwischen sich auf Rollen 17 und 18 abstützenden endlosen Preßblechen 19 und 20 geführt wird und dabei unter Wärmeeinwirkung zu der Platte 7 verpreßt wird. Die entsprechenden Heizelemente sind in Figur 3 nicht dargestellt.
Der vertikale Abstand der Preßbleche 19 und 20 ist über die Länge einer Heißpresse nicht konstant, wie aus Figur 4 ersichtlich ist, in der für eine diskontinuierliche Heißpresse dieser Abstand als Dicke d der Platte 4 bei ihrem Weg s durch die Heißpresse 6 aufgetragen ist. Über einen ersten Abschnitt 21 wird die Matte 4 verdichtet, dabei erfolgt ein Aufheizen der Deckschichten der Matte 4 durch von den Preßblechen 19 und 20 übertretende Kontaktwärme. In einem anschließenden Abschnitt 22 wird die Dicke der Platte d auf einem etwas größeren Maß konstant gehalten, wobei die Kontaktwärme der Preßbleche 19 und 20 bis in die Mitte der Platte vordringt. Anschließend wird die Platte 4 in einem Abschnitt 23 auf ihre geringste Dicke d zusammengedrückt, um die Platte zu kalibrieren und nach dem Kalibrieren zu lüften. Danach verläßt die Platte die Heißpresse.
In Figur 5 ist der Temperaturverlauf in der Mitte der Platte der Platte 4 in der Heißpresse 6 für zwei Beispiele des erfindungsgemäßen Verfahrens und für zwei Vergleichsbeispiele über der absoluten Preßzeit t aufgetragen. Die leeren Dreiecke und die leeren Rauten entsprechen MDF-Platten mit einer Nenndicke von 16 bzw. 30 mm, die erfindungsgemäß unter Anwendung einer HF-Heizung 14 in der Vorpresse 5 hergestellt wurden. Die gefüllten Quadrate und die gefüllten Kreise entsprechen demgegenüber Vergleichsbeispielen, bei denen MDF-Platten mit einer Nenndicke von 16 bzw. 30 mm ohne den Einsatz der HF-Heizung 14 hergestellt wurden. Bei auf 50 °C vorerwärmten Matten für 16 mm Platten steigt die Temperatur in der Plattenmitte ziemlich rasch an und erreicht bereits nach 60 Sekunden 80 °C, d. h. ca. 45 Sekunden früher als bei nicht HF-vorerwärmten Matten mit einer Anfangstemperatur von ca. 30 °C. In beiden Fällen betrug die Temperatur von die Preßbleche 19 und 20 aufheizenden Heizplatten 227 °C. Ein analoger, jedoch flacherer Temperaturverlauf wird bei den 30 mm Platten beobachtet. Bei der Temperaturanfangsdifferenz von ca. 20 °C zwischen den angewärmten und den nicht angewärmten Matten beträgt die Zeitdifferenz zum Erreichen von 80 °C bei 30 mm Platten zwar 75 Sekunden, die auf die absolute Preßzeit bezogene relative Zeitdifferenz ist jedoch kleiner als bei den 16 mm Platten. Unter gleichen Ausgangsbedingungen war zwischen den Verleimungsarten Harnstoff-Formaldehyd-Harz und Polyurethanharz kein Unterschied im Temperaturverlauf feststellbar.
Die Temperatureindringkurven gemäß Figur 5 gehören zu den folgenden Beispielen:
1. 16 mm Platten
Unter den folgenden Randbedingungen wurden MDF-Platten mit einer Nenndicke von 16 mm einmal mit und einmal ohne Anwärmung der Matten in der Vorpresse durch ein hochfrequentes Hochspannungsfeld hergestellt:
Holzart 100 % Nadelholz
ca. 90 - 95 % Kiefer und 5 bis 10 % Fichte
Ausgangsform Hackschnitzel
Bindemittel Harnstoffharz (Leuna 5554)
Beleimungsart Blasrohrbeleimung
Rohdicke 17,8/17,5 mm
Dickenschrumpfung ca. 0,3 mm nach Erkaltung
Rohdichte 770 kg pro Kubikmeter
Festharz 10 % auf atro Fasern
Härter ohne Härterzugabe
Feuchte ca. 8 - 10 %
Mattentemp. ohne HF ca 30° C'
Mattentemp. mit HF ca. 50° C
Heizzeiten ohne HF 10 s/mm
Heizzeiten mit HF 7,5 - 5,5 s/mm
Preßtemperatur 227° C (Heizplatten)
Die Auswertung der erreichten Querzugsfestigkeiten erfolgte nach EMB-Norm, wobei jeder Meßpunkt in dem in Figur 6 wiedergegebenen Diagramm einen Mittelwert aus 5 Querzugproben pro Platte darstellt. In Figur 6 sind rechts über der Heizzeit von 10 s/mm die Querzugfestigkeiten dargestellt, die sich ohne HF-Heizung zur Anwärmung der Matte ergaben. Auf der linken Seite über dem Heizzeitbereich von 5,5 - 7,5 s/mm sind die Querzugfestigkeiten mit HF-Anwärmung wiedergegeben. Im Heizzeitbereich von 7 bis 7,5 s/mm, der einer Heizzeitverkürzung von 25 bis 30 % entspricht, liegt das Festigkeitsniveau mit HF-Anwärmung deutlich höher als die Werte ohne HF-Anwärmung. Die Streubereiche sind ebenfalls deutlich geringer im Vergleich mit den Ausgangswerten ohne HF-Anwärmung. Bei der Heizzeit von 6,3 s/mm ist das Festigkeitsniveau zwar geringfügig niedriger aber immer noch über den Ausgangswerten ohne HF-Anwärmung. Bei der Heizzeit von 5,5 s/mm ist das Festigkeitsniveau um ca. 20 % gegenüber den Ausgangswerten abgefallen, liegt aber immer noch oberhalb der EMB-Norm.
2. 30 mm Platten
MDF-Platten mit einer Nenndicke von 30 mm wurden unter den folgenden Randbedingungen hergestellt:
Holzart 100 % Nadelholz
ca. 90 - 95 % Kiefer und 5 - 10 % Fichte
Ausgangsform Hackschnitzel
Bindemittel Harnstoffharz (BASF 570/NESTE 36 75)
Nenndicke 30 mm
Rohdicke 32,0/32,6 mm
Dickenschrumpfung ca. 0,6 mm nach Erkaltung
Rohdichte 750 kg pro Kubikmeter
Festharz 12 % auf atro Fasern
Härter ohne Härterzugabe
Feuchte ca. 10 %
Mattentemp. ohne HF ca. 30° C
Mattentemp. mit HF ca. 50° C
Heizzeiten ohne HF 13 s/mm
Heizzeiten mit HF 11 bis 8 s/mm
Preßtemperatur 227° C (Heizplatten)
Die auf gleiche Weise wie bei den 16 mm Platten bestimmten Querzugfestigkeiten sind in Figur 7 aufgetragen. Rechts in Figur 7 erscheinen über der Heizzeit von 13 s/mm die Festigkeiten ohne HF-Anwärmung, links über den Heizzeiten von 8 bis 11 s/mm die Festigkeiten mit HF-Anwärmung. Bei der Heizzeit von 11 s/mm liegen die Werte mit HF-Anwärmung noch auf höherem Niveau als die Ausgangswerte ohne HF-Anwärmung. Unterhalb 11 Sekunden bis zu 8 Sekunden wird schon ein Abwärtstrend unter das Ausgangsniveau erkennbar. Die HF-Anwärmung bei der Begrenzung von 50° C in der Matte ist für den Bereich dickerer Platten daher nicht so effizient wie für Platten mit einer Dicke von 12 bis 22 mm, weil bei dickeren Platten die Wärmeeindringkurve weniger stark beeinflußt wird.
Die HF-Heizung, die bei den erfindungsgemäßen Beispielen zur Anwendung kam, wie die folgenden technischen Daten auf:
HF-Nutzleistung 15 kW bei 100 % Einschaltdauer
Frequenz 27,12 MHz + - 0,6 %
Netzanschluß Drehstrom 400 V
+ 6 % - 10 % 50 Hz
Steuerspannung 230 V / 50 Hz
Netzaufnahme bei Vollast 32 kVA
Hochspannungsgleichrichtung Siliziumdioden
Senderöhre - Fabrikat:  ABB
- Typ:  IQL 12-1
Elektrodenplatte - Länge:  500 mm
- Breite:  800 mm
Bei einem Anwärmen der Matte 4 mit der HF-Heizung auf Temperaturen unterhalb 60° C trat keine Kondensation durch die Temperaturdifferenz zwischen der erwärmten Matte und der kalten Vorpresse auf, ohne daß besondere Bindemittel oder irgendwelche Vorkehrungsmaßnahmen bei der Vorpresse getroffen werden mußten. Höhere Temperaturen beim Anwärmen der Matte 4 sind unter Einhaltung von Vorsichtsmaßnahmen bezüglich der Preßbänder der Vorpresse und des Bindemittels möglich.
BEZUGSZEICHENLISTE
1 -
Beleimmaschine
2 -
Teilchen
3 -
Mattenformer
4 -
Matte
5 -
Vorpresse
6 -
Heißpresse
7 -
Platte
8 -
Rolle
9 -
Rolle
10 -
Preßband
11 -
Preßband
12 -
Dicke
13 -
Auslaufdicke
14 -
HF-Heizung
15 -
Elektrode
16 -
Elektrode
17 -
Rolle
18 -
Rolle
19 -
Preßblech
20 -
Preßblech
21 -
Abschnitt
22 -
Abschnitt
23 -
Abschnitt
27 -
Einlaufdicke

Claims (8)

  1. Verfahren zur Herstellung von Platten aus lignocellulosehaltigen Teilchen, wobei Bindemittel kontinuierlich auf die Teilchen aufgebracht wird, die Teilchen kontinuierlich zu einer Matte geformt werden, die Matte kontinuierlich zwischen umlaufenden Bändern vorverdichtet wird, die Matte beim Vorverdichten kontinuierlich durch Einwirken eines hochfrequenten Hochspannungsfelds angewärmt wird und die in einer Ebene geführte Matte unter weiterer Wärmeeinwirkung zu den Platten verpreßt wird, dadurch gekennzeichnet, daß das hochfrequente Hochspannungsfeld nach der Vorverdichtung der Matte (4) auf ein geringstes Dickenmaß (12) einwirkt, das kleiner ist als die Auslaufdicke (13), auf die die Matte (4) nach der Vorverdichtung wieder aufspringt, und daß die Matte (4) während des Einwirkens des hochfrequenten Hochspannungsfelds zwischen den Preßbändern (10, 11) im wesentlichen auf dem geringsten Dickenmaß (12) gehalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Matte (4) auf eine Temperatur unter 60 °C, insbesondere zwischen 45 und 55 °C, angewärmt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Platten (7), zu denen die Matte (4) verpreßt wird, eine Dicke von 12 bis 22 mm aufweisen.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Teilchen (2) flächige Holzstücke sind, aus denen kontinuierlich OSB-Platten hergestellt werden.
  5. Vorrichtung zur Herstellung von Platten aus lignocellulosehaltigen Teilchen mit einer Beleimmaschine zum kontinuierlichen Aufbringen von Bindemittel auf die Teilchen, einem Mattenformer zum kontinuierlichen Formen der Teilchen zu einer Matte, einer Vorpresse zum kontinuierlichen Vorverdichten der Matte, einer HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds und mit einer Heißpresse zum Verpressen der zwischen zwei Preßblechen in einer Ebene geführten Matte unter weiterer Wärmeeinwirkung zu den Platten, dadurch gekennzeichnet, daß die HF-Heizung (14) innerhalb der Vorpresse (5) an einer Stelle angeordnet ist, an der die Matte (4) auf ein geringstes Dickenmaß (12) vorverdichtet ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß Elektroden (15, 16) der HF-Heizung (14) an den Rückseiten von die Matte (4) beiderseits beaufschlagenden Preßbändern (10, 11) der Vorpresse (5) angeordnet sind.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Elektroden (15, 16) der HF-Heizung (14) dort angeordnet sind, wo die Preßbänder (10, 11) ihren geringsten Abstand voneinander aufweisen.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß eine Elektrode (16) der HF-Heizung (14) geerdet ist und daß das der geerdeten Elektrode (16) auf der anderen Seite der Matte (4) gegenüberliegende Preßband (10) hochfrequenzfest ausgebildet ist.
EP97902338A 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen Expired - Lifetime EP0820371B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19604574A DE19604574A1 (de) 1996-02-08 1996-02-08 Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Platten aus Lignocellulose-haltigen Teilchen
DE19604574 1996-02-08
PCT/EP1997/000529 WO1997028936A1 (de) 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen

Publications (2)

Publication Number Publication Date
EP0820371A1 EP0820371A1 (de) 1998-01-28
EP0820371B1 true EP0820371B1 (de) 2002-06-12

Family

ID=7784849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97902338A Expired - Lifetime EP0820371B1 (de) 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen

Country Status (7)

Country Link
US (1) US5913990A (de)
EP (1) EP0820371B1 (de)
AT (1) ATE218956T1 (de)
AU (1) AU1601597A (de)
CA (1) CA2217654A1 (de)
DE (2) DE19604574A1 (de)
WO (1) WO1997028936A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090022A1 (en) * 2000-10-06 2003-05-15 James Randall Method and apparatus for making building panels having low edge thickness swelling
US20050156348A1 (en) * 2000-10-06 2005-07-21 Randall James W. Method and apparatus for making building panels having low edge thickness swelling
US6572804B2 (en) 2000-10-18 2003-06-03 Borden Chemical, Inc. Method for making building panels having low edge thickness swelling
DE10106815A1 (de) * 2001-02-14 2002-08-29 Dieffenbacher Gmbh Maschf Verfahren und Anlage zur Herstellung von Holzwerkstoffplatten
EP1419038B1 (de) * 2001-05-03 2006-12-27 Kronospan Technical Co. Ltd. Verfahren zur verminderung des formaldehydgehalts und der formaldehydabgabe von spanplatten
US20020189740A1 (en) * 2001-06-19 2002-12-19 Carter Neil A. Methods and systems for making high density fiberboards from low density fibrous media
US20050054807A1 (en) * 2003-09-05 2005-03-10 Weyerhaeuser Company Low-nitrogen content phenol-formaldehyde resin
US7141195B2 (en) * 2003-09-05 2006-11-28 Weyerhaeuser Co. Process for making engineered lignocellulosic-based panels
US7258761B2 (en) * 2004-11-12 2007-08-21 Huber Engineered Woods Llc Multi-step preheating processes for manufacturing wood based composites
US20060128886A1 (en) * 2004-12-14 2006-06-15 Winterowd Jack G Low-nitrogen content phenol-formaldehyde resin
US8414720B2 (en) 2010-06-21 2013-04-09 Weyerhaeuser Nr Company Systems and methods for manufacturing composite wood products to reduce bowing
DE102011003318B4 (de) 2010-10-07 2016-06-23 Institut Für Holztechnologie Dresden Gemeinnützige Gmbh Faserplatten mit funktionsorientiertem Rohdichteprofil und Verfahren zu deren Herstellung
JP6127901B2 (ja) * 2013-10-21 2017-05-17 セイコーエプソン株式会社 シート製造装置、シート製造方法
CA2936607C (en) 2014-01-13 2023-01-03 Basf Se Method for the production of lignocellulose materials
PT3230027T (pt) 2014-12-09 2019-05-31 Basf Se Processo para a produção de materiais lignocelulósicos multicamadas com um núcleo e pelo menos uma camada de cobertura superior e uma inferior e propriedades especiais do núcleo
US10421256B2 (en) 2014-12-09 2019-09-24 Basf Se Method for producing single or multi-layered lignocellulose materials by hardening in a high frequency electric field
RU2017137508A (ru) 2015-03-27 2019-04-29 Басф Се Способ изготовления однослойных или многослойных лигноцеллюлозных материалов с использованием триалкилфосфата
PT3274143T (pt) 2015-03-27 2019-11-04 Basf Se Método para a produção de materiais de lignocelulose
JP6311749B2 (ja) * 2016-07-13 2018-04-18 セイコーエプソン株式会社 シート製造装置、シート製造方法
PL3515990T3 (pl) 2016-09-23 2020-12-28 Basf Se Sposób wytwarzania tworzyw lignocelulozowych
JP6330931B2 (ja) * 2017-02-03 2018-05-30 セイコーエプソン株式会社 シート製造装置、シート製造方法
EP3672771B8 (de) 2017-08-23 2023-08-09 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen in gegenwart von caprolactam und dessen oligomeren
WO2019038116A1 (de) 2017-08-23 2019-02-28 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen mittels bestimmung von nco-werten
WO2019115261A1 (de) 2017-12-13 2019-06-20 Basf Se VERFAHREN ZUR HERSTELLUNG VON EIN- ODER MEHRSCHICHTIGEN LIGNOCELLULOSEWERKSTOFFEN UNTER SPEZIELLEN BEDINGUNGEN IN DER HEIßPRESSE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697254A (en) * 1950-03-14 1954-12-21 Bruce A Gordon Dry process of manufacturing pressboard
US4086313A (en) * 1972-08-01 1978-04-25 G. Siempelkamp & Co. Method of making pressed board
DE2722356C2 (de) * 1977-05-17 1982-07-29 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren und Vorrichtung zum kontinuierlichen Herstellen von Span-, Faser- o.dgl. Platten
SU878187A3 (ru) * 1977-05-17 1981-10-30 Бизон-Верке Бэре Унд Гретен Гмбх Унд Ко,Кг (Фирма) Устройство дл непрерывного изготовлени древесностружечных плит
DE2854336C2 (de) * 1978-12-15 1982-05-19 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren zum Herstellen von Span-, Faser- o.dgl. -Platten
DE3107592C2 (de) * 1981-02-27 1985-10-17 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren zum diskontinuierlichen Vorwärmen und Verpressen von Vliesen
DE3107589C2 (de) * 1981-02-27 1986-01-30 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Vorrichtung zur kontinuierlichen Herstellung von Span-, Faser- oder dergleichen Platten
IT1195226B (it) * 1981-10-22 1988-10-12 Sofin Spa Impianto perfezionato di fibre con sistema a secco e in continuo

Also Published As

Publication number Publication date
DE59707471D1 (de) 2002-07-18
WO1997028936A1 (de) 1997-08-14
DE19604574A1 (de) 1997-09-18
AU1601597A (en) 1997-08-28
ATE218956T1 (de) 2002-06-15
US5913990A (en) 1999-06-22
CA2217654A1 (en) 1997-08-14
EP0820371A1 (de) 1998-01-28

Similar Documents

Publication Publication Date Title
EP0820371B1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen
DE2722356C2 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen von Span-, Faser- o.dgl. Platten
EP0172930A1 (de) Verfahren und Anlage zur Herstellung einer Holzwerkstoffplatte
DE19718772A1 (de) Verfahren und Anlage zur Herstellung von Holzwerkstoffplatten
DE1299115B (de) Stranggepresste Holzspanplatte
DE4333614A1 (de) Verfahren und Anlage zur kontinuierlichen Herstellung von Spanplatten
EP2514585B1 (de) Kontinuierliche Presse
EP2241426B1 (de) Verfahren zur Herstellung einer Holzwerkstoffplatte
WO2017207451A1 (de) Verfahren und vorrichtung zur herstellung von holzwerkstoffplatten sowie holzwerkstoffplatte
DE10024543A1 (de) Verfahren und Anlage zur kontinuierlichen Herstellung einer Mehrschichtplatte
WO2022258438A1 (de) Vorrichtung und verfahren zur dämmplattenherstellung
DE10015416A1 (de) Verfahren und Anlage zur Herstellung von endlosen Furnierschichtplatten aus einem Furniertafelstrang
DE68903544T2 (de) Methode zur herstellung von faserplatten.
DE3430467A1 (de) Verfahren und anlage zur herstellung einer holzwerkstoffplatte
DE2908470C2 (de) Vorrichtung zum diskontinuierlichen Herstellen von Span-, Faser- oder dergleichen Platten
DE102019112632B3 (de) Vorrichtung zur kontinuierlichen Erwärmung einer Pressgutmatte
WO2020156837A1 (de) Vorrichtung und verfahren zur herstellung von dämmplatten
DE102011003318B4 (de) Faserplatten mit funktionsorientiertem Rohdichteprofil und Verfahren zu deren Herstellung
DE19606262C1 (de) Verfahren und Vorrichtung zur Herstellung einer mitteldichten Faserplatte
DE19525339C2 (de) Verfahren zur Herstellung von dreischichtigen Holzwerkstoffplatten, insbesondere von Spanplatten oder Faserplatten
DE2513764B2 (de) Verfahren zum Herstellen einer mindestens einseitig beschichteten Holzwerkstoff-Platte, wie Spanplatte o.dgl
DE202016102908U1 (de) Vorrichtung zur Herstellung von Holzwerkstoffplatten sowie Holzwerkstoffplatte
EP2786849B1 (de) Verfahren zur Herstellung einer Sandwich-Faserplatte, sowie Sandwich-Faserplatte
DE2729687B2 (de) Verfahren zum Herstellen von Formwerkstücksrohlingen für Sitzschalen, Verformungen aufweisende Abdeckplatten o.dgl
DE3107592A1 (de) Verfahren zum herstellen von span-, faser- o.dgl. platten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000426

19U Interruption of proceedings before grant

Effective date: 20000430

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20000818

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REF Corresponds to:

Ref document number: 218956

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707471

Country of ref document: DE

Date of ref document: 20020718

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020923

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0820371E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20050321

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20081031

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20100913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130222

Year of fee payment: 17

Ref country code: GB

Payment date: 20130221

Year of fee payment: 17

Ref country code: FR

Payment date: 20130315

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707471

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206