EP0820371A1 - Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen - Google Patents

Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen

Info

Publication number
EP0820371A1
EP0820371A1 EP97902338A EP97902338A EP0820371A1 EP 0820371 A1 EP0820371 A1 EP 0820371A1 EP 97902338 A EP97902338 A EP 97902338A EP 97902338 A EP97902338 A EP 97902338A EP 0820371 A1 EP0820371 A1 EP 0820371A1
Authority
EP
European Patent Office
Prior art keywords
mat
press
heating
plates
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97902338A
Other languages
English (en)
French (fr)
Other versions
EP0820371B1 (de
Inventor
Jürgen Dr. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0820371A1 publication Critical patent/EP0820371A1/de
Application granted granted Critical
Publication of EP0820371B1 publication Critical patent/EP0820371B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/24Moulding or pressing characterised by using continuously acting presses having endless belts or chains moved within the compression zone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/65Processes of preheating prior to molding

Definitions

  • the invention relates to a process for the production of plates from lignocellulose-containing particles, binder being applied continuously to the particles, the particles being continuously formed into a mat, the mat being continuously pre-compressed, the mat being continuous Exposure to a high-frequency high-voltage field is heated and the mat guided in one plane is pressed to the plates under the action of further heat.
  • the invention relates to a device for carrying out such a method with a gluing machine for the continuous application of binder to the particles, with a mat former for the continuous shaping of the Particles into a mat, with a pre-press for continuous pre-compression of the mat, with an HF heater for continuous heating of the mat by the action of a high-frequency high-voltage field and with a hot press for pressing the mat guided between two press plates in one plane with further heat the plates.
  • the invention therefore relates only to methods and devices which, at least including the pre-press and the HF heating, operate completely continuously, and in which no abruptly operating devices have been used until then.
  • the invention relates exclusively to methods and corresponding devices in which the mat guided in one plane is hot pressed to the plates. This precludes the use of so-called calender presses, with which only sheets of small thickness and made from certain materials can be produced.
  • the invention is not restricted to a specific binder or a specific size and composition of the lignocellulose-containing particles. That is, it does not matter whether the binder is, for example, a urea resin or a formaldehyde-free binder. Nor is it decisive whether the boards produced are particle boards, MDF boards or OSB boards. However, the invention is associated with particular advantages in the production of certain plates.
  • a method and a device of the type described at the outset are known from "Proceedings 27th International Particleboard / - Composite Materials Symposium WSU 1993, pages 55 to 66: SUCCESS STORY: MODERN PARTICLEBOARD USING EASTERN HARDWOODS".
  • a device for the continuous production of chipboard is described there, in which the pre-press for an RF heater for continuous heating of the mat by the action of a high-frequency high-voltage field is connected upstream of the continuous pre-compression of the mat.
  • the HF heating increases the temperature of the mat from the room temperature by about 40 ° C. It is reported that the use of the HF heater before the hot press significantly increased the productivity of the device because the heated mat requires a considerably shorter pressing time in the hot press.
  • the heating power of an HF heater depends on the field strength of the effective alternating field. This means that in order to achieve the same heating output with twice the electrode spacing, twice as large an alternating voltage must be used. However, high voltages are always associated with the particular risk of breakdowns, which can lead to serious damage to the HF heating. In addition, the electro-magnetic pulses accompanying the breakdowns can also damage other electrical or electronic devices. Ultimately, the breakthrough in the manufacture of panels can also ignite the mat or cause damage to the finished panels.
  • HF heaters are also used in discontinuous systems for the production of plates made of particles containing lignocellulose.
  • the HF heating of the mat during hot pressing in a stack press is known.
  • stack presses with HF heating are technically very complex and the efficiency of HF heating is limited, the economy of hot presses with HF heating is not considered to be given.
  • Discontinuous pre-presses with an HF heating for the mat during pre-compression are also known. These are single-day presses, which have a complicated technical structure, because the electrodes of the HF heating must extend over the entire length and width of the press in order to heat the mat evenly, the length being of the order of 20 m. This means, for example, that relatively large currents must flow in the HF heating, which can only be managed with great effort.
  • the object of the invention is to optimize the use of an HF heater in the continuous production of plates made of material containing lignocellulose.
  • this object is achieved in a method of the type described in the introduction in that the mat is heated during the continuous pre-compression by the action of the high-frequency high-voltage field.
  • the HF heating can have a minimal electrode spacing, so that only a minimal AC voltage is used. In this way, not only is the risk of breakdowns and the associated disturbing influences reduced, but also the electromagnetic stray radiation emanating from the HF heating system is reduced.
  • HF heating By installing the HF heating in the pre-press of an existing device for the production of plates from material containing lignocellulose, its capacity can be increased significantly.
  • the integration of the HF heating in the pre-press does not require any additional space, it can be implemented with comparatively little technical effort.
  • the high-frequency high-voltage field of the HF heater preferably acts on the mat where it has its smallest thickness reached during pre-compression.
  • the smallest electrode spacing of the HF heating can be realized here.
  • Heating the mat in the pre-press by the action of a high-frequency high-voltage field has a particular advantage in the production of OSB panels from flat pieces of wood. Due to the large resetting forces of the flat pieces of wood used, thin OSB panels have not been able to be produced commercially continuously for a long time, since the press belts would be subjected to excessive loads from continuous hot presses. Due to the HF heating in the pre-press, however, the lignin in the mat is plasticized and the binders already begin to show adhesive properties, so that the restoring forces of the flat pieces of wood decrease sharply.
  • the electrodes of the HF heater can be arranged on the back of the press belts of the pre-press acting on the plate on both sides.
  • the electrodes of the HF heating are preferably arranged where the press belts are at their smallest distance from one another.
  • One electrode of the HF heating system can be grounded, with the press band opposite the grounded electrode on the other side of the mat being designed to be radio frequency resistant. If an electrode is an HF heater grounded, one speaks of an asymmetrical HF feed.
  • the grounded electrode is also referred to as the cold electrode. In the area of this cold electrode, the material stresses are lower than on the "hot" electrode. When converting an existing device for the production of plates made of lignocellulose-containing material, it is therefore sufficient if at least the press belt of the pre-press, which is assigned to the hot electrode, is retrofitted so that the high-frequency resistance is formed.
  • FIG. 1 shows a flow chart for the implementation of the new method
  • FIG. 2 shows the schematic structure of a prepress in the new device
  • FIG. 3 shows the schematic structure of a continuous hot press in the new device
  • FIG. 4 shows a pressing path diagram of a continuous hot press in the new device
  • Figure 5 shows two temperature penetration curves and two comparison curves for the new method
  • FIGS. 6 and 7 plots of the transverse tensile strength for two production examples and comparative examples.
  • binder is first applied continuously to lignocellulosic particles 2 in a gluing machine 1.
  • the particles 2 are then continuously formed into a mat 4 in a mat former 3.
  • the mat 4 is continuously pre-compressed in a pre-press 5.
  • an RF heater acts on the mat 4 in the pre-press 5 for continuous heating by means of a high-frequency high-voltage field.
  • the heated and pre-compressed mat 4 is then continuously pressed in a hot press 6 to form a plate 7 which can subsequently be divided into individual plates.
  • the pre-press 5 has a special structure, the internal structure of which is shown schematically in FIG.
  • the inlet thickness 27 of the mat 4 is in the pre-press between two press belts 10 and
  • HF heater 14 is arranged in the area of the minimum thickness 12 of the mat 4.
  • a possible location for a second HF heater 14 is indicated by a dashed line.
  • the existing HF heater 14 has two electrodes 15 and 16 respectively arranged behind the press belts 10 and 11.
  • the electrode 16 is grounded, so that the HF heating works on the principle of asymmetrical feeding. Accordingly, the electrode 16 also becomes the cold electrode and the electrode 15 referred to as the hot electrode. Because the HF emission 14 acts on the mat 4 in the area of the minimum thickness 12, a comparatively low voltage is sufficient to achieve the field strength required for the desired energy transfer to the mat 4.
  • At least the press belt 10 of the pre-press 5 is designed to be radio frequency resistant. With the press belt 11 assigned to the cold electrode 16, this is not absolutely necessary, but is also recommended. Compared to pre-presses that are not equipped with an HF heater 14, the run-out thickness 13 of the mat 4 after the pre-press 5 is comparatively small because the restoring forces in the mat 4 are reduced by the HF heater. This is due to plasticizing lignin and the binding agent becoming active by heating the mat 4.
  • the hot press 6 sketched in FIG. 3 has the usual structure of a continuously operating hot press, in which the mat 4 is guided between endless press plates 19 and 20, which are supported on rollers 17 and 18, and is pressed to the plate 7 under the influence of heat.
  • the corresponding heating elements are not shown in Figure 3.
  • the vertical distance between the press plates 19 and 20 is not constant over the length of a hot press, as can be seen from FIG. 4, in which, for a discontinuous hot press, this distance is plotted as the thickness d of the plate 4 on its way s through the hot press 6.
  • the mat 4 is compressed by means of a first section 21, the cover layers of the mat 4 being heated up by contact heat transmitted from the press plates 19 and 20.
  • a connecting section 22 the thickness of the plate d is kept constant to a somewhat greater extent, the contact heat of the press plates 19 and 20 penetrating into the middle of the plate.
  • the plate 4 is compressed in a section 23 to its smallest thickness d in order to calibrate the plate and after Calibrate to air. The plate then leaves the hot press.
  • the empty triangles and the empty diamonds correspond to MDF boards with a nominal thickness of 16 and 30 mm, respectively, which were produced according to the invention using an HF heater 14 in the pre-press 5.
  • the filled squares and the filled circles correspond to comparative examples in which MDF boards with a nominal thickness of 16 or 30 mm were produced without the use of the HF heater 14.
  • the temperature in the middle of the plate increases fairly quickly and reaches 80 ° C. after only 60 seconds. H. approx.
  • the temperature penetration curves according to FIG. 5 belong to the following examples:
  • MDF boards with a nominal thickness of 16 mm were produced once with and once without heating the mats in the pre-press using a high-frequency high-voltage field:
  • Type of wood 100% softwood approx. 90 - 95% pine and 5 to 10% spruce
  • Thickness shrinkage approx. 0.3 mm after cooling
  • Bulk density 770 kg per cubic meter of solid resin.
  • Hardener without addition of hardener
  • Moisture approx. 8 - 10%
  • the transverse tensile strengths achieved were evaluated in accordance with the EMB standard, with each measuring point in the diagram shown in FIG. 6 representing an average of five transverse tensile specimens per plate.
  • FIG. 6 shows the transverse tensile strengths to the right over the heating time of 10 s / mm, which were obtained without HF heating for heating the mat.
  • the transverse tensile strengths with HF heating are shown on the left side above the heating time range of 5.5 - 7.5 s / ram. In the heating time range from 7 to 7.5 s / mm, which corresponds to a heating time reduction of 25 to 30%, the strength level with HF heating is significantly higher than the values without HF heating.
  • the scatter ranges are also significantly smaller in comparison with the initial values without HF heating.
  • the strength level is slightly lower, but still above the initial values without HF heating.
  • the strength level dropped by about 20% compared to the initial values, but is still above the EMB standard. 2.
  • MDF boards with a nominal thickness of 30 mm were produced under the following conditions:
  • Type of wood 100% softwood approx. 90 - 95% pine and 5 - 10% spruce
  • Binder urea resin (BASF 570 / NESTE 36 75)
  • Thickness shrinkage approx. 0.6 mm after cooling
  • the transverse tensile strengths determined in the same way as for the 16 mm plates are plotted in FIG. 7.
  • the strengths without 'HF heating appear above the heating time of 13 s / mm on the right in FIG. 7, and the strengths with HF heating above the heating times of 8 to 11 s / mm.
  • the values with HF heating are still at a higher level than the initial values without HF heating.
  • a downward trend below the initial level is already discernible in less than 11 seconds to 8 seconds.
  • the RF heating at the limit of 50 ° C in the mat is therefore not as efficient for the area of thicker sheets as for sheets with a thickness of 12 to 22 mm, because the heat penetration curve is less influenced by thicker sheets.
  • the HF heating which was used in the examples according to the invention, has the following technical data:
  • Transmitter tube - Make: ABB

Abstract

Bei einem Verfahren zur kontinuierlichen Herstellung von Platten (7) aus Lignocellulose-haltigen Teilchen (2) wird Bindemittel kontinuierlich auf die Teilchen (2) aufgebracht, werden die Teilchen (2) kontinuierlich zu einer Matte (4) geformt, wird die Matte (4) kontinuierlich vorverdichtet und dabei kontinuierlich durch Einwirken eines hochfrequenten Hochspannungsfelds angewärmt und wird die in einer Ebene geführte Matte (4) unter weiterer Wärmeeinwirkung zu den Platten (7) verpreßt.

Description

Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Platten aus Lignocellulose-haltigen Teilchen
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Platten aus Lignocellulose-haltigen Teilchen, wobei Bindemittel kontinuierlich auf die Teilchen aufgebracht wird, wobei die Teilchen kontinuierlich zu einer Matte geformt werden, wobei die Matte kontinuierlich vorverdichtet wird, wobei die Matte konti¬ nuierlich durch Einwirken eines hochfrequenten Hochspannungs¬ felds angewärmt wird und wobei die in einer Ebene geführte Matte unter weiterer Wärmeeinwirkung zu den Platten verpreßt wird. Weiterhin bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung eines solchen Verfahrens mit einer Beleimmaschine zum kontinuierlichen Aufbringen von Bindemittel auf die Teilchen, mit einem Mattenformer zum kontinuierlichen Formen der Teilchen zu einer Matte, mit einer Vorpresse zum kontinuier¬ lichen Vorverdichten der Matte, mit einer HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds und mit einer Heißpresse zum Verpressen der zwischen zwei Preßblechen in einer Ebene geführten Matte unter weiterer Wärmeeinwirkung zu den Platten.
Die Erfindung bezieht sich damit nur auf Verfahren und Vor¬ richtungen, die zumindest einschließlich der Vorpresse und der HF-Heizung vollständig kontinuierlich arbeiten, bei denen also bis dahin keine schlagweise arbeitenden Einrichtungen zum Einsatz kommen.
Überdies bezieht sich die Erfindung ausschließlich auf Verfahren und entsprechende Vorrichtungen, bei denen die in einer Ebene geführte Matte heiß zu den Platten verpreßt wird. Dies schließt die Anwendung sogenannter Kalander-Pressen aus, mit denen nur Platten geringer Dicke und aus bestimmten Materialien herstell¬ bar sind.
Demgegenüber ist die Erfindung nicht auf ein bestimmtes Bin¬ demittel oder eine bestimmte Größe und Zusammensetzung der Lignocellulose-haltigen Teilchen beschränkt. D. h., es kommt nicht darauf an, ob es sich bei dem Bindemittel beispielsweise um ein Harnstoffharz oder ein formaldehydfreies Bindemittel handelt. Ebensowenig iεt entscheidend, ob es sich bei den hergestellten Platten um Spanplatten, MDF-Platten oder OSB- Platten handelt. Allerdings ist die Erfindung bei der Her¬ stellung bestimmter Platten mit besonderen Vorteilen verbunden.
Ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art sind aus "Proceedings 27th International Particleboard/- Composite Materials Symposium W.S.U. 1993, Seiten 55 bis 66: SUCCESS STORY: MODERN PARTICLEBOARD USING EASTERN HARDWOODS" bekannt. Dort ist eine Vorrichtung zur kontinuierlichen Herstel¬ lung von Spanplatten beschrieben bei der der Vorpresse zum kontinuierlichen Vorverdichten der Matte eine HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds vorgeschaltet ist. Die HF- Heizung erhöht die Temperatur der Matte ausgehend von Raum¬ temperatur um etwa 40 °C. Es wird berichtet, daß durch den Einsatz der HF-Heizung vor der Heißpreεse die Produktivität der Vorrichtung deutlich gesteigert werden konnte, weil die ange¬ wärmte Matte eine erheblich kürzere Preßzeit in der Heißpresse benötigt.
Die Heizleistung einer HF-Heizung hängt von der Feldstärke des wirksamen Wechselfelds ab. Dies bedeutet, daß zum Erreichen der gleichen Heizleistung bei doppeltem Elektrodenabstand eine doppelt so große Wechselspannung zur Anwendung kommen muß. Große Spannungen sind jedoch immer mit der besonderen Gefahr von Durchschlägen verbunden, die zu schweren Beschädigungen der HF- Heizung führen können. Darüberhinaus können die mit den Durch¬ schlagen einhergehenden elektro-magnetischen Impulse auch andere elektrische oder elektronische Einrichtungen beschädigen. Letztlich kann es bei der Herstellung von Platten durch die Durchschläge auch zum Entzünden der Matte oder zu Schadstellen an den fertigen Platten kommen.
Zur Berücksichtigung dieser Problematik ist es daher bekannt, eine HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfeldε auch hinter der Vorpresse zum kontinuierlichen Vorverdichten der Matte anzuordnen, wo die Matte nur noch eine reduzierte Dicke aufweiεt und daher ein deutlich geringerer Elektrodenabεtand der HF- Heizung möglich ist.
In dem "Taschenbuch der Spanplattentechnik, Deppe/Ernst, 3. Auflage" wird auf Seite 175 eine HF-Vorpresse im Zusammenhang mit einer Kalander-Anlage erwähnt, bei der die Matte beim Heißverpressen nicht in einer Ebene sondern um eine im Quer¬ schnitt runde Heiztrommel herumgeführt wird. Kalander-Anlagen sind wie bereits erwähnt nur zur Herstellung dünner Platten geeignet. Eine Herstellung von OSB-Platten kommt mit einer Kalander-Anlage durch die Rückspringeigenschaften der zugrunde¬ liegenden flächigen Holzεtücke überhaupt nicht in Frage. Wie eine HF-Vorpresse für eine Kalander-Anlage aufgebaut sein soll, geht weder aus dem unmittelbaren Zusammenhang noch aus den an dieser Stelle in dem Taschenbuch der Spanplattentechnik zitierten Druckschriften hervor. Es ist jedoch davon auszugehen, daß es εich um die auch bei Kalander-Anlagen bekannte Anordnung handelt, bei der einer Vorpresse eine HF-Heizung nachgeεchaltet ist. Grundsätzlich ist der Einbau einer HF-Presεe in eine Kalander-Anlage relativ unproblematisch, weil die Matte für die damit herstellbaren dünnen Platten ebenfallε nur dünn ist und εo einen geringen Elektrodenabstand der HF-Heizung erlaubt.
HF-Heizungen finden auch in diskontinuierlich arbeitenden Anlagen zur Herstellung von Platten aus Lignocellulose-haltigen Teilchen Verwendung. Zum einen ist die HF-Erwärmung der Matte beim Heißverpressen in einer Stapelpresse bekannt. Da Stapel¬ pressen mit HF-Heizung technisch jedoch sehr aufwendig sind und der Wirkungsgrad der HF-Heizung begrenzt ist, gilt die Wirt¬ schaftlichkeit von Heißpressen mit HF-Heizung als nicht gegeben.
Weiterhin εind diskontinuierliche Vorpressen mit einer HF- Heizung für die Matte beim Vorverdichten bekannt. Hierbei handelt es sich um Einetagenpressen, die einen komplizierten technischen Aufbau aufweisen, weil sich die Elektroden der HF- Heizung zur gleichmäßigen Anwärmung der Matte über die gesamte Länge und Breite der Presse erstrecken müssen, wobei die Länge in der Größenordnung von 20 m liegen kann. Dies bedeutet beispielsweise, daß in der HF-Heizung relativ große Ströme fließen müssen, die nur mit großem Aufwand beherrschbar sind.
Der Erfindung liegt die Aufgabe zugrunde, den Einsatz einer HF- Heizung bei der kontinuierlichen Herstellung von Platten auε Lignocellulose-haltigem Material zu optimieren. Erfindungsgemaß wird diese Aufgabe bei einem Verfahren der eingangs beschriebenen Art dadurch gelöst, daß die Matte beim kontinuierlichen Vorverdichten durch Einwirken des hochfre¬ quenten Hochspannungsfelds angewärmt wird. Dies bedeutet für eine Vorrichtung der eingangs beεchriebenen Art, daß die HF- Heizung innerhalb der Vorpreεse angeordnet ist. Durch daε Zusammenfassen des Vorverdichtenε und des Anwärmenε der Matte mit der HF-Heizung an einem Ort kann die HF-Heizung einen minimalen Elektrodenabεtand aufweiεen, εo daß nur eine minimale Wechselspannung zur Anwendung kommt. Auf diese Weise werden nicht nur die Gefahr von Durchεchlägen und die damit verbundenen Störeinflüsse reduziert, sondern es geht auch die von der HF- Heizung ausgehende elektro-magnetische Streuεtrahlung zurück. Ganz grundεätzlich ist nur ein vergleichεweiεe geringer tech¬ nischer Aufwand für die HF-Heizung zu betreiben, da dieεe nur für vergleichsweise geringe Spannungen ausgelegt sein muß. Im Gegenεatz zu einer diskontinuierlich arbeitenden Vorpreεεe mit HF-Heizung, iεt der apparative Aufwand ebenfallε εehr gering, da die HF-Heizung bei der Erfindung theoretisch nur in einer Linie auf die kontinuierlich durchlaufende Matte einwirken muß. D.h., die Fläche der Elektroden kann klein gehalten werden und durch die geringe erforderliche Spannung in Verbindung mit den kleinen Elektrodenflächen müssen nur relativ kleine Ströme in der HF- Heizung fließen. Hieraus ergeben εich insgesamt auch Vorteile beim Wirkungsgrad der eingesetzten elektrischen Energie, da diese dem Produkt aus Spannung und Strom proportional ist.
Durch den Einbau der HF-Heizung in die Vorpresse einer bestehenden Vorrichtung zum Herstellen von Platten aus Lignocellulose-haltigem Material kann deren Kapazität deutlich gesteigert werden. Dabei erfordert die Integration der HF- Heizung in die Vorpresse keinen zusätzlichen Platz, sie ist mit vergleichsweiεe geringem technischen Aufwand realisierbar.
Vorzugsweise wirkt das hochfrequente Hochspannungsfeld der HF- Heizung dort auf die Matte ein, wo dieεe ihre geringεte Dicke beim Vorverdichten erreicht. Hier ist der geringste Elektroden¬ abstand der HF-Heizung realisierbar.
Eine große Steigerung der Produktivität bei der Herstellung von Platten aus Lignocellulose-haltigem Material iεt bereits dann erreichbar, wenn die Matte nur auf eine Temperatur von unter 60 °C, inεbesondere zwiεchen 45 und 55 °C angewärmt wird. Bei dieεen vergleichεweise geringen Temperaturen treten auch keine unerwünschten Kondensationen von Wasser oder Bindemittel an der Vorpresse auf, selbst wenn die Bindemittel keine speziell auf das neue Verfahren abgestimmte Zusammenεetzung aufweiεen.
Beεonderε große Steigerungen der Kapazität einer Vorrichtung zum Herεtellen von Platten aus Lignocelluloεe-haltigem Material haben εich bei Platten mit einer Dicke von 12 bis 22 mm ergeben. Bei geringeren und größeren Plattendicken iεt der Kapazitätε- vorteil nicht so ausgeprägt, weil dort beim Heißverpreεεen der Matte in der Heißpresse unter Übertragung von Kontaktwärme der Vorteil der angewärmten Matte durch den Verlauf der Temperatur¬ eindringkurven nicht voll ausgenutzt werden kann.
Einen besonderen Vorteil weiεt das Anwärmen der Matte in der Vorpresse mittels Einwirken eineε hochfrequenten Hochεpannungε- feldε bei der Herstellung von OSB-Platten aus flächigen Holzεtücken auf. Dünne OSB-Platten sind aufgrund der großen Rückεtellkräfte der verwendeten flächigen Holzεtücke biεlang nicht kommerziell kontinuierlich herstellbar, da die Preßbänder von kontinuierlichen Heißpresεen zu stark belastet würden. Durch die HF-Heizung in der Vorpresse wird jedoch das Lignin in der Matte plastifiziert und die Bindemittel beginnen bereits haftende Eigenεchaften zu zeigen, εo daß die Rückstellkräfte der flächigen Holzstücke stark zurückgehen. Im Ergebnis wird ein sehr geringeε Wiederaufεpringen der Matte nach der Vorpreεse beobachtet und die Matte kann auch in einer kontinuierlich arbeitenden Heißpreεse zu den OSB-Platten verpreßt werden. Daε geringe Aufspringen der Matte nach der vorpreεεe ist generell ein beεonderes Merkmal des erfindungsgemäßen Verfahrens.
Bei der neuen Vorrichtung können die Elektroden der HF-Heizung an den Rückseiten von die Platte beiderseits beaufschlagenden Preßbändern der Vorpresse angeordnet εein. Dabei εind die Elektroden der HF-Heizung vorzugεweiεe dort angeordnet, wo die Preßbänder ihren geringεten Abεtand voneinander aufweisen.
Eine Elektrode der HF-Heizung kann geerdet sein, wobei daε der geerdeten Elektrode auf der anderen Seite der Matte gegen¬ überliegende Preßband hochfrequenzfeεt ausgebildet iεt. Wenn eine Elektrode eine HF-Heizung geerdet iεt, εpricht man von einer unsymmetriεchen HF-Einspeisung. Hierbei wird die geerdete Elektrode auch als kalte Elektrode bezeichnet. Im Bereich dieser kalten Elektrode sind die Materialbeanspruchungen geringer alε an der "heißen" Elektrode. Es reicht daher beim Umrüsten einer beεtehenden Vorrichtung zur Herεtellung von Platten auε Ligno- cellulose-haltigem Material auε, wenn zumindest das Preßband der Vorpreεεe, welches der heißen Elektrode zugeordnet ist, εo umgerüεtet wird, daß eε hochfrequenzfeεt auεgebildet iεt.
Die Erfindung wird im folgenden anhand von Auεführungεbeispielen näher erläutert und beschrieben, dabei zeigt
Figur l ein Flußdiagramm zur Durchführung deε neuen Verfah¬ rens,
Figur 2 den εchematiεchen Aufbau einer Vorpreεεe bei der neuen Vorrichtung,
Figur 3 den εchematiεchen Aufbau einer kontinuierlichen Heiß- preεεe bei der neuen Vorrichtung,
Figur 4 ein Preßwegdiagramm einer diεkontinuierlichen Hei߬ presse bei der neuen Vorrichtung, Figur 5 zwei Temperatureindringkurven und zwei Vergleichs- kurven zu dem neuen Verfahren und die
Figuren 6 und 7 Auftragungen der Querzugfeεtigkeit für zwei Herεtellungεbeispiele und Vergleichsbeispiele.
Bei dem in Figur 1 skizziertem Verfahren wird zunächst Binde¬ mittel in einer Belεimmaschine 1 kontinuierlich auf Ligno- celluloεe-haltige Teilchen 2 aufgebracht. Anεchließend werden die Teilchen 2 in einem Mattenformer 3 kontinuierlich zu einer Matte 4 geformt . In einer Vorpreεse 5 wird die Matte 4 kontinuierlich vorverdichtet. Gleichzeitig wirkt in der Vor¬ presse 5 eine HF-Heizung zum kontinuierlichen Erwärmen durch ein hochfrequentes Hochεpannungεfeld auf die Matte 4 ein. Die ange¬ wärmte und vorverdichtete Matte 4 wird dann in einer Heißpreεεe 6 kontinuierlich zu einer Platte 7 verpreßt, die anεchließend in einzelne Platten zerteilt werden kann.
Die bei dem neuen Verfahren zum Einsatz kommende Beleimmaschine
I iεt ebenεo wie der Mattenformer in seinem Aufbau bekannt. Hier sind gegenüber bekannten Vorrichtungen zur Herεtellung von Platten auε Lignocelluloεe-haltigen Teilchen keine Veränderungen vorgeεehen. Einen besonderen Aufbau weiεt jedoch die Vorpreεεe 5 auf, deren innerer Aufbau in Figur 2 εchematiεch wiedergegeben ist. Die Einlaufdicke 27 der Matte 4 wird in der Vorpreεse zwiεchen zwei um Rollen 8 und 9 umlaufenden Preßbändern 10 und
II biε auf eine Dicke 12 reduziert. Hinter den Preßbändern 10 und 11 springt die Matte 4 wieder biε auf eine Auεlaufdicke 13 auf . Im Bereich der minimalen Dicke 12 der Matte 4 ist eine HF- Heizung 14 angeordnet . Ein möglicher Anbringungsort für eine zweite HF-Heizung 14 iεt durch eine gestrichelte Linie ange¬ deutet. Die vorhandene HF-Heizung 14 weiεt zwei jeweilε hinter den Preßbändern 10 und 11 angeordnete Elektroden 15 und 16 auf. Die Elektrode 16 iεt geerdet, εo daß die HF-Heizung nach dem Prinzip der unsymmetrisch Einspeisung arbeitet. Dementsprechend wird die Elektrode 16 auch alε kalte Elektrode und die Elektrode 15 als heiße Elektrode bezeichnet. Weil die HF-Keizung 14 im Bereich der minimalen Dicke 12 auf die Matte 4 einwirkt, reicht eine vergleichsweise geringe Spannung aus, um die für den gewünschten Energieübertrag auf die Matte 4 erforderliche Feldstärke zu erreichen. Damit wird gleichzeitig die Gefahr von Durchschlägen in engen Grenzen gehalten. Zumindest daε Preßband 10 der Vorpresse 5 ist hochfrequenzfeεt ausgebildet. Bei dem der kalten Elektrode 16 zugeordneten Preßband 11 ist dies nicht unbedingt erforderlich, jedoch auch empfehlenswert. Im Vergleich zu Vorpresεen, die nicht mit einer HF-Heizung 14 ausgerüstet sind, iεt die Auεlaufdicke 13 der Matte 4 nach der Vorpresse 5 vergleichsweise gering, weil die Rückstellkräfte in der Matte 4 durch die HF-Heizung reduziert werden. Dies ist auf ein Plastifizieren von Lignin und ein Wirkεamwerden deε Bindemittelε durch das Anwärmen der Matte 4 zurückzuführen.
Die in Figur 3 skizzierte Heißpresse 6 weiεt den üblichen Aufbau einer kontinuierlich arbeitenden Heißpreεse auf, bei der die Matte 4 zwiεchen εich auf Rollen 17 und 18 abstützenden endlosen Preßblechen 19 und 20 geführt wird und dabei unter Wärmeein¬ wirkung zu der Platte 7 verpreßt wird. Die entsprechenden Heizelemente sind in Figur 3 nicht dargestellt.
Der vertikale Abstand der Preßbleche 19 und 20 ist über die- Länge einer Heißpresse nicht konstant, wie aus Figur 4 ersichtlich ist, in der für eine diskontinuierliche Heißpresεe dieεer Abεtand als Dicke d der Platte 4 bei ihrem Weg s durch die Heißpresse 6 aufgetragen iεt. Über einen erεten Abschnitt 21 wird die Matte 4 verdichtet, dabei erfolgt ein Aufheizen der Deckεchichten der Matte 4 durch von den Preßblechen 19 und 20 übertretende Kontaktwärme. In einem anεchließenden Abschnitt 22 wird die Dicke der Platte d auf einem etwas größeren Maß konstant gehalten, wobei die Kontaktwärme der Preßbleche 19 und 20 bis in die Mitte der Platte vordringt. Anεchließend wird die Platte 4 in einem Abεchnitt 23 auf ihre geringste Dicke d zusammengedrückt, um die Platte zu kalibrieren und nach dem Kalibrieren zu lüften. Danach verläßt die Platte die Heißpresεe.
In Figur 5 iεt der Temperaturverlauf in der Mitte der Platte der Platte 4 in der Heißpresεe 6 für zwei Beiεpiele deε erfindungε- gemäßen Verfahrens und für zwei Vergleichsbeispiele über der absoluten Preßzeit t aufgetragen. Die leeren Dreiecke und die leeren Rauten entsprechen MDF-Platten mit einer Nenndicke von 16 bzw. 30 mm, die erfindungsgemäß unter Anwendung einer HF-Heizung 14 in der Vorpresse 5 hergestellt wurden. Die gefüllten Quadrate und die gefüllten Kreise entsprechen demgegenüber Vergleichε- beispielen, bei denen MDF-Platten mit einer Nenndicke von 16 bzw. 30 mm ohne den Einεatz der HF-Heizung 14 hergestellt wurden. Bei auf 50 °C vorerwärmten Matten für 16 mm Platten steigt die Temperatur in der Plattenmitte ziemlich rasch an und erreicht bereits nach 60 Sekunden 80 °C, d. h. ca. 45 Sekunden früher als bei nicht HF-vorerwärmten Matten mit einer Anfangε- temperatur von ca. 30 °C. In beiden Fällen betrug die Temperatur von die Preßbleche 19 und 20 aufheizenden Heizplatten 227 °C. Ein analoger, jedoch flacherer Temperaturverlauf wird bei den 30 mm Platten beobachtet. Bei der Temperaturanfangsdifferenz von ca. 20 °C zwischen den angewärmten und den nicht angewärmten Matten beträgt die Zeitdifferenz zum Erreichen von 80 °C bei 30 mm Platten zwar 75 Sekunden, die auf die absolute Preßzeit bezogene relative Zeitdifferenz ist jedoch kleiner als bei den 16 mm Platten. Unter gleichen Ausgangεbedingungen war zwiεchen den Verleimungεarten Harnεtoff-Formaldehyd-Harz und Polyurethan¬ harz kein Unterschied im Temperaturverlauf feststellbar.
Die Temperatureindringkurven gemäß Figur 5 gehören zu den folgenden Beispielen:
1. 16 mm Platten
Unter den folgenden Randbedingungen wurden MDF-Platten mit einer Nenndicke von 16 mm einmal mit und einmal ohne Anwärmung der Matten in der Vorpresse durch ein hochfrequentes Hochspannungε- feld hergestellt: Holzart : 100 % Nadelholz ca. 90 - 95 % Kiefer und 5 biε 10 % Fichte
Ausgangsform: Hackschnitzel Bindemittel : Harnstoffharz (Leuna 5554) Beleimungεart: Blasrohrbeleimung Rohdicke : 17, 8/17, 5 mm
Dickenschrumpfung: ca. 0,3 mm nach Erkaltung Rohdichte : 770 kg pro Kubikmeter Festharz -. 10 % auf atro Fasern Härter: ohne Härterzugabe Feuchte: ca. 8 - 10 %
Mattentemp. ohne HF ca 30° C' Mattentemp. mit HF: ca. 50° C Heizzeiten ohne HF: 10 ε/mm Heizzeiten mit HF: 7,5 - 5,5 s/mm Preßtermoeratur: 227° C (Heizplatten)
Die Auswertung der erreichten Querzugsfestigkeiten erfolgte nach EMB-Norm, wobei jeder Meßpunkt in dem in Figur 6 wiedergegebenen Diagramm einen Mittelwert aus 5 Querzugproben pro Platte dar- εtellt. In Figur 6 εind rechtε über der Heizzeit von 10 s/mm die Querzugfestigkeiten dargestellt, die εich ohne HF-Heizung zur Anwärmung der Matte ergaben. Auf der linken Seite über dem Heizzeitbereich von 5,5 - 7,5 s/ram εind die Querzugfeεtigkeiten mit HF-Anwärmung wiedergegeben. Im Heizzeitbereich von 7 biε 7,5 s/mm, der einer Heizzeitverkürzung von 25 bis 30 % entspricht, liegt das Festigkeitεniveau mit HF-Anwärmung deutlich höher als die Werte ohne HF-Anwärmung. Die Streubεreiche sind ebenfalls deutlich geringer im Vergleich mit den Ausgangswerten ohne HF- Anwärmung. Bei der Heizzeit von 6,3 s/mm iεt daε Festigkeits¬ niveau zwar geringfügig niedriger aber immer noch über den Ausgangswerten ohne HF-Anwärmung. Bei der Heizzeit von 5,5 s/mm ist das Festigkeitεniveau um ca. 20 % gegenüber den Ausgangs¬ werten abgefallen, liegt aber immer noch oberhalb der EMB-Norm. 2. 30 mm Platten
MDF-Platten mit einer Nenndicke von 30 mm wurden unter den folgenden Randbedingungen hergestellt:
Holzart: 100 % Nadelholz ca. 90 - 95 % Kiefer und 5 - 10 % Fichte
Ausgangsform: Hackschnitzel
Bindemittel: Harnstoffharz (BASF 570/NESTE 36 75)
Nenndicke: 30 mm
Rohdicke: 32,0/32,6 mm
Dickenschrumpfung: ca. 0, 6 mm nach Erkaltung
Rohdichte: 750 kg pro Kubikmeter
Feεtharz: 12 % auf atro Faεern
Härter: ohne Härterzugabe
Feuchte: ca. 10 %
Mattentemp. ohne HF: ca. 30° C
Mattentemp. mit HF: ca. 50° C
Heizzeiten ohne HF: 13 s/mm
Heizzeiten mit HF: ll bis 8 s/mm
Preßtemperatur: 227° C (Heizplatten)
Die auf gleiche Weise wie bei den 16 mm Platten bestimmten Querzugfestigkeiten sind in Figur 7 aufgetragen. Rechts in Figur 7 erscheinen über der Heizzeit von 13 s/mm die Festigkeiten ohne' HF-Anwärmung, links über den Heizzeiten von 8 bis 11 s/mm die Festigkeiten mit HF-Anwärmung. Bei der Heizzeit von 11 s/mm liegen die Werte mit HF-Anwärmung noch auf höherem Niveau alε die Auεgangswerte ohne HF-Anwärmung. Unterhalb ll Sekunden bis zu 8 Sekunden wird schon ein Abwärtstrend unter das Auεgangε- niveau erkennbar. Die HF-Anwärmung bei der Begrenzung von 50° C in der Matte iεt für den Bereich dickerer Platten daher nicht εo effizient wie für Platten mit einer Dicke von 12 bis 22 mm, weil bei dickeren Platten die Wärmeeindringkurve weniger stark beeinflußt wird. Die HF-Heizung, die bei den erfindungsgemäßen Beispielen zur Anwendung kam, wie die folgenden technischen Daten auf :
HF-Nutzleistung: 15 kW bei 100 % Einschaltdauer Frequenz: 27,12 MHz + - 0, 6 %
Netzanschluß: Drehεtrom 400 V
+ 6 % - 10 % 50 Hz Steuerεpannung: 230 V / 50 Hz Netzaufnahme bei Vollast: 32 kVA
Hochspannungs- gleichrichtung: Siliziumdioden
Senderöhre: - Fabrikat: ABB
- Typ: IQL 12-1 Elektrodenplatte: - Länge: 500 mm
- Breite: 800 mm
Bei einem Anwärmen der Matte 4 mit der HF-Heizung auf Tempe¬ raturen unterhalb 60° c trat keine Kondenεation durch die Temperaturdifferenz zwiεchen der erwärmten Matte und der kalten Vorpresse auf, ohne daß besondere Bindemittel oder irgendwelche Vorkehrungsmaßnahmen bei der Vorpresse getroffen werden mußten. Höhere Temperaturen beim Anwärmen der Matte 4 sind unter Einhaltung von Vorsichtεmaßnahmen bezüglich der Preßbänder der Vorpreεεe und deε Bindemittelε möglich.
B E Z U G S Z E I C H E N L I S T E
1 Beieimmaschine
2 Teilchen
3 Mattenformer
4 Matte
5 Vorpreεεe
6 Heißpreεεe
7 Platte
8 Rolle
9 Rolle
10 Preßband
11 Preßband
12 Dicke
13 Auslaufdicke
14 HF-Heizung
15 Elektrode
16 Elektrode
17 Rolle
18 Rolle
19 Preßblech
20 Preßblech
21 Abschnitt
22 Abschnitt
23 Abschnitt
27 Einlaufdicke

Claims

P A T E N T A N S P R Ü C H E :
1. Verfahren zur Herstellung von Platten auε Lignocellu- loεe-haltigen Teilchen, wobei Bindemittel kontinuierlich auf die Teilchen aufge¬ bracht wird, wobei die Teilchen kontinuierlich zu einer Matte geformt werden, wobei die Matte kontinuierlich vorverdichtet wird, wobei die Matte kontinuierlich durch Einwirken eines hochfrequenten Hochspannungεfelds angewärmt wird und wobei die in einer Ebene geführte Matte unter weiterer Wärmeeinwirkung zu den Platten verpreßt wird, dadurch gekennzeichnet, daß die Matte (4) beim kontinuierlichen Vorverdichten durch Einwirken des hochfrequenten Hochεpannungs- feldε angewärmt wird.
2. Verfahren nach Anεpruch 1, dadurch gekennzeichnet, daß daε hochfrequente Hochspannungsfeld dort auf die Matte (4) einwirkt, wo diese ihre geringste Dicke (12) beim Vorverdichten erreicht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Matte (4) auf eine Temperatur unter 60 °C, insbeεondere zwischen 45 und 55 °C, angewärmt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß die Platten (7) , zu denen die Matte (4) vεrpreßt wird, eine Dicke von 12 bis 22 mm aufweisen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß die Teilchen (2) flächige Holzstücke εind, auε denen kontinuierlich OSB-Platten hergestellt werden.
6. Vorrichtung zur Herεtellung von Platten aus Lignocellu- loεe-haltigen Teilchen gemäß dem Verfahren nach einem der Ansprüche l bis 5, mit einer Beleimmaεchine zum kontinuierlichen Aufbringen von Bindemittel auf die Teilchen, mit einem Mattenformer zum kontinuierlichen Formen der Teilchen zu einer Matte, mit einer Vorpresεe zum kontinuierlichen Vorverdichten der Matte, mit einer HF-Heizung zum kontinuierlichen Anwärmen der Matte durch Einwirken eines hochfrequenten Hochspannungsfelds und mit einer Heißpresse zum Verpressen der zwiεchen zwei Preßblechen in einer Ebene geführten Matte unter weiterer Wärmeeinwirkung zu den Platten, dadurch gekennzeichnet, daß die HF-Heizung (14) innerhalb der Vorpreεεe (5) angeordnet ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß
Elektroden (15 und 16) der HF-Heizung (14) an den Rückseiten von die Matte (4) beiderseits beaufschlagenden Preßbändern (10 und 11) der Vorpresεe (5) angeordnet sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Elektroden (15 und 16) der HF-Heizung (14) dort angeordnet εind, wo die Preßbänder (10 und 11) ihren geringsten Abstand voneinander aufweisen.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß eine Elektrode (16) der HF-Heizung (14) geerdet iεt und daß daε der geerdeten Elektrode (16) auf der anderen Seite der Matte
(4) gegenüberliegende Preßband (10) hochfrequenzfeεt auεgebildet lεt .
EP97902338A 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen Expired - Lifetime EP0820371B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19604574A DE19604574A1 (de) 1996-02-08 1996-02-08 Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Platten aus Lignocellulose-haltigen Teilchen
DE19604574 1996-02-08
PCT/EP1997/000529 WO1997028936A1 (de) 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen

Publications (2)

Publication Number Publication Date
EP0820371A1 true EP0820371A1 (de) 1998-01-28
EP0820371B1 EP0820371B1 (de) 2002-06-12

Family

ID=7784849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97902338A Expired - Lifetime EP0820371B1 (de) 1996-02-08 1997-02-06 Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen

Country Status (7)

Country Link
US (1) US5913990A (de)
EP (1) EP0820371B1 (de)
AT (1) ATE218956T1 (de)
AU (1) AU1601597A (de)
CA (1) CA2217654A1 (de)
DE (2) DE19604574A1 (de)
WO (1) WO1997028936A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156348A1 (en) * 2000-10-06 2005-07-21 Randall James W. Method and apparatus for making building panels having low edge thickness swelling
US20030090022A1 (en) * 2000-10-06 2003-05-15 James Randall Method and apparatus for making building panels having low edge thickness swelling
US6572804B2 (en) 2000-10-18 2003-06-03 Borden Chemical, Inc. Method for making building panels having low edge thickness swelling
DE10106815A1 (de) * 2001-02-14 2002-08-29 Dieffenbacher Gmbh Maschf Verfahren und Anlage zur Herstellung von Holzwerkstoffplatten
PL358124A1 (en) * 2001-05-03 2004-08-09 Kronospan Technical Company Limited Method for reducing formaldehyde content and formaldehyde emission from particleboard
US20020189740A1 (en) * 2001-06-19 2002-12-19 Carter Neil A. Methods and systems for making high density fiberboards from low density fibrous media
US20050054807A1 (en) * 2003-09-05 2005-03-10 Weyerhaeuser Company Low-nitrogen content phenol-formaldehyde resin
US7141195B2 (en) * 2003-09-05 2006-11-28 Weyerhaeuser Co. Process for making engineered lignocellulosic-based panels
US7258761B2 (en) * 2004-11-12 2007-08-21 Huber Engineered Woods Llc Multi-step preheating processes for manufacturing wood based composites
US20060128886A1 (en) * 2004-12-14 2006-06-15 Winterowd Jack G Low-nitrogen content phenol-formaldehyde resin
US8414720B2 (en) 2010-06-21 2013-04-09 Weyerhaeuser Nr Company Systems and methods for manufacturing composite wood products to reduce bowing
DE102011003318B4 (de) 2010-10-07 2016-06-23 Institut Für Holztechnologie Dresden Gemeinnützige Gmbh Faserplatten mit funktionsorientiertem Rohdichteprofil und Verfahren zu deren Herstellung
JP6127901B2 (ja) * 2013-10-21 2017-05-17 セイコーエプソン株式会社 シート製造装置、シート製造方法
CA2936607C (en) 2014-01-13 2023-01-03 Basf Se Method for the production of lignocellulose materials
PT3230027T (pt) 2014-12-09 2019-05-31 Basf Se Processo para a produção de materiais lignocelulósicos multicamadas com um núcleo e pelo menos uma camada de cobertura superior e uma inferior e propriedades especiais do núcleo
EP3230028B1 (de) * 2014-12-09 2019-01-09 Basf Se Verfahren zur herstellung von ein- oder mehrschichtigen lignocellulosewerkstoffen durch aushärten in einem hochfrequenten elektrischen feld
EP3274144A1 (de) 2015-03-27 2018-01-31 Basf Se Verfahren zur herstellung von ein- oder mehrschichtigen lignocellulosewerkstoffen unter verwendung von trialkylphosphat
EP3274143B1 (de) 2015-03-27 2019-08-28 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen
JP6311749B2 (ja) * 2016-07-13 2018-04-18 セイコーエプソン株式会社 シート製造装置、シート製造方法
LT3515990T (lt) 2016-09-23 2020-10-26 Basf Se Lignoceliuliozės ruošinių gamybos būdas
JP6330931B2 (ja) * 2017-02-03 2018-05-30 セイコーエプソン株式会社 シート製造装置、シート製造方法
WO2019038115A1 (de) 2017-08-23 2019-02-28 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen in gegenwart von caprolactam und dessen oligomeren
DE112018004708A5 (de) 2017-08-23 2020-06-10 Basf Se Verfahren zur Herstellung von Lignocellulosewerkstoffen mittels Bestimmung von NCO-Werten
WO2019115261A1 (de) 2017-12-13 2019-06-20 Basf Se VERFAHREN ZUR HERSTELLUNG VON EIN- ODER MEHRSCHICHTIGEN LIGNOCELLULOSEWERKSTOFFEN UNTER SPEZIELLEN BEDINGUNGEN IN DER HEIßPRESSE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697254A (en) * 1950-03-14 1954-12-21 Bruce A Gordon Dry process of manufacturing pressboard
US4086313A (en) * 1972-08-01 1978-04-25 G. Siempelkamp & Co. Method of making pressed board
SU878187A3 (ru) * 1977-05-17 1981-10-30 Бизон-Верке Бэре Унд Гретен Гмбх Унд Ко,Кг (Фирма) Устройство дл непрерывного изготовлени древесностружечных плит
DE2722356C2 (de) * 1977-05-17 1982-07-29 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren und Vorrichtung zum kontinuierlichen Herstellen von Span-, Faser- o.dgl. Platten
DE2854336C2 (de) * 1978-12-15 1982-05-19 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren zum Herstellen von Span-, Faser- o.dgl. -Platten
DE3107589C2 (de) * 1981-02-27 1986-01-30 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Vorrichtung zur kontinuierlichen Herstellung von Span-, Faser- oder dergleichen Platten
DE3107592C2 (de) * 1981-02-27 1985-10-17 Bison-Werke Bähre & Greten GmbH & Co KG, 3257 Springe Verfahren zum diskontinuierlichen Vorwärmen und Verpressen von Vliesen
IT1195226B (it) * 1981-10-22 1988-10-12 Sofin Spa Impianto perfezionato di fibre con sistema a secco e in continuo

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9728936A1 *

Also Published As

Publication number Publication date
DE59707471D1 (de) 2002-07-18
WO1997028936A1 (de) 1997-08-14
CA2217654A1 (en) 1997-08-14
EP0820371B1 (de) 2002-06-12
ATE218956T1 (de) 2002-06-15
AU1601597A (en) 1997-08-28
US5913990A (en) 1999-06-22
DE19604574A1 (de) 1997-09-18

Similar Documents

Publication Publication Date Title
EP0820371B1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung von platten aus lignocellulose-haltigen teilchen
DE2722356C2 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen von Span-, Faser- o.dgl. Platten
DE19718772B4 (de) Verfahren und Anlage zur Herstellung von Holzwerkstoffplatten
DE10084693B4 (de) Verfahren zur Herstellung eines Preßholzproduktes und Vorrichtung zum Durchführen eines solchen Verfahrens
DE4333614C2 (de) Verfahren und Anlage zur kontinuierlichen Herstellung von Spanplatten
EP2247418A1 (de) Verfahren und vorrichtung zur vorwärmung einer pressgutmatte im zuge der herstellung von holzwerkstoffplatten
DE7637989U1 (de) Vorrichtung zum herstellen eines hartplattenerzeugnisses
WO2017207451A1 (de) Verfahren und vorrichtung zur herstellung von holzwerkstoffplatten sowie holzwerkstoffplatte
DE19738953C1 (de) Verfahren und Vorrichtung zur Herstellung von Formkörpern aus zerkleinertem Material
EP1110687B2 (de) Verfahren zur Herstellung einer leichten Faserplatte
DE10129750B4 (de) Werkstoff aus Holzpartikeln, Bindemittel und Zuschlagstoffen sowie Verfahren zu seiner Herstellung
EP4351856A1 (de) Vorrichtung und verfahren zur dämmplattenherstellung
DE10015416A1 (de) Verfahren und Anlage zur Herstellung von endlosen Furnierschichtplatten aus einem Furniertafelstrang
DE2908470C2 (de) Vorrichtung zum diskontinuierlichen Herstellen von Span-, Faser- oder dergleichen Platten
DE10116686C2 (de) Verfahren zur Aufbereitung von Stroh und anderen Einjahrespflanzen für die Herstellung von Faser-, Span- und Dämmplatten sowie Wandelementen und anderen Formteilen und Verfahren zur Herstellung von Faser-, Span- und Dämmplatten sowie Wandelementen und anderen Formteilen
DE4412515A1 (de) Verfahren und Vorrichtung zum Herstellen von ein- oder mehrschichtigen Platten
DE10037508B4 (de) Verfahren und Anlage zur Herstellung von Holzwerkstoffplatten
DE19606262C1 (de) Verfahren und Vorrichtung zur Herstellung einer mitteldichten Faserplatte
DE202016102908U1 (de) Vorrichtung zur Herstellung von Holzwerkstoffplatten sowie Holzwerkstoffplatte
DE102019112632B3 (de) Vorrichtung zur kontinuierlichen Erwärmung einer Pressgutmatte
DE102011003318B4 (de) Faserplatten mit funktionsorientiertem Rohdichteprofil und Verfahren zu deren Herstellung
DE3107592A1 (de) Verfahren zum herstellen von span-, faser- o.dgl. platten
EP2786849B1 (de) Verfahren zur Herstellung einer Sandwich-Faserplatte, sowie Sandwich-Faserplatte
CH463774A (de) Verfahren zum Herstellen eines flachen Körpers
DE2729687B2 (de) Verfahren zum Herstellen von Formwerkstücksrohlingen für Sitzschalen, Verformungen aufweisende Abdeckplatten o.dgl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000426

19U Interruption of proceedings before grant

Effective date: 20000430

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20000818

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REF Corresponds to:

Ref document number: 218956

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707471

Country of ref document: DE

Date of ref document: 20020718

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020923

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0820371E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20050321

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20081031

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20100913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130222

Year of fee payment: 17

Ref country code: GB

Payment date: 20130221

Year of fee payment: 17

Ref country code: FR

Payment date: 20130315

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707471

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140206