EP0816675B1 - Dispositif pour la stabilisation de l'anneau excentrique d'une pompe à pistons radiaux - Google Patents
Dispositif pour la stabilisation de l'anneau excentrique d'une pompe à pistons radiaux Download PDFInfo
- Publication number
- EP0816675B1 EP0816675B1 EP97110504A EP97110504A EP0816675B1 EP 0816675 B1 EP0816675 B1 EP 0816675B1 EP 97110504 A EP97110504 A EP 97110504A EP 97110504 A EP97110504 A EP 97110504A EP 0816675 B1 EP0816675 B1 EP 0816675B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- pump
- piston
- eccentric ring
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/053—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
Definitions
- the invention relates to a device for stabilization the eccentric ring of a radial piston pump with several pistons driven by a common eccentric shaft, according to the preamble of claim 1.
- Such radial piston pumps are often used for feeding the common high-pressure line (common rail) of a fuel injection system used for vehicles because of such Pumps with a relatively small construction volume high Provide pressures and a good response of the Have regulation.
- an adjustable suction throttle upstream which thus as a fluid flow limiting device functions, so that the individual pistons of the radial piston pump only so much Pressurized fluid, i.e. Convey fuel as in the common rail is actually needed. It can thus differ in the individual Pump chambers extreme under certain conditions Stop undersupply, even then, when the pistons are pressurized fluid, i.e.
- This stabilizing part is spring loaded Piston formed, which is biased radially inwards and with its radially inner front end flat against an associated flattening of the eccentric ring suppressed.
- the eccentric ring is also when the Piston in the event of pressure fluid supply failure are no longer pressed against the support surfaces, against Twisted secured. After restarting the pump after a The pump can therefore fail without supply medium previous, realignment of the eccentric ring again be started so that pump downtimes are avoided.
- the stabilizing piston radially inside the pump piston led and is supported with its front plate section on the ring collar of the pump piston.
- the inner of the stabilizing piston is via a radial channel, a Axial channel and a throttle element can be filled with pressure fluid, creating a damping effect for the radially after internally moving pump piston can be achieved.
- Radial piston pumps with one described above Build-up is not only for ever higher system pressures, but also used for ever higher speeds. Since the eccentric ring in such radial piston pumps moved on a circular path, being parallel to self-shifting takes place between the pump piston or an associated slide shoe and the flattened Support surface of the eccentric ring a relative sliding movement instead of. The frictional force tends to close the eccentric ring twist. Because the frictional force changes cyclically with the angle of rotation the eccentric shaft changed, it is ultimately special responsible at higher speeds that no longer controllable torsional / tilting vibrations of the eccentric ring occur, the functionality of the radial piston pump impair and lead to increased wear of the individual components of the radial piston pump being able to lead.
- the invention is therefore based on the object Device for stabilizing the eccentric ring of a radial piston pump according to the preamble of claim 1 to create with the in all operating conditions and in particular at high speeds and in suction throttle mode Pressure fluid undersupply of individual displacers torsional / tilting vibrations of the eccentric ring effectively excluded become.
- the eccentric ring is arranged by a displacement element stabilized in every phase of movement the radial piston pump stabilizes the eccentric ring receives active pressurization. This is given the opportunity to stabilize the Adjust the operating state of the pump and for example in the operating phases critical for torsional / tilting vibrations, i.e. at high speeds and / or with an undersupply the pump chambers of individual or all pump pistons to keep the stabilizing force high enough to To protect the eccentric ring against torsional / tilting vibrations.
- the force required to stabilize the eccentric ring can be optimized energetically, for example, by only in a very specific speed range and / or depending on parameters of the suction throttle control or the pressure fluid supply of individual or all Pump pistons provided with special effectiveness becomes. In other operating states in which the eccentric ring such torsional / tilting vibrations in particular According to the invention, the stabilizing force is subject to circumference be kept lower, reducing efficiency the radial piston pump is adjustable to an optimum.
- the displacement element arrangement itself can be of various types Embodiments are provided.
- a first variant is the subject of claims 2 to 5.
- This variant has the particular advantage that the stabilizing device independent of the other components of the radial piston pump can be designed, which is positive in terms of on retrofitting of conventional radial piston pumps with a stabilizing device according to the invention effect.
- the pressure chamber of the displacement element and preferably at largely large design of the contact area between the cup-shaped pistons and the stabilizing surface on the eccentric ring, a single cup-shaped piston is sufficient, around the eccentric ring in the critical operating states Protect against torsional / tilting vibrations.
- the radial piston pump can reduce the internal pressure the cup-shaped piston preferably after one certain control profile to be changeable, the one determined at the operating point Adjusted parameters of the radial piston pump is. It has been shown that such an embodiment the displacement element arrangement is particularly useful can be used if there are no more than three pump pistons are sufficient in this way at the eccentric ring large stabilization area between two neighboring ones Support surfaces are formed on the eccentric ring can.
- the stabilization effect can be improved further.
- three are evenly spaced apart mutually stabilizing piston according to claim 5 are provided, is at least a cup-shaped piston in a radially outward direction Displacement phase, so that the possibility is given is the support force of this stabilizing piston in this Additional movement phase to raise.
- the degree of increase the stabilizing force in this movement phase of the Stabilizing piston can be particularly simple Way via the pressurized fluid supply opening for the inside of the cup-like piston.
- Another variant of the stabilization device for the eccentric ring which is particularly suitable for embodiments of radial piston pumps that are more than has three, for example five and more radial pistons, is the subject of claims 6 ff.
- This variant has the particular advantage that the stabilizing device into the individual cylinder insert modules of the radial pistons can be integrated, making it a very space-saving Order results.
- the installation space is radial Direction by the measures according to the invention only slightly raised.
- the support sleeve can also be very space-saving into the individual units or modules in the area integrate the cylinder inserts.
- no additional installation space is required taken.
- the support sleeve can do other tasks transmitted, e.g. the task of a support surface to provide for the return spring of the pump piston.
- the support sleeve fulfills with the further development of the claim 7 the function of a valve for time-controlled Filling to stabilize the eccentric ring used pressure fluid chamber.
- a valve for time-controlled Filling to stabilize the eccentric ring used pressure fluid chamber.
- the first variant according to claim 8 is the support sleeve guided on the outer surface of the cylinder insert while them according to the variant according to claim 16 via a bore coaxial to the piston in the pump housing is.
- the radial piston pump can be easily assembled being held. Due to a reduced number of components the manufacturing cost can be reduced.
- the Stabilizing device in the specific embodiment of the preceding claims by simply adding a slot control device and a check valve as well as a pressure channel and a suction channel on simple Way the integrated pre-conveyor function. Through the Slit control optimizes the pressure build-up phase.
- the support sleeve is on the outer surface of the cylinder insert or in a to Piston coaxial bore provided in the pump housing. Thereby stable pump operation is guaranteed.
- the training according to claims 26 and 27 relate two variants for the slot control device.
- the slots can either be in the support sleeve or be provided in the sealing sleeve. With these slits a restricted flow of fluid is ensured. If the Support sleeve with its outer diameter in the housing the partial volume flows occurring can be directly in the Housing are brought together via check valves ( Figure 9), which further simplifies the structure. Otherwise an additional element in the form of a sealing sleeve is used, around the volume flow from the annular displacement chamber to transfer into the housing.
- a sheet metal tongue of a flat gasket Sheet used as a check valve.
- Another space-saving The arrangement of the check valve consists in the integration in a pressure screw of the support ring of a pressure chamber insert.
- the support ring is particularly advantageous because this can be positioned independently of the cylinder insert is. Static overdeterminations of the pump mechanics can thus effective in the area of the cylinder insert be avoided.
- FIG. 1 with the reference number 10 is a pump housing referred to in the three at an even circumferential distance radial piston / cylinder arrangements facing each other are recorded which are connected to a central pump shaft, i.e. more specifically with an eccentric section 12 of the pump shaft interact.
- a central pump shaft i.e. more specifically with an eccentric section 12 of the pump shaft interact.
- At 11 is the axis of the pump shaft designated, while at 13 the center of the eccentric section 12 is designated by the dimension E to the axis 11 is offset.
- Eccentric ring 14 mounted on the outside of a corresponding to the number of piston / cylinder arrangements Number of flattened support surfaces has 16.
- a sliding shoe is supported on the supporting surfaces 16 18 from the axially by means of a clamp element 20 firm and captive with the associated pump piston 22 connected is.
- the pump piston 22 also sits radially centered in the slide shoe 18, which is thus with its contact surface 23 remains aligned perpendicular to the piston axis 24.
- the piston axis 24 extends essentially radially to the pump shaft, the orientation being predetermined by a cylinder insert 26 which is received in a corresponding recess 25 in the pump housing 10 and is fixed therein by means of a screw cap 28.
- the pump piston 22 With the inner bore of the associated cylinder insert, the pump piston 22 defines a pump chamber 30, which can be fed with pressure fluid via a suction valve 31 designed as a check valve, which is at a supply pressure P.
- a branch passage 32 extends from the pump chamber 30, which leads to a pressure valve 33, which is also designed as a check valve, which is accommodated in the pump housing 10 and is connected to a common high-pressure line 34 in which the high pressure P 1 prevails.
- the common high-pressure line 34 forms, for example, the so-called "common rail" of a fuel injection system of an internal combustion engine.
- a return spring is designated by reference number 35, which is designed as a compression spring and one hand on a head portion of the cylinder insert 26 and on the other supported on the bracket member 20 so that the associated Pump piston 22 when the eccentric section 12 is moving can perform his suction stroke.
- FIG. 1 shows the upper piston in the top dead center position, i.e. in the state in which the pump chamber 30 the occupies minimal volume.
- the pump chamber 30 * either does not build up the high pressure at all or with such a time delay that the radially inwardly directed piston force cannot be used effectively to stabilize the eccentric ring 14.
- These operating states are disadvantageous, in particular at high speeds, because they can lead to rotational / tilting vibrations of the eccentric ring 14.
- the radial piston pump according to FIG. 1 has a device for stabilizing the eccentric ring in the form of a hydraulic displacement element arrangement, with which the eccentric ring 14 is stabilized in every movement phase of the pump by actively pressurizing the displacement element arrangement.
- a cup-shaped piston 40 is provided, which is supported with its bottom 42 on a flat stabilizing surface 44 of the eccentric ring 14.
- the cup-shaped piston 40 is slidably guided in a radial bore 46 of the pump housing 10 and defines in its interior and in cooperation with the radial bore 46 a pressure chamber 48 which is connected via at least one axial channel 47 in a screw plug 50 to a pressure fluid system under the pressure P2 ,
- the inner diameter D40 and the pressure in the pressure chamber 48 determine the radial pressure force F R with which the cup-shaped piston 40 is constantly pressed against the stabilizing surface 44 of the eccentric ring 14, as a result of which the latter is independent of the pressure conditions and of the fluid supply to the pump chambers 30, 30 * in the position shown is held.
- the pressure level P2 can be kept at a constant value become. However, it is equally possible to use this Pressure P2 depending on the operating states of the radial piston pump to optimize so that the stabilizing effect then primarily provided for the eccentric ring 14 if, for example, in a particular Speed range or when switching off one or all Pump piston is a priority.
- the pressure in the Pressure chamber 48 can even be raised cyclically, in which the Throttle effect of the axial channel 47 is used.
- cup-shaped Piston 40 also radially by a compression spring 49 biased inside.
- the compression spring 49 is inside the cup-shaped piston 40 received and supports itself on the underside of the locking screw 50.
- the Compression spring 49 not only has a radial force that increases Effect, but it ensures a complete loss of pressure in the pressure system with pressure P2 for the eccentric ring 14 remains stabilized.
- the embodiment according to FIG. 2 differs from that according to FIG. 1 only in that several such pistons 140-1 to 140-3 are provided instead of a single cup-shaped piston, which are in flat contact with separate stabilizing surfaces 144 on the eccentric ring 114.
- This variant ensures that at least one cup-shaped piston 140 is moved radially outwards in each phase of movement of the eccentric section 112, so that the associated reduction in the pressure space 148 in conjunction with the throttle function of the axial channel 147 can be used to increase the stabilizing force F R.
- the piston 140-3 is in this phase, so that an increased stabilizing pressure can build up in the pressure chamber 148-3, which can also be used to stabilize the eccentric ring 114.
- FIG 3 shows a radial piston pump with several - for example 3 to 5 cylinder inserts 226, which are stepped in Radial bores 225 with essentially radial Alignment is included in the pump housing 210.
- the eccentric ring 214 rotatably mounted on which the radial piston Support 222 using a slide shoe 218.
- the suction valve and the Pressure valve there are no differences from the previous one described embodiment, so that a closer Description of these details can be omitted.
- Differently is the way the eccentric ring 214 in every phase of movement of the radial piston pump against torsional / tilting vibrations is stabilized.
- the Stabilization device is referred to Figure 4, which only differ from the configuration according to FIG differs in that the pressure valve is not in Pump housing 210, but received in the cylinder insert 226 is.
- Each pump piston 222 is in the region of its radially inner one End section axially fixed with a plate-shaped Element 254 connected so that it is together with the piston 222 and the slide shoe 218 moves.
- the plate-shaped Element 254 rests on an inner shoulder 256 of a support sleeve 258 to that with a first section with sliding fit on a cylindrical outer surface 259 of the cylinder insert 226 is guided axially movably and with a further section radially surrounds the slide shoe 218 and is supported on the support surface 216 of the eccentric ring 214.
- the section guided axially movably on the cylinder insert 226 the support sleeve 258 has at least one radial opening 260 on that shown in Figures 3 and 4 Position of the cylinder insert 226 is closed.
- the position of the piston shown in Figures 3 and 4 222 and thus the support sleeve 258 is the top dead center position, i.e. the position in which the pump chamber 230 the occupies smallest volume.
- the reference numeral 268 is at least one axial bore or an axial breakthrough in the plate-shaped element 254 and the reference numeral 270 denotes a radial channel
- the channels 268 and 270 are thus part of a throttle arrangement, via which the in the pressure fluid chamber 264 displaces trapped pressure fluid can be, if the support sleeve 258 in the compression stroke of the Piston 222 against the force of the Rüchholfeder 235, which is supported radially on a shoulder 272 of the support sleeve 258 is moved outwards.
- the support sleeve 258 remains the connection between the space 266 and the pressure fluid chamber 264 still open.
- the radial breakthrough 260 becomes however with increasing radial displacement towards the outside and finally completely closed, so that the trapped in the pressure fluid chamber 264 Pressure fluid through the continued movement of the plate-shaped Elements 254 is pressurized.
- the pressure increase in the pressure fluid chamber 264 and thus that of the sliding block 218 stabilizing force exerted on the eccentric ring 214 depends on the speed at which the support sleeve 258 is moved radially outwards, i.e. speed-dependent.
- channels 268 and 270 may have the stabilizing function energetically optimized so that the stabilizing Function in a certain speed band in which it is on stabilization is particularly popular, held at its highest becomes.
- the order should be made that the dynamic pressure in the pressure fluid chamber 264 is reduced, when the main compression pressure from piston 222 in the pump chamber 230 is built.
- the embodiment according to FIG. 5 differs from the embodiment according to Figures 3 and 4 by the design of plate-shaped element 354 and the support sleeve 358.
- the Support sleeve 358 with its end face 374 on the plate-shaped Element 354 such that at least between the contact surfaces a throttle channel remains.
- the plate-shaped element 354 is connected to the pump piston 322 in the center and holds the slide shoe 318 like a clip with sections 355 firmly.
- the support sleeve 358 has at least one radial opening 360 equipped in the guide collar, see above that the pressure fluid chamber 364 in the area of bottom dead center the support sleeve 358 and thus the piston 322 with Pressure fluid can be filled, which is then via a throttle channel arrangement between the end face 374 of the support sleeve 358 and the plate-shaped element 354 displaceable into the environment is, making a radially inward Stabilizing force built up on the eccentric ring 314 can be.
- the Suction valve 431 with radial alignment in the cylinder insert 426 is integrated, which is in further deviation via a support ring 476 on a shoulder of the pump housing 410 is also the plate-shaped element 454 designed differently.
- the plate-shaped element formed by an annular disc to which an axial collar 456 is formed, via which an axially fixed connection to the Piston 422 is made.
- At least one radial channel 478 is formed, which in one Radial channel 480 opens into the support sleeve 458.
- the radial channel 480 is under the same pressure as room 466, from the at least one radial opening 460 Pressurized fluid in the pressurized fluid space between the end face 474 and the plate-shaped element 454 can flow when the support sleeve 458 has assumed its inner dead center position at the latest at this point in time.
- the support sleeve 458 follows the movement the eccentric ring 414 under the action of the compression spring 435, which is supported on a radial shoulder 472 of the support sleeve 458, i.e. above a collar section 482 with which the slide shoe 418 is enclosed.
- FIG. 7 the stabilization device according to the invention of the eccentric ring described.
- the reference number this figure - as far as they are comparable elements like characterize in the previously described embodiments - preceded by a "5".
- the peculiarity of this embodiment exists in that the support sleeve 558 is not on the piston insert here 526, but in a guide bore 515 of the pump housing 510 is performed.
- the pressure fluid chamber is designated 564 and it is located above the shoe 518 in the room where the return spring 535 is housed, which is on the head portion of the cylinder insert 526 on the one hand and on a driver plate or a support disc 554 supports on the other hand, which is axially fixed with piston 522 is connected.
- the plate-shaped element of the hydraulic displacement element arrangement is here from Slide shoe 518 formed.
- annular gap 586 Between the support plate 554 and the inner wall 584 there remains an annular gap 586, which is shown in FIG top dead center of the piston 522 and thus the Support sleeve 558 in the region of a radial opening 588 Support sleeve 558 comes to rest.
- the radial breakthrough 588 is in fluid communication with a chamber 567, in which in turn is a slight overpressure or ambient pressure prevails.
- the support sleeve 558 has - like the support sleeves of the previous one described embodiments - at least one other Radial breakthrough 560, above which when the control edge is reached 590 the pressurized fluid chamber 264 quickly with pressurized fluid can be filled from room 567.
- the support sleeve also has 558 an annular collar 592 with which the sliding shoe 518 engages behind becomes. In this way, the shoe 518 can it is moved radially inward by piston 522, which Take the support sleeve 558 with you.
- the operation of the stabilization device for the eccentric ring 514 is as follows:
- FIG. 7 shows the piston 522 in the top dead center position.
- the spring 535 follows Sliding shoe 518 of the support surface 516 of the eccentric ring 514, when the eccentric section moves.
- the pressure fluid chamber 567 increases while pressurized fluid from the room 567 over the radial opening 588 and the annular gap 586 flows.
- the bottom dead center position the at least one radial opening 560 opened, so that the pressure fluid chamber 567 completely with Pressure fluid is filled. If the support surface 516 is radial moves outward, the support sleeve 558 is moved and the control edge 590 is gradually closed.
- the embodiment shown in Fig. 8 with stabilizing device and pre-feed pump has a similar one Construction like the device shown in Fig. 6. However is in the embodiment of Fig. 8 no throttle bore analog the bore 480 of Fig. 6 provided.
- the fluid will in this embodiment supplied via a suction channel 632 and via a pressure channel 637 from the room 666 and the pressure fluid chamber 664 discharged.
- a not shown Check valve in pressure channel 637 or another Check valve ensures that a certain pressure in the pressure fluid chamber prevails and thus the eccentric ring 614 is stabilized.
- the slots extending in the axial direction 639 has that in cooperation with the support sleeve end 659 the fluid flow depending on the piston position from suction channel 636 to pressure channel 637 or interrupt.
- the support piston displaces 658 the fluid in room 690 into the pressure channel 637, the design of the slots this effect can support and open at a certain amount, which is determined by the spring force of the check valve, the connection to the suction valve of the pump section with radial piston function.
- the fluid present in room 666 becomes by the displacement movement of the hydraulic displacement element 654 pressurized (radial bore open) and then comes together with those in the pressure fluid chamber 664 existing fluid via a throttling device, from the slots 639 in the sealing sleeve 638 and through the support sleeve end 659 is formed into the space 690.
- This fluid is the pressure valve 637 the suction valve of the pump section with radial piston function.
- the arrangement of the slots 639 determines the filling and fluid delivery times and the stabilization pressure for the eccentric ring.
- the check valve ensures that there must be a certain pressure in room 666 before fluid is dispensed.
- the device of Fig. 7 shows an embodiment with an integrated feed pump modify. This is shown in Figure 9.
- the devices the latter two figures differ in that in the device shown in Fig. 9, the radial breakthrough 588 is missing and that instead a suction channel as well a pressure channel with a check valve are provided.
- the radial opening 760 and a control edge 590 form 9, a slot control device, with which the fluid connection between the suction channel and the pressure channel is interrupted or permitted.
- a throttling device analogous to the support sleeve end 659 together with the sealing sleeve 638 is in this embodiment not provided. But ensures the spring force of the Check valve 791 from that when the piston moves 722 a certain pressure in from bottom to top dead center the pressurized fluid chamber 764 before fluid communication between the pressure channel of the pre-feed pump and the Suction port of the pump section with radial piston function is released.
- 10 and 11 are further exemplary embodiments for a radial piston pump device with stabilizing device and pre-feed pump, the embodiment 8 are similar.
- FIG. 10 differs from 8 in that in Fig. 10 slots 861 on the Support sleeve are formed and the sealing sleeve 838 none Has slits.
- the structure and function of the device from Fig. 10 otherwise correspond to the structure and Function of that of Fig. 8.
- An advantage of this embodiment is that in the pressure stroke longer sealing lengths can be realized.
- the device in FIG. 11 shows an example Realization of the check valve. If in the pump housing a parting line is provided on the flange side, it is advantageous, the flat seal on the flange also as a check valve to use. Here, tabs 993 on one Flat gasket 992 made of sheet metal may be provided. By this arrangement reduces the number of components and thus get a cheaper pump.
- the invention thus provides a device for stabilization the eccentric ring of a radial piston pump with several, driven by a common eccentric shaft Pistons, each in a cylinder insert fixed in the pump housing are slidably guided and flattened Support the support surfaces of the eccentric ring, the is rotatably mounted on an eccentric of the eccentric shaft.
- a hydraulic Displacement element arrangement provided with the the eccentric ring in every movement phase of the pump active pressurization of the displacement element arrangement is stabilizable.
- a radial piston pump is provided, in which a prefeed pump is integrated and with a stabilized contact between the piston and the eccentric ring is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Claims (32)
- Dispositif pour stabiliser l'anneau excentrique d'une pompe à piston radiale avec plusieurs pistons entraínés par un arbre excentrique commun ; lesquels pistons sont guidés de façon à pouvoir glisser chaque fois dans un insert de cylindre (26 ; 226 ; 426 ; 526) fixé et situé dans le boítier de la pompe (10 ; 110 ; 210 ; 310 ; 410 ; 510) en s'appuyant sur des surfaces d'appui aplaties de l'anneau excentrique, lequel anneau est placé de manière pivotante sur un excentrique de l'arbre excentrique avec au moins une disposition d'élément d'appui ; ladite disposition précontraint indépendamment des conditions de pression dans la chambre de pompe (30 ; 230 ; 430) une pièce de stabilisation s'appuyant sur le boítier de la pompe de façon surfacique contre une surface de stabilisation de l'anneau excentrique, caractérisé en ce que, pour éviter les vibrations de rotation/ basculement de l'anneau excentrique (14 ; 114 ; 214 ; 314 ; 414 ; 514), au cours du fonctionnement à aspiration étranglé de la pompe à piston radiale, il est prévu une disposition d'éléments de déplacement (40 ; 140-1 à 140-3 ; 254 ; 354 ; 454 ; 514) grâce à laquelle disposition on stabilise l'anneau excentrique dans chaque phase de mouvement de la pompe par l'application active d'une pression sur la disposition d'éléments de déplacement.
- Dispositif selon la revendication 1, caractérisé en ce que la disposition d'éléments de déplacement possède au moins un piston en forme de tasse (40 ; 140-1 à 140-3) qui s'appuie avec son fond (42) contre une surface de stabilisation (44) associée de l'anneau excentrique (14 ; 114) et qui est en permanence contraint par une pression venant de l'intérieur.
- Dispositif selon la revendication 2, caractérisé en ce qu'une force de pression de ressort (49) est branchée en parallèle par rapport à la stabilisation de pression.
- Dispositif selon la revendication 3, caractérisé en ce qu'un ressort à pression (49 ; 149) est reçu dans le piston en forme de tasse s'appuyant sur une vis de fermeture (50) dans laquelle est formée une ouverture (47) pour conduire sous une pression de précontrainte (P2) le liquide hydraulique présent.
- Dispositif selon une des revendications 1 à 4, caractérisé en ce qu'au moins trois éléments de déplacement (140-1 à 140-3) hydrauliques sont prévus qui coopèrent avec des surfaces de stabilisation (144-1 à 144-3) formées sur l'anneau excentrique (114) de préférence à une distance d'angle égale l'une par rapport à l'autre (Fig. 2).
- Dispositif selon la revendication 1, caractérisé en ce que la disposition hydraulique des éléments de déplacement présente plusieurs éléments (254 ; 354 ; 454 ; 554) en forme d'assiette associés à différents pistons (222 ; 322 ; 422 ; 522) disposés l'un par rapport à l'autre à une distance d'angle ; lesdits éléments étant liés fixe en déplacement avec le tronçon situé radialement vers l'intérieur du piston (222 ; 322 ; 422 ; 522) associé, lesquels éléments sont situés dans une chaíne de force de pression par rapport à la surface d'appui (216 ; 316 ; 416 ; 516) de l'anneau excentrique (214 ; 314 ; 414 ; 514) et limitant chaque fois en coopération avec un insert de cylindre (226 ; 326 ; 426 ; 526) et avec une douille d'appui (258 ; 358 ; 458 ; 558) , susceptible d'être déplacé ensemble avec l'élément en forme d'assiette, une chambre de fluide de pression (264 ; 364 ; 464 ; 564) , à partir de laquelle on peut déplacer de façon étranglée le fluide de pression se trouvant à l'intérieur.
- Dispositif selon la revendication 6, caractérisé en ce que la douille d'appui (258 ; 358 ; 458 ; 558) a un passage radial (260 ; 360 ; 460 ; 560) grâce auquel il est possible de remplir la chambre de fluide de pression (264 ; 364 ; 464 ; 564) dans la zone du point mort inférieur du mouvement de piston avec du fluide ambiant.
- Dispositif selon la revendication 6 ou 7, caractérisé en ce que la douille d'appui (258 ; 358 ; 458) est guidée tant en étant ajustée sur la surface externe de l'insert de cylindre (226 ; 326 ; 426).
- Dispositif selon la revendication 8, caractérisé en ce que la douille d'appui (258 ; 358 ; 458) est précontrainte au moyen d'un ressort de vis à pression (235 ; 335 ; 435) en direction de la surface d'appui (216 ; 316 ; 416) de l'anneau excentrique (214 ; 314 ; 414).
- Dispositif selon la revendication 9, caractérisé en ce que la douille d'appui (358) s'appuie de manière axiale sur l'élément en forme de plaque (354) et en ce qu'une disposition de canal d'étranglement est formée dans la zone de contact entre la douille d'appui (358) et l'élément en forme de plaque (354) ( figure 5).
- Dispositif selon la revendication 9, caractérisé en ce que la douille d'appui (258 ; 458) s'appuie axialement sur l'élément en forme de plaque (254 ; 454) et encercle ledit élément au moyen d'un col dans lequel est formé au moins un alésage d'étranglement (270 ; 480) (figures 4 et 6).
- Dispositif selon la revendication 11, caractérisé en ce que la douille d'appui (258 ; 458) encercle un patin sur lequel s'appuie le piston associé (222 ; 428) .
- Dispositif selon la revendication 11 ou 12, caractérisé en ce que l'élément en forme d'assiette (254) possède au moins un passage (268) axial qui permet de mettre à disposition une liaison de fluide étranglée vers une chambre située avant l'alésage d'étrangement (270) (figure 4).
- Dispositif selon la revendication 11 ou 12, caractérisé en ce que l'élément (454) en forme d'assiette repose généralement à plat sur le patin (418) et définit une disposition de canal étranglée (478) en coopération avec la surface frontale (474) de l'insert du cylindre (426) située axialement en face dudit élément ; laquelle disposition de canal étranglée débouche dans l'alésage d'étranglement (480) du col de la douille d'appui (458) lorsque le piston (422) est en position de point mort supérieur.
- Dispositif selon une des revendications 11 à 14, caractérisé en ce que la douille d'appui (458) est précontrainte de façon élastique au moyen du patin (418) (goujons 484).
- Dispositif selon la revendication 6 ou 7, caractérisé en ce que la douille d'appui (558) est conduite tout en étant ajustée au moyen d'un alésage (515) coaxial par rapport au piston (522) dans le boítier de la pompe (510).
- Dispositif selon la revendication 16, caractérisé en ce que le déplacement étranglé du fluide hors de la chambre de fluide à pression (564) est effectué au travers d'un passage radial (588) supplémentaire formé dans la douille d'appui (558).
- Dispositif selon la revendication 17, caractérisé en ce que le déplacement du fluide hors de la chambre de fluide à pression se produit dans la zone du point mort supérieur au moyen d'une fente (586) radiale entre l'assiette entraíneur (554) pour le piston (522) et la douille d'appui (558).
- Dispositif selon une des revendications 16 à 18, caractérisé en ce que la douille d'appui (558) saisit par l'arrière un patin (518) sur lequel s'appuie le piston (522) associé ; lequel piston forme l'élément en forme d'assiette; l'assiette entraíneur (554) formant la contre-surface pour un ressort de vis à pression (535) s'appuyant sur l'insert de cylindre (526).
- Dispositif selon une des revendications 1 à 19, caractérisé en ce qu'il est alimenté par une pompe à basse pression .
- Dispositif selon une des revendications 1 à 20, caractérisé en ce que l'application active de pression est optimisée en énergie en fonction de la bande de la vitesse de rotation de la pompe eu égard à la faible perte de puissance .
- Dispositif selon une des revendications 1 à 21, caractérisé en ce que la pompe à haute pression est formée d'une pompe à jet radiale.
- Dispositif selon une des revendications 1 à 22, caractérisé en ce que la disposition de l'élément d'étranglement (654 , 754 , 854 , 954) est une partie composante d'une prépompe pour alimenter la chambre de pompe (630 ; 830 ; 930).
- Utilisation du dispositif selon une des revendications 1 à 23 dans un système d'alimentation à fluide à pression, notamment dans un système à injection de carburant avec lequel la pression (P1) dans une conduite à haute pression commune, notamment dans un rail-common (34), est réglable selon le besoin en fluide de pression en fonction des paramètres de service du système ; à laquelle conduite sont connectés différents dispositifs utilisateurs , notamment des buses d'injection, à laquelle pompe à haute pression est associé un dispositif limitant le débit de fluide pour adapter la pression (P1) dans la conduite à haute pression commune (34) au besoin en fluide de pression des dispositifs utilisateurs ; ledit dispositif ayant un élément de réglage qui peut être modifié grâce à un signal de réglage représentant la situation d'alimentation en fluide de pression dans la conduite commune à haute pression (34).
- Dispositif selon la revendication 8 ou 9, qui présente en plus :un canal de pression (637, 837) formé dans l'insert de cylindre (626, 826) et/ou sur le boítier de pompe (610, 810) contigu à l'insert de cylindre (626) ;un canal d'aspiration (632, 832) prévu sur le boítier de la pompe entre l'anneau excentrique (614, 814) et le canal de pression (637, 837) ;un dispositif de commande à fente (638, 659, 838, 861) pour permettre au courant de fluide de circuler entre le canal d'aspiration (632, 832) et le canal de pression (637, 837) dans la zone du point mort inférieur du mouvement de piston, et pour interrompre la circulation du courant de fluide dans la zone du point mort supérieur du mouvement du piston ;et une valve anti-retour dans le canal de pression (637, 837).
- Dispositif selon la revendication 25 où le dispositif de commande à fente comprend une douille étanche (638) située sur une des extrémités (659) de la douille d'appui (658), laquelle douille étanche se trouve en amont du canal de pression (637) et possède au moins une fente (239).
- Dispositif selon la revendication 25 où le dispositif de commande à fente comprend une douille étanche (838) qui se trouve sur le boítier de la pompe (810) en amont du canal de pression (837) et qui repose sur une extrémité de douille d'appui (859) de la douille d'appui (858) qui possède au moins une fente (861).
- Dispositif selon une des revendications 25 à 27 avec un joint de séparation de boítier du côté du flasque où la valve anti-retour est formée par des languettes en tôle d'un joint plat en tôle sur l'alésage de sortie du canal de pression (637, 837).
- Dispositif selon une des revendications 25 à 27 sans un joint de séparation de boítier du côté du flasque où la valve anti-retour est intégrée dans une vis de serrage de l'anneau d'appui d'un insert de chambre à pression.
- Dispositif selon la revendication 16, caractérisé en ce que la douille d'appui (258; 358; 456; 558) a un passage radial (260; 360; 460; 560) qui permet de remplir la chambre de fluide à pression (264; 364; 464; 564) avec du fluide en provenance de l'environnement dans la zone du point mort inférieur du mouvement du piston où le dispositif comprend ce qui:un canal de pression (737) formé dans l'insert de cylindre (726) et/ou sur le boítier de pompe (610) contigu à l'insert de cylindre (726) ;un tronçon d'aspiration (723) prévue sur le boítier de la pompe (710) entre l'anneau excentrique (714) et le canal de pression (737),un dispositif de commande à fente (760, 790) pour permettre la circulation du courant de fluide entre le tronçon d'aspiration (732) et le canal de pression (737) dans la zone du point mort inférieur du mouvement de piston, et pour interrompre la circulation du courant de fluide dans la zone du point mort supérieur du mouvement du piston ;et une valve anti-retour dans le canal de pression (737).
- Dispositif selon la revendication 30, caractérisé en ce que la douille d'appui (758) saisit par l'arrière un patin (718) sur lequel s'appuie le piston associé (722) et qui forme l'élément en forme d'assiette ; l'assiette entraíneur (754) formant la contre-surface pour un ressort de vis à pression (735) s'appuyant sur l'insert de cylindre (726).
- Dispositif selon la revendication 30 ou 31 où le dispositif de commande à fente présente le passage radial (760) et le bord de commande (790).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19626399 | 1996-07-01 | ||
DE19626399 | 1996-07-01 | ||
DE19642735 | 1996-10-16 | ||
DE19642735 | 1996-10-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0816675A2 EP0816675A2 (fr) | 1998-01-07 |
EP0816675A3 EP0816675A3 (fr) | 1998-09-09 |
EP0816675B1 true EP0816675B1 (fr) | 2002-04-10 |
Family
ID=26027088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97110504A Expired - Lifetime EP0816675B1 (fr) | 1996-07-01 | 1997-06-26 | Dispositif pour la stabilisation de l'anneau excentrique d'une pompe à pistons radiaux |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0816675B1 (fr) |
DE (2) | DE19727249A1 (fr) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19735371B4 (de) * | 1997-08-14 | 2004-02-19 | Siemens Ag | Kraftstoffpumpe mit einem Pumpenzylinder |
DE19801398A1 (de) * | 1998-01-16 | 1999-07-22 | Bosch Gmbh Robert | Radialkolbenpumpe zur Kraftstoffhochdruckversorgung |
DE19801353A1 (de) * | 1998-01-16 | 1999-07-22 | Bosch Gmbh Robert | Radialkolbenpumpe zur Kraftstoffhochdruckversorgung |
DE19802475A1 (de) * | 1998-01-23 | 1999-07-29 | Bosch Gmbh Robert | Radialkolbenpumpe zur Kraftstoffhochdruckerzeugung |
DE19802476A1 (de) * | 1998-01-23 | 1999-07-29 | Bosch Gmbh Robert | Pumpenanordnung zur Kraftstoffhochdruckversorgung |
DE19841642C2 (de) * | 1998-09-11 | 2002-07-18 | Bosch Gmbh Robert | Radialkolbenpumpe |
DE19844326B4 (de) * | 1998-09-28 | 2006-01-05 | Robert Bosch Gmbh | Radialkolbenpumpe |
DE19902324A1 (de) * | 1999-01-21 | 2000-07-27 | Mannesmann Rexroth Ag | Hochdruckpumpe |
DE19906625B4 (de) * | 1999-02-17 | 2012-03-01 | Continental Automotive Gmbh | Fördereinheit |
DE19909329A1 (de) * | 1999-03-03 | 2000-09-07 | Mannesmann Rexroth Ag | Kraftstoffeinspritzsystem |
AT410246B (de) * | 1999-06-25 | 2003-03-25 | Hoerbiger Hydraulik | Radialkolbenpumpe |
DE19949166A1 (de) | 1999-10-12 | 2001-04-26 | Siemens Ag | Vorrichtung zur Stabilisierung des Exzenterrings einer Radialkolbenpumpe |
DE19956092A1 (de) * | 1999-11-22 | 2000-10-26 | Siemens Ag | Kolbenpumpe, insbesondere Hochdruck-Radialkolbenpumpe |
DE10024450A1 (de) * | 2000-05-18 | 2001-11-22 | Zahnradfabrik Friedrichshafen | Abdichtung einer hydraulischen Steuerung |
DE10200792A1 (de) * | 2002-01-11 | 2003-07-31 | Bosch Gmbh Robert | Kraftstoffpumpe für eine Brennkraftmaschine |
DE10300144B3 (de) * | 2003-01-07 | 2004-05-19 | Siemens Ag | Radialkolbenpumpe |
DE602005015933D1 (de) * | 2005-03-24 | 2009-09-24 | Delphi Tech Inc | Kraftstoffpumpe |
DE102006042765A1 (de) * | 2006-09-12 | 2008-03-27 | Siemens Ag | Niederhalter für Hochdruckkolben, Anordnung und Verwendung |
WO2012083914A2 (fr) | 2010-12-23 | 2012-06-28 | Schaeffler Technologies AG & Co. KG | Pompe à piston radiaux |
DE102013212491A1 (de) | 2013-06-27 | 2014-12-31 | Schaeffler Technologies Gmbh & Co. Kg | Regelbare Kühlmittelpumpe einer Brennkraftmaschine |
CN113669320B (zh) * | 2021-08-12 | 2023-05-26 | 华侨大学 | 端面控制的液控单向阀配流径向柱塞液压装置及工作方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB491336A (en) * | 1937-05-13 | 1938-08-31 | Charles Hyland | Improvements in or relating to reciprocating pumps |
US2650543A (en) * | 1944-10-28 | 1953-09-01 | Installation Et D App Soc D | High-pressure radial piston pump for liquids |
DE2848207A1 (de) * | 1978-11-07 | 1980-05-14 | Bosch Gmbh Robert | Kolbenpumpe |
EP0204136B1 (fr) * | 1983-01-17 | 1992-09-30 | Karl Eickmann | Maschine à piston radial à haute pression, avec des moyens pour retenir le patin à sa place |
DE3510634A1 (de) * | 1984-04-06 | 1985-10-17 | Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen | Radialkolbenpumpe |
GB2160596B (en) * | 1984-06-23 | 1987-04-29 | Pitcraft Summit Ltd | Pump |
US4915595A (en) * | 1988-06-15 | 1990-04-10 | Deere & Company | Valve/piston cartridge and rotor bearing pre-load for a radial piston pump |
DE4126640B4 (de) * | 1991-08-12 | 2005-06-16 | Robert Bosch Gmbh | Pumpenanordnung mit einer Vorförderpumpe und einer Radialkolbenpumpe |
DE19612412B4 (de) * | 1996-03-28 | 2006-07-06 | Siemens Ag | Regelung für ein Druckfluid-Versorgungssystem, insbesondere für den Hochdruck in einem Kraftstoff-Einspritzsystem |
DE19640596A1 (de) * | 1996-10-01 | 1998-04-02 | Rexroth Mannesmann Gmbh | Radialkolbenpumpe |
-
1997
- 1997-06-26 EP EP97110504A patent/EP0816675B1/fr not_active Expired - Lifetime
- 1997-06-26 DE DE19727249A patent/DE19727249A1/de not_active Withdrawn
- 1997-06-26 DE DE59706937T patent/DE59706937D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE59706937D1 (de) | 2002-05-16 |
EP0816675A2 (fr) | 1998-01-07 |
DE19727249A1 (de) | 1998-01-08 |
EP0816675A3 (fr) | 1998-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0816675B1 (fr) | Dispositif pour la stabilisation de l'anneau excentrique d'une pompe à pistons radiaux | |
DE69013283T2 (de) | Hochdruck-Kraftstoffeinspritzeinheit mit Steuerung des Druckes der Kammer für den Spritzzeitpunkt. | |
EP0795083B1 (fr) | Pompe d'injection de carburant | |
EP1314873B1 (fr) | Pompe à injection distributrice mécanique à accélération de démarrage à froid | |
EP0509077B1 (fr) | Pompe a pistons, notamment pompe a pistons radiaux | |
EP0502315A1 (fr) | Pompe d'injection de combustible pour moteurs à combustion interne | |
DE10254711B3 (de) | Druckventil mit zusätzlicher Spritzverstellerfunktion | |
DE4315776A1 (de) | Kraftstoffeinspritzpumpe | |
WO1997010430A1 (fr) | Pompe d'injection de carburant | |
DE2937222A1 (de) | Kraftstoff-einspritzpumpvorrichtung | |
EP0881380A1 (fr) | Pompe d'alimentation haute-pression | |
DE60205864T2 (de) | Spritzverstelleinrichtung | |
EP0150286A1 (fr) | Pompe d'injection de carburant | |
DE3344302A1 (de) | Kraftstoffeinspritzpumpe mit drehverteiler | |
WO1998014695A1 (fr) | Pompe d'injection de carburant comportant un piston regulateur d'injection destine a regler le debut de l'injection | |
DE2918867A1 (de) | Kraftstoffeinspritzpumpe fuer brennkraftmaschinen | |
EP0323591A2 (fr) | Dispositif de réglage de l'injection à 2 points | |
DE3215046C2 (de) | Brennstoffeinspritzpumpe für Brennkraftmaschinen | |
DE2630385A1 (de) | Kraftstoffeinspritzvorrichtung | |
DE3014028A1 (de) | Kraftstoffeinspritzpumpe fuer brennkraftmaschinen | |
DE3215049C2 (de) | Brennstoffeinspritzsystem an einer Brennkraftmaschine | |
DE3215048C2 (de) | Brennstoffeinspritzpumpe für Brennkraftmaschinen | |
WO1998045592A1 (fr) | Pompe d'injection de carburant pour moteur a combustion interne | |
DE19523578C2 (de) | Rotationsverteiler-Kraftstoffeinspritzpumpe | |
WO2000026520A1 (fr) | Pompe d'injection de carburant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MANNESMANN REXROTH AG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
RHK1 | Main classification (correction) |
Ipc: F04B 1/04 |
|
17P | Request for examination filed |
Effective date: 19981123 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20001020 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020410 |
|
REF | Corresponds to: |
Ref document number: 59706937 Country of ref document: DE Date of ref document: 20020516 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030228 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
26N | No opposition filed |
Effective date: 20030113 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080620 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090625 Year of fee payment: 13 Ref country code: FR Payment date: 20090615 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090618 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100626 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100626 |