EP0813613B1 - Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen - Google Patents

Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen Download PDF

Info

Publication number
EP0813613B1
EP0813613B1 EP96906800A EP96906800A EP0813613B1 EP 0813613 B1 EP0813613 B1 EP 0813613B1 EP 96906800 A EP96906800 A EP 96906800A EP 96906800 A EP96906800 A EP 96906800A EP 0813613 B1 EP0813613 B1 EP 0813613B1
Authority
EP
European Patent Office
Prior art keywords
wire
steel
equal
hrc
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96906800A
Other languages
English (en)
French (fr)
Other versions
EP0813613A1 (de
Inventor
José MALLEN HERRERO
François Ropital
André Sugier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Technip Energies France SAS
Original Assignee
Coflexip SA
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coflexip SA, IFP Energies Nouvelles IFPEN filed Critical Coflexip SA
Publication of EP0813613A1 publication Critical patent/EP0813613A1/de
Application granted granted Critical
Publication of EP0813613B1 publication Critical patent/EP0813613B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Definitions

  • the present invention relates to elongated elements of great length, such as steel wires to reinforce flexible pipes intended for the transport of effluent under pressure.
  • the invention relates to a method of manufacturing these reinforcing threads, the wires obtained by the process and the flexible pipes which include such wires reinforcement in their structure.
  • sealing is provided by one or more polymer sheaths, mechanical resistance to internal and external pressure and to external mechanical stress, is produced by one or more layers of armor constituted by steel wires or profiles having a specific profile.
  • the flexible tube comprises at least one of the following armor plies: a carcass of resistance to external pressure in wires or profiles placed at an angle close to 90 ° relative to the axis. a sheet of resistance to internal pressure (called vault) laid at an angle greater than 55 °, the elongated elements of the carcass and the vault preferably being staplable wires, and at least one layer of armor of tensile strength installed at an angle of less than 55 °.
  • a carcass of resistance to external pressure in wires or profiles placed at an angle close to 90 ° relative to the axis.
  • a sheet of resistance to internal pressure (called vault) laid at an angle greater than 55 °
  • the elongated elements of the carcass and the vault preferably being staplable wires
  • at least one layer of armor of tensile strength installed at an angle of less than 55 °.
  • the vault and the tensile armor are replaced by two layers of symmetrical armor reinforced at an angle of about 55 °, or by two pairs of layers reinforced at 55 °, or by a set of at least at least two plies, the winding angle of at least one ply being less than 55 ° and the winding angle of at least one other ply being greater than 55 °.
  • the steel of the wires making up the armor must be chosen in such a way that these wires, given their cross-section, provide the mechanical resistance necessary in service, at the same time as they resist corrosion, in particular in certain cases in the presence of H 2 S.
  • These steel wires can have profiles, that is to say straight sections, various: substantially flat or flat, U-shaped, T-shaped, Z-shaped, with or without hooking means on a neighboring, or circular, wire.
  • NACE standards have been provided to assess the suitability of a steel structural element to be used in the presence of H 2 S.
  • the steels must undergo a test on a representative sample, under stress in H 2 S medium with a pH 2.8 to 3.4 (NACE Test Method TM 0177 relating to stress cracking effects, commonly known as "Sulfide Stress Corrosion Cracking" or SSCC), to be considered as usable in the manufacture of metallic structures which must resist the effects of corrosion under stress in the presence of H 2 S.
  • HIC hydrogen-induced cracking effects
  • the test procedure recommended by the above standard consists in exposing samples, without voltage, in a seawater solution saturated with H 2 S, at ambient temperature and pressure, at a pH between 4, 8 and 5.4. The procedure plans to then carry out metallographic examinations to quantify the cracking of the samples, or to note the absence of cracking.
  • An additional criterion for evaluating the damage to the samples may be the determination of the mechanical characteristics after the HIC test. This criterion does not appear in the NACE TM 0284 standard.
  • the armouring wires of the hoses are produced with mild or semi-hard carbon-manganese steels (0.15 to 0.50% carbon) having a ferrite-perlite structure, to which, after cold forming of the wire rod, an appropriate annealing heat treatment is applied to bring the hardness to the accepted value, if necessary.
  • the NACE 0175 standard defines that such carbon-manganese steels are compatible with an H 2 S medium if they have a hardness less than or equal to 22 HRC. It has thus been verified that armor wires as described above, made of carbon-manganese steel and having a ferrite-pearlite structure, can be produced by cold forming followed by annealing so as to satisfy the traditional NACE criteria.
  • the steels and the production methods used to make the armouring wires for the hoses must be such that the forming wire can be produced in very large continuous lengths, of the order of several hundred meters or several kilometers.
  • the wire thus manufactured is wound on spools for its subsequent use to produce the armor plies of the hoses.
  • a heat treatment is to be provided after welding. But it is important, in order not to excessively overload the manufacturing costs, that this heat treatment after welding makes it possible to achieve the goal set in a sufficiently short time, a few minutes if possible. preferably less than 30 minutes.
  • the object of the present invention is to describe a process for obtaining an elongated element of great length intended for the manufacture of flexible tube, the elongated element having optimized mechanical characteristics as well as, in an application according to the invention , good resistance to H 2 S.
  • the amount of ferrite will preferably be low, in particular less or equal to 10%, and advantageously less than or equal to 1%.
  • the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may have at most 0.4 Si.
  • the forming wire can be produced by cold forming, in particular by rolling or drawing from a wire rod.
  • the wire rod could be hot rolled with controlled cooling, for example of the STELMOR type, so as to drive at values of Rm lower than 850 MPa.
  • Rm the number of wire rods having a Rm value greater than 850 MPa.
  • the shaped wire can also be obtained directly by hot rolling.
  • the tensile strength Rm of the wire will preferably also be less than 850 MPa, either after rolling or after a softening annealing in order to facilitate the operations of handling the elongated element, before or during the operations of quenching.
  • the process thus normally includes a preliminary forming step to hot, either from a wire rod subsequently transformed into a form wire by forming cold, either directly from the form wire.
  • the wire thus formed hot has a predominantly ferritic-pearlitic structure, but may include hard areas, such as martensite.
  • the steel Preferably. before any operation subsequent cold forming and / or quenching, the steel must have a limit of rupture Rm less than 850 MPa, this property being obtainable. is directly after hot forming, either through an annealing-softening treatment.
  • the quenching operation can be carried out continuously in the process.
  • the process may include, in addition to said quenching, a treatment thermal expansion.
  • the HRC hardness limitation must be higher or equal to 32, and preferably greater than or equal to 35, must be respected after the relaxation treatment.
  • the relaxation treatment can be carried out in a bundle in an oven.
  • the quenching and the said stress relief treatment can be carried out on parade, preferably online, which allows the production of very long wires necessary for the production of flexible armor plies.
  • Such a steel, containing a limited content of Cr and / or Mo can possibly not contain any other alloying element or dispersoid.
  • the steel contains a little dispersoid, such as vanadium, titanium or niobium, in particular for low carbon steels, the carbon content being equal to or greater than 0.05%.
  • the vanadium content can be limited to a low value so as to avoid too long annealing time after welding, preferably the vanadium content will be less than or equal to 0.10%.
  • the carbon content of the steel can be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard hard or semi-hard carbon-manganese steel, classic in wire drawing or cables. without the addition of an alloying element such as Cr or Mo.
  • the steel may possibly contain a small amount of dispersoid, such as can be found commonly found in commercial steels. Such steels can be included in the range of steel FM40 to FM80. according to AFNOR standard.
  • the quenching heat treatment may include passage through an oven austenitization at a temperature above the AC3 point of the steel grade of the wire. then in a zone of quenching in a fluid of drasticity adapted at the same time to the shade steel and the size of the wires, the temperature and the residence time being adapted according to the grade to obtain a grain size between the indices 5 and 12, and advantageously between indices 8 and 11, according to standard NF 04102.
  • the structure obtained after quenching can be predominantly martensitic with a percentage between 0 and 50% lower bainite or predominantly lower bainite with a percentage between 0 and 50% martensite.
  • the bainite is in the lower bainite state and not higher bainite.
  • the structure can contain only a small amount of ferrite.
  • the production process can end with the quenching operation. of preference followed by a relaxation treatment.
  • the wire thus obtained may not be able to withstand H 2 S under certain operating conditions, but it can be very advantageously used as armouring wire for flexible conduits thanks to its excellent optimized mechanical properties, in particular by the combination of a high mechanical strength and a ductility higher than that which can be obtained with known methods.
  • the rupture limit Rm can reach 1000 to 1600 MPa, equal to or greater than that of the most resistant armor wires currently known, and the elongation at break can be greater than 5%, possibly greater than 10% and possibly exceeding 15% in some cases. Whereas for known steel wires having a level of resistance comparable to the work hardened state, these have an elongation at break not exceeding 5%.
  • the method may include, after the quenching heat treatment, optionally supplemented by an expansion treatment, a final heat treatment of tempering under determined conditions to obtain a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC.
  • the conditions of the final tempering treatment can be adapted so as to obtain a hardness less than or equal to 28 HRC, compatible with operating conditions which can provide an environment with a pH close to 3.
  • a steel according to the present invention does not exhibit blistering or crack in HIC tests, and furthermore does not show cracking when subjected to tests according to standard NACE 0177 (SSCC) with a tensile stress at less than 60% of the elastic limit and up to approximately 90% of this last.
  • SSCC standard NACE 0177
  • the final income can be made at the parade, online or separate.
  • the final income can be made in a bundle in an oven.
  • the tempering temperature can be at most equal to a lower temperature from about 10 ° C to 30 ° C relative to the AC temperature at the start of austenitization of steel, in order to avoid excessive coalescence of carbide which could lead to a decrease in characteristics.
  • the wire is wound on a spool so that it can be subsequently mounted on a spiral or armeuse for the manufacture of armor of the flexible driving.
  • the content of alloying elements while being low, must be sufficient to obtain after quenching a predominantly martensitic or bainitic structure with little ferrite (we can thus, in the most favorable cases, obtain a structure containing nearly 100% martensite and commonly, at least 90% martensite and bainite).
  • This process reduces manufacturing costs. It also allows to obtain wires with the shape of larger sections than cold rolling.
  • the invention thus makes it possible to produce a shaped wire having after quenching a relatively homogeneous martensitic or bainitic structure throughout the thickness of the wire, despite the increase in the thickness of the wire.
  • We can thus obtain, in the most favorable cases, up to approximately 100% martensite. content total in martensite and bainite being commonly, at least equal to 90%.
  • cold forming comprising at least two stages successive cold processing, an intermediate processing operation thermal is carried out between the first and the last cold transformation step.
  • the intermediate heat treatment operation can be carried out between a preliminary drawing operation and the beginning of rolling. or between two passes successive lamination.
  • Such an intermediate intermediate heat treatment can be carried out various ways known in metallurgy, so as to lower the mechanical strength, preferably below 850 MPa, and to recover the ductility allowing the cold processing.
  • the invention also relates to a wire of constant cross-section shape and very long, suitable for use as the armor wire of a flexible pipe according to two variants defined in claims 20 and 21.
  • Tempered bainitic martensitic type steel the tempering may be more or less pronounced, especially such as a trigger income, so that the thread obtained has the ductility necessary for its subsequent use as a wire armor, or as a quality income making the wire suitable for use in the presence of H2S.
  • the bainitic martensitic structure is predominantly martensitic with a percentage between 0 and 50% of bainite inferior or predominantly lower bainite with a percentage between 0 and 50% of martensite.
  • the structure may contain only a small amount of ferrite.
  • the wire can have a hardness greater than 20 HRC.
  • the size of the austenitic grain lies between indices 5 and 12, and advantageously between indices 8 and 11. according to standard NF 04102.
  • the form wire can have a section having at least one of the forms following general: U, T, Z, rectangular or round.
  • the section of the form wire can have a width L and a thickness e. and to have the following proportions: L / e greater than 1 and less than 7.
  • the thickness may vary between 1 mm and 20 mm, up to 30 mm.
  • the profile of the form wire may include means for hooking with a wire adjacent.
  • the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may contain at most 0.4% of Si.
  • the steel may for example contain from 0.12% to 0.35% of C.
  • the carbon content steel may be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard carbon-manganese hard or semi-hard steel, classic in wire or cable drawing, without adding any alloying element such as Cr or Mo, with possibly a small amount of dispersoid.
  • Such steels can be understood in the FM40 to FM80 steel range, according to the AFNOR standard.
  • the shaped wire according to the invention can have an HRC hardness greater than or equal to 32, preferably greater than or equal to 35.
  • the wire thus obtained may not be able to resist H 2 S under certain operating conditions, but it can be used very advantageously as armouring wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of high mechanical strength and ductility greater than that which can be obtained with known methods.
  • the breaking limit Rm can reach 1000 to 1600 MPa., Preferably greater than or equal to 1200 MPa.
  • Such a wire can advantageously be used to make the armor of hoses intended for the transport of weakly corrosive crude oil ("sweet crude”), degassed oil (“dead oil”) or water.
  • the process for producing such a wire can end in a quenching operation, preferably followed by an expansion treatment.
  • the shaped wire according to the invention can have an HRC hardness greater than or equal to 20, preferably less than or equal to 35.
  • the wire thus obtained can have properties of resistance to H 2 S under the operating conditions described above, in particular following HIC tests in very acidic medium (pH close to 2.8 or 3).
  • the mechanical resistance Rm can be of the order of 700 to 900 MPa under a pH close to 3 and can reach at least 1100 MPa with a higher pH.
  • the stress applied in the SSCC tests according to NACE, with a pH close to 2.8 can be at least 400 MPa and can reach 600 MPa.
  • the allowable stresses may be higher, up to approximately 90% of the Elastic limit.
  • the method according to the invention makes it possible to form steel wires of the type tempered martensite-bainite whose structure has carbide nodules extremely fine in a state of very great dispersion in a ferrite matrix issue by income from a martensite-bainite structure. It is interesting to compare this steel to other steels already offered or used to make armouring wires intended for the same use, such as steels obtained by spheroidization treatment from of a hardened ferrite-perlite structure, these steels also comprising elements of carbide in a ferritic matrix.
  • the spheroidized carbide elements of these steels are considerably less fine and less dispersed than in the case of steel according to invention, which clearly identifies the difference between the two types of material.
  • the superior properties of form wire according to the invention in terms of mechanical resistance and compatibility with H2S, by comparison with the wires of the prior art, in particular in spheroidized steel, can have a relationship to having a much finer nodular structure and scattered.
  • the invention has the particular advantage that from the same batches of wire rod and by carrying out the same quenching operations. optionally expansion, one can produce, depending on the needs, either steel wires which are very mechanically resistant but do not sometimes have the required properties of resistance to H 2 S, or wires which are resistant to H 2 S even in the most severe conditions.
  • the production range ends with the quenching operation. preferably followed by relaxation.
  • the manufacturing range is continued by an additional final income stage.
  • the invention can be applied to a flexible tube for transporting an effluent comprising H 2 S, the tube possibly comprising at least one layer of reinforcements of reinforcement under pressure and / or under tension comprising wires form according to the invention.
  • 15 mm diameter circular section wires were produced from a chromium-molybdenum type steel conforming to grade 30CD4 of the AFNOR standard (equivalent to the ASTM 4130 standard in correspondence with the number UNS G41300).
  • the quenching operation was carried out at the parade at the speed of 1.8 m / minute with high frequency induction heating to 980 ° C-1000 ° C, then oil quenching.
  • the expansion treatment was carried out in the oven for hours at 180 ° C.
  • the grain size corresponds to an index 8 of standard NF 04.102.
  • post-weld tempering temperatures should be higher than that of metal tempering and below the start temperature austenitization AC1, preferably 20 to 30 ° C lower than AC1.
  • a wire was made having a T section (height 14 mm, width 25 mm). After a process of quenching in the procession and a treatment of relaxation, the wire has a hardness 40 HRC.
  • the tempering was carried out at a speed of 15 m / minute by medium frequency induction heating at different powers leading to the following mechanical characteristics as a function of the temperature measured at the output of the heating coil: T self output (° C) 680 700 710 HRC hardness 29 28 26
  • the grain size corresponds to an index 8 of standard NF 04.102.
  • Tempering in the oven for about 4 hours was carried out at temperatures 510 ° C, 525 ° C and 540 ° C to obtain the hardnesses of 26, 24 and 22 HRC.
  • the SSCC test is satisfied according to the hardness (22 to 26 HRC) under a constraint between 400 and 450 MPa.
  • the grain size corresponds to an index 11 of standard NF 04.102.
  • SSCC type stress corrosion tests according to the standard NACE TM 0177 could reach a duration of 720 hours without the appearance of a break nor crack.
  • the stress reached 90% of the elastic limit, i.e. 652 MPa, the pH being 3.5.
  • the pH was very low 2.7, the applied stress being 600 MPa, or 83% of the elastic limit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Ropes Or Cables (AREA)
  • Wire Processing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Fencing (AREA)
  • Electric Cable Installation (AREA)

Claims (28)

  1. Verfahren zur Herstellung eines Stahldrahtes, der sich als Bewehrungsdraht eines beim Bohren verwendeten Schlauchs benützen läßt, die folgenden Schritte umfassend:
    man stellt einen Formdraht großer Länge durch Walzen oder Ziehen auf die Endabmessungen ausgehend von einem Stahl her, der im wesentlichen die folgenden Elemente umfaßt:
    von 0,05 % bis 0,8 % an C,
    von 0,4 % bis 1,5 % an Mn,
    von 0 bis 2,5 % an Cr,
    von 0,1 bis 0,6 % an Si,
    von 0 bis 1 % an Mo,
    höchstens 0,50 % an Ni,
    höchstens 0,02 % an S und P,
    wobei man thermische Behandlungen durchführt und der Draht eine Reißgrenze Rm hat, die 1600 MPa nach den thermischen Behandlungen nicht überschreitet, dadurch gekennzeichnet, daß man eine erste thermische Behandlung durchführt, die wenigstens einen Vorgang der Abschreckung des Formdrahtes, gegebenenfalls gefolgt von einer thermischen Entspannungsbehandlung unter bestimmten Bedingungen umfaßt, um eine Härte HRC größer oder gleich 32 und eine vorherrschend martensitisch-bainitische Struktur des Stahls dieses Drahtes zu erhalten, und man gegebenenfalls anschließend an die erste thermische Behandlung eine thermische Vergütungsbehandlung durchführt.
  2. Verfahren nach Anspruch 1, wobei die Härte nach dieser ersten thermischen Behandlung größer oder gleich 35 HRC ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Formdraht durch Kaltumformung eines Walzdrahtes erhalten wird und der Walzdraht thermisch hergestellt und/oder behandelt wird, derart, daß ein Wert von Rm kleiner als etwa 850 MPa erhalten wird.
  4. Verfahren nach einem der Ansprüche 1 und 2, wobei der Formdraht direkt durch Warmwalzen, gegebenenfalls gefolgt von einem Weichglühvorgang derart erhalten wird, daß ein Wert von Rm dieses Formdrahts kleiner etwa 850 MPa erhalten wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Abschreckvorgang kontinuierlich beim Ziehen durchgeführt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die erste thermische Behandlung eine Entspannungsbehandlung als Ergänzung zu dieser Abschreckbehandlung umfaßt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Entspannungsbehandlung im Bund in einem Ofen durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Abschreckung und diese Entspannungbehandlung beim Ziehen durchgeführt werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Stahl umfaßt:
    höchstens 0,45 % C und wenigstens eines der beiden folgenden Elemente:
    zwischen 0,1 % und 2,5 % Cr
    zwischen 0,1 und 1 % Mo.
  10. Verfahren nach einem der Ansprüche 1 bis 8, wobei dieser Stahl umfaßt:
    zwischen 0,40 und 0,8 % an C
    keine brauchbare Menge an Cr und Mo,
    gegebenenfalls Dispersoide in geringer Menge.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abschreckung den Durchgang in einem Austenitisierungsofen bei einer Temperatur größer als der AC3-Punkt des Stahls und dann den Durchgang in einer Abschreckzone mit einem Abschreckfluid, welches für die Stahlgüte und die Abmessung der Drähte eingerichtet ist umfaßt.
  12. Verfahren nach einem der Ansprüche 6 bis 11, wobei die Temperaturen dieser Entspannungbehandlung sind:
    zwischen 300 und 550°C bei der Behandlung während des Ziehens oder des Durchlaufs,
    zwischen 150 und 300°C bei der Behandlung im Bund in einem Ofen.
  13. Verfahren nach einem der vorhergehenden Ansprüche, wobei es umfaßt nach einer ersten thermischen Behandlung eine thermisch abschließende Vergütungsbehandlung unter bestimmten Bedingungen, um eine Härte größer oder gleich 20 HRC und kleiner oder gleich 35 HRC zu erhalten.
  14. Verfahren nach Anspruch 13, derart, daß die Härte kleiner oder gleich 28 HRC ist.
  15. Verfahren nach einem der Ansprüche 13 oder 14, wobei die Endvergütung beim Ziehen vorgenommen wird.
  16. Verfahren nach Anspruch 13 bis 14, wobei die Endvergütung im Bund in einem Ofen vorgenommen wird.
  17. Verfahren nach einem der Ansprüche 13 bis 16, wobei die Temperatur dieser Endvergütung höchstens gleich einer Temperatur die etwa 10 bis 30° C niedriger als die AC1-Temperatur beim Beginn der Austenitisierung des Stahls liegt.
  18. Verfahren nach einem der Ansprüche 1 bis 17, wobei der Stahl zwischen 0,08 % und 0,8 % an C und an Si weniger oder gleich 0,4 umfaßt.
  19. Verfahren nach Anspruch 18, wobei dieser Stahl zwischen 0,12 % und 0,8 % an C umfaßt.
  20. Formdraht großer Länge und konstanten Querschnitts verwendbar als Bewehrungsdraht eines beim Bohren geeigneten Schlauchs und der eine Reißgrenze, die 1600 MPa nicht überschreitet, aufweist, hergestellt aus einem Stahl der im wesentlichen die folgenden Elemente umfaßt:
    höchstens 0,45 % an C,
    zwischen 0,4 % und 1,5 % an Mn,
    zwischen 0,1 % und 0,6 % an Si,
    höchstens 0,50 % an Ni,
    höchstens 0,02 % an S und P
    sowie Cr und/oder Mo, dadurch gekennzeichnet, daß der Stahl wenigstens eines der folgenden Elemente umfaßt:
    zwischen 0,1 % und 2,5% an Cr,
    zwischen 0,1 % und 1 % Mo,
    daß er eine vorwiegend martensitisch-bainitische Struktur hat, und daß er nach dem Verfahren eines der Ansprüche 1 bis 9 und 11 bis 18 erhalten wird.
  21. Formdraht großer Länge und konstanten Querschnitts verwendbar als Bewehrungsdraht eines beim Bohren geeigneten Schlauchs und der eine Reißgrenze, die 1600 MPa nicht überschreitet, aufweist, hergestellt aus einem Stahl der im wesentlichen die folgenden Elemente umfaßt:
    zwischen 0,40 und 0,8 % an C,
    zwischen 0,4 und 1,5% an Mn,
    zwischen 0,1 und 0,6 % an Si,
    höchstens 0,50 % an Ni,
    höchstens 0,02 % an S und P,
    keine brauchbare Menge an Cr und Mo,
    gegebenenfalls eine geringe Menge an Dispersoiden,
    wobei der Querschnitt des Drahtes eine Breite L und eine Dicke e hat und daß die Abmessungen die folgenden sind: L/e größer 1 und kleiner 7, wobei e kleiner oder gleich 30 mm ist, dadurch gekennzeichnet, daß er eine vorwiegend martensitisch-bainitische Struktur hat und daß er gemäß dem Verfahren eines der Ansprüche 1 bis 8 und 10 bis 17 erhalten wird.
  22. Formdraht nach einem der Ansprüche 20 oder 21, wobei er eine Härte HRC größer oder gleich 20 hat.
  23. Formdraht nach einem der Ansprüche 20 bis 22, wobei er eine Härte größer oder gleich 32 HRC, einen Wert Rm größer 1000 MPa und eine Bruchdehnung größer oder gleich 5 % hat.
  24. Formdraht nach einem der Ansprüche 20 bis 22, wobei er eine Härte größer oder gleich 20 HRC und kleiner oder gleich 35 HRC und ein Rm größer als 700 MPa hat.
  25. Formdraht nach einem der Ansprüche 20 bis 24, wobei das Querschnittsprofil Mittel zur Verhakung mit einem benachbarten Draht hat.
  26. Formdraht nach Anspruch 20, wobei der Stahl zwischen 0,08 % und 0,4 % C und Si kleiner oder gleich 0,4 hat.
  27. Formdraht nach Anspruch 26, wobei der Stahl 0,12 bis 0,35 % an C umfaßt.
  28. Flexibler Schlauch für den Transport eines H2S umfassenden Abstroms, dadurch gekennzeichnet, daß er wenigstens eine Schicht aus druck- und/oder zugbeständigen Verstärkungsbewehrungen umfaßt, welche Formdrähte nach einem der Ansprüche 20 bis 27 aufweisen.
EP96906800A 1995-03-10 1996-03-08 Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen Expired - Lifetime EP0813613B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9503093 1995-03-10
FR9503093A FR2731371B1 (fr) 1995-03-10 1995-03-10 Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
PCT/FR1996/000363 WO1996028575A1 (fr) 1995-03-10 1996-03-08 Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible

Publications (2)

Publication Number Publication Date
EP0813613A1 EP0813613A1 (de) 1997-12-29
EP0813613B1 true EP0813613B1 (de) 1999-09-15

Family

ID=9477109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96906800A Expired - Lifetime EP0813613B1 (de) 1995-03-10 1996-03-08 Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen

Country Status (11)

Country Link
US (1) US5922149A (de)
EP (1) EP0813613B1 (de)
JP (1) JP4327247B2 (de)
AT (1) ATE184657T1 (de)
AU (1) AU715625B2 (de)
BR (1) BR9607231A (de)
DE (1) DE69604279D1 (de)
DK (1) DK0813613T3 (de)
FR (1) FR2731371B1 (de)
NO (1) NO321040B1 (de)
WO (1) WO1996028575A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094652A1 (fr) * 2019-04-08 2020-10-09 Technip France Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753206B1 (fr) * 1996-09-09 1998-11-06 Inst Francais Du Petrole Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible
FR2775050B1 (fr) * 1998-02-18 2000-03-10 Inst Francais Du Petrole Conduite flexible pour une utilisation statique en ambiance corrosive
FR2802607B1 (fr) * 1999-12-15 2002-02-01 Inst Francais Du Petrole Conduite flexible comportant des armures en acier bas carbone
JP3585034B2 (ja) 2000-12-14 2004-11-04 日産自動車株式会社 高強度レース及びその製造方法
FR2866352B3 (fr) * 2004-02-12 2005-12-16 Trefileurope Fil de forme en acier trempe-revenu pour conduites en mer
FR2945099B1 (fr) 2009-05-04 2011-06-03 Technip France Procede de fabrication d'une conduite tubulaire flexible de grande longueur
US9562633B2 (en) 2009-10-28 2017-02-07 National Oilwell Varco Denmark I/S Flexible pipe and a method of producing a flexible pipe
BR112012014653B1 (pt) 2009-12-15 2020-11-10 National Oilwell Varco Denmark I/S tubo flexível não ligado, e, método para aumentar a rigidez de uma ou mais seções de comprimento enrijecidas de um tubo flexível não ligado
US9057465B2 (en) 2009-12-28 2015-06-16 National Oilwell Varco Denmark I/S Unbonded, flexible pipe
US9395022B2 (en) 2010-05-12 2016-07-19 National Oilwell Varco Denmark I/S Unbonded flexible pipe
FR2960556B3 (fr) 2010-05-31 2012-05-11 Arcelormittal Wire France Fil de forme en acier a hautes caracteristiques mecaniques resistant a la fragilisation par l'hydrogene
BR112013000899A2 (pt) 2010-07-14 2016-05-17 Nat Oilwell Varco Denmark Is tubo flexível não ligado
CA2823056C (en) 2011-01-20 2019-04-23 National Oilwell Varco Denmark I/S A flexible armored pipe
BR112013018149A2 (pt) 2011-01-20 2020-07-28 National Oilwell Varco Denmark I / S tubo flexível
EP2721334B1 (de) 2011-06-17 2020-03-18 National Oilwell Varco Denmark I/S Unverbundener schlauch
CA2866402C (en) 2012-03-13 2020-04-14 National Oilwell Varco Denmark I/S An unbonded flexible pipe with an optical fiber containing layer
EP2825802A4 (de) 2012-03-13 2015-12-02 Nat Oilwell Varco Denmark Is Versteifungselement für eine nicht verbundenes flexibles rohr
BR112014025219A2 (pt) 2012-04-12 2017-07-11 Nat Oilwell Varco Denmark Is método para produzir um tubo flexível não unido, e, tubo flexível não unido
EP2855714B1 (de) * 2012-05-25 2021-07-07 Gary M. Cola Jr. Mikrobehandlung und mikrostruktur von carbidhaltiger, eisenbasierter legierung
DK177627B1 (en) 2012-09-03 2013-12-16 Nat Oilwell Varco Denmark Is An unbonded flexible pipe
WO2015097349A1 (fr) * 2013-12-24 2015-07-02 Arcelormittal Wire France Fil laminé à froid en acier à haute résistance à la fatigue et à la fragilisation par l'hydrogène et renfort de conduites flexibles l'incorporant
JP2015212412A (ja) * 2014-04-18 2015-11-26 株式会社神戸製鋼所 熱間圧延線材
EP3050978B1 (de) 2015-01-30 2020-09-02 Technip France Flexible rohrförmige struktur mit stahlelement
KR102504963B1 (ko) 2015-01-30 2023-03-02 엔브이 베카에르트 에스에이 높은 인장 강도의 강철 와이어
WO2017133789A1 (en) 2016-02-05 2017-08-10 Nv Bekaert Sa Thermomechanical processing
KR102101635B1 (ko) * 2016-03-07 2020-04-17 닛폰세이테츠 가부시키가이샤 내수소 유기 균열성이 우수한 고강도 평강선

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921370B2 (ja) * 1976-11-02 1984-05-19 新日本製鐵株式会社 耐応力腐食割れ性が優れた高延性高張力線材の製造法
CA1332210C (en) * 1985-08-29 1994-10-04 Masaaki Katsumata High strength low carbon steel wire rods and method of producing them
JPH01279710A (ja) * 1988-04-30 1989-11-10 Nippon Steel Corp 耐水素誘起割れ特性に優れた高強度鋼線の製造法
JPH03274227A (ja) * 1990-03-24 1991-12-05 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
JPH03281725A (ja) * 1990-03-30 1991-12-12 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
JPH03281724A (ja) * 1990-03-30 1991-12-12 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
FR2661194B1 (fr) * 1990-04-20 1993-08-13 Coflexip Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils.
FR2672827A1 (fr) * 1991-02-14 1992-08-21 Michelin & Cie Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement; procede pour obtenir ce fil.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094652A1 (fr) * 2019-04-08 2020-10-09 Technip France Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé
WO2020208040A1 (fr) * 2019-04-08 2020-10-15 Technip France Procédé de fabrication d'un fil d'armure d'une ligne flexible de transport de fluide et fil d'armure et ligne flexible issus d'un tel procédé

Also Published As

Publication number Publication date
DE69604279D1 (de) 1999-10-21
FR2731371B1 (fr) 1997-04-30
AU5007596A (en) 1996-10-02
AU715625B2 (en) 2000-02-03
ATE184657T1 (de) 1999-10-15
NO974167D0 (no) 1997-09-09
NO974167L (no) 1997-09-09
US5922149A (en) 1999-07-13
BR9607231A (pt) 1997-11-11
EP0813613A1 (de) 1997-12-29
JP4327247B2 (ja) 2009-09-09
FR2731371A1 (fr) 1996-09-13
JPH11501986A (ja) 1999-02-16
NO321040B1 (no) 2006-03-06
DK0813613T3 (da) 1999-12-20
WO1996028575A1 (fr) 1996-09-19

Similar Documents

Publication Publication Date Title
EP0813613B1 (de) Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen
EP0925380B1 (de) Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen
EP0478771B1 (de) Verfahren zum herstellen von stahldraht für biegsame leitungen, nach diesem verfahren hergestellter draht und mit diesem draht verstärkte biegsame leitungen
EP2576849B1 (de) Verfahren zur herstellung eines profilierten drahtes, hergestellt aus einem gegenüber wasserstoffversprödung beständigen stahl mit hohen mechanischen eigenschaften
CA2895944C (fr) Procede de fabrication de pieces d'acier revetues et durcies a la presse, et toles prerevetues permettant la fabrication de ces pieces
EP1994192A1 (de) Verfahren zur herstellung eines stahlblechs mit sehr hohen festigkeits-, biegbarkeits- und härteeigenschaften und auf diese weise produziertes blech
EP2593574B1 (de) Niedriglegierter stahl mit hoher dehngrenze und hoher sulfid-spannungsrissbeständigkeit
EP1778886A1 (de) Objekt mit einem stahlteil einer metallkonstruktion aus einem mittels hochleistungsdichtestrahl geschweissten bereich und mit hervorragender zähigkeit in einem schmelzbereich sowie verfahren zur herstellung eines derartigen objekts
CA2935073C (fr) Fil lamine a froid en acier a haute resistance a la fatigue et a la fragilisation par l'hydrogene et renfort de conduites flexibles l'incorporant
EP0571521B1 (de) Metalldraht aus einem stahlsubstrat mit kaltgehärteter geglühter martensitischer struktur und beschichtung
CA2214012C (fr) Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
US20060086430A1 (en) Carburized wire and method for producing the same
WO2003074206A2 (fr) Procede de fabrication de fil d'armure en acier plaque pour conduite tubulaire flexible de transport d'hydrocarbures, et conduite ainsi armee
FR2866352A3 (fr) Fil de forme en acier trempe-revenu pour conduites en mer
OA16270A (fr) Acier faiblement allié à limite d'élasticité élevée et haute résistance à la fissuration sous contrainte par les sulfures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19971215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990915

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990915

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990915

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990915

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990915

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990915

REF Corresponds to:

Ref document number: 184657

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990916

REF Corresponds to:

Ref document number: 69604279

Country of ref document: DE

Date of ref document: 19991021

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991216

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000621

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: COFLEXIP

Effective date: 20000331

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20000331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Ref country code: FR

Ref legal event code: FC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070426

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150316

Year of fee payment: 20

Ref country code: FR

Payment date: 20150122

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160307