EP0813613B1 - Method for making steel wires and shaped wires, and use thereof in flexible ducts - Google Patents

Method for making steel wires and shaped wires, and use thereof in flexible ducts Download PDF

Info

Publication number
EP0813613B1
EP0813613B1 EP96906800A EP96906800A EP0813613B1 EP 0813613 B1 EP0813613 B1 EP 0813613B1 EP 96906800 A EP96906800 A EP 96906800A EP 96906800 A EP96906800 A EP 96906800A EP 0813613 B1 EP0813613 B1 EP 0813613B1
Authority
EP
European Patent Office
Prior art keywords
wire
steel
equal
hrc
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96906800A
Other languages
German (de)
French (fr)
Other versions
EP0813613A1 (en
Inventor
José MALLEN HERRERO
François Ropital
André Sugier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Technip Energies France SAS
Original Assignee
Coflexip SA
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coflexip SA, IFP Energies Nouvelles IFPEN filed Critical Coflexip SA
Publication of EP0813613A1 publication Critical patent/EP0813613A1/en
Application granted granted Critical
Publication of EP0813613B1 publication Critical patent/EP0813613B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Definitions

  • the present invention relates to elongated elements of great length, such as steel wires to reinforce flexible pipes intended for the transport of effluent under pressure.
  • the invention relates to a method of manufacturing these reinforcing threads, the wires obtained by the process and the flexible pipes which include such wires reinforcement in their structure.
  • sealing is provided by one or more polymer sheaths, mechanical resistance to internal and external pressure and to external mechanical stress, is produced by one or more layers of armor constituted by steel wires or profiles having a specific profile.
  • the flexible tube comprises at least one of the following armor plies: a carcass of resistance to external pressure in wires or profiles placed at an angle close to 90 ° relative to the axis. a sheet of resistance to internal pressure (called vault) laid at an angle greater than 55 °, the elongated elements of the carcass and the vault preferably being staplable wires, and at least one layer of armor of tensile strength installed at an angle of less than 55 °.
  • a carcass of resistance to external pressure in wires or profiles placed at an angle close to 90 ° relative to the axis.
  • a sheet of resistance to internal pressure (called vault) laid at an angle greater than 55 °
  • the elongated elements of the carcass and the vault preferably being staplable wires
  • at least one layer of armor of tensile strength installed at an angle of less than 55 °.
  • the vault and the tensile armor are replaced by two layers of symmetrical armor reinforced at an angle of about 55 °, or by two pairs of layers reinforced at 55 °, or by a set of at least at least two plies, the winding angle of at least one ply being less than 55 ° and the winding angle of at least one other ply being greater than 55 °.
  • the steel of the wires making up the armor must be chosen in such a way that these wires, given their cross-section, provide the mechanical resistance necessary in service, at the same time as they resist corrosion, in particular in certain cases in the presence of H 2 S.
  • These steel wires can have profiles, that is to say straight sections, various: substantially flat or flat, U-shaped, T-shaped, Z-shaped, with or without hooking means on a neighboring, or circular, wire.
  • NACE standards have been provided to assess the suitability of a steel structural element to be used in the presence of H 2 S.
  • the steels must undergo a test on a representative sample, under stress in H 2 S medium with a pH 2.8 to 3.4 (NACE Test Method TM 0177 relating to stress cracking effects, commonly known as "Sulfide Stress Corrosion Cracking" or SSCC), to be considered as usable in the manufacture of metallic structures which must resist the effects of corrosion under stress in the presence of H 2 S.
  • HIC hydrogen-induced cracking effects
  • the test procedure recommended by the above standard consists in exposing samples, without voltage, in a seawater solution saturated with H 2 S, at ambient temperature and pressure, at a pH between 4, 8 and 5.4. The procedure plans to then carry out metallographic examinations to quantify the cracking of the samples, or to note the absence of cracking.
  • An additional criterion for evaluating the damage to the samples may be the determination of the mechanical characteristics after the HIC test. This criterion does not appear in the NACE TM 0284 standard.
  • the armouring wires of the hoses are produced with mild or semi-hard carbon-manganese steels (0.15 to 0.50% carbon) having a ferrite-perlite structure, to which, after cold forming of the wire rod, an appropriate annealing heat treatment is applied to bring the hardness to the accepted value, if necessary.
  • the NACE 0175 standard defines that such carbon-manganese steels are compatible with an H 2 S medium if they have a hardness less than or equal to 22 HRC. It has thus been verified that armor wires as described above, made of carbon-manganese steel and having a ferrite-pearlite structure, can be produced by cold forming followed by annealing so as to satisfy the traditional NACE criteria.
  • the steels and the production methods used to make the armouring wires for the hoses must be such that the forming wire can be produced in very large continuous lengths, of the order of several hundred meters or several kilometers.
  • the wire thus manufactured is wound on spools for its subsequent use to produce the armor plies of the hoses.
  • a heat treatment is to be provided after welding. But it is important, in order not to excessively overload the manufacturing costs, that this heat treatment after welding makes it possible to achieve the goal set in a sufficiently short time, a few minutes if possible. preferably less than 30 minutes.
  • the object of the present invention is to describe a process for obtaining an elongated element of great length intended for the manufacture of flexible tube, the elongated element having optimized mechanical characteristics as well as, in an application according to the invention , good resistance to H 2 S.
  • the amount of ferrite will preferably be low, in particular less or equal to 10%, and advantageously less than or equal to 1%.
  • the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may have at most 0.4 Si.
  • the forming wire can be produced by cold forming, in particular by rolling or drawing from a wire rod.
  • the wire rod could be hot rolled with controlled cooling, for example of the STELMOR type, so as to drive at values of Rm lower than 850 MPa.
  • Rm the number of wire rods having a Rm value greater than 850 MPa.
  • the shaped wire can also be obtained directly by hot rolling.
  • the tensile strength Rm of the wire will preferably also be less than 850 MPa, either after rolling or after a softening annealing in order to facilitate the operations of handling the elongated element, before or during the operations of quenching.
  • the process thus normally includes a preliminary forming step to hot, either from a wire rod subsequently transformed into a form wire by forming cold, either directly from the form wire.
  • the wire thus formed hot has a predominantly ferritic-pearlitic structure, but may include hard areas, such as martensite.
  • the steel Preferably. before any operation subsequent cold forming and / or quenching, the steel must have a limit of rupture Rm less than 850 MPa, this property being obtainable. is directly after hot forming, either through an annealing-softening treatment.
  • the quenching operation can be carried out continuously in the process.
  • the process may include, in addition to said quenching, a treatment thermal expansion.
  • the HRC hardness limitation must be higher or equal to 32, and preferably greater than or equal to 35, must be respected after the relaxation treatment.
  • the relaxation treatment can be carried out in a bundle in an oven.
  • the quenching and the said stress relief treatment can be carried out on parade, preferably online, which allows the production of very long wires necessary for the production of flexible armor plies.
  • Such a steel, containing a limited content of Cr and / or Mo can possibly not contain any other alloying element or dispersoid.
  • the steel contains a little dispersoid, such as vanadium, titanium or niobium, in particular for low carbon steels, the carbon content being equal to or greater than 0.05%.
  • the vanadium content can be limited to a low value so as to avoid too long annealing time after welding, preferably the vanadium content will be less than or equal to 0.10%.
  • the carbon content of the steel can be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard hard or semi-hard carbon-manganese steel, classic in wire drawing or cables. without the addition of an alloying element such as Cr or Mo.
  • the steel may possibly contain a small amount of dispersoid, such as can be found commonly found in commercial steels. Such steels can be included in the range of steel FM40 to FM80. according to AFNOR standard.
  • the quenching heat treatment may include passage through an oven austenitization at a temperature above the AC3 point of the steel grade of the wire. then in a zone of quenching in a fluid of drasticity adapted at the same time to the shade steel and the size of the wires, the temperature and the residence time being adapted according to the grade to obtain a grain size between the indices 5 and 12, and advantageously between indices 8 and 11, according to standard NF 04102.
  • the structure obtained after quenching can be predominantly martensitic with a percentage between 0 and 50% lower bainite or predominantly lower bainite with a percentage between 0 and 50% martensite.
  • the bainite is in the lower bainite state and not higher bainite.
  • the structure can contain only a small amount of ferrite.
  • the production process can end with the quenching operation. of preference followed by a relaxation treatment.
  • the wire thus obtained may not be able to withstand H 2 S under certain operating conditions, but it can be very advantageously used as armouring wire for flexible conduits thanks to its excellent optimized mechanical properties, in particular by the combination of a high mechanical strength and a ductility higher than that which can be obtained with known methods.
  • the rupture limit Rm can reach 1000 to 1600 MPa, equal to or greater than that of the most resistant armor wires currently known, and the elongation at break can be greater than 5%, possibly greater than 10% and possibly exceeding 15% in some cases. Whereas for known steel wires having a level of resistance comparable to the work hardened state, these have an elongation at break not exceeding 5%.
  • the method may include, after the quenching heat treatment, optionally supplemented by an expansion treatment, a final heat treatment of tempering under determined conditions to obtain a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC.
  • the conditions of the final tempering treatment can be adapted so as to obtain a hardness less than or equal to 28 HRC, compatible with operating conditions which can provide an environment with a pH close to 3.
  • a steel according to the present invention does not exhibit blistering or crack in HIC tests, and furthermore does not show cracking when subjected to tests according to standard NACE 0177 (SSCC) with a tensile stress at less than 60% of the elastic limit and up to approximately 90% of this last.
  • SSCC standard NACE 0177
  • the final income can be made at the parade, online or separate.
  • the final income can be made in a bundle in an oven.
  • the tempering temperature can be at most equal to a lower temperature from about 10 ° C to 30 ° C relative to the AC temperature at the start of austenitization of steel, in order to avoid excessive coalescence of carbide which could lead to a decrease in characteristics.
  • the wire is wound on a spool so that it can be subsequently mounted on a spiral or armeuse for the manufacture of armor of the flexible driving.
  • the content of alloying elements while being low, must be sufficient to obtain after quenching a predominantly martensitic or bainitic structure with little ferrite (we can thus, in the most favorable cases, obtain a structure containing nearly 100% martensite and commonly, at least 90% martensite and bainite).
  • This process reduces manufacturing costs. It also allows to obtain wires with the shape of larger sections than cold rolling.
  • the invention thus makes it possible to produce a shaped wire having after quenching a relatively homogeneous martensitic or bainitic structure throughout the thickness of the wire, despite the increase in the thickness of the wire.
  • We can thus obtain, in the most favorable cases, up to approximately 100% martensite. content total in martensite and bainite being commonly, at least equal to 90%.
  • cold forming comprising at least two stages successive cold processing, an intermediate processing operation thermal is carried out between the first and the last cold transformation step.
  • the intermediate heat treatment operation can be carried out between a preliminary drawing operation and the beginning of rolling. or between two passes successive lamination.
  • Such an intermediate intermediate heat treatment can be carried out various ways known in metallurgy, so as to lower the mechanical strength, preferably below 850 MPa, and to recover the ductility allowing the cold processing.
  • the invention also relates to a wire of constant cross-section shape and very long, suitable for use as the armor wire of a flexible pipe according to two variants defined in claims 20 and 21.
  • Tempered bainitic martensitic type steel the tempering may be more or less pronounced, especially such as a trigger income, so that the thread obtained has the ductility necessary for its subsequent use as a wire armor, or as a quality income making the wire suitable for use in the presence of H2S.
  • the bainitic martensitic structure is predominantly martensitic with a percentage between 0 and 50% of bainite inferior or predominantly lower bainite with a percentage between 0 and 50% of martensite.
  • the structure may contain only a small amount of ferrite.
  • the wire can have a hardness greater than 20 HRC.
  • the size of the austenitic grain lies between indices 5 and 12, and advantageously between indices 8 and 11. according to standard NF 04102.
  • the form wire can have a section having at least one of the forms following general: U, T, Z, rectangular or round.
  • the section of the form wire can have a width L and a thickness e. and to have the following proportions: L / e greater than 1 and less than 7.
  • the thickness may vary between 1 mm and 20 mm, up to 30 mm.
  • the profile of the form wire may include means for hooking with a wire adjacent.
  • the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may contain at most 0.4% of Si.
  • the steel may for example contain from 0.12% to 0.35% of C.
  • the carbon content steel may be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard carbon-manganese hard or semi-hard steel, classic in wire or cable drawing, without adding any alloying element such as Cr or Mo, with possibly a small amount of dispersoid.
  • Such steels can be understood in the FM40 to FM80 steel range, according to the AFNOR standard.
  • the shaped wire according to the invention can have an HRC hardness greater than or equal to 32, preferably greater than or equal to 35.
  • the wire thus obtained may not be able to resist H 2 S under certain operating conditions, but it can be used very advantageously as armouring wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of high mechanical strength and ductility greater than that which can be obtained with known methods.
  • the breaking limit Rm can reach 1000 to 1600 MPa., Preferably greater than or equal to 1200 MPa.
  • Such a wire can advantageously be used to make the armor of hoses intended for the transport of weakly corrosive crude oil ("sweet crude”), degassed oil (“dead oil”) or water.
  • the process for producing such a wire can end in a quenching operation, preferably followed by an expansion treatment.
  • the shaped wire according to the invention can have an HRC hardness greater than or equal to 20, preferably less than or equal to 35.
  • the wire thus obtained can have properties of resistance to H 2 S under the operating conditions described above, in particular following HIC tests in very acidic medium (pH close to 2.8 or 3).
  • the mechanical resistance Rm can be of the order of 700 to 900 MPa under a pH close to 3 and can reach at least 1100 MPa with a higher pH.
  • the stress applied in the SSCC tests according to NACE, with a pH close to 2.8 can be at least 400 MPa and can reach 600 MPa.
  • the allowable stresses may be higher, up to approximately 90% of the Elastic limit.
  • the method according to the invention makes it possible to form steel wires of the type tempered martensite-bainite whose structure has carbide nodules extremely fine in a state of very great dispersion in a ferrite matrix issue by income from a martensite-bainite structure. It is interesting to compare this steel to other steels already offered or used to make armouring wires intended for the same use, such as steels obtained by spheroidization treatment from of a hardened ferrite-perlite structure, these steels also comprising elements of carbide in a ferritic matrix.
  • the spheroidized carbide elements of these steels are considerably less fine and less dispersed than in the case of steel according to invention, which clearly identifies the difference between the two types of material.
  • the superior properties of form wire according to the invention in terms of mechanical resistance and compatibility with H2S, by comparison with the wires of the prior art, in particular in spheroidized steel, can have a relationship to having a much finer nodular structure and scattered.
  • the invention has the particular advantage that from the same batches of wire rod and by carrying out the same quenching operations. optionally expansion, one can produce, depending on the needs, either steel wires which are very mechanically resistant but do not sometimes have the required properties of resistance to H 2 S, or wires which are resistant to H 2 S even in the most severe conditions.
  • the production range ends with the quenching operation. preferably followed by relaxation.
  • the manufacturing range is continued by an additional final income stage.
  • the invention can be applied to a flexible tube for transporting an effluent comprising H 2 S, the tube possibly comprising at least one layer of reinforcements of reinforcement under pressure and / or under tension comprising wires form according to the invention.
  • 15 mm diameter circular section wires were produced from a chromium-molybdenum type steel conforming to grade 30CD4 of the AFNOR standard (equivalent to the ASTM 4130 standard in correspondence with the number UNS G41300).
  • the quenching operation was carried out at the parade at the speed of 1.8 m / minute with high frequency induction heating to 980 ° C-1000 ° C, then oil quenching.
  • the expansion treatment was carried out in the oven for hours at 180 ° C.
  • the grain size corresponds to an index 8 of standard NF 04.102.
  • post-weld tempering temperatures should be higher than that of metal tempering and below the start temperature austenitization AC1, preferably 20 to 30 ° C lower than AC1.
  • a wire was made having a T section (height 14 mm, width 25 mm). After a process of quenching in the procession and a treatment of relaxation, the wire has a hardness 40 HRC.
  • the tempering was carried out at a speed of 15 m / minute by medium frequency induction heating at different powers leading to the following mechanical characteristics as a function of the temperature measured at the output of the heating coil: T self output (° C) 680 700 710 HRC hardness 29 28 26
  • the grain size corresponds to an index 8 of standard NF 04.102.
  • Tempering in the oven for about 4 hours was carried out at temperatures 510 ° C, 525 ° C and 540 ° C to obtain the hardnesses of 26, 24 and 22 HRC.
  • the SSCC test is satisfied according to the hardness (22 to 26 HRC) under a constraint between 400 and 450 MPa.
  • the grain size corresponds to an index 11 of standard NF 04.102.
  • SSCC type stress corrosion tests according to the standard NACE TM 0177 could reach a duration of 720 hours without the appearance of a break nor crack.
  • the stress reached 90% of the elastic limit, i.e. 652 MPa, the pH being 3.5.
  • the pH was very low 2.7, the applied stress being 600 MPa, or 83% of the elastic limit.

Abstract

PCT No. PCT/FR96/00363 Sec. 371 Date Nov. 4, 1997 Sec. 102(e) Date Nov. 4, 1997 PCT Filed Mar. 8, 1996 PCT Pub. No. WO96/28575 PCT Pub. Date Sep. 19, 1996A method for making steel wires, wherein an elongate shaped wire is produced by rolling or drawing steel consisting of 0.05-0.5% C, 0.4-1.5% Mn, 0-2.5% Cr, 0.1-0.6% Si, 0-1% Mo, no more than 0.25% Ni, and no more than 0.02% S and P, and a first heat treatment is performed on the shaped wire, including at least one step of quenching under predetermined conditions to achieve an HRC hardness of at least 32, a predominately martensitic and bainitic steel structure and a small amount of ferrite. A shaped wire and a flexible tube for conveying an H2S-containing effluent are disclosed.

Description

La présente invention concerne des éléments allongés de grande longueur, tels des fils d'acier pour renforcer des conduites flexibles destinées au transport d'effluent sous pression. L'invention concerne un procédé de fabrication de ces fils de renfort, les fils obtenus par le procédé et les conduites flexibles qui comportent de tels fils de renfort dans leur structure.The present invention relates to elongated elements of great length, such as steel wires to reinforce flexible pipes intended for the transport of effluent under pressure. The invention relates to a method of manufacturing these reinforcing threads, the wires obtained by the process and the flexible pipes which include such wires reinforcement in their structure.

On connaít des applications dans lesquelles on utilise pour le transport de fluides, notamment des hydrocarbures, des conduites flexibles armées par des nappes d'armures constituées par des fils en acier. Dans certains cas, ces conduites sont placées dans des conditions dans lesquelles elles sont soumises à une ambiance corrosive, par exemple en présence de fluides acides comportant des produits sulfurés. En outre, dans le cas où de telles conduites flexibles sont disposées dans de grandes profondeurs d'eau, elles doivent, de plus en plus, présenter des performances mécaniques très élevées en termes de résistance à la pression intérieure, à la charge axiale, à la pression extérieure consécutive à la grande profondeur d'eau d'immersion.We know applications in which we use for the transport of fluids, in particular hydrocarbons, flexible pipes reinforced by sheets of armor made up of steel wires. In some cases, these lines are placed in conditions in which they are subjected to an atmosphere corrosive, for example in the presence of acidic fluids containing sulfurized products. In addition, in the case where such flexible pipes are arranged in large water depths, they must, more and more, present performances very high mechanical strength in terms of resistance to internal pressure, to load axial, to the external pressure following the great depth of immersion water.

Dans les conduites flexibles, l'étanchéité étant assurée par une ou plusieurs gaines en polymère, la résistance mécanique à la pression interne et externe et aux sollicitations mécaniques externes, est réalisée par une ou plusieurs nappes d'armures constituées par des fils ou des profilés en acier ayant un profil spécifique. In flexible pipes, sealing is provided by one or more polymer sheaths, mechanical resistance to internal and external pressure and to external mechanical stress, is produced by one or more layers of armor constituted by steel wires or profiles having a specific profile.

Généralement, le tube flexible comporte au moins l'une des nappes d'armure suivantes : une carcasse de résistance à la pression externe en fils ou profilés posés suivant un angle proche de 90° par rapport à l'axe. une nappe de résistance à la pression interne (appelée voûte) posée avec un angle supérieur à 55°, les éléments allongés de la carcasse et de la voûte étant préférentiellement des fils agrafables, et au moins une nappe d'armures de résistance à la traction posée avec un angle inférieur à 55°. Selon un autre mode, la voûte et les armures de traction sont remplacées par deux nappes d'armure symétriques armées à un angle d'environ 55°, ou par deux paires de nappes armées à 55°, ou encore par un ensemble d'au moins deux nappes, l'angle d'armage d'au moins une nappe étant inférieur à 55° et l'angle d'armage d'au moins une autre nappe étant supérieur à 55°. L'acier des fils composant les armures doit être choisi de façon telle que ces fils, compte tenu de leur section, apportent la résistance mécanique nécessaire en service, en même temps qu'ils résistent à la corrosion, en particulier dans certains cas en présence de H2S.Generally, the flexible tube comprises at least one of the following armor plies: a carcass of resistance to external pressure in wires or profiles placed at an angle close to 90 ° relative to the axis. a sheet of resistance to internal pressure (called vault) laid at an angle greater than 55 °, the elongated elements of the carcass and the vault preferably being staplable wires, and at least one layer of armor of tensile strength installed at an angle of less than 55 °. According to another mode, the vault and the tensile armor are replaced by two layers of symmetrical armor reinforced at an angle of about 55 °, or by two pairs of layers reinforced at 55 °, or by a set of at least at least two plies, the winding angle of at least one ply being less than 55 ° and the winding angle of at least one other ply being greater than 55 °. The steel of the wires making up the armor must be chosen in such a way that these wires, given their cross-section, provide the mechanical resistance necessary in service, at the same time as they resist corrosion, in particular in certain cases in the presence of H 2 S.

Ces fils d'acier, mis en forme généralement par laminage ou tréfilage à chaud ou à froid, peuvent avoir des profils, c'est-à-dire des sections droites, variés : sensiblement plat ou méplat, en U, en T, en Z, avec ou sans moyens d'accrochage sur un fil voisin, ou circulaire.These steel wires, generally shaped by hot rolling or drawing or cold, can have profiles, that is to say straight sections, various: substantially flat or flat, U-shaped, T-shaped, Z-shaped, with or without hooking means on a neighboring, or circular, wire.

Dans le cas de l'utilisation en présence de gaz acide, essentiellement l'H2S et le CO2, en plus de la corrosion généralisée, peuvent se poser des problèmes liés à la pénétration d'hydrogène dans l'acier. En effet l'H2S ou plutôt l'ion HS-) est un inhibiteur de recombinaison des atomes d'hydrogène produits par réduction des protons à la surface de l'acier. Ces atomes d'hydrogène s'introduisent à l'intérieur du métal et s'y recombinent, étant ainsi à l'origine de deux types de détériorations :

  • des soufflures sous la surface de l'acier ("Hydrogen Blistering", on parle alors de "Blister"), ou des fissurations internes (dites en gradin), pouvant apparaítre en l'absence de contraintes et pouvant être aggravées en présence de contraintes résiduelles,
  • une fragilisation résultant en ruptures différées dans le cas où l'acier est mis sous contraintes (corrosion sous contraintes par l'hydrogène).
In the case of use in the presence of acid gas, essentially H 2 S and CO 2 , in addition to generalized corrosion, there may be problems associated with the penetration of hydrogen into the steel. Indeed, H 2 S or rather the ion HS - ) is an inhibitor of recombination of the hydrogen atoms produced by reduction of the protons on the surface of the steel. These hydrogen atoms are introduced inside the metal and recombine there, thus being at the origin of two types of deterioration:
  • blowing under the surface of the steel ("Hydrogen Blistering", we then speak of "Blister"), or internal cracks (so-called tiered), which can appear in the absence of stresses and can be aggravated in the presence of stresses residual,
  • embrittlement resulting in deferred fractures in the event that the steel is placed under stress (corrosion under stress by hydrogen).

Des normes NACE ont été prévues pour évaluer l'aptitude d'un élément structurel en acier à être utilisé en présence d'H2S. Les aciers doivent subir un test sur un échantillon représentatif, sous contrainte en milieu H2S avec un pH de 2.8 à 3.4 (NACE Test Method TM 0177 relatif aux effets de fissuration sous contrainte. désignés communément par "Sulfide Stress Corrosion Cracking" ou SSCC), pour pouvoir être considérés comme utilisables dans la fabrication de structures métalliques devant résister aux effets de la corrosion sous contrainte en présence d'H2S.NACE standards have been provided to assess the suitability of a steel structural element to be used in the presence of H 2 S. The steels must undergo a test on a representative sample, under stress in H 2 S medium with a pH 2.8 to 3.4 (NACE Test Method TM 0177 relating to stress cracking effects, commonly known as "Sulfide Stress Corrosion Cracking" or SSCC), to be considered as usable in the manufacture of metallic structures which must resist the effects of corrosion under stress in the presence of H 2 S.

Une autre norme NACE (TM 0284) est relative aux effets de fissuration induits par l'hydrogène, désignés communément par "Hydrogen Induced Cracking" ou HIC. La procédure de test recommandée par la norme ci-dessus consiste à exposer des échantillons, sans tension, dans une solution d'eau de mer saturée par de l'H2S, à température et pression ambiantes, à un pH compris entre 4,8 et 5,4. La procédure prévoit d'effectuer ensuite des examens métallographiques pour quantifier la fissuration des échantillons, ou constater l'absence de fissuration. Un critère complémentaire d'évaluation de l'endommagement des échantillons peut être la détermination des caractéristiques mécaniques après essai HIC. Ce critère ne figure pas dans la norme NACE TM 0284. Les déposants ont ainsi été amenés à définir une méthode d'évaluation complémentaire consistant à effectuer des essais de traction sur les échantillons pour déterminer les caractéristiques mécaniques après HIC et comparer ces résultats aux caractéristiques mécaniques avant HIC. Cette méthode s'est révélée particulièrement intéressante dans le cas des fils d'armure visés par la présente invention, ces fils étant soumis à un régime de contraintes uniaxiales longitudinales. par comparaison avec la paroi des tubes en aciers. tubes qui constituent la principale application des normes NACE. Une autre méthode complémentaire consiste à comparer les valeurs de perte de striction Z (%) avant et après essai HIC. la différence devant être relativement faible et de préférence inférieure à 30%.Another NACE standard (TM 0284) relates to hydrogen-induced cracking effects, commonly known as "Hydrogen Induced Cracking" or HIC. The test procedure recommended by the above standard consists in exposing samples, without voltage, in a seawater solution saturated with H 2 S, at ambient temperature and pressure, at a pH between 4, 8 and 5.4. The procedure plans to then carry out metallographic examinations to quantify the cracking of the samples, or to note the absence of cracking. An additional criterion for evaluating the damage to the samples may be the determination of the mechanical characteristics after the HIC test. This criterion does not appear in the NACE TM 0284 standard. Applicants were thus led to define an additional evaluation method consisting in carrying out tensile tests on the samples to determine the mechanical characteristics after HIC and to compare these results with the mechanical characteristics. before HIC. This method has proved to be particularly advantageous in the case of the armouring threads targeted by the present invention, these threads being subjected to a regime of longitudinal uniaxial stresses. by comparison with the wall of steel tubes. tubes which constitute the main application of NACE standards. Another complementary method is to compare the loss of Z neck loss (%) before and after the HIC test. the difference should be relatively small and preferably less than 30%.

Les conditions d'exploitation des gisements sous-marins étant devenues de plus en plus sévères, il est apparu récemment que la qualification des matériaux pour leur utilisation en présence d'H2S doit viser le cas de milieu plus acide, le pH pouvant descendre jusqu'à environ 3. On a été ainsi conduit à spécifier que. dans certains cas. les essais selon la norme NACE TM 0284 doivent être réalisés dans une solution saturée en H2S présentant un pH, par exemple de 3 ou 2,8, semblable à la solution définie par la norme NACE TM 0177, et non plus avec un pH au moins égal à 4,8.The conditions of exploitation of underwater deposits having become more and more severe, it appeared recently that the qualification of the materials for their use in the presence of H 2 S must aim at the case of more acid medium, the pH being able to fall up to about 3. We were thus led to specify that. in some cases. the tests according to standard NACE TM 0284 must be carried out in a saturated solution of H 2 S having a pH, for example of 3 or 2.8, similar to the solution defined by standard NACE TM 0177, and no longer with a pH at least 4.8.

Selon les techniques actuellement connues. les fils d'armure des flexibles, en particulier pour le cas du transport des fluides comportant de l'H2S, sont réalisés avec des aciers au carbone-manganèse doux ou mi-dur (0,15 à 0.50% de carbone) présentant une structure ferrite-perlite, auxquels on applique, après mise en forme à froid du fil machine, un traitement thermique de recuit approprié pour amener la dureté à la valeur admise, si nécessaire.According to currently known techniques. the armouring wires of the hoses, in particular for the transport of fluids comprising H 2 S, are produced with mild or semi-hard carbon-manganese steels (0.15 to 0.50% carbon) having a ferrite-perlite structure, to which, after cold forming of the wire rod, an appropriate annealing heat treatment is applied to bring the hardness to the accepted value, if necessary.

La norme NACE 0175 définit que de tels aciers au carbone-manganèse sont compatibles avec un milieu H2S s'ils présentent une dureté inférieure ou égale à 22 HRC. Il a été ainsi vérifié que des fils d'armure tels que décrits ci-dessus, réalisés en acier au carbone-manganèse et présentant une structure ferrite-perlite, peuvent être fabriqués par formage à froid suivi d'un recuit de façon à satisfaire les critères NACE traditionnels. On connaít un procédé décrit dans le document FR-A-2661194 permettant d'obtenir un acier de dureté supérieure à 22 HRC compatible avec l'H2S selon les normes NACE TM 0177 et TM 0284, la solution utilisée pour les essais selon TM 0284 ayant un pH compris entre 4,8 et 5,4.The NACE 0175 standard defines that such carbon-manganese steels are compatible with an H 2 S medium if they have a hardness less than or equal to 22 HRC. It has thus been verified that armor wires as described above, made of carbon-manganese steel and having a ferrite-pearlite structure, can be produced by cold forming followed by annealing so as to satisfy the traditional NACE criteria. We know a process described in document FR-A-2661194 for obtaining a steel of hardness greater than 22 HRC compatible with H 2 S according to NACE TM 0177 and TM 0284 standards, the solution used for tests according to TM 0284 having a pH between 4.8 and 5.4.

Par contre, il a été constaté que les aciers au carbone à structure ferrite-perlite sont inaptes à supporter de façon satisfaisante les essais HIC réalisés selon la procédure de la norme TM 0284 lorsque ces essais sont réalisés en milieu plus acide. par exemple avec un pH de l'ordre de 3 correspondant aux conditions dorénavant rencontrées dans certains cas d'exploitation des gisements pétroliers. Ces résultats inacceptables ont été obtenus même dans le cas où le traitement thermique final est plus poussé de façon à obtenir une dureté HRC inférieure à 22 HRC.However, it has been found that carbon steels with a ferrite-perlite structure are unable to withstand the HIC tests satisfactorily according to the procedure of standard TM 0284 when these tests are carried out in a more acid medium. for example with a pH of around 3 corresponding to the conditions now encountered in certain cases of exploitation of petroleum deposits. These results unacceptable have been obtained even in the event that the final heat treatment is more pushed so as to obtain an HRC hardness of less than 22 HRC.

Il y a donc un besoin pour la réalisation de fils d'armure des flexibles, d'un acier qui, d'une part soit compatible avec l'H2S dans les conditions nouvelles décrites ci-dessus et qui d'autre part, soit d'une composition et d'une procédure d'élaboration relativement classiques et peu sophistiquées dans le but de conserver des coûts de fabrication suffisamment faibles.There is therefore a need for the production of armouring wires for hoses, a steel which, on the one hand, is compatible with H 2 S under the new conditions described above and which, on the other hand, or of a composition and a relatively conventional and unsophisticated production procedure with the aim of keeping manufacturing costs sufficiently low.

Par ailleurs, les aciers et les procédés d'élaboration utilisés pour réaliser les fils d'armure des flexibles doivent être tels que le fil de forme peut être produit en très grandes longueurs continues, de l'ordre de plusieurs centaines de mètres ou de plusieurs kilomètres. Le fil ainsi fabriqué est enroulé sur des bobines en vue de sa mise en oeuvre ultérieure pour réaliser les nappes d'armure des flexibles. En outre, et malgré la longueur unitaire très importante des fils ainsi produits, il est important qu'ils puissent être raccordés par soudure pendant l'opération d'armage lors de la fabrication du flexible. Dans le but de reconstituer dans la zone de soudure, les propriétés spécifiées de l'acier, en particulier la résistance à l'H2S, un traitement thermique est à prévoir après soudure. Mais il est important, afin de ne pas surcharger excessivement les coûts de fabrication que ce traitement thermique après soudure permette d'atteindre le but fixé dans un délai suffisamment court, de quelques minutes si possible. préférablement moins de 30 minutes.Furthermore, the steels and the production methods used to make the armouring wires for the hoses must be such that the forming wire can be produced in very large continuous lengths, of the order of several hundred meters or several kilometers. The wire thus manufactured is wound on spools for its subsequent use to produce the armor plies of the hoses. In addition, and despite the very large unit length of the wires thus produced, it is important that they can be connected by welding during the winding operation during the manufacture of the hose. In order to reconstitute in the weld zone, the specified properties of the steel, in particular the resistance to H 2 S, a heat treatment is to be provided after welding. But it is important, in order not to excessively overload the manufacturing costs, that this heat treatment after welding makes it possible to achieve the goal set in a sufficiently short time, a few minutes if possible. preferably less than 30 minutes.

Dans le cas où la compatibilité avec l'H2S n'est pas requise (production de "sweet crude"), on utilise couramment des aciers au carbone à l'état brut de formage à froid présentant également une structure ferrite-perlite, mais possédant des valeurs sensiblement plus élevées de résistance mécanique et de dureté. Néanmoins, il a été constaté que l'augmentation de la résistance mécanique au delà de certaines limites, conduit pour de tels aciers à présenter une ductilité insuffisante compte tenu des opérations de préformation et d'armage qui doivent être réalisées avec le fil d'armure. In the case where compatibility with H 2 S is not required (production of "sweet crude"), carbon steels in the raw cold-forming state are also commonly used, also having a ferrite-perlite structure, but having significantly higher values of mechanical strength and hardness. However, it has been observed that the increase in mechanical strength beyond certain limits, leads for such steels to have insufficient ductility taking into account the preformation and reinforcement operations which must be carried out with the armor wire. .

L'objet de la présente invention est de décrire un procédé d'obtention d'un élément allongé de grande longueur destiné à la fabrication de tube flexible, l'élément allongé présentant des caractéristiques mécaniques optimisées ainsi que, dans une application selon l'invention, une bonne résistance à l'H2S.The object of the present invention is to describe a process for obtaining an elongated element of great length intended for the manufacture of flexible tube, the elongated element having optimized mechanical characteristics as well as, in an application according to the invention , good resistance to H 2 S.

La présente invention concerne un procédé de fabrication d'un fil de forme en acier, ce fil étant de grande longueur et apte être utilisé comme fil d'armure d'un flexible. Le procédé est défini dans la revendication 1 et comporte les étapes suivantes :

  • on fabrique un fil de forme de grande longueur par laminage ou tréfilage à partir d'un acier comportant les éléments suivants :
    • de 0,05% à 0,8% de C,
    • de 0,4% à 1,5% de Mn, de préférence moins de 1% de Mn,
    • de 0 à 2,5% de Cr, entre 0,25 et 1,3%,
    • de 0,1% à 0,6% de Si,
    • de 0 à 1% de Mo,
    • au plus 0,50% de Ni,
    • au plus 0.02% de S et de P, et de préférence S inférieur ou égal à 0,005%,
    • avec éventuellement, en complément de l'action du Si, un calmage avec de l'aluminium ou du silico-calcium,
  • on effectue un traitement thermique comprenant au moins une opération de trempe du fil de forme dans des conditions déterminées pour obtenir une dureté HRC supérieure ou égale à 32 et de préférence supérieure ou égale à 35, et pouvant avantageusement atteindre ou dépasser 50,
  • la structure de l'acier du fil de forme ainsi obtenu étant à prédominance martensitique-bainitique.
The present invention relates to a method for manufacturing a steel form wire, this wire being very long and capable of being used as the armor wire of a hose. The method is defined in claim 1 and comprises the following steps:
  • a long form wire is manufactured by rolling or drawing from a steel comprising the following elements:
    • from 0.05% to 0.8% of C,
    • from 0.4% to 1.5% of Mn, preferably less than 1% of Mn,
    • from 0 to 2.5% of Cr, between 0.25 and 1.3%,
    • from 0.1% to 0.6% of Si,
    • from 0 to 1% of Mo,
    • at most 0.50% of Ni,
    • at most 0.02% of S and P, and preferably S less than or equal to 0.005%,
    • with possibly, in addition to the action of Si, a calming with aluminum or silico-calcium,
  • a heat treatment is carried out comprising at least one operation of quenching the shaped wire under determined conditions to obtain an HRC hardness greater than or equal to 32 and preferably greater than or equal to 35, and which can advantageously reach or exceed 50,
  • the steel structure of the shaped wire thus obtained being predominantly martensitic-bainitic.

La quantité de ferrite sera préférentiellement faible, en particulier inférieure ou égale à 10%, et avantageusement inférieure ou égale à 1%. The amount of ferrite will preferably be low, in particular less or equal to 10%, and advantageously less than or equal to 1%.

Selon une variante de la présente invention, la teneur en carbone C peut être supérieure ou égale à 0,08%, de préférence supérieure ou égale à 0,12% et l'acier peut comporter au plus 0,4 de Si.According to a variant of the present invention, the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may have at most 0.4 Si.

Le fil de forme peut être fabriqué par formage à froid, en particulier par laminage ou tréfilage à partir d'un fil machine. Le fil machine a pu être laminé à chaud avec un refroidissement contrôlé, par exemple du type STELMOR, de façon à conduire à des valeurs de Rm inférieures à 850 MPa. Dans le cas de fils machines ayant une valeur de Rm supérieure à 850 MPa, il peut être avantageux de les soumettre à un recuit pour adoucir la nuance à Rm<850 MPa.The forming wire can be produced by cold forming, in particular by rolling or drawing from a wire rod. The wire rod could be hot rolled with controlled cooling, for example of the STELMOR type, so as to drive at values of Rm lower than 850 MPa. In the case of wire rods having a Rm value greater than 850 MPa, it may be advantageous to subject them to a annealed to soften the shade at Rm <850 MPa.

Le fil de forme peut aussi être obtenu directement par laminage à chaud. Dans ce cas, la contrainte à la rupture Rm du fil sera de préférence également inférieure à 850 MPa, soit après laminage soit après un recuit d'adoucissement afin de faciliter les opérations de manipulation de l'élément allongé, avant ou en cours des opérations de trempe.The shaped wire can also be obtained directly by hot rolling. In in this case, the tensile strength Rm of the wire will preferably also be less than 850 MPa, either after rolling or after a softening annealing in order to facilitate the operations of handling the elongated element, before or during the operations of quenching.

Le procédé comporte ainsi normalement une étape préliminaire de formage à chaud, soit d'un fil machine ultérieurement transformé en fil de forme par formage à froid, soit directement du fil de forme. Dans les deux cas, le fil ainsi formé à chaud présente une structure à prédominance ferritique-perlitique, mais pouvant comporter des zones dures, telles que de la martensite. De préférence. avant toute opération ultérieure de formage à froid et/ou de trempe, l'acier doit présenter une limite de rupture Rm inférieure à 850 MPa, cette propriété pouvant être obtenue. soit directement après formage à chaud, soit grâce à un traitement de recuit-adoucissement.The process thus normally includes a preliminary forming step to hot, either from a wire rod subsequently transformed into a form wire by forming cold, either directly from the form wire. In both cases, the wire thus formed hot has a predominantly ferritic-pearlitic structure, but may include hard areas, such as martensite. Preferably. before any operation subsequent cold forming and / or quenching, the steel must have a limit of rupture Rm less than 850 MPa, this property being obtainable. is directly after hot forming, either through an annealing-softening treatment.

De préférence, l'opération de trempe peut être réalisée en continu au défilé.Preferably, the quenching operation can be carried out continuously in the process.

Le procédé peut comporter en complément de ladite trempe, un traitement thermique de détente. Dans ce cas, la limitation de dureté HRC devant être supérieure ou égale à 32, et de préférence supérieure ou égale à 35, doit être respectée après le traitement de détente.The process may include, in addition to said quenching, a treatment thermal expansion. In this case, the HRC hardness limitation must be higher or equal to 32, and preferably greater than or equal to 35, must be respected after the relaxation treatment.

Le traitement de détente peut être effectué en botte dans un four. The relaxation treatment can be carried out in a bundle in an oven.

La trempe et ledit traitement de détente peuvent être effectués au défilé, de préférence en ligne, ce qui permet la fabrication des fils de très grande longueur nécessaires à la réalisation des nappes d'armure des flexibles.The quenching and the said stress relief treatment can be carried out on parade, preferably online, which allows the production of very long wires necessary for the production of flexible armor plies.

Selon une première variante de la présente invention, la teneur en carbone C peut être inférieure ou égale à 0,45%, de préférence inférieure ou égale à 35% et l'acier comporte au moins l'un des deux éléments d'alliage suivant, en faible quantité :

  • entre 0,1% et 2,5% de Cr, de préférence entre 0,25 et 1,3%,
  • entre 0,1% et 1% de Mo,
l'acier étant ainsi du type faiblement allié et pouvant correspondre à des nuances courantes dans l'industrie et de coût relativement limité.According to a first variant of the present invention, the carbon content C can be less than or equal to 0.45%, preferably less than or equal to 35%, and the steel comprises at least one of the following two alloying elements. , in small quantities:
  • between 0.1% and 2.5% of Cr, preferably between 0.25 and 1.3%,
  • between 0.1% and 1% of Mo,
steel is thus of the low-alloy type and can correspond to nuances common in the industry and of relatively limited cost.

Un tel acier, contenant une teneur limitée de Cr et/ou de Mo peut éventuellement ne pas contenir d'autre élément d'alliage, ni de dispersoïde. Cependant, on ne sortira pas du cadre de la présente invention si l'acier contient un peu de dispersoïde, tel que du vanadium, du titane ou du niobium, en particulier pour des aciers à faible carbone, la teneur en carbone pouvant être égale ou supérieure à 0,05%. Dans ce cas, la teneur en vanadium peut être limitée à une valeur faible de façon à éviter une durée trop importante de recuit après soudure, de préférence la teneur en vanadium sera inférieure ou égale à 0,10%.Such a steel, containing a limited content of Cr and / or Mo can possibly not contain any other alloying element or dispersoid. However, it will not depart from the scope of the present invention if the steel contains a little dispersoid, such as vanadium, titanium or niobium, in particular for low carbon steels, the carbon content being equal to or greater than 0.05%. In this case, the vanadium content can be limited to a low value so as to avoid too long annealing time after welding, preferably the vanadium content will be less than or equal to 0.10%.

Selon une autre variante de l'invention. la teneur en carbone de l'acier peut être supérieure ou égale à 0,4%, tout en restant inférieure à 0,8%, et correspondre à un acier standard au carbone-manganèse dur ou mi-dur, classique en tréfilerie ou câblerie. sans addition d'élément d'alliage tels que du Cr ou du Mo. L'acier pourra éventuellement contenir une faible quantité de dispersoïde, telle qu'on peut en trouver couramment dans les aciers du commerce. De tels aciers peuvent être compris dans la gamme d'acier FM40 à FM80. selon la norme AFNOR.According to another variant of the invention. the carbon content of the steel can be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard hard or semi-hard carbon-manganese steel, classic in wire drawing or cables. without the addition of an alloying element such as Cr or Mo. The steel may possibly contain a small amount of dispersoid, such as can be found commonly found in commercial steels. Such steels can be included in the range of steel FM40 to FM80. according to AFNOR standard.

Le traitement thermique de trempe peut comporter le passage dans un four d'austénitisation à une température supérieure au point AC3 de la nuance d'acier du fil. puis dans une zone de trempe dans un fluide de drasticité adaptée à la fois à la nuance d'acier et à la taille des fils, la température et le temps de séjour étant adaptés selon la nuance pour obtenir une taille de grain se situant entre les indices 5 et 12, et avantageusement entre les indices 8 et 11, selon la norme NF 04102. La structure obtenue après trempe, peut être à prédominance martensitique avec un pourcentage compris entre 0 et 50% de bainite inférieure ou à prédominance de bainite inférieure avec un pourcentage compris entre 0 et 50% de martensite. De préférence, la bainite est à l'état bainite inférieure et non pas bainite supérieure. De préférence, la structure peut ne comporter qu'une quantité faible de ferrite.The quenching heat treatment may include passage through an oven austenitization at a temperature above the AC3 point of the steel grade of the wire. then in a zone of quenching in a fluid of drasticity adapted at the same time to the shade steel and the size of the wires, the temperature and the residence time being adapted according to the grade to obtain a grain size between the indices 5 and 12, and advantageously between indices 8 and 11, according to standard NF 04102. The structure obtained after quenching, can be predominantly martensitic with a percentage between 0 and 50% lower bainite or predominantly lower bainite with a percentage between 0 and 50% martensite. Preferably, the bainite is in the lower bainite state and not higher bainite. Preferably, the structure can contain only a small amount of ferrite.

Le procédé d'élaboration peut se terminer avec l'opération de trempe. de préférence suivie d'un traitement de détente.The production process can end with the quenching operation. of preference followed by a relaxation treatment.

Les températures du traitement de détente peuvent être :

  • au défilé entre 300 et 550°C, la vitesse étant adaptée à la section du fil de façon à obtenir la dureté selon la présente invention, supérieure ou égale à 32 HRC,
  • en botte dans un four entre 150 et 300°C.
The temperatures of the stress relief treatment can be:
  • in the process between 300 and 550 ° C., the speed being adapted to the section of the wire so as to obtain the hardness according to the present invention, greater than or equal to 32 HRC,
  • in a bale in an oven between 150 and 300 ° C.

Le fil ainsi obtenu peut ne pas être apte à résister à l'H2S dans certaines conditions d'exploitation, mais il peut être utilisé de façon très intéressante comme fil d'armure pour des conduites flexibles grâce à ses excellentes propriétés mécaniques optimisées, en particulier par la combinaison d'une résistance mécanique élevée et d'une ductilité supérieure à celle que l'on peut obtenir avec les procédés connus. La limite de rupture Rm peut atteindre 1000 à 1600 MPa, égale ou supérieure à celle des fils d'armure les plus résistant actuellement connus, et l'allongement à la rupture peut être supérieur à 5%, éventuellement supérieur à 10% et pouvant dépasser 15% dans certains cas. Alors que pour les fils d'acier connus présentant un niveau de résistance comparable à l'état écroui, ceux-ci présentent un allongement à la rupture ne dépassant pas 5%.The wire thus obtained may not be able to withstand H 2 S under certain operating conditions, but it can be very advantageously used as armouring wire for flexible conduits thanks to its excellent optimized mechanical properties, in particular by the combination of a high mechanical strength and a ductility higher than that which can be obtained with known methods. The rupture limit Rm can reach 1000 to 1600 MPa, equal to or greater than that of the most resistant armor wires currently known, and the elongation at break can be greater than 5%, possibly greater than 10% and possibly exceeding 15% in some cases. Whereas for known steel wires having a level of resistance comparable to the work hardened state, these have an elongation at break not exceeding 5%.

Selon un mode de mise en oeuvre particulier de l'invention afin d'obtenir des fils de forme optimisés résistant à l'H2S, le procédé peut comporter, postérieurement au traitement thermique de trempe, éventuellement complété par un traitement de détente, un traitement thermique final de revenu dans des conditions déterminées pour obtenir une dureté supérieure ou égale à 20 HRC et inférieure ou égale à 35 HRC.According to a particular embodiment of the invention in order to obtain optimized shaped wires resistant to H 2 S, the method may include, after the quenching heat treatment, optionally supplemented by an expansion treatment, a final heat treatment of tempering under determined conditions to obtain a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC.

Les conditions du traitement thermique final de revenu peuvent être adaptées de façon à obtenir une dureté inférieure ou égale à 28 HRC, compatible avec les conditions d'exploitation pouvant prévoir une ambiance à pH voisin de 3.The conditions of the final tempering treatment can be adapted so as to obtain a hardness less than or equal to 28 HRC, compatible with operating conditions which can provide an environment with a pH close to 3.

Dans tous les cas, après trempe et revenu final, tels que définis, y compris à pH voisin de 3, un acier selon la présente invention ne présente pas de cloque ni de fissure aux essais HIC, et en outre ne présente pas de fissuration lorsqu'il est soumis à des essais selon la norme NACE 0177 (SSCC) avec une contrainte de traction au moins égale à 60% de la limite élastique et pouvant atteindre environ 90% de cette dernière.In all cases, after quenching and final tempering, as defined, including at pH close to 3, a steel according to the present invention does not exhibit blistering or crack in HIC tests, and furthermore does not show cracking when subjected to tests according to standard NACE 0177 (SSCC) with a tensile stress at less than 60% of the elastic limit and up to approximately 90% of this last.

Le revenu final peut être effectué au défilé, en ligne ou séparé.The final income can be made at the parade, online or separate.

Le revenu final peut être effectué en botte dans un four.The final income can be made in a bundle in an oven.

La température du revenu peut être au plus égale à une température inférieure d'environ 10°C à 30°C par rapport à la température AC de début d'austénitisation de l'acier, afin d'éviter une coalescence excessive de carbure pouvant conduire à une diminution des caractéristiques.The tempering temperature can be at most equal to a lower temperature from about 10 ° C to 30 ° C relative to the AC temperature at the start of austenitization of steel, in order to avoid excessive coalescence of carbide which could lead to a decrease in characteristics.

En fin de fabrication, le fil est enroulé sur une bobine de façon à pouvoir être ultérieurement monté sur une spiraleuse ou armeuse pour la fabrication d'armure de la conduite flexible.At the end of production, the wire is wound on a spool so that it can be subsequently mounted on a spiral or armeuse for the manufacture of armor of the flexible driving.

D'une façon générale. en particulier dans le but d'obtenir les meilleures caractéristiques possibles de résistance mécanique, la nuance d'acier peut être optimisée en fonction du procédé de formage du fil de forme à partir du fil machine:

  • Formage du fil par transformation à froid:
Generally speaking. in particular in order to obtain the best possible mechanical strength characteristics, the steel grade can be optimized according to the process for forming the form wire from the wire rod:
  • Wire forming by cold transformation:

Il a été trouvé que cette méthode de mise en oeuvre de l'invention permet d'obtenir des résultats intéressants en choisissant un acier faiblement allié, ou du type acier au carbone. It has been found that this method of implementing the invention allows to obtain interesting results by choosing a weak steel alloy, or carbon steel type.

La teneur en éléments d'alliage, tout en étant faible, doit être suffisante pour obtenir après trempe une structure à dominante martensitique ou bainitique avec peu de ferrite (on peut ainsi, dans les cas les plus favorables, obtenir une structure contenant près de 100% de martensite et couramment, au moins 90% de martensite et bainite).The content of alloying elements, while being low, must be sufficient to obtain after quenching a predominantly martensitic or bainitic structure with little ferrite (we can thus, in the most favorable cases, obtain a structure containing nearly 100% martensite and commonly, at least 90% martensite and bainite).

Par ailleurs, la teneur en éléments d'alliage doit être limitée à des valeurs relativement faibles. En effet, si cette teneur dépasse certaines limites (qui peuvent être déterminées par l'homme de l'art en procédant à plusieurs essais successifs), il en résulte des conséquences rendant le fil inapte aux opérations de transformation à froid:

  • a) risque de formation d'une quantité de martensite excessive dans la structure du fil machine, par le simple effet du refroidissement suivant le formage à chaud du fil machine.
  • b) dureté du fil machine trop élevée pour pouvoir effectuer correctement le laminage à froid de transformation du fil machine en fil de forme selon les dimensions spécifiées.
  • Furthermore, the content of alloying elements must be limited to relatively low values. Indeed, if this content exceeds certain limits (which can be determined by a person skilled in the art by carrying out several successive tests), this results in consequences making the wire unfit for cold processing operations:
  • a) risk of formation of an excessive amount of martensite in the structure of the wire rod, by the simple effect of cooling following the hot forming of the wire rod.
  • b) hardness of the wire rod too high to be able to correctly carry out the cold rolling transforming the wire rod into shaped wire according to the specified dimensions.
  • Il a été ainsi trouvé qu'il est possible, entre des aciers trop faiblement alliés et des aciers excessivement alliés, de trouver des aciers présentant une teneur optimisée en éléments d'alliage de manière à réaliser par laminage à froid des fils de forme de caractéristiques particulièrement intéressantes après trempe et revenu.

    • Formage du fil par laminage à chaud:
    It has thus been found that it is possible, between too weakly alloyed steels and excessively alloyed steels, to find steels having an optimized content of alloying elements so as to produce by cold rolling of shaped wires of characteristics particularly interesting after quenching and tempering.
    • Wire forming by hot rolling:

    Ce procédé permet de réduire les coûts de fabrication. Il permet en outre d'obtenir des fils de forme de sections plus importantes que le laminage à froid.This process reduces manufacturing costs. It also allows to obtain wires with the shape of larger sections than cold rolling.

    L'invention permet de réaliser ainsi un fil de forme présentant après trempe une structure à dominante martensitique ou bainitique de façon relativement homogène dans toute l'épaisseur du fil, malgré l'augmentation de l'épaisseur du fil. On peut ainsi obtenir, dans les cas les plus favorables, jusqu'à environ 100% de martensite. la teneur totale en martensite et bainite étant couramment, au moins égale à 90%.The invention thus makes it possible to produce a shaped wire having after quenching a relatively homogeneous martensitic or bainitic structure throughout the thickness of the wire, despite the increase in the thickness of the wire. We can thus obtain, in the most favorable cases, up to approximately 100% martensite. content total in martensite and bainite being commonly, at least equal to 90%.

    Un tel résultat est obtenu en utilisant une nuance d'acier plus alliée que les aciers recommandés pour le formage par laminage à froid. De tels aciers plus fortement alliés auraient d'ailleurs été difficile à utiliser ou même inadaptés pour le laminage à froid.Such a result is obtained by using a more alloyed steel grade than the steels recommended for forming by cold rolling. Such steels more strongly allies would have been difficult to use or even unsuitable for rolling to cold.

    Selon l'invention, on peut, en particulier, réaliser des fils de forme présentant à la fois une résistance mécanique élevée et une tenue excellente en présence de H2S par transformation à froid, même si le corroyage induit des déformations globales ou locales fortes. Ce résultat est obtenu bien qu'un niveau élevé de déformation à froid risque, en fonction du taux de déformation et de la nuance, de provoquer des augmentations excessives de résistance et une réduction de la ductilité pouvant entraíner des défauts lors des opérations ultérieures de formage. Selon un mode particulier de mise en oeuvre, le formage à froid comportant au moins deux étapes successives de transformation à froid, une opération intermédiaire de traitement thermique est réalisée entre la première et la dernière étape de transformation à froid. Par exemple, l'opération intermédiaire de traitement thermique peut être réalisée entre une opération préliminaire de tréfilage et le début de laminage. ou entre deux passes successives de laminage.According to the invention, it is possible, in particular, to produce shaped wires having both high mechanical strength and excellent resistance in the presence of H2S by cold transformation, even if the wrought induces global deformations or strong local. This is achieved although a high level of cold deformation risk, depending on the deformation rate and the shade, of causing excessive strength increases and a reduction in ductility that can lead to faults during subsequent forming operations. According to a mode particular implementation, cold forming comprising at least two stages successive cold processing, an intermediate processing operation thermal is carried out between the first and the last cold transformation step. For example, the intermediate heat treatment operation can be carried out between a preliminary drawing operation and the beginning of rolling. or between two passes successive lamination.

    Un tel traitement thermique intermédiaire intermédiaire peut être réalisé de diverses façons connues en métallurgie, de façon à abaisser la résistance mécanique, de préférence en dessous de 850 MPa, et à retrouver la ductilité permettant la transformation à froid.Such an intermediate intermediate heat treatment can be carried out various ways known in metallurgy, so as to lower the mechanical strength, preferably below 850 MPa, and to recover the ductility allowing the cold processing.

    L'invention concerne également un fil de forme de section constante et de grande longueur, adapté à être utilisé comme fil d'armure d'une conduite flexible selon deux variantes définies aux revendications 20 et 21. The invention also relates to a wire of constant cross-section shape and very long, suitable for use as the armor wire of a flexible pipe according to two variants defined in claims 20 and 21.

    L'acier du type martensitique bainitique revenu, le revenu pouvant être plus ou moins prononcé, en particulier tel qu'un revenu de détente, de sorte que le fil obtenu présente la ductilité nécessaire pour son utlisation ultérieure comme fil d'armure, ou tel qu'un revenu de qualité rendant le fil apte à l'utilisation en présence d'H2S.Tempered bainitic martensitic type steel, the tempering may be more or less pronounced, especially such as a trigger income, so that the thread obtained has the ductility necessary for its subsequent use as a wire armor, or as a quality income making the wire suitable for use in the presence of H2S.

    De préférence, la structure martensitique bainitique est à prédominance martensitique avec un pourcentage compris entre 0 et 50% de bainite inférieure ou à prédominance de bainite inférieure avec un pourcentage compris entre 0 et 50% de martensite. De préférence, la structure peut ne comporter qu'une quantité faible de ferrite. Le fil peut avoir une dureté supérieure à 20 HRC. De préférence, la taille du grain austénitique se situe entre les indices 5 et 12, et avantageusement entre les indices 8 et 11. selon la norme NF 04102.Preferably, the bainitic martensitic structure is predominantly martensitic with a percentage between 0 and 50% of bainite inferior or predominantly lower bainite with a percentage between 0 and 50% of martensite. Preferably, the structure may contain only a small amount of ferrite. The wire can have a hardness greater than 20 HRC. Preferably, the size of the austenitic grain lies between indices 5 and 12, and advantageously between indices 8 and 11. according to standard NF 04102.

    Le fil de forme peut avoir une section ayant au moins l'une des formes générales suivantes : en U, en T, en Z, rectangulaire ou rond.The form wire can have a section having at least one of the forms following general: U, T, Z, rectangular or round.

    La section du fil de forme peut avoir une largeur L et une épaisseur e. et avoir les proportions suivantes : L/e supérieur à 1 et inférieur à 7. L'épaisseur peut varier entre 1 mm et 20 mm, pouvant atteindre 30 mm.The section of the form wire can have a width L and a thickness e. and to have the following proportions: L / e greater than 1 and less than 7. The thickness may vary between 1 mm and 20 mm, up to 30 mm.

    Le profil du fil de forme peut comporter des moyens d'accrochage avec un fil adjacent.The profile of the form wire may include means for hooking with a wire adjacent.

    Dans une première variante du fil de forme selon la présente invention, la teneur en carbone C peut être inférieure ou égale à 0,45%, et l'acier comporte au moins l'un des deux éléments d'alliage suivant, en faible quantité :

    • entre 0,1% et 2,5% de Cr, de préférence entre 0,25 et 1,3%.
    • entre 0,1% et 1% de Mo.
    In a first variant of the shaped wire according to the present invention, the carbon content C can be less than or equal to 0.45%, and the steel comprises at least one of the following two alloying elements, in small quantity :
    • between 0.1% and 2.5% of Cr, preferably between 0.25 and 1.3%.
    • between 0.1% and 1% of Mo.

    Dans cette variante, la teneur en carbone C peut être supérieure ou égale à 0,08%, de préférence supérieure ou égale à 0,12% et l'acier peut comporter au plus 0,4% de Si. L'acier peut par exemple comporter de 0,12% à 0,35% de C. In this variant, the carbon content C can be greater than or equal to 0.08%, preferably greater than or equal to 0.12% and the steel may contain at most 0.4% of Si. The steel may for example contain from 0.12% to 0.35% of C.

    Dans une autre variante du fil de forme selon l'invention, la teneur en carbone de l'acier peut être supérieure ou égale à 0,4%, tout en restant inférieure à 0,8%, et correspondre à un acier standard au carbone-manganèse dur ou mi-dur, classique en tréfilerie ou câblerie, sans addition d'élément d'alliage tels que du Cr ou du Mo, avec éventuellement une faible quantité de dispersoïde. De tels aciers peuvent être compris dans la gamme d'acier FM40 à FM80, selon la norme AFNOR.In another variant of the shaped wire according to the invention, the carbon content steel may be greater than or equal to 0.4%, while remaining less than 0.8%, and correspond to a standard carbon-manganese hard or semi-hard steel, classic in wire or cable drawing, without adding any alloying element such as Cr or Mo, with possibly a small amount of dispersoid. Such steels can be understood in the FM40 to FM80 steel range, according to the AFNOR standard.

    Selon un premier mode de réalisation, le fil de forme selon l'invention peut avoir une dureté HRC supérieure ou égale à 32, de préférence supérieure ou égale à 35. Le fil ainsi obtenu peut ne pas être apte à résister à l'H2S dans certaines conditions d'exploitation, mais il peut être utilisé de façon très intéressante comme fil d'armure pour des conduites flexibles grâce à ses excellentes propriétés mécaniques optimisées, en particulier par la combinaison d'une résistance mécanique élevée et d'une ductilité supérieure à celle que l'on peut obtenir avec les procédés connus. La limite de rupture Rm peut atteindre 1000 à 1600 MPa., de préférence supérieure ou égale à 1200 MPa. Un tel fil peut avantageusement être utilisé pour réaliser l'armure de flexibles destinés au transport de pétrole brut faiblement corrosif ("sweet crude"), de pétrole dégazé ("dead oil") ou d'eau. Le procédé pour élaborer un tel fil peut se terminer par une opération de trempe, de préférence suivie par un traitement de détente.According to a first embodiment, the shaped wire according to the invention can have an HRC hardness greater than or equal to 32, preferably greater than or equal to 35. The wire thus obtained may not be able to resist H 2 S under certain operating conditions, but it can be used very advantageously as armouring wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of high mechanical strength and ductility greater than that which can be obtained with known methods. The breaking limit Rm can reach 1000 to 1600 MPa., Preferably greater than or equal to 1200 MPa. Such a wire can advantageously be used to make the armor of hoses intended for the transport of weakly corrosive crude oil ("sweet crude"), degassed oil ("dead oil") or water. The process for producing such a wire can end in a quenching operation, preferably followed by an expansion treatment.

    Selon un autre mode de réalisation, le fil de forme selon l'invention peut avoir une dureté HRC supérieure ou égale à 20, de préférence inférieure ou égale à 35. Le fil ainsi obtenu peut présenter des propriétés de résistance à l'H2S dans les conditions d'exploitation décrites ci-dessus, en particulier à la suite d'essais HIC en milieu très acide (pH voisin de 2,8 ou 3). La résistance mécanique Rm peut être de l'ordre de 700 à 900 MPa sous pH voisin de 3 et peut atteindre au moins 1100 MPa avec un pH plus élevé. La contrainte appliquée dans les essais SSCC selon NACE, avec un pH voisin de 2,8, peut être au moins de 400 MPa et peut atteindre 600 MPa. According to another embodiment, the shaped wire according to the invention can have an HRC hardness greater than or equal to 20, preferably less than or equal to 35. The wire thus obtained can have properties of resistance to H 2 S under the operating conditions described above, in particular following HIC tests in very acidic medium (pH close to 2.8 or 3). The mechanical resistance Rm can be of the order of 700 to 900 MPa under a pH close to 3 and can reach at least 1100 MPa with a higher pH. The stress applied in the SSCC tests according to NACE, with a pH close to 2.8, can be at least 400 MPa and can reach 600 MPa.

    Dans le cas où les essais SSCC sont réalisés avec un pH supérieur à 3, les contraintes admissibles peuvent être plus élevées, pouvant atteindre environ 90% de la limite élastique.If the SSCC tests are carried out with a pH greater than 3, the allowable stresses may be higher, up to approximately 90% of the Elastic limit.

    En vue de leur utilisation comme fils d'armure de conduites flexibles destinées au transport de pétrole brut comprenant du gaz acide, en particulier du H2S et du CO2, le procédé selon l'invention permet de réaliser des fils de forme en acier du type martensite-bainite revenu dont la structure présente des nodules de carbure extrèmement fins dans un état de très grande dispersion dans une matrice de ferrite issue par revenu d'une structure martensite-bainite. Il est interessant de comparer cet acier à d'autres aciers déjà proposés ou utilisés pour réaliser des fils d'armure destinés au même usage, tels que des aciers obtenus par traitement de sphéroidisation à partir d'une structure ferrite-perlite écrouie, ces aciers comportant également des éléments de carbure dans une matrice ferritique. Les éléments de carbure sphéroidisés de ces aciers sont considérablement moins fins et moins dispersés que dans le cas de l'acier selon l'invention, ce qui permet d'identifier de façon évidente la différence entre les deux types de matériau. En outre, il semble que les propriétés supérieures de fil de forme selon l'invention, en termes de résistance mécanique et de compatibilité à l'H2S, par comparaison aux fils de l'art antérieur, en particulier en acier sphéroidisé, peuvent avoir une relation avec le fait de présenter une structure nodulaire beaucoup plus fine et dispersé.With a view to their use as armouring wire for flexible pipes intended the transport of crude oil comprising acid gas, in particular H2S and CO2, the method according to the invention makes it possible to form steel wires of the type tempered martensite-bainite whose structure has carbide nodules extremely fine in a state of very great dispersion in a ferrite matrix issue by income from a martensite-bainite structure. It is interesting to compare this steel to other steels already offered or used to make armouring wires intended for the same use, such as steels obtained by spheroidization treatment from of a hardened ferrite-perlite structure, these steels also comprising elements of carbide in a ferritic matrix. The spheroidized carbide elements of these steels are considerably less fine and less dispersed than in the case of steel according to invention, which clearly identifies the difference between the two types of material. In addition, it appears that the superior properties of form wire according to the invention, in terms of mechanical resistance and compatibility with H2S, by comparison with the wires of the prior art, in particular in spheroidized steel, can have a relationship to having a much finer nodular structure and scattered.

    Il faut noter que l'invention présente notamment l'avantage qu'à partir des mêmes lots de fil machine et en procédant aux mêmes opérations de trempe. éventuellement de détente, on peut réaliser, en fonction des besoins, soit des fils en acier très résistant mécaniquement mais ne présentant pas parfois les propriétés requises de résistance à l'H2S, soit des fils résistant à l'H2S même dans les conditions les plus sévères. Dans le premier cas, la gamme de fabrication se termine avec l'opération de trempe. de préférence suivie d'une détente. Dans l'autre cas, la gamme de fabrication est poursuivie par une étape complémentaire de revenu final. It should be noted that the invention has the particular advantage that from the same batches of wire rod and by carrying out the same quenching operations. optionally expansion, one can produce, depending on the needs, either steel wires which are very mechanically resistant but do not sometimes have the required properties of resistance to H 2 S, or wires which are resistant to H 2 S even in the most severe conditions. In the first case, the production range ends with the quenching operation. preferably followed by relaxation. In the other case, the manufacturing range is continued by an additional final income stage.

    L'invention peut être appliquée à un tube flexible pour le transport d'un effluent comportant de l'H2S, le tube pouvant comporter au moins une couche d'armures de renfort à la pression et/ou à la traction comportant des fils de forme selon l'invention.The invention can be applied to a flexible tube for transporting an effluent comprising H 2 S, the tube possibly comprising at least one layer of reinforcements of reinforcement under pressure and / or under tension comprising wires form according to the invention.

    La présente invention sera mieux comprise et ses avantages apparaítront plus clairement à la lecture des exemples suivants, nullement limitatifs.The present invention will be better understood and its advantages will appear more clearly on reading the following examples, in no way limiting.

    Exemple 1:Example 1:

    Des fils de forme de section circulaire de diamètre 15 mm ont été élaborés à partir d'un acier du type Chrome-Molybdène conforme à la nuance 30CD4 de la norme AFNOR (équivalente à la norme ASTM 4130 en correspondance avec le nombre UNS G41300). L'acier utilisé a la composition suivante :
       C : 0,30%   Mn: 0,46%   Cr: 0,90%   Si : 0,32%   Mo : 0,18%   Ni : 0,12%   S=0,003%   P=0,009%
    15 mm diameter circular section wires were produced from a chromium-molybdenum type steel conforming to grade 30CD4 of the AFNOR standard (equivalent to the ASTM 4130 standard in correspondence with the number UNS G41300). The steel used has the following composition:
    C: 0.30% Mn: 0.46% Cr: 0.90% If: 0.32% Mo: 0.18% Ni: 0.12% S = 0.003% P = 0.009%

    L'opération de trempe a été réalisée au défilé à la vitesse de 1,8 m/minute avec chauffage par induction à haute fréquence à 980°C-1000°C, puis trempe à l'huile. Le traitement de détente a été effectué au four pendant heures à 180°C.The quenching operation was carried out at the parade at the speed of 1.8 m / minute with high frequency induction heating to 980 ° C-1000 ° C, then oil quenching. The expansion treatment was carried out in the oven for hours at 180 ° C.

    Après ces traitements thermiques de trempe et de détente. la dureté du fil est de 40 HRC (Rm=1200 MPa) et sa structure est à prépondérance martensitique. La taille des grains correspond à un indice 8 de la norme NF 04.102.After these thermal quenching and relaxation treatments. the hardness of the wire is of 40 HRC (Rm = 1200 MPa) and its structure is predominantly martensitic. The grain size corresponds to an index 8 of standard NF 04.102.

    Des traitements thermiques de revenu en four pendant 2 heures conduisent aux caracténstiques mécaniques suivantes : Temp.(°C) 600 620 645 655 675 Dureté HRC 30 28 26 24 22 Heat treatments in the oven for 2 hours lead to the following mechanical characteristics: Temp. (° C) 600 620 645 655 675 HRC hardness 30 28 26 24 22

    Des fils ainsi traités thermiquement ayant une dureté entre 22 et 26 HRC satisfont les essais SSC NACE TM 0177 pendant 30 jours sous les contraintes de tensions uni-axiales (T) suivantes : Contrainte de tension Caractéristiques de l'acier (en fonction du revenu) T (MPa) HRC Re (MPa) Rm (MPa) 500 22 650-680 760-800 550 24 680-700 800-830 450 26 700-750 830-860 Threads thus heat treated having a hardness between 22 and 26 HRC satisfy the SSC NACE TM 0177 tests for 30 days under the following uni-axial tension constraints (T): Tension stress Characteristics of steel (depending on income) T (MPa) HRC Re (MPa) Rm (MPa) 500 22 650-680 760-800 550 24 680-700 800-830 450 26 700-750 830-860

    Après ces essais NACE, des essais de traction sur les éprouvettes montrent que les caractéristiques mécaniques et notamment l'allongement à la rupture ne sont pas affectées, restant très voisines des valeurs obtenues avant l'essai NACE.After these NACE tests, tensile tests on the test pieces show that the mechanical characteristics and in particular the elongation at break are not affected, remaining very close to the values obtained before the NACE test.

    Des essais HIC réalisés selon la procédure NACE TM 0284, mais dans une solution dite type "NACE TM 0177" (pH=2,8) au lieu d'eau de mer synthétique (pH environ 5) révèlent une non sensibilité à la fissuration en gradin pour ces trois niveaux de dureté (22, 24 et 26 HRC) : CLR=0% CTR=0% CSR=0% HIC tests carried out according to the NACE TM 0284 procedure, but in a solution called "NACE TM 0177" type (pH = 2.8) instead of synthetic seawater (pH approximately 5) reveal a non-sensitivity to cracking. step for these three hardness levels (22, 24 and 26 HRC): CLR = 0% CTR = 0% CSR = 0%

    De plus, les soudures réalisées par chauffage par induction ou résistance, avec compression axiale, complétées par des traitement de revenu de moins de 5 minutes, satisfont l'essai SSC NACE TM 0177 sous tension uni-axiale de 400 MPa. De préférence, les températures de revenu de post soudage devront être supérieures à celle du traitement de revenu du métal et inférieures à la température de début d'austénitisation AC1, préférentiellement inférieure de 20 à 30°C par rapport à AC1.In addition, welds made by induction or resistance heating, with axial compression, supplemented by income treatments of less than 5 minutes, pass the SSC NACE TM 0177 test at 400 MPa uniaxial tension. Of preferably post-weld tempering temperatures should be higher than that of metal tempering and below the start temperature austenitization AC1, preferably 20 to 30 ° C lower than AC1.

    Dans la fabrication industrielle des flexibles, de telles opérations de soudure sont indispensables pour raccorder les sections unitaires de fils. Il convient de noter qu'il est particulièrement intéressant d'obtenir de bons résultats aux essais NACE sur les fils et également la possibilité de réaliser rapidement l'opération de revenu après soudure. Il a été trouvé, par exemple, que la durée nécessaire d'un tel traitement de revenu dépasse 30 minutes dans le cas où l'acier comporte plus de 0,10% de vanadium et que, par voie de conséquence, l'utilisation de cet acier n'est pas recommandée pour les applications visées par la présente invention, alors qu'a priori. il semblerait évident de recourir à l'addition de vanadium pour un usage de ce genre.In the industrial manufacture of hoses, such welding operations are essential for connecting the unitary sections of wires. It should be noted that it is particularly interesting to obtain good results in the NACE tests on the sons and also the possibility of quickly carrying out the income operation after welding. It has been found, for example, that the time required for such treatment of income exceeds 30 minutes if the steel contains more than 0.10% of vanadium and that, consequently, the use of this steel is not recommended for the applications targeted by the present invention, whereas a priori. he would seem obvious to resort to the addition of vanadium for a use of this kind.

    A partir d'un acier légèrement différent, également du type 30CD4, et ayant la composition suivante :
       C=0,31%, Mn=0,66%, Si=0,23%, Cr= 1,02%, Mo=0,22%, Ni=0,24%, S=0,010%, P=0,009%,
    From a slightly different steel, also of type 30CD4, and having the following composition:
    C = 0.31%, Mn = 0.66%, Si = 0.23%, Cr = 1.02%, Mo = 0.22%, Ni = 0.24%, S = 0.010%, P = 0.009 %,

    on a fabriqué un fil ayant une section en T (Hauteur 14 mm, largeur 25 mm). Après une opération de trempe au défilé et un traitement de détente, le fil a une dureté de 40 HRC.a wire was made having a T section (height 14 mm, width 25 mm). After a process of quenching in the procession and a treatment of relaxation, the wire has a hardness 40 HRC.

    Après revenu au four pendant environ 3 heures à une température voisine de 650°C, on obtient les caractéristiques mécaniques suivantes en fonction des duretés entre 23 et 25 HRC : HRC Re (MPa) Rm (MPa) 23 675 790 24 715 815 25 740 854 After having returned to the oven for approximately 3 hours at a temperature in the region of 650 ° C., the following mechanical characteristics are obtained according to the hardnesses between 23 and 25 HRC: HRC Re (MPa) Rm (MPa) 23 675 790 24 715 815 25 740 854

    Les essais HIC effectués comme pour le fil rond de 15 mm, montrent les mêmes résultats d'absence de fissuration.The HIC tests carried out as for the 15 mm round wire, show the same results of absence of cracking.

    Les essais SSCC donnent au moins une valeur de tension uni-axiale de 400 MPa pour chacune des duretés. SSCC tests give at least a uniaxial tension value of 400 MPa for each hardness.

    Exemple 2 :Example 2:

    Des fils de forme ont été élaborés à partir d'un acier de type chrome-molybdène conforme à la nuance 12CD4 définie par la norme AFNOR comportant :
       C :0,14%   Mn :0,74%   Cr :1,095%   Si :0,203%
       Mo :0,246%   Ni :0,24%   S=0,006%   P=0,008%
    Shaped wires have been produced from a chromium-molybdenum type steel conforming to grade 12CD4 defined by the AFNOR standard comprising:
    C: 0.14% Mn: 0.74% Cr: 1.095% Si: 0.203%
    Mo: 0.246% Ni: 0.24% S = 0.006% P = 0.008%

    A partir d'un fil machine rond de 8 mm de diamètre (ayant une contrainte à la rupture de 750 MPa environ), on a obtenu un fil plat de largeur 9 mm et d'épaisseur 3 mm (9x3) par tréfilage et laminage à froid.From a round wire rod 8 mm in diameter (having a stress on the breaking of approximately 750 MPa), a flat wire 9 mm wide and thick was obtained 3 mm (9x3) by wire drawing and cold rolling.

    La trempe a été réalisée à l'huile au défilé suivie par un revenu de détente au défilé dans un bain de plomb dans une température au voisinage de 500°C. On obtient une dureté de 40 HRC et une contrainte à la rupture de 1240 MPa. La taille des grains correspond à un indice 8 de la norme NF 04.102.

    • Traitement de revenu au four :
    The quenching was carried out with oil in the process followed by a relaxation income in the process in a lead bath in a temperature in the vicinity of 500 ° C. We obtain a hardness of 40 HRC and a breaking stress of 1240 MPa. The grain size corresponds to an index 8 of standard NF 04.102.
    • Income treatment in the oven:

    Le tableau ci-dessous permet de comparer les caractéristiques mécaniques des fils avant et après essai HIC réalisé selon la procédure NACE TM 0284 mais dans une solution dite "NACE TM 0177" (pH=2,8) au lieu de l'eau de mer synthétique (pH environ 5): HRC Re Rm A (%) Z (%) Après détente, avant revenu final : 40 Avant HIC 1140 1230 18 81 Après HIC 1100 1177 18.4 77 Après revenu final : 570°C 28 Avant HIC 790 850 24 85 Après HIC 800 861 22 67 600°C 26 Avant HIC 740 830 26 66 Après HIC 750 792 23 72 630°C 24 Avant HIC 720 796 28 64 Après HIC 670 746 24 70 640°C 22 Avant HIC 700 781 30 82 Après HIC 640 731 24 76 The table below makes it possible to compare the mechanical characteristics of the wires before and after the HIC test carried out according to the NACE TM 0284 procedure but in a solution called "NACE TM 0177" (pH = 2.8) instead of sea water. synthetic (pH about 5): HRC Re Rm AT (%) Z (%) After relaxation, before final income: 40 Before HIC 1140 1230 18 81 After HIC 1100 1177 18.4 77 After final income: 570 ° C 28 Before HIC 790 850 24 85 After HIC 800 861 22 67 600 ° C 26 Before HIC 740 830 26 66 After HIC 750 792 23 72 630 ° C 24 Before HIC 720 796 28 64 After HIC 670 746 24 70 640 ° C 22 Before HIC 700 781 30 82 After HIC 640 731 24 76

    Les fils après traitement de revenu réglé de façon à obtenir 24 HRC, ont satisfait les essais selon la procédure NACE TM 0177 (Méthode A) sous 500 MPa de contrainte.

    • Traitement de revenu au défilé :
    The wires, after tempering treatment adjusted so as to obtain 24 HRC, passed the tests according to the NACE TM 0177 procedure (Method A) under 500 MPa of stress.
    • Income processing at the parade:

    Le revenu a été effectué à la vitesse de 15 m/minute par chauffage par induction moyenne fréquence à différentes puissances conduisant aux caractéristiques mécaniques suivantes en fonction de la température mesurée en sortie de la self de chauffage : T sortie self (°C) 680 700 710 Dureté HRC 29 28 26 The tempering was carried out at a speed of 15 m / minute by medium frequency induction heating at different powers leading to the following mechanical characteristics as a function of the temperature measured at the output of the heating coil: T self output (° C) 680 700 710 HRC hardness 29 28 26

    Dans les deux cas de traitement de revenu (revenu au four ou au défilé), des essais HIC sont réalisés pour chaque niveau de dureté, selon la procédure NACE TM 0284, mais dans une solution dite type "NACE TM 0177" (pH=2,8) au lieu de l'eau de mer synthétique (pH environ 5). Les essais révèlent une non sensibilité à la fissuration en gradin pour les différents niveaux de dureté (de 22 à 28 HRC pour le traitement au four et de 26 à 29 pour le traitement au défilé) : CLR=0% CTR=0% CSR=0% In the two cases of tempering treatment (tempering in the oven or in the parade), HIC tests are carried out for each hardness level, according to the NACE TM 0284 procedure, but in a solution called "NACE TM 0177" type (pH = 2 , 8) instead of synthetic sea water (pH around 5). The tests reveal a non-sensitivity to step cracking for the different hardness levels (from 22 to 28 HRC for the treatment in the oven and from 26 to 29 for the treatment in the parade): CLR = 0% CTR = 0% CSR = 0%

    Exemple 3 :Example 3:

    Aciers au carbone-manganèse avec addition de chrome entre 0,1 et 1%, aptes à la trempe et au revenu, conformes à la gamme 20C4 à 40C1 selon la norme AFNOR.Carbon-manganese steels with addition of chromium between 0.1 and 1%, suitable quenching and tempering, in accordance with the range 20C4 to 40C1 according to the AFNOR standard.

    1)- Dans la nuance 35C1 (0,35 de C) on fabrique des fils de forme rectangulaire (9x3) avec un acier présentant la composition suivante :
       C=0,35%, Mn=0,75%, Si=0,26%, Cr=0,35%
       S=0,02%, P=0,02%, sans addition de molybdène ni de nickel.
    1) - In grade 35C1 (0.35 of C), rectangular wires (9x3) are made with a steel having the following composition:
    C = 0.35%, Mn = 0.75%, Si = 0.26%, Cr = 0.35%
    S = 0.02%, P = 0.02%, without addition of molybdenum or nickel.

    Après trempe à l'huile et traitement de détente, on obtient des fils de dureté 40 HRC et de Rm=1310 MPa. La taille des grains correspond à un indice 8 de la norme NF 04.102.

    • Traitement de revenu au four :
    After oil quenching and expansion treatment, 40 HRC hardness wires and Rm = 1310 MPa are obtained. The grain size corresponds to an index 8 of standard NF 04.102.
    • Income treatment in the oven:

    Pendant un traitement d'une heure environ aux températures suivantes, on obtient les duretés : Temp. de revenu 450°C 500°C 550°C 600°C HRC 27,3 27,2 26,1 22 During a treatment of approximately one hour at the following temperatures, the hardnesses are obtained: Temp. income 450 ° C 500 ° C 550 ° C 600 ° C HRC 27.3 27.2 26.1 22

    Après essais HIC selon la procédure NACE TM 0284 mais dans une solution dite "NACE TM 0177" (pH=2,8) au lieu de l'eau de mer synthétique (pH environ 5), on obtient les caractéristiques mécaniques suivantes comparées à celles mesurées avant HIC : HRC Re Rm A (%) 27 Avant HIC 730 890 16 Après HIC 730 890 14,5 22 Avant HIC 705 780 18 Après HIC 710 780 20

    • Traitement de revenu au défilé :
    After HIC tests according to the NACE TM 0284 procedure but in a so-called "NACE TM 0177" solution (pH = 2.8) instead of synthetic sea water (pH approximately 5), the following mechanical characteristics are obtained compared to those measured before HIC: HRC Re Rm AT (%) 27 Before HIC 730 890 16 After HIC 730 890 14.5 22 Before HIC 705 780 18 After HIC 710 780 20
    • Income processing at the parade:

    Pour une température de 700°C, le fil obtenu a une dureté de 27,5 HRC, Re=710 MPa, Rm=940 MPa et A=14,6%For a temperature of 700 ° C, the wire obtained has a hardness of 27.5 HRC, Re = 710 MPa, Rm = 940 MPa and A = 14.6%

    Dans les deux cas de traitement de revenu, les essais HIC réalisés selon la procédure NACE TM 0284. mais dans une solution dite type "NACE TM 0177" (pH=2,8) au lieu d'eau de mer synthétique (pH environ 5) révèlent une non sensibilité à la fissuration en gradin pour les niveaux de dureté compris entre 22 et 27 HRC.In both cases of income treatment, the HIC tests carried out according to the NACE TM 0284 procedure. but in a so-called "NACE TM 0177" solution (pH = 2.8) instead of synthetic seawater (pH around 5) reveals non-sensitivity to step cracking for hardness levels between 22 and 27 HRC.

    Dans le cas du traitement de revenu au défilé (HRC=27,5) les essais SSC NACE TM 0177 (Méthode A) sont satisfaits sous une tension axiale de 400 MPa.In the case of parade income treatment (HRC = 27.5) the SSC tests NACE TM 0177 (Method A) are satisfied under an axial tension of 400 MPa.

    2)-On effectue des essais sur un fil de forme rectangulaire 9x3 fabriqué à partir d'un acier conforme aux nuances 18C4 ou 20C4 selon les normes AFNOR. La composition comprend : C : 0,18% - Mn : 0,85% - Si : 0,11% - Cr : 0,91 -Ni : 0,174% - Mo :0,039% - S et P= 0,015%.2) -We carry out tests on a 9x3 rectangular wire manufactured at from a steel conforming to grades 18C4 or 20C4 according to AFNOR standards. The composition includes: C: 0.18% - Mn: 0.85% - Si: 0.11% - Cr: 0.91 -Ni: 0.174% - Mo: 0.039% - S and P = 0.015%.

    On effectue une trempe à l'huile, suivie d'un traitement de détente, pour obtenir une dureté de 39 HRC et Rm= 1180 MPa. La taille des grains correspond à un indice 8 de la norme NF 04.102.Oil quenching is carried out, followed by an expansion treatment, to obtain a hardness of 39 HRC and Rm = 1180 MPa. The grain size corresponds to an index 8 of standard NF 04.102.

    Un revenu au four pendant environ 4 heures a été effectué aux températures de 510°C, 525°C et 540°C pour obtenir respectivement les duretés de 26, 24 et 22 HRC.Tempering in the oven for about 4 hours was carried out at temperatures 510 ° C, 525 ° C and 540 ° C to obtain the hardnesses of 26, 24 and 22 HRC.

    Les tests HIC. réalisés dans une solution dite "NACE TM 0177" (pH=2.8) au lieu de l'eau de mer synthétique (pH environ 5), donnent les mêmes résultats satisfaisants que précédemment.HIC tests. made in a solution called "NACE TM 0177" (pH = 2.8) instead of synthetic sea water (pH about 5), give the same results satisfactory than before.

    Le test SSCC est satisfait selon les duretés (22 à 26 HRC) sous une contrainte comprise entre 400 et 450 MPa.The SSCC test is satisfied according to the hardness (22 to 26 HRC) under a constraint between 400 and 450 MPa.

    Pour un fil rond de diamètre 13 mm, dans le même acier et à la suite de traitements équivalents, on peut donner les caractéristiques mécaniques en fonction des duretés : HRC Re (MPa) Rm (MPa) 23 700 790 24 720 805 25 740 825 For a round wire with a diameter of 13 mm, in the same steel and following equivalent treatments, the mechanical characteristics can be given depending on the hardness: HRC Re (MPa) Rm (MPa) 23 700 790 24 720 805 25 740 825

    3)-En utilisant une variante de la nuance avec 0,35% de C décrite ci-dessus. on fabrique des fils de forme d'épaisseur entre 2 et 7,5 mm et de largeur entre 5 et 15 mm, avec un acier présentant la composition suivante :
       C=0,33%, Mn=0,73%, Si=0,21%, Cr=0,34%
       S=0,015%, P=0,007%,
    3) -Using a variant of the shade with 0.35% C described above. wires with a thickness of between 2 and 7.5 mm and a width between 5 and 15 mm are produced, with a steel having the following composition:
    C = 0.33%, Mn = 0.73%, Si = 0.21%, Cr = 0.34%
    S = 0.015%, P = 0.007%,

    Après trempe à l'eau et traitement de détente, on obtient des fils de dureté 380 Vickers (40 HRC) et de Rm=1400 MPa. La taille des grains correspond à un indice 11 de la norme NF 04.102.After water quenching and stress relief treatment, wires of hardness 380 are obtained Vickers (40 HRC) and Rm = 1400 MPa. The grain size corresponds to an index 11 of standard NF 04.102.

    Après traitement de revenu dans un four à 615°C pendant 15 minutes (résultat équivalent pouvant être obtenu par traitement à 680°C pendant environ 1 minute), on obtient un fil final présentant une dureté HRC de 24, avec une limite de rupture Rm=828 MPa et une limite élastique Rp0,2=724 MPa. Les essais du type HIC ont montré que ce fil ne présente pas de sensibilité à la fissuration en présence d'H2S, les essais étant conduits selon la norme NACE TM 0284, mais dans une solution selon NACE TM 0177 avec pH=2,7.After tempering treatment in an oven at 615 ° C for 15 minutes (equivalent result which can be obtained by treatment at 680 ° C for approximately 1 minute), a final wire is obtained having an HRC hardness of 24, with a breaking limit Rm = 828 MPa and an elastic limit Rp 0.2 = 724 MPa. HIC type tests have shown that this wire does not exhibit any sensitivity to cracking in the presence of H2S, the tests being carried out according to NACE TM 0284 standard, but in a solution according to NACE TM 0177 with pH = 2.7.

    Des essais de corrosion sous contrainte du type SSCC selon la norme NACE TM 0177 ont pu atteindre une durée de 720 heures sans apparition de rupture ni de fissure. Dans un cas, la contrainte atteignait 90% de la limite élastique, soit 652 MPa, le pH étant égal à 3,5. Dans un autre cas, le pH était à la valeur très basse de 2,7, la contrainte appliquée étant de 600 MPa, soit 83% de la limite élastique.SSCC type stress corrosion tests according to the standard NACE TM 0177 could reach a duration of 720 hours without the appearance of a break nor crack. In one case, the stress reached 90% of the elastic limit, i.e. 652 MPa, the pH being 3.5. In another case, the pH was very low 2.7, the applied stress being 600 MPa, or 83% of the elastic limit.

    Claims (28)

    1. A method of manufacturing a steel wire suitable for use as a reinforcing wire for a flexible pipe comprising the following steps:
      a formed wire of a long length is manufactured by rolling or wire drawing to the final dimensions using a steel essentially comprising the following elements:
      from 0.05% to 0.8% of C
      from 0.4% to 1.5% of Mn,
      from 0 to 2.5% of Cr,
      from 0.1% to 0.6% of Si,
      from 0 to 1% of Mo,
      at most 0.50% of Ni,
         at most 0.02% of S and P,
      heat treatments are conducted, said wire having a breaking limit Rm which does not exceed 1600 MPa after the heat treatments, characterised in that
      a first heat treatment is applied comprising at least one quenching operation of the formed wire, optionally followed by an expansion heat treatment, under specified conditions to obtain a hardness HRC higher than or equal to 32 and a steel structure of said wire that is predominantly martensitic-bainitic,
      optionally, after the first heat treatment, a final heat tempering treatment is applied.
    2. A method as claimed in claim 1, such that the hardness after the first heat treatment is greater than or equal to 35 HRC.
    3. A method as claimed in one of the preceding claims, such that the formed wire is transformed into a machine wire by cold-processing and such that said machine wire is manufactured and/or thermally treated so as to obtain a Rm value less than approximately 850 MPa.
    4. A method as claimed in one of claims 1 and 2, such that the formed wire is obtained directly by hot-rolling, optionally followed by an annealing operation for softening purposes in order to obtain a Rm value of the formed wire of less than approximately 850 MPa.
    5. A method as claimed in one of the preceding claims, such that the quenching operation is performed continuously on the fly.
    6. A method as claimed in one of the preceding claims, such that the first heat treatment incorporates an expansion treatment as a complement to said quenching.
    7. A method as claimed in one of the preceding claims, such that said expansion treatment is conducted in bundles in a furnace.
    8. A method as claimed in one of claims 1 to 6, such that said quenching and said expansion treatment are conducted on the fly.
    9. A method as claimed in one of the preceding claims, such that the steel contains:
      at most 0.45% of C and at least one of the following two elements:
      between 0.1% and 2.5% of Cr,
      between 0.1% and 1% of Mo.
    10. A method as claimed in one of claims 1 to 8, such that the steel contains:
      between 0.40% and 0.8% of C,
      no meaningful quantity of Cr and Mo,
      optionally, a low quantity of dispersoids.
    11. A method as claimed in one of the preceding claims, such that said quenching includes passage through an austenitizing furnace at a temperature higher than the AC3 point of the steel, then in a quenching zone with a fluid having a quenching rate adapted to the grade of steel and the size of the wires.
    12. A method as claimed in one of claims 6 to 11, such that the temperatures of said expansion treatment are:
      between 300 and 550° C if treated on the fly,
      between 150 and 300°C if treated in bundles in the furnace.
    13. A method as claimed in one of the preceding claims, such that it includes, after the first heat treatment, a final tempering heat treatment under specified conditions to obtain a hardness higher than or equal to 20 HRC and less than or equal to 35 HRC.
    14. A method as claimed in claim 13, such that the hardness is less than or equal to 28 HRC.
    15. A method as claimed in one of claims 13 or 14, such that the final tempering is conducted on the fly.
    16. A method as claimed in one of claims 13 to 14, such that the final tempering is conducted in bundles in a furnace.
    17. A method as claimed in one of claims 13 to 16, such that the temperature of the final tempering is at most equal to a temperature of approximately 10°C to 30°C below the AC1 temperature at which austenite starts to form in the steel.
    18. A method as claimed in one of claims 1 to 17, such that said acid contains between 0.08% and 0.8% of C and Si lower than or equal to 0.4.
    19. A method as claimed in claim 18, such that said steel contains from 0.12% to 0.8% of C.
    20. A formed wire of a long length and constant section designed for use as a reinforcing wire for a flexible pipe, having a breaking limit Rm which is not more than 1600 MPa and made from a steel essentially comprising the following elements:
      at most 0.45% of C,
      from 0.4% to 1.5% of Mn,
      from 0.1% to 0.6% of Si,
      at most 0.50% of Ni,
      at most 0.02% of S and P,
      Cr and/or Mo,
      characterised in that the steel contains at least one of the following elements:
      between 0.1% and 2.5% of Cr,
      between 0.1% and 1% of Mo,
      in that it has a structure that is predominantly martensitic-bainitic and in that it is obtained using the method as claimed in any one of claims 1 to 9 and 11 to 18.
    21. A formed wire of a long length and constant section designed for use as a reinforcing wire for a flexible pipe, having a breaking limit Rm which is not more than 1600 MPa and made from a steel essentially comprising the following elements:
      from 0.40% to 0.8% of C,
      from 0.4% to 1.5% of Mn,
      from 0.1% to 0.6% of Si,
      at most 0.50% of Ni,
      at most 0.02% of S and P,
      no meaningful quantity of Cr and/or Mo,
      optionally a small quantity of dispersoids, said section of the wire being of a width L and a thickness e being of the following proportions: L/e is greater than 1 and lower than 7, where e is less than or equal to 30 mm, characterised in that it has a predominantly martensitic-bainitic structure.
    22. A formed wire as claimed in one of claims 20 or 21, such that it has a hardness HRC higher than or equal to 20.
    23. A formed wire as claimed in one of claims 20 to 22, such that it has a hardness greater than or equal to 32 HRC, a value Rm greater than 1000 MPa and a stretch at breaking point greater than or equal to 5%.
    24. A formed wire as claimed in one of claims 20 to 22, such that it has a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC and a Rm greater than 700 MPa.
    25. A formed wire as claimed in one of claims 20 to 24, such that the profile of the section incorporates means for hooking onto an adjacent wire.
    26. A formed wire as claimed in claim 20, such that said steel contains from 0.08% to 0.4% of C and Si less than or equal to 0.4
    27. A formed wire as claimed in claim 26, such that said steel contains from 0.12% to 0.35% of C.
    28. A flexible pipe for transporting an effluent containing H2S, characterised in that it has at least one layer of armouring reinforced to withstand pressure and/or traction containing formed wires as claimed in one of claims 20 to 27.
    EP96906800A 1995-03-10 1996-03-08 Method for making steel wires and shaped wires, and use thereof in flexible ducts Expired - Lifetime EP0813613B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9503093A FR2731371B1 (en) 1995-03-10 1995-03-10 METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE
    FR9503093 1995-03-10
    PCT/FR1996/000363 WO1996028575A1 (en) 1995-03-10 1996-03-08 Method for making steel wires and shaped wires, and use thereof in flexible ducts

    Publications (2)

    Publication Number Publication Date
    EP0813613A1 EP0813613A1 (en) 1997-12-29
    EP0813613B1 true EP0813613B1 (en) 1999-09-15

    Family

    ID=9477109

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96906800A Expired - Lifetime EP0813613B1 (en) 1995-03-10 1996-03-08 Method for making steel wires and shaped wires, and use thereof in flexible ducts

    Country Status (11)

    Country Link
    US (1) US5922149A (en)
    EP (1) EP0813613B1 (en)
    JP (1) JP4327247B2 (en)
    AT (1) ATE184657T1 (en)
    AU (1) AU715625B2 (en)
    BR (1) BR9607231A (en)
    DE (1) DE69604279D1 (en)
    DK (1) DK0813613T3 (en)
    FR (1) FR2731371B1 (en)
    NO (1) NO321040B1 (en)
    WO (1) WO1996028575A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR3094652A1 (en) * 2019-04-08 2020-10-09 Technip France A method of manufacturing an armor wire of a flexible fluid transport line and armor wire and flexible line resulting from such a process

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2753206B1 (en) * 1996-09-09 1998-11-06 Inst Francais Du Petrole METHOD FOR MANUFACTURING SELF-DIPPING STEEL WIRES, SHAPED WIRES AND APPLICATION TO A FLEXIBLE PIPE
    FR2775050B1 (en) * 1998-02-18 2000-03-10 Inst Francais Du Petrole FLEXIBLE DRIVING FOR STATIC USE IN CORROSIVE ATMOSPHERE
    FR2802607B1 (en) * 1999-12-15 2002-02-01 Inst Francais Du Petrole FLEXIBLE PIPE COMPRISING LOW CARBON STEEL WEAPONS
    JP3585034B2 (en) 2000-12-14 2004-11-04 日産自動車株式会社 High-strength lace and manufacturing method thereof
    FR2866352B3 (en) * 2004-02-12 2005-12-16 Trefileurope WIRE OF TEMPERED-INCOME STEEL SHAPE FOR CONDUITS AT SEA
    FR2945099B1 (en) 2009-05-04 2011-06-03 Technip France PROCESS FOR MANUFACTURING A FLEXIBLE TUBULAR PIPE OF LARGE LENGTH
    AU2010312002C1 (en) 2009-10-28 2015-08-06 National Oilwell Varco Denmark I/S A flexible pipe and a method of producing a flexible pipe
    IN2012DN05109A (en) 2009-12-15 2015-10-09 Nat Oil Well Varco Denmark I S
    CA2785256C (en) 2009-12-28 2018-02-27 National Oilwell Varco Denmark I/S An unbonded, flexible pipe
    BR112012028776A2 (en) 2010-05-12 2016-07-19 Nat Oilwell Varco Denmark Is unbound hose, and method for producing an unbound hose
    FR2960556B3 (en) 2010-05-31 2012-05-11 Arcelormittal Wire France HIGH-STRENGTH STEEL-SHAPED WIRE FOR MECHANICAL RESISTANT TO HYDROGEN FRAGILIZATION
    CA2805315A1 (en) 2010-07-14 2012-01-19 National Oilwell Varco Denmark I/S An unbonded flexible pipe
    WO2012097817A1 (en) 2011-01-20 2012-07-26 National Ollwell Varco Denmark I/S An unbonded flexible pipe
    BR112013018146A2 (en) 2011-01-20 2020-08-25 National Oilwell Varco Denmark I / S flexible reinforced tube
    EP2721334B1 (en) 2011-06-17 2020-03-18 National Oilwell Varco Denmark I/S An unbonded flexible pipe
    EP2825803B1 (en) 2012-03-13 2020-05-27 National Oilwell Varco Denmark I/S An unbonded flexible pipe with an optical fiber containing layer
    CA2866401A1 (en) 2012-03-13 2013-09-19 Kristian Glejbol A reinforcement element for an unbonded flexible pipe
    US9796148B2 (en) 2012-04-12 2017-10-24 National Oilwell Varco Denmark I/S Method of producing an unbonded flexible pipe
    CA2877175C (en) * 2012-05-25 2023-07-25 Gary M. Cola Microtreatment and microstructure of carbide containing iron-based alloy
    DK177627B1 (en) 2012-09-03 2013-12-16 Nat Oilwell Varco Denmark Is An unbonded flexible pipe
    WO2015097349A1 (en) * 2013-12-24 2015-07-02 Arcelormittal Wire France Cold-rolled wire made from steel having a high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same
    JP2015212412A (en) * 2014-04-18 2015-11-26 株式会社神戸製鋼所 Hot rolled wire
    HUE045545T2 (en) 2015-01-30 2019-12-30 Bekaert Sa Nv High tensile steel wire
    DK3050978T3 (en) 2015-01-30 2020-12-07 Technip France FLEXIBLE TUBLE STRUCTURE WITH STEEL ELEMENT
    WO2017133789A1 (en) 2016-02-05 2017-08-10 Nv Bekaert Sa Thermomechanical processing
    KR102101635B1 (en) * 2016-03-07 2020-04-17 닛폰세이테츠 가부시키가이샤 High strength flat steel wire with excellent organic crack resistance

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5921370B2 (en) * 1976-11-02 1984-05-19 新日本製鐵株式会社 Manufacturing method for highly ductile and high tensile strength wire with excellent stress corrosion cracking resistance
    CA1332210C (en) * 1985-08-29 1994-10-04 Masaaki Katsumata High strength low carbon steel wire rods and method of producing them
    JPH01279710A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen
    JPH03274227A (en) * 1990-03-24 1991-12-05 Nippon Steel Corp Production of high strength steel wire for use in sour environment
    JPH03281724A (en) * 1990-03-30 1991-12-12 Nippon Steel Corp Production of high strength steel wire for use in sour environment
    JPH03281725A (en) * 1990-03-30 1991-12-12 Nippon Steel Corp Production of high strength steel wire for use in sour environment
    FR2661194B1 (en) * 1990-04-20 1993-08-13 Coflexip PROCESS FOR PRODUCING STEEL WIRES FOR THE MANUFACTURE OF FLEXIBLE CONDUITS, STEEL WIRES OBTAINED BY THIS PROCESS AND FLEXIBLE CONDUITS REINFORCED BY SUCH WIRES.
    FR2672827A1 (en) * 1991-02-14 1992-08-21 Michelin & Cie METALLIC WIRE COMPRISING A STEEL SUBSTRATE HAVING A WRINKLE - TYPE RECTANGULAR STRUCTURE AND A COATING; METHOD FOR OBTAINING THIS WIRE.

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR3094652A1 (en) * 2019-04-08 2020-10-09 Technip France A method of manufacturing an armor wire of a flexible fluid transport line and armor wire and flexible line resulting from such a process
    WO2020208040A1 (en) * 2019-04-08 2020-10-15 Technip France Method for manufacturing an armouring wire of a flexible fluid transport line, and armouring wire and flexible line derived from such a method

    Also Published As

    Publication number Publication date
    FR2731371A1 (en) 1996-09-13
    AU715625B2 (en) 2000-02-03
    US5922149A (en) 1999-07-13
    JP4327247B2 (en) 2009-09-09
    DK0813613T3 (en) 1999-12-20
    ATE184657T1 (en) 1999-10-15
    NO321040B1 (en) 2006-03-06
    WO1996028575A1 (en) 1996-09-19
    NO974167D0 (en) 1997-09-09
    AU5007596A (en) 1996-10-02
    DE69604279D1 (en) 1999-10-21
    EP0813613A1 (en) 1997-12-29
    NO974167L (en) 1997-09-09
    JPH11501986A (en) 1999-02-16
    FR2731371B1 (en) 1997-04-30
    BR9607231A (en) 1997-11-11

    Similar Documents

    Publication Publication Date Title
    EP0813613B1 (en) Method for making steel wires and shaped wires, and use thereof in flexible ducts
    EP0925380B1 (en) Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct
    EP0478771B1 (en) Method for producing steel wires for the manufacture of flexible ducts, steel wires thereby obtained and flexible ducts reinforced therewith
    EP2576849B1 (en) Method of production of a profiled wire made of hydrogen-embrittlement-resistant steel having high mechanical properties
    CA2895944C (en) Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts
    EP1994192A1 (en) Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced
    EP2593574A1 (en) Low-alloy steel having a high yield strength and a high sulphide-induced stress cracking resistance
    EP3087207B1 (en) Cold-rolled steel wire having high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same
    EP1778886A1 (en) Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object
    EP0571521B1 (en) Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating
    CA2214012C (en) Method for making steel wires and shaped wires, and use thereof in flexible ducts
    US20060086430A1 (en) Carburized wire and method for producing the same
    WO2003074206A2 (en) Method for making a plated steel armouring wire for a flexible tubular pipe transporting hydrocarbons, and armoured pipe
    FR2866352A3 (en) Shaped steel wire used for flexible pipes carrying hydrocarbons consists of steel containing specified amounts of carbon, nickel, manganese, chromium, silicon, sulfur and phosphorus

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19971010

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 19971215

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990915

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990915

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19990915

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990915

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990915

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990915

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990915

    REF Corresponds to:

    Ref document number: 184657

    Country of ref document: AT

    Date of ref document: 19991015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990916

    REF Corresponds to:

    Ref document number: 69604279

    Country of ref document: DE

    Date of ref document: 19991021

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991216

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000308

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000412

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000621

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: COFLEXIP

    Effective date: 20000331

    Owner name: INSTITUT FRANCAIS DU PETROLE

    Effective date: 20000331

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021129

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: RN

    Ref country code: FR

    Ref legal event code: FC

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20070426

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150316

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20150122

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20160307

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20160307