EP0571521B1 - Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating - Google Patents
Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating Download PDFInfo
- Publication number
- EP0571521B1 EP0571521B1 EP92906734A EP92906734A EP0571521B1 EP 0571521 B1 EP0571521 B1 EP 0571521B1 EP 92906734 A EP92906734 A EP 92906734A EP 92906734 A EP92906734 A EP 92906734A EP 0571521 B1 EP0571521 B1 EP 0571521B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire
- steel
- hardening
- weight
- work
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 46
- 239000010959 steel Substances 0.000 title claims abstract description 46
- 229910000734 martensite Inorganic materials 0.000 title claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 14
- 239000002184 metal Substances 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 title claims abstract description 12
- 239000011248 coating agent Substances 0.000 title claims abstract description 4
- 238000000576 coating method Methods 0.000 title claims abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 150000002739 metals Chemical class 0.000 claims abstract description 8
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 24
- 230000009466 transformation Effects 0.000 claims description 19
- 238000005482 strain hardening Methods 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910001369 Brass Inorganic materials 0.000 claims description 7
- 229910001566 austenite Inorganic materials 0.000 claims description 7
- 239000010951 brass Substances 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910001562 pearlite Inorganic materials 0.000 claims 2
- 239000010451 perlite Substances 0.000 abstract description 9
- 235000019362 perlite Nutrition 0.000 abstract description 9
- 238000010622 cold drawing Methods 0.000 abstract 1
- 238000005491 wire drawing Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 241001249696 Senna alexandrina Species 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 241001080024 Telles Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229940082150 encore Drugs 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- PDYXSJSAMVACOH-UHFFFAOYSA-N [Cu].[Zn].[Sn] Chemical compound [Cu].[Zn].[Sn] PDYXSJSAMVACOH-UHFFFAOYSA-N 0.000 description 1
- KOMIMHZRQFFCOR-UHFFFAOYSA-N [Ni].[Cu].[Zn] Chemical compound [Ni].[Cu].[Zn] KOMIMHZRQFFCOR-UHFFFAOYSA-N 0.000 description 1
- DBQFKMXHMSMNRU-UHFFFAOYSA-N [Zn].[Co].[Cu] Chemical compound [Zn].[Co].[Cu] DBQFKMXHMSMNRU-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 235000015115 caffè latte Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003763 resistance to breakage Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/066—Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the invention relates to steel wires and methods for obtaining these wires. These threads are used, for example, to reinforce plastic or rubber articles, in particular pipes, belts, plies, tire casings.
- the son of this type commonly used today are made of steel containing at least 0.6% carbon, this steel having a hardened pearlitic structure.
- the breaking strength of these wires is around 2800 MPa (megapascals), their diameter generally varies from 0.15 to 0.35 mm, and their elongation at break is between 0.4 and 2%.
- These wires are produced by drawing a starting wire, known as a "machine wire", the diameter of which is around 5 to 6 mm, the structure of this machine wire being a hard structure, made up of perlite and ferrite. with a high rate of perlite which is generally greater than 72%.
- the drawing operation is interrupted at least once to carry out one or more heat treatments which make it possible to regenerate the initial structure. After the last heat treatment, an alloy deposit, for example brass, on the wire is necessary for the last drawing operation to be carried out correctly.
- the wires themselves have a resistance to breakage and a ductility at break which is sometimes insufficient, and they exhibit significant damage as a result of the drawing before heat treatment, because of the great hardness of the machine wire.
- Document EP-A-213 917 describes a two-phase wire rod containing from 10 to 70% by volume of martensite and / or bainite and 90 to 30% by volume of ferrite.
- the wire obtained by transformation of this machine wire also has a structure with these two phases.
- the object of the invention is to provide a hardened steel wire coated with a metal alloy, the steel of this wire having a hardened non-pearlitic structure and having a breaking strength and an elongation at break at least as high as the known hardened pearlitic steel wires, and less damage by wire drawing than the known wires.
- Another object of the invention is to propose, for producing this yarn, a process which does not have the abovementioned drawbacks.
- the invention also relates to assemblies comprising at least one wire according to the invention.
- the invention also relates to articles reinforced at least in part by wires or assemblies in accordance with the preceding definitions, such articles being, for example, hoses, belts, plies, tire casings.
- the machine wire is descaled, it is coated with a drawing soap, for example borax, and it is drawn dry to obtain a wire with a diameter of 1.1 mm, which corresponds to a rate of deformation ⁇ slightly greater than 3.2.
- a drawing soap for example borax
- the drawing is easily carried out thanks to the relatively ductile structure of the wire rod.
- a steel with 0.7% carbon not hardened has a breaking strength R m of approximately 900 MPa and an elongation at break A r of approximately 8%, that is to say that it is much less ductile.
- this drawing is carried out at a temperature below 0.3 T F , for the purpose of simplification, although this is not essential, the drawing temperature possibly being equal to or exceeding 0.3 T F.
- Figure 1 shows the section of a portion 1 of the structure of the wire thus obtained.
- This structure consists of elongated blocks 2 of cementite and elongated blocks 3 of ferrite, the largest dimension of these blocks being oriented in the drawing direction.
- FIG. 2 represents a section of a portion 4 of the structure thus obtained, the martensite slats being represented by the reference 5.
- the wire is then degreased. Then it is copper, then it is coated with zinc electrolytically at room temperature. It is then heat treated by Joule effect at 540 ° C (813 K) for 2.5 seconds, then cooled to room temperature (about 20 ° C, or 293 K).
- This latter treatment makes it possible to obtain brass by diffusion of copper and zinc, as well as, for steel, a structure comprising more than 90% of returned martensite.
- the thickness of this layer of brass is small (of the order of a micrometer) and it is negligible compared to the diameter of the wire.
- FIG. 3 represents a section of a portion 6 of the structure of the wire thus obtained.
- This structure comprises precipitates of carbides 7, distributed almost homogeneously in a matrix 8 of ferritic type. This structure is obtained thanks to heat treatments previous, and it is kept when cooling to room temperature.
- the precipitates 7 generally have dimensions at least equal to 0.005 "m (micrometer) and at most equal to 1" m.
- the temperature of the wire, during this drawing, is necessarily less than 0.3 T F.
- the brass thickness of the wire thus drawn is very small, of the order of a tenth of a micrometer.
- FIG. 4 represents a longitudinal section of the portion 9 of the steel of this wire according to the invention thus obtained.
- This portion 9 has a structure of the hardened returned martensite type consisting of carbides 10 of elongated shape which are practically parallel to each other and whose largest dimension is oriented along the axis of the wire, that is to say according to the direction of drawing shown schematically by the arrow F in FIG. 4. These carbides 10 are arranged in a hardened die 11.
- This wire according to the invention has a breaking strength of 3000 MPa and an elongation at break of 0.7%.
- the machine wire is descaled, it is coated with a layer of wire-drawing soap, for example borax, and it is drawn dry to obtain a wire with a diameter of 0.9 mm, which corresponds to a rate of deformation ⁇ slightly higher than 3.6.
- the structure obtained is similar to that shown in FIG. 1.
- the following heat treatments are then carried out on the wire thus obtained:
- the wire is heated by the Joule effect to bring it to 1000 ° C. for 3 seconds, that is to say above the transformation point AC3 so as to obtain a homogeneous austenite structure.
- the wire is then cooled in an oil bath to a temperature of 100 ° C., that is to say below the end point of transformation M F , in less than 3 seconds so as to obtain a structure comprising more than 90% martensite in slats, the structure of the wire obtained being in accordance with FIG. 2.
- the wire is then degreased. Then it is copper, then it is coated with zinc electrolytically at room temperature. It is then heat treated by Joule effect at 540 ° C (813 K) for 2.5 seconds, then it is cooled to room temperature, these treatments being identical to Example 1.
- the structure obtained for this brass-plated wire is similar to that shown in FIG. 3.
- the temperature of the wire during this drawing is less than 0.3 T F.
- the steel of the wire according to the invention thus obtained has a structure similar to that shown in FIG. 4.
- This wire has a breaking strength equal to 2850 MPa and an elongation at break equal to 1%.
- a wire of 1.1 mm diameter obtained in the same way as in Example 1 by drawing the machine wire is heated by Joule effect at 1000 ° C for 3 seconds, that is to say above the point of transformation AC3 so as to obtain a homogeneous austenite structure.
- the wire is then cooled, in a gas ring produced by a turbine, to a temperature of 100 ° C., that is to say below the end point of transformation M F , in less than 3 seconds, so as to obtain a structure comprising more than 90% martensite in slats.
- This wire, according to the invention has a breaking strength equal to 3200 MPa and an elongation at break equal to 0.6%.
- the structure, at the end of this quenching comprises more than 90% martensite, this structure can be made up entirely of martensite.
- the martensite obtained after quenching has a slatted structure, as described in the examples.
- the steel of the wire according to the invention and therefore the starting machine wire, has a carbon content at least equal to 0.2% and at most equal to 0.5%.
- the steel of the wire according to the invention there are the following compositions: 0.3% ⁇ Mn ⁇ 0.6%; 0.1% ⁇ Si ⁇ 0.3%; P ⁇ 0.02%; S ⁇ 0.02%; Al ⁇ 0.02%; N ⁇ 0.006%.
- the wire work hardening in the previous examples is carried out by drawing, but other techniques are possible, for example rolling, possibly associated with drawing, for at least one of the work hardening operations.
- the invention is not limited to the embodiments described above, this is for example the case that the invention applies to cases where an alloy other than the brass, with two metals, or more than two metals, for example ternary copper - zinc - nickel, copper - zinc - cobalt, copper - zinc - tin alloys, the main thing being that the metals used are capable of forming an alloy, by diffusion, at a temperature at least equal to 0.3 T F and at most equal to 0.5 T F.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
L'invention concerne les fils en acier et les procédés pour obtenir ces fils. Ces fils sont utilisés par exemple pour renforcer des articles en matières plastiques ou en caoutchouc, notamment des tuyaux, des courroies, des nappes, des enveloppes de pneumatiques.The invention relates to steel wires and methods for obtaining these wires. These threads are used, for example, to reinforce plastic or rubber articles, in particular pipes, belts, plies, tire casings.
Les fils de ce type couramment utilisés actuellement sont constitués d'acier contenant au moins 0,6 % de carbone, cet acier ayant une structure perlitique écrouie. La résistance à la rupture de ces fils est environ de 2800 MPa (mégapascals), leur diamètre varie en général de 0,15 à 0,35 mm, et leur allongement à la rupture est compris entre 0,4 et 2 %. Ces fils sont réalisés par tréfilage d'un fil de départ, dit "fil machine", dont le diamètre est de l'ordre de 5 à 6 mm, la structure de ce fil machine étant une structure dure, constituée de perlite et de ferrite avec un fort taux de perlite qui est en général supérieur à 72 %. Lors de la réalisation de ce fil, on interrompt au moins une fois l'opération de tréfilage pour effectuer un ou plusieurs traitements thermiques qui permettent de régénérer la structure initiale. Après le dernier traitement thermique, un dépôt d'alliage, par exemple de laiton, sur le fil est nécessaire pour que la dernière opération de tréfilage s'effectue correctement.The son of this type commonly used today are made of steel containing at least 0.6% carbon, this steel having a hardened pearlitic structure. The breaking strength of these wires is around 2800 MPa (megapascals), their diameter generally varies from 0.15 to 0.35 mm, and their elongation at break is between 0.4 and 2%. These wires are produced by drawing a starting wire, known as a "machine wire", the diameter of which is around 5 to 6 mm, the structure of this machine wire being a hard structure, made up of perlite and ferrite. with a high rate of perlite which is generally greater than 72%. During the production of this wire, the drawing operation is interrupted at least once to carry out one or more heat treatments which make it possible to regenerate the initial structure. After the last heat treatment, an alloy deposit, for example brass, on the wire is necessary for the last drawing operation to be carried out correctly.
Ce procédé présente les inconvénients suivants :
- la matière première est coûteuse, car le taux de carbone est relativement élevé ;
- les paramètres ne peuvent pas être modifiés facilement, en particulier le diamètre du fil machine et le diamètre final sont maintenus dans des limites rigides, le procédé manquant donc de souplesse ;
- la grande dureté du fil machine due à sa structure fortement perlitique rend le tréfilage difficile, avant le traitement thermique, de telle sorte que le taux de déformation ε de ce tréfilage est nécessairement inférieur à 3 ; d'autre part les vitesses de ce tréfilage sont faibles et il peut y avoir des casses du fil lors de cette opération ;
- l'opération d'un dépôt d'alliage, par exemple de laiton, est une étape nécessaire au procédé et n'est pas intégrée à l'étape de traitement thermique qui la précède.
- the raw material is expensive because the carbon content is relatively high;
- parameters cannot be changed easily, in particular the diameter of the wire rod and the final diameter are kept within rigid limits, the process therefore lacking flexibility;
- the high hardness of the wire rod due to its highly pearlitic structure makes wire drawing difficult, before the heat treatment, so that the rate of deformation ε of this wire drawing is necessarily less than 3; on the other hand, the speeds of this drawing are low and there may be breaks in the wire during this operation;
- the operation of depositing an alloy, for example brass, is a necessary step in the process and is not integrated into the heat treatment step which precedes it.
D'autre part, les fils eux-mêmes ont une résistance à la rupture et une ductilité à la rupture parfois insuffisante, et ils présentent un endommagement important par suite du tréfilage avant le traitement thermique, à cause de la grande dureté du fil machine.On the other hand, the wires themselves have a resistance to breakage and a ductility at break which is sometimes insufficient, and they exhibit significant damage as a result of the drawing before heat treatment, because of the great hardness of the machine wire.
Le document EP-A-213 917 décrit un fil machine à deux phases contenant de 10 à 70 % en volume de martensite et/ou de bainite et 90 à 30 % en volume de ferrite. Le fil obtenu par transformation de ce fil machine a également une structure avec ces deux phases.Document EP-A-213 917 describes a two-phase wire rod containing from 10 to 70% by volume of martensite and / or bainite and 90 to 30% by volume of ferrite. The wire obtained by transformation of this machine wire also has a structure with these two phases.
Le but de l'invention est de proposer un fil d'acier écroui et revêtu d'un alliage métallique, l'acier de ce fil ayant une structure non perlitique écrouie et présentant une résistance à la rupture et un allongement à la rupture au moins aussi élevés que les fils d'acier perlitiques écrouis connus, et un moindre endommagement par tréfilage que les fils connus.The object of the invention is to provide a hardened steel wire coated with a metal alloy, the steel of this wire having a hardened non-pearlitic structure and having a breaking strength and an elongation at break at least as high as the known hardened pearlitic steel wires, and less damage by wire drawing than the known wires.
Un autre but de l'invention est de proposer, pour réaliser ce fil, un procédé qui ne présente pas les inconvénients précités.Another object of the invention is to propose, for producing this yarn, a process which does not have the abovementioned drawbacks.
Dans la suite, les teneurs de l'acier utilisé en éléments d'alliage sont exprimées en pourcentages pondéraux.In the following, the contents of the steel used in alloying elements are expressed in weight percentages.
Le fil métallique conforme à l'invention, comportant un substrat et un revêtement, présente les caractéristiques suivantes :
- a) il comporte un substrat en acier ayant une teneur en carbone au moins égale à 0,05 % et au plus égale à 0,6 % ;
- b) cet acier présente une structure comportant plus de 90 % de martensite revenue écrouie ;
- c) le substrat est revêtu d'un alliage métallique autre que l'acier ;
- d) le diamètre du fil est au moins égal à 0,10 mm et au plus égal à 0,40 mm ;
- e) la résistance à la rupture du fil est au moins égale à 2800 MPa ;
- f) l'allongement à la rupture du fil est au moins égal à 0,4 %.
- a) it comprises a steel substrate having a content of carbon at least equal to 0.05% and at most equal to 0.6%;
- b) this steel has a structure comprising more than 90% of hardened returned martensite;
- c) the substrate is coated with a metal alloy other than steel;
- d) the diameter of the wire is at least equal to 0.10 mm and at most equal to 0.40 mm;
- e) the breaking strength of the wire is at least equal to 2800 MPa;
- f) the elongation at break of the wire is at least equal to 0.4%.
Le procédé conforme à l'invention pour produire ce fil en acier revêtu est caractérisé par les points suivants :
- a) on écrouit un fil machine en acier, cet acier ayant une teneur en carbone au moins égale à 0,05 % et au plus égale à 0,6 %, cet acier comportant de 28 % à 96 % de ferrite proeutectoïde et de 72 % à 4 % de perlite ; le taux de déformation ε de cet écrouissage étant au moins égal à 3 ;
- b) on arrête l'écrouissage et on effectue un traitement thermique de trempe sur le fil écroui, ce traitement consistant à chauffer le fil au-dessus du point de transformation AC3 pour lui donner une structure d'austénite homogène, puis à le refroidir rapidement au dessous du point de fin de transformation martensitique MF, la vitesse de ce refroidissement étant au moins égale à 150°C/seconde, de façon à obtenir une structure comportant plus de 90 % de martensite ;
- c) on effectue ensuite sur le fil un dépôt d'au moins deux métaux susceptibles de former par diffusion un alliage, l'acier servant ainsi de substrat ;
- d) on chauffe ensuite le fil à une température au moins égale à 0,3 TF et au plus égale à 0,5 TF, de façon à provoquer la formation, par diffusion, d'un alliage de ces métaux déposés, ainsi que la formation, pour l'acier, d'une structure comportant plus de 90 % de martensite revenue, TF étant la température de fusion de l'acier, exprimée en Kelvin ;
- e) on refroidit ensuite le fil à une température inférieure à 0,3 TF ;
- f) on effectue ensuite un écrouissage sur le fil, la température du fil lors de cet écrouissage étant inférieure à 0,3 TF, le taux de déformation ε de cet écrouissage étant au moins égal à 1.
- a) a steel wire rod is hardened, this steel having a carbon content at least equal to 0.05% and at most equal to 0.6%, this steel comprising from 28% to 96% of proeutectoid ferrite and 72 % to 4% perlite; the rate of deformation ε of this work hardening being at least equal to 3;
- b) the work hardening is stopped and a hardening heat treatment is carried out on the work hardened wire, this treatment consisting in heating the wire above the transformation point AC3 to give it a homogeneous austenite structure, then in rapidly cooling it below the end point of martensitic transformation M F , the speed of this cooling being at least equal to 150 ° C / second, so as to obtain a structure comprising more than 90% of martensite;
- c) a deposit is then made on the wire of at least two metals capable of forming by diffusion an alloy, the steel thus serving as a substrate;
- d) the wire is then heated to a temperature at least equal to 0.3 T F and at most equal to 0.5 T F , so as to cause the formation, by diffusion, of an alloy of these deposited metals, as well as the formation, for steel, of a structure comprising more than 90% of returned martensite, T F being the melting temperature of steel, expressed in Kelvin;
- e) the wire is then cooled to a temperature below 0.3 T F ;
- f) a work hardening is then carried out on the wire, the temperature of the wire during this work hardening being less than 0.3 T F , the rate of deformation ε of this work hardening being at least equal to 1.
L'invention concerne également les assemblages comportant au moins un fil conforme à l'invention.The invention also relates to assemblies comprising at least one wire according to the invention.
L'invention concerne également les articles renforcés au moins en partie par des fils ou des assemblages conformes aux définitions précédentes, de tels articles étant par exemple des tuyaux, des courroies, des nappes, des enveloppes de pneumatiques.The invention also relates to articles reinforced at least in part by wires or assemblies in accordance with the preceding definitions, such articles being, for example, hoses, belts, plies, tire casings.
L'invention sera aisément comprise à l'aide des exemples de réalisation qui suivent, et des figures toutes schématiques relatives à ces exemples.The invention will be easily understood with the aid of the following embodiment examples, and all schematic figures relating to these examples.
Sur le dessin :
- la figure 1 représente la structure de l'acier d'un fil avant les traitements thermiques, lors de la mise en oeuvre du procédé conforme à l'invention ;
- la figure 2 représente la structure de l'acier d'un fil après le traitement thermique de trempe, lors de la mise en oeuvre du procédé conforme à l'invention ;
- la figure 3 représente la structure de l'acier d'un fil laitonné, lors de la mise en oeuvre du procédé conforme à l'invention ;
- la figure 4 représente la structure de l'acier d'un fil conforme à l'invention.
- FIG. 1 represents the structure of the steel of a wire before the heat treatments, during the implementation of the method according to the invention;
- FIG. 2 represents the structure of the steel of a wire after the quenching heat treatment, during the implementation of the method according to the invention;
- FIG. 3 represents the structure of the steel of a wire brassy, during the implementation of the process according to the invention;
- FIG. 4 represents the structure of the steel of a wire according to the invention.
Dans ce qui suit, tous les pourcentages indiqués sont en poids et les mesures de résistance à la rupture et d'allongement à la rupture sont effectuées selon la méthode AFNOR NFA 03-151.In the following, all the percentages indicated are by weight and the measurements of breaking strength and elongation at break are carried out according to the AFNOR NFA 03-151 method.
Par définition, le taux de déformation ε d'un écrouissage est donné par la formule
Le but des exemples qui suivent est de décrire la préparation et les propriétés de trois fils conformes à l'invention.The purpose of the examples which follow is to describe the preparation and the properties of three wires in accordance with the invention.
On utilise dans ces exemples un fil machine non écroui de 5,5 mm de diamètre. Ce fil machine est constitué d'un acier dont les caractéristiques sont les suivantes :
- teneur en carbone : 0,4 % ;
- teneur en manganèse : 0,5 % ;
- teneur en silicium : 0,2 % ;
- teneur en phospore : 0,015 % ;
- teneur en soufre : 0,02 % ;
- teneur en aluminium : 0,015 % ;
- teneur en azote : 0,005 % ;
- teneur en chrome : 0,05 % ;
- teneur en nickel : 0,10 % ;
- teneur en cuivre : 0,10 % ;
- teneur en molybdène : 0,01 % ;
- teneur en ferrite proeutectoïde : 53 % ;
- teneur en perlite : 47 % ;
- température de fusion de l'acier, TF : 1795 K ;
- point de fin de transformation martensitique MF : 150°C ;
- résistance à la rupture Rm : 700 MPa ;
- allongement à la rupture Ar: 17 % ;
- carbon content: 0.4%;
- manganese content: 0.5%;
- silicon content: 0.2%;
- phosphate content: 0.015%;
- sulfur content: 0.02%;
- aluminum content: 0.015%;
- nitrogen content: 0.005%;
- chromium content: 0.05%;
- nickel content: 0.10%;
- copper content: 0.10%;
- molybdenum content: 0.01%;
- proeutectoid ferrite content: 53%;
- perlite content: 47%;
- melting temperature of steel, T F : 1795 K;
- martensitic transformation end point M F : 150 ° C;
- breaking strength R m : 700 MPa;
- elongation at break A r : 17%;
On décalamine le fil machine, on l'enduit d'un savon de tréfilage, par exemple du borax, et on tréfile à sec pour obtenir un fil de diamètre 1,1 mm, ce qui correspond à un taux de déformation ε légèrement supérieur à 3,2.The machine wire is descaled, it is coated with a drawing soap, for example borax, and it is drawn dry to obtain a wire with a diameter of 1.1 mm, which corresponds to a rate of deformation ε slightly greater than 3.2.
Le tréfilage est réalisé facilement grâce à la structure relativement ductile du fil machine. A titre d'exemple, un acier à 0,7 % de carbone non écroui présente une résistance à la rupture Rm d'environ 900 MPa et un allongement à la rupture Ar de 8 % environ, c'est-à-dire qu'il est nettement moins ductile.The drawing is easily carried out thanks to the relatively ductile structure of the wire rod. For example, a steel with 0.7% carbon not hardened has a breaking strength R m of approximately 900 MPa and an elongation at break A r of approximately 8%, that is to say that it is much less ductile.
A titre d'exemple, ce tréfilage est effectué à une température inférieure à 0,3 TF, dans un but de simplification, bien que cela ne soit pas indispensable, la température de tréfilage pouvant éventuellement égaler ou dépasser 0,3 TF.For example, this drawing is carried out at a temperature below 0.3 T F , for the purpose of simplification, although this is not essential, the drawing temperature possibly being equal to or exceeding 0.3 T F.
La figure 1 représente la coupe d'une portion 1 de la structure du fil ainsi obtenue. Cette structure est constituée de blocs allongés 2 de cémentite et de blocs allongés 3 de ferrite, la plus grande dimension de ces blocs étant orientée dans la direction de tréfilage.Figure 1 shows the section of a portion 1 of the structure of the wire thus obtained. This structure consists of elongated blocks 2 of cementite and elongated blocks 3 of ferrite, the largest dimension of these blocks being oriented in the drawing direction.
On effectue alors sur le fil ainsi obtenu les traitements thermiques suivants :
- on chauffe le fil par convection dans un four à mouffle pour le porter à 950°C, c'est-à-dire au dessus du point de transformation AC3, et on le maintient pendant 30 secondes à cette température de façon à obtenir une structure d'austénite homogène ;
- on refroidit ensuite le fil, dans un anneau gazeux, produit par une turbine, jusqu'à une température de 75°C, c'est-à-dire en dessous du point de fin de transformation martensitique MF (Martensite Finish) en moins de 3,5 secondes de façon à obtenir une structure comportant plus de 90 % de martensite en lattes.
- the wire is heated by convection in a muffle furnace to bring it to 950 ° C., that is to say above the transformation point AC3, and it is maintained for 30 seconds at this temperature so as to obtain a structure homogeneous austenite;
- the wire is then cooled, in a gas ring, produced by a turbine, to a temperature of 75 ° C, that is to say below the martensitic transformation end point M F (Martensite Finish) less 3.5 seconds to obtain a structure with more than 90% martensite in slats.
La figure 2 représente une coupe d'une portion 4 de la structure ainsi obtenue, les lattes de martensite étant représentées par la référence 5.FIG. 2 represents a section of a
Le fil est ensuite dégraissé. Ensuite on le cuivre, puis on le recouvre de zinc par voie électrolytique à la température ambiante. On le traite ensuite thermiquement par effet joule à 540°C (813 K) pendant 2,5 secondes, puis on le refroidit à la température ambiante (environ 20°C, soit 293 K).The wire is then degreased. Then it is copper, then it is coated with zinc electrolytically at room temperature. It is then heat treated by Joule effect at 540 ° C (813 K) for 2.5 seconds, then cooled to room temperature (about 20 ° C, or 293 K).
Ce dernier traitement permet d'obtenir du laiton par diffusion du cuivre et du zinc, ainsi que, pour l'acier, une structure comportant plus de 90 % de martensite revenue. L'épaisseur de cette couche de laiton est faible (de l'ordre du micromètre) et elle est négligeable par rapport au diamètre du fil.This latter treatment makes it possible to obtain brass by diffusion of copper and zinc, as well as, for steel, a structure comprising more than 90% of returned martensite. The thickness of this layer of brass is small (of the order of a micrometer) and it is negligible compared to the diameter of the wire.
La figure 3 représente une coupe d'une portion 6 de la structure du fil ainsi obtenu. Cette structure comporte des précipités de carbures 7, répartis de façon pratiquement homogène dans une matrice 8 de type ferritique. Cette structure est obtenue grâce aux traitements thermiques précédents, et elle est conservée lors du refroidissement à la température ambiante. Les précipités 7 ont en général des dimensions au moins égales à 0,005 »m (micromètre) et au plus égales à 1 »m.FIG. 3 represents a section of a
On réalise ensuite un tréfilage humide de ce fil de façon à obtenir un diamètre final de 0,2 mm, ce qui correspond pratiquement à ε = 3,4. La température du fil, lors de ce tréfilage, est nécessairement inférieure à 0,3 TF. L'épaisseur de laiton du fil ainsi tréfilé est très faible, de l'ordre du dixième de micromètre.A wet wire drawing of this wire is then carried out so as to obtain a final diameter of 0.2 mm, which practically corresponds to ε = 3.4. The temperature of the wire, during this drawing, is necessarily less than 0.3 T F. The brass thickness of the wire thus drawn is very small, of the order of a tenth of a micrometer.
La figure 4 représente une coupe longitudinale de la portion 9 de l'acier de ce fil conforme à l'invention ainsi obtenu. Cette portion 9 présente une structure de type martensite revenue écrouie constituée de carbures 10 de forme allongée qui sont pratiquement parallèles entre eux et dont la plus grande dimension est orientée selon l'axe du fil, c'est-à-dire selon la direction de tréfilage schématisée par la flèche F à la figure 4. Ces carbures 10 sont disposés dans une matrice écrouie 11.FIG. 4 represents a longitudinal section of the
Ce fil conforme à l'invention a une résistance à la rupture de 3000 MPa et un allongement à la rupture de 0,7 %.This wire according to the invention has a breaking strength of 3000 MPa and an elongation at break of 0.7%.
On décalamine le fil machine, on l'enduit d'une couche de savon de tréfilage, par exemple du borax, et on le tréfile à sec pour obtenir un fil de diamètre 0,9 mm, ce qui correspond à un taux de déformation ε légèrement supérieur à 3,6. La structure obtenue est analogue à celle représentée à la figure 1. On effectue alors sur le fil ainsi obtenu les traitements thermiques suivants :
On chauffe le fil par effet joule pour le porter à 1000°C, pendant 3 secondes, c'est-à-dire au dessus du point de transformation AC3 de façon à obtenir une structure d'austénite homogène. On refroidit ensuite le fil dans un bain d'huile jusqu'à une température de 100°C, c'est-à-dire en dessous du point de fin de transformation MF, en moins de 3 secondes de façon à obtenir une structure comportant plus de 90 % de martensite en lattes, la structure du fil obtenu étant conforme à la figure 2.The machine wire is descaled, it is coated with a layer of wire-drawing soap, for example borax, and it is drawn dry to obtain a wire with a diameter of 0.9 mm, which corresponds to a rate of deformation ε slightly higher than 3.6. The structure obtained is similar to that shown in FIG. 1. The following heat treatments are then carried out on the wire thus obtained:
The wire is heated by the Joule effect to bring it to 1000 ° C. for 3 seconds, that is to say above the transformation point AC3 so as to obtain a homogeneous austenite structure. The wire is then cooled in an oil bath to a temperature of 100 ° C., that is to say below the end point of transformation M F , in less than 3 seconds so as to obtain a structure comprising more than 90% martensite in slats, the structure of the wire obtained being in accordance with FIG. 2.
Le fil est ensuite dégraissé. Ensuite on le cuivre, puis on le recouvre de zinc par voie électrolytique à la température ambiante. On le traite ensuite thermiquement par effet joule à 540°C (813 K) pendant 2,5 secondes, puis on le refroidit à la température ambiante, ces traitements étant identiques à l'exemple 1.The wire is then degreased. Then it is copper, then it is coated with zinc electrolytically at room temperature. It is then heat treated by Joule effect at 540 ° C (813 K) for 2.5 seconds, then it is cooled to room temperature, these treatments being identical to Example 1.
La structure obtenue pour ce fil ainsi laitonné est analogue à celle représentée à la figure 3. On tréfile alors le fil par voie humide de façon à obtenir un diamètre final de 0,17 mm, ce qui correspond pratiquement à ε = 3,3. La température du fil lors de ce tréfilage est inférieure à 0,3 TF. L'acier du fil conforme à l'invention ainsi obtenu a une structure analogue à celle représentée à la figure 4.The structure obtained for this brass-plated wire is similar to that shown in FIG. 3. The wire is then drawn by the wet method so as to obtain a final diameter of 0.17 mm, which corresponds practically to ε = 3.3. The temperature of the wire during this drawing is less than 0.3 T F. The steel of the wire according to the invention thus obtained has a structure similar to that shown in FIG. 4.
Ce fil a une résistance à la rupture égale à 2850 MPa et un allongement à la rupture égal à 1 %.This wire has a breaking strength equal to 2850 MPa and an elongation at break equal to 1%.
Un fil de diamètre 1,1 mm obtenu de la même façon que dans l'exemple 1 par tréfilage du fil machine est chauffé par effet joule à 1000°C, pendant 3 secondes, c'est-à-dire au dessus du point de transformation AC3 de façon à obtenir une structure d'austénite homogène.A wire of 1.1 mm diameter obtained in the same way as in Example 1 by drawing the machine wire is heated by Joule effect at 1000 ° C for 3 seconds, that is to say above the point of transformation AC3 so as to obtain a homogeneous austenite structure.
On refroidit ensuite le fil, dans un anneau gazeux produit par une turbine, jusqu'à une température de 100°C, c'est-à-dire en dessous du point de fin de transformation MF, en moins de 3 secondes, de façon à obtenir une structure comportant plus de 90 % de martensite en lattes.The wire is then cooled, in a gas ring produced by a turbine, to a temperature of 100 ° C., that is to say below the end point of transformation M F , in less than 3 seconds, so as to obtain a structure comprising more than 90% martensite in slats.
Le fil est ensuite cuivré puis zingué par voie électrolytique, à la température ambiante puis traité thermiquement par effet joule à 500°C (773 K) pendant 5 secondes. On le refroidit ensuite à la température ambiante, le fil ainsi laitonné est alors tréfilé par voie humide à une température inférieure à 0,3 TF jusqu'au diamètre 0,17 mm, ce qui correspond pratiquement à ε = 3,7. Ce fil, conforme à l'invention a une résistance a la rupture égale à 3200 MPa et un allongement à la rupture égal à 0,6 %.The wire is then copper-plated then galvanized by electrolytic means, at room temperature then heat treated by Joule effect at 500 ° C (773 K) for 5 seconds. It is then cooled to room temperature, the strand thus braided is then drawn by the wet method at a temperature below 0.3 T F up to the diameter 0.17 mm, which corresponds practically to ε = 3.7. This wire, according to the invention has a breaking strength equal to 3200 MPa and an elongation at break equal to 0.6%.
Les structures intermédiaires et la structure finale sont analogues aux structures précédemment décrites.The intermediate structures and the final structure are analogous to the structures previously described.
L'invention présente les avantages suivants :
- on part d'un fil machine à faible taux de carbone, et donc d'un coût peu élevé :
- on bénéficie d'une grande souplesse dans le choix des diamètres des fils, c'est ainsi par exemple qu'on peut utiliser des fils machines dont le diamètre est notablement supérieur à 6 mm, ce qui réduit encore les coûts, et on peut réaliser des fils très variés en diamètre ;
- le tréfilage avant les traitements thermiques est relativement aisé, de telle sorte que le taux de déformation ε de ce tréfilage peut être supérieur à 3 ; d'autre part, ce tréfilage peut être réalisé avec des vitesses élevées ; enfin on réduit la fréquence des casses de fils et des changements de filières, ce qui réduit encore les coûts ;
- le traitement de diffusion pour obtenir l'alliage est effectué en même temps que le revenu du fil, ce qui évite une opération supplémentaire de diffusion et limite donc les coûts de fabrication tout en permettant un traitement global en ligne du fil, depuis le fil machine jusqu'au fil final ;
- le fil obtenu présente une résistance à la rupture et un allongement à la rupture de valeurs au moins égales à celles des fils classiques, ce qui se traduit donc par une énergie de rupture au moins égale à celle des fils classiques ;
- le fil est moins endommagé lors du tréfilage avant traitement thermique ;
- le fil obtenu présente une meilleure résistance à la corrosion que les fils classiques par suite de sa faible teneur en carbone.
- we start with a low carbon wire rod, and therefore of a low cost:
- there is great flexibility in the choice of wire diameters, this is for example that we can use machine wires whose diameter is significantly greater than 6 mm, which further reduces costs, and we can achieve wires very varied in diameter;
- the wire drawing before the heat treatments is relatively easy, so that the rate of deformation ε of this wire drawing can be greater than 3; on the other hand, this wire drawing can be carried out with high speeds; finally we reduce the frequency of breaks threads and die changes, which further reduces costs;
- the diffusion treatment to obtain the alloy is carried out at the same time as the tempering of the wire, which avoids an additional diffusion operation and therefore limits the manufacturing costs while allowing overall online treatment of the wire, from the wire rod until the final thread;
- the wire obtained has a breaking strength and an elongation at break of values at least equal to those of conventional wires, which therefore results in a breaking energy at least equal to that of conventional wires;
- the wire is less damaged during the drawing before heat treatment;
- the wire obtained has better resistance to corrosion than conventional wires due to its low carbon content.
Lors du traitement de trempe effectué à partir de l'austénite homogène, depuis une température supérieure au point de transformation AC3 jusqu'à une température inférieure à MF, étant donné que la vitesse de refroidissement est au moins égale à 150°C, conformément à l'invention, moins de 10 % de l'austénite homogène se transforme avant d'atteindre la température correspondant au point du début de transformation martensitique (MS), de telle sorte que la structure, à la fin de cette trempe, comporte plus de 90 % de martensite, cette structure pouvant être constituée en totalité de martensite. De préférence, la martensite obtenue après la trempe a une structure en lattes, comme décrit dans les exemples.During the quenching treatment carried out using homogeneous austenite, from a temperature above the AC3 transformation point to a temperature below M F , since the cooling rate is at least 150 ° C, in accordance In the invention, less than 10% of the homogeneous austenite is transformed before reaching the temperature corresponding to the point of the start of martensitic transformation (M S ), so that the structure, at the end of this quenching, comprises more than 90% martensite, this structure can be made up entirely of martensite. Preferably, the martensite obtained after quenching has a slatted structure, as described in the examples.
De préférence, l'acier du fil conforme à l'invention, et donc le fil machine de départ, a une teneur en carbone au moins égale à 0,2 % et au plus égale à 0,5 %.Preferably, the steel of the wire according to the invention, and therefore the starting machine wire, has a carbon content at least equal to 0.2% and at most equal to 0.5%.
De préférence, dans l'acier du fil conforme à l'invention et donc dans le fil machine de départ, on a les compositions suivantes : 0,3 % ≦ Mn ≦ 0,6 % ; 0,1 % ≦ Si ≦ 0,3 % ; P ≦ 0,02 % ; S ≦ 0,02 % ; Al ≦ 0,02 % ; N ≦ 0,006 %.Preferably, in the steel of the wire according to the invention and therefore in the starting machine wire, there are the following compositions: 0.3% ≦ Mn ≦ 0.6%; 0.1% ≦ Si ≦ 0.3%; P ≦ 0.02%; S ≦ 0.02%; Al ≦ 0.02%; N ≦ 0.006%.
Avantageusement dans l'acier du fil conforme à l'invention et donc dans le fil machine de départ, on a les compositions suivantes : Cr ≦ 0,06 % ; Ni ≦ 0,15 % ; Cu ≦ 0,15 % ;Advantageously, in the steel of the wire according to the invention and therefore in the starting machine wire, there are the following compositions: Cr ≦ 0.06%; Ni ≦ 0.15%; Cu ≦ 0.15%;
De préférence, dans le procédé conforme à l'invention, on a au moins une des caractéristiques suivantes :
- le fil machine de départ a une teneur en ferrite proeutectoïde au moins égale à 41 %, et au plus égale à 78 % et une teneur en perlite au moins égale à 22 % et au plus égale à 59 % ;
- le taux de déformation ε lors de l'écrouissage avant les traitements thermiques est au moins égal à 3,2 et au plus égal à 6 ;
- le taux de déformation ε lors de l'écrouissage final après les traitements thermiques est au moins égal à 3 et au plus égal à 5 ;
- le traitement thermique de trempe est effectué avec une vitesse de refroidissement au moins égale à 250°C/seconde.
- the starting wire rod has a proeutectoid ferrite content at least equal to 41%, and at most equal to 78% and a perlite content at least equal to 22% and at most equal to 59%;
- the rate of deformation ε during work hardening before the heat treatments is at least equal to 3.2 and at most equal to 6;
- the rate of deformation ε during the final work hardening after the heat treatments is at least equal to 3 and at most equal to 5;
- the quenching heat treatment is carried out with a cooling rate at least equal to 250 ° C / second.
L'écrouissage du fil dans les exemples précédents est réalisé par tréfilage, mais d'autres techniques sont possibles, par exemple un laminage, associé éventuellement à un tréfilage, pour au moins une des opérations d'écrouissage. Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits, c'est ainsi par exemple que l'invention s'applique aux cas où on réalise un alliage autre que le laiton, avec deux métaux, ou plus de deux métaux, par exemple les alliages ternaires cuivre - zinc - nickel, cuivre - zinc - cobalt, cuivre - zinc - étain, l'essentiel étant que les métaux utilisés soient susceptibles de former un alliage, par diffusion, à une température au moins égale à 0,3 TF et au plus égale à 0,5 TF.The wire work hardening in the previous examples is carried out by drawing, but other techniques are possible, for example rolling, possibly associated with drawing, for at least one of the work hardening operations. Of course, the invention is not limited to the embodiments described above, this is for example the case that the invention applies to cases where an alloy other than the brass, with two metals, or more than two metals, for example ternary copper - zinc - nickel, copper - zinc - cobalt, copper - zinc - tin alloys, the main thing being that the metals used are capable of forming an alloy, by diffusion, at a temperature at least equal to 0.3 T F and at most equal to 0.5 T F.
Claims (20)
- A metal wire which comprises a substrate and a coating, said wire having the following characteristics:(a) it comprises a substrate of steel having a carbon content of at least 0.05% by weight and of at most 0.6% by weight;(b) this steel has a structure comprising more than 90% work-hardened tempered martensite;c) the substrate is coated with a metal alloy other than steel;d) the diameter of the wire is at least 0.10 mm and at most 0.40 mm;e) the rupture strength of the wire is at least 2800 MPa;f) the elongation upon rupture of the wire is at least 0.4%.
- A wire according to Claim 1, characterised in that the steel has a carbon content of at least 0.2% by weight and at most 0.5% by weight.
- A metal wire according to any one of Claims 1 or 2, characterised in that the steel satisfies the following relationships: 0.3% ≦ Mn ≦ 0.6%; 0.1% ≦ Si ≦ 0.3%; P ≦ 0.02%; S ≦ 0.02%; Al ≦ 0.02%; N ≦ 0.006% (% by weight).
- A metal wire according to Claim 3, characterised in that the steel satisfies the following relationships: Cr ≦ 0.06%; Ni ≦ 0.15%; Cu ≦ 0.15% (% by weight).
- A wire according to any one of Claims 1 to 4, characterised in that the metal alloy is a brass.
- A method of obtaining the wire according to any one of Claims 1 to 5, characterised by the following features:(a) a steel machine wire is work-hardened, this steel having a carbon content of at least 0.05% by weight and at most 0.6% by weight, this steel comprising 28% to 96% proeutectoid ferrite and 72% to 4% pearlite; the deformation ratio ε of this work-hardening being at least 3;(b) the work-hardening is stopped and a hardening heat treatment is carried out on the work-hardened wire, this treatment consisting of heating the wire to above the AC3 transformation point in order to impart to it a homogenous austenite structure, then cooling it rapidly to below the martensite transformation finish point MF, the rate of this cooling being at least 150°C/second, so as to obtain a structure comprising more than 90% martensite;c) at least two metals capable of forming an alloy by diffusion are then deposited on the wire, the steel thus serving as substrate;d) the wire is then heated to a temperature of at least 0.3 TF and at most 0.5 TF so as to cause the formation by diffusion of an alloy of these deposited metals, as well as the formation, for the steel, of a structure comprising more than 90% tempered martensite, TF being the melting point of the steel, expressed in Kelvin;(e) the wire is then cooled to a temperature below 0.3 TF;(f) work-hardening is then carried out on the wire, the temperature of the wire upon this work-hardening being less than 0.3 TF, the deformation ratio ε of this work-hardening being at least 1.
- A method according to Claim 6, characterised in that the initial machine wire has a carbon content of at least 0.2% by weight and at most 0.5% by weight.
- A method according to any one of Claims 6 or 7, characterised in that the machine wire satisfies the following relationships: 0.3% ≦ Mn ≦ 0.6%; 0.1% ≦ Si ≦ 0.3%; P ≦ 0.02%; S ≦ 0.02%; Al ≦ 0.02%; N ≦ 0.006% (% by weight).
- A method according to Claim 8, characterised in that the machine wire satisfies the following relationships: Cr ≦ 0.06%; Ni ≦ 0.15%; Cu ≦ 0.15% (% by weight).
- A method according to any one of Claims 6 to 9, characterised in that the initial machine wire has a proeutectoid ferrite content of at least 41% and at most 78%, and a pearlite content of at least 22% and at most 59%.
- A method according to any one of Claims 6 to 10, characterised in that the deformation ratio ε upon the work-hardening before the heat treatments is at least 3.2 and at most 6.
- A method according to any one of Claims 6 to 11, characterised in that the deformation ratio ε upon the final work-hardening after the heat treatments is at least 3 and at most 5.
- A method according to any one of Claims 6 to 12, characterised in that the deposit effected on the wire after the hardening heat treatment is a deposit of copper and zinc.
- A method according to any one of Claims 6 to 13, characterised in that at least one work-hardening is carried out at least in part by drawing.
- A method according to any one of Claims 6 to 14, characterised in that the hardening heat treatment is carried out with a speed of cooling of at least 250°C/second.
- A method according to Claim 15, characterised in that the hardening heat treatment imparts to the wire a structure comprising more than 90% martensite in laths.
- An assembly comprising at least one wire according to any one of Claims 1 to 5.
- An article reinforced with at least one wire according to any one of Claims 1 to 5.
- An article reinforced with at least one assembly according to Claim 17.
- An article according to any one of Claims 18 or 19, characterised in that it is a tyre.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9101869A FR2672827A1 (en) | 1991-02-14 | 1991-02-14 | METALLIC WIRE COMPRISING A STEEL SUBSTRATE HAVING A WRINKLE - TYPE RECTANGULAR STRUCTURE AND A COATING; METHOD FOR OBTAINING THIS WIRE. |
FR9101869 | 1991-02-14 | ||
PCT/FR1992/000134 WO1992014811A1 (en) | 1991-02-14 | 1992-02-12 | Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0571521A1 EP0571521A1 (en) | 1993-12-01 |
EP0571521B1 true EP0571521B1 (en) | 1995-06-28 |
Family
ID=9409795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92906734A Expired - Lifetime EP0571521B1 (en) | 1991-02-14 | 1992-02-12 | Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating |
Country Status (11)
Country | Link |
---|---|
US (1) | US5503688A (en) |
EP (1) | EP0571521B1 (en) |
JP (1) | JPH06505308A (en) |
AU (1) | AU667190B2 (en) |
BR (1) | BR9205631A (en) |
CA (1) | CA2099872A1 (en) |
DE (1) | DE69203228T2 (en) |
ES (1) | ES2074883T3 (en) |
FR (1) | FR2672827A1 (en) |
RU (1) | RU2096496C1 (en) |
WO (1) | WO1992014811A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068942A1 (en) * | 2000-03-16 | 2001-09-20 | N.V. Bekaert S.A. | Spring steel wire |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2711149A1 (en) * | 1993-10-15 | 1995-04-21 | Michelin & Cie | Stainless steel wire for tire casing carcass. |
FR2725730A1 (en) * | 1994-10-12 | 1996-04-19 | Michelin & Cie | STAINLESS STEEL WIRE FOR STRENGTHENING THE SUMMIT OF PNEUMATIC ENVELOPES |
FR2731371B1 (en) * | 1995-03-10 | 1997-04-30 | Inst Francais Du Petrole | METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE |
FR2743573A1 (en) * | 1996-01-16 | 1997-07-18 | Michelin & Cie | METAL WIRE READY FOR USE AND METHOD FOR OBTAINING THREAD |
FR2837220B1 (en) * | 2002-03-13 | 2004-08-06 | Rowenta Werke Gmbh | IRON SOLE WITH HARDENED AND COATED SURFACE |
JP4788861B2 (en) * | 2003-11-28 | 2011-10-05 | ヤマハ株式会社 | Steel wire for musical instrument string and method for manufacturing the same |
EA019120B1 (en) * | 2008-03-04 | 2014-01-30 | Нв Бекаэрт Са | Cold drawn low carbon steel filament and method of manufacturing said filament |
WO2015173380A1 (en) | 2014-05-15 | 2015-11-19 | Expanite Technology A/S | Lock washer |
CN104831192A (en) * | 2015-05-22 | 2015-08-12 | 丹阳凯富达过滤器材有限公司 | Meta wire and production process thereof |
FR3045670A1 (en) * | 2015-12-16 | 2017-06-23 | Michelin & Cie | CARBON STEEL STRIP, ITS USE FOR REINFORCING RUBBER ARTICLES |
FR3045671B1 (en) * | 2015-12-16 | 2017-12-08 | Michelin & Cie | TIRE REINFORCED BY A CARBON STEEL TAPE |
CN106435466B (en) * | 2016-08-19 | 2021-08-13 | 重庆大有表面技术有限公司 | Steel surface modification structure formed by utilizing zinc-nickel infiltration layer and preparation method thereof |
CN106399925B (en) * | 2016-08-19 | 2021-08-13 | 重庆大有表面技术有限公司 | Steel surface modification structure formed by utilizing zinc-nickel infiltration layer and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991009933A1 (en) * | 1989-12-22 | 1991-07-11 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Steel wire having a structure of the cold-drawn lower bainite type; method for producing such wire |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE258249C (en) * | ||||
GB1400708A (en) * | 1971-09-02 | 1975-07-23 | Bekaert Sa Nv | Heat treatment of steel wire reinforcements |
US4265678A (en) * | 1977-12-27 | 1981-05-05 | Tokyo Rope Mfg. Co., Ltd. | Metal wire cord |
WO1984002354A1 (en) * | 1982-12-09 | 1984-06-21 | Univ California | High strength, low carbon, dual phase steel rods and wires and process for making same |
CA1332210C (en) * | 1985-08-29 | 1994-10-04 | Masaaki Katsumata | High strength low carbon steel wire rods and method of producing them |
US5338380A (en) * | 1985-08-29 | 1994-08-16 | Kabushiki Kaisha Kobe Seiko Sho | High strength low carbon steel wire rods and method of producing them |
DE3888162T2 (en) * | 1988-02-29 | 1994-06-01 | Kobe Steel Ltd | Very thin and high-strength wire and reinforcing material and composite material containing this wire. |
-
1991
- 1991-02-14 FR FR9101869A patent/FR2672827A1/en active Pending
-
1992
- 1992-02-12 RU RU9293054533A patent/RU2096496C1/en active
- 1992-02-12 DE DE69203228T patent/DE69203228T2/en not_active Expired - Fee Related
- 1992-02-12 JP JP4506381A patent/JPH06505308A/en active Pending
- 1992-02-12 ES ES92906734T patent/ES2074883T3/en not_active Expired - Lifetime
- 1992-02-12 WO PCT/FR1992/000134 patent/WO1992014811A1/en active IP Right Grant
- 1992-02-12 US US08/098,378 patent/US5503688A/en not_active Expired - Lifetime
- 1992-02-12 EP EP92906734A patent/EP0571521B1/en not_active Expired - Lifetime
- 1992-02-12 AU AU15652/92A patent/AU667190B2/en not_active Ceased
- 1992-02-12 CA CA002099872A patent/CA2099872A1/en not_active Abandoned
- 1992-02-12 BR BR9205631A patent/BR9205631A/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991009933A1 (en) * | 1989-12-22 | 1991-07-11 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Steel wire having a structure of the cold-drawn lower bainite type; method for producing such wire |
Non-Patent Citations (1)
Title |
---|
Anil Kumar Sinha, Ferrous Physical Metallurgy, 1989, Ed. Butterworths, p. 285, 286. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068942A1 (en) * | 2000-03-16 | 2001-09-20 | N.V. Bekaert S.A. | Spring steel wire |
Also Published As
Publication number | Publication date |
---|---|
DE69203228D1 (en) | 1995-08-03 |
FR2672827A1 (en) | 1992-08-21 |
JPH06505308A (en) | 1994-06-16 |
ES2074883T3 (en) | 1995-09-16 |
AU667190B2 (en) | 1996-03-14 |
DE69203228T2 (en) | 1995-10-26 |
US5503688A (en) | 1996-04-02 |
WO1992014811A1 (en) | 1992-09-03 |
RU2096496C1 (en) | 1997-11-20 |
EP0571521A1 (en) | 1993-12-01 |
AU1565292A (en) | 1992-09-15 |
CA2099872A1 (en) | 1992-08-15 |
BR9205631A (en) | 1994-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0571521B1 (en) | Metal wire consisting of a steel substrate with a cold hardened annealed martensitic structure, and a coating | |
JP4970562B2 (en) | High strength steel wire rod excellent in ductility and method for manufacturing steel wire | |
CA2680623A1 (en) | Steel for tool-less hot forming or quenching with improved ductility | |
FR2792002A1 (en) | High carbon steel, especially for radial reinforcing cords or wires of automobile tires, has a pearlitic structure with a low surface ferrite content for increased longitudinal cracking resistance | |
EP0976541B1 (en) | Composite wire comprising a core of carbon steel and an outer layer of stainless steel | |
CN110832096A (en) | High-strength steel wire | |
EP0877824B1 (en) | Ready-to-use metal wire and method for producing same | |
WO2011104443A1 (en) | Method for making a part from a metal sheet coated with aluminium or an aluminium alloy | |
EP1627092A1 (en) | High-resistant sheet metal which is cold rolled and aluminized in dual phase steel for an anti-implosion belt for a television and method for the manufacture thereof | |
EP0506768B1 (en) | Steel wire having a structure of the cold-drawn lower bainite type; method for producing such wire | |
US6949149B2 (en) | High strength, high carbon steel wire | |
EP0851039B1 (en) | Stainless steel wire and process for production | |
CA1107179A (en) | Method for making a hard steel elongated element | |
JP3965010B2 (en) | High-strength direct patenting wire and method for producing the same | |
EP0876515B1 (en) | Drawing stock for reinforcing plastic or rubber articles | |
FR2847592A1 (en) | Steel for the fabrication of high performance precision mechanical components by either hot or cold deformation processes, has a bainitic structure | |
FR2685708A1 (en) | LONG PRODUCT FOR THE MANUFACTURE BY COLD FORMING, ESPECIALLY COLD STRIPPING, OF PRODUCTS PRODUCED SUCH AS BOLTS AND METHOD OF MANUFACTURING A COLD PRODUCT. | |
FR2866352A3 (en) | Shaped steel wire used for flexible pipes carrying hydrocarbons consists of steel containing specified amounts of carbon, nickel, manganese, chromium, silicon, sulfur and phosphorus | |
JPH11209847A (en) | Wire rod for hot-dip metal coated steel wire, excellent in longitudinal crack resistance | |
BE823113A (en) | PROCESS FOR MANUFACTURING LARGE LENGTH PRODUCTS FROM A HALF-PRODUCT IN HOT ROLLED CARBON STEEL AND PRODUCTS THUS OBTAINED | |
FR2781814A1 (en) | Composite wire for manufacturing e.g. guying cables | |
FR2524907A1 (en) | Steel wire rod for direct cold forging - esp. of high strength nuts and bolts, without heat treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930527 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE ES FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19931223 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR GB IT LI |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69203228 Country of ref document: DE Date of ref document: 19950803 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2074883 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950918 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990215 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000229 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010112 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010205 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010220 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020903 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020212 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110302 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110211 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Owner name: CIE GENERALE DES ETS *MICHELIN - MICHELIN & CIE Effective date: 20120212 |