JPH11209847A - Wire rod for hot-dip metal coated steel wire, excellent in longitudinal crack resistance - Google Patents

Wire rod for hot-dip metal coated steel wire, excellent in longitudinal crack resistance

Info

Publication number
JPH11209847A
JPH11209847A JP1171298A JP1171298A JPH11209847A JP H11209847 A JPH11209847 A JP H11209847A JP 1171298 A JP1171298 A JP 1171298A JP 1171298 A JP1171298 A JP 1171298A JP H11209847 A JPH11209847 A JP H11209847A
Authority
JP
Japan
Prior art keywords
wire
hot
steel wire
wire rod
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171298A
Other languages
Japanese (ja)
Other versions
JP3439106B2 (en
Inventor
Sunao Yoshihara
直 吉原
Kenji Ochiai
憲二 落合
Nobuhiko Ibaraki
信彦 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP01171298A priority Critical patent/JP3439106B2/en
Publication of JPH11209847A publication Critical patent/JPH11209847A/en
Application granted granted Critical
Publication of JP3439106B2 publication Critical patent/JP3439106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire rod for hot-dip metal coated steel wire, capable of wire drawing even if patenting treatment for rolled stock is omitted, having high strength, and exibiting excellent longitudinal crack resistance. SOLUTION: In the wire rod for hot-dip metal coated steel wire, the maximum grain size of second-phase ferrite existing in the position at a depth of 1/16 to 1/4 the diameter from the outside periphery of the cross section of the wire rod is regulated to <=107 μm. Moreover, it is desitable to incorporate 0.01-0.05% Al and 30-150 ppm N and also to regulate the amount of solid solution N, among N, to <=10 ppm. Further, it is more desirable that respective contents of Al and N satisfy Al/N>=4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パテンティング処
理することなく圧延材のまま直接伸線することができ、
しかも耐縦割れ性に優れた溶融めっき鋼線用線材に関す
るものであり、詳細には亜鉛めっき鋼撚線や吊り橋用ケ
ーブル等を製造するにあたって用いられる太径(線径5
mm程度)の溶融めっき鋼線用線材であって、高強度を
有すると共に、捻回時における耐縦割れ性に優れた線材
に関するものである。
[0001] The present invention can directly draw a rolled material without a patenting process,
In addition, the present invention relates to a hot-dip galvanized steel wire having excellent longitudinal cracking resistance. More specifically, the present invention relates to a large-diameter (wire diameter of 5 mm) wire used for manufacturing a galvanized steel stranded wire, a suspension bridge cable, and the like.
The present invention relates to a wire rod for a hot-dip coated steel wire having a high strength and a high resistance to longitudinal cracking during twisting.

【0002】[0002]

【従来の技術】耐食性が要求されるPC鋼線や吊橋用ケ
ーブル等を製造するにあたっては、高炭素鋼線材にパテ
ンティング処理を行った後、伸線し、その後溶融亜鉛め
っきを施すことが一般的である。
2. Description of the Related Art In the manufacture of PC steel wires and cables for suspension bridges that require corrosion resistance, it is common to apply a patenting process to a high-carbon steel wire, draw it, and then apply galvanizing. It is a target.

【0003】溶融めっき鋼線用線材の捻回特性を向上さ
せる技術としては、鋼線にブルーイング処理を施すこと
が有効であることが知られており、例えば特開平4−2
46125号公報や特開平4−236742号公報に
は、溶融めっきを施した後に、矯正加工または伸線加工
を施し、次いでブルーイング処理を施す方法が開示され
ている。しかしながら、めっき後の加工はめっき層の剥
離等を生じて耐食性の劣化を招き易く、例えば吊橋用め
っき鋼線の場合には、めっき後の鋼線に加工を加えるこ
とは極力避けるべき方法である。
As a technique for improving the torsion characteristics of a hot-dip galvanized steel wire, it is known that a bluing treatment is effective on a steel wire.
JP-A-46125 and JP-A-4-236742 disclose a method in which after hot-dip plating is performed, straightening or drawing is performed, and then bluing is performed. However, processing after plating is likely to cause peeling of the plating layer and cause deterioration of corrosion resistance. For example, in the case of a plated steel wire for a suspension bridge, it is a method to avoid processing the plated steel wire as much as possible. .

【0004】また、鋼線表面の引張残留応力を解放する
ことにより、捻回時の縦割れを抑制できることも知られ
ており、例えば特公平3−66386号公報では、鋼線
表面に圧縮残留応力を積極的に付与する方法が開示され
ている。しかしながら、残留応力を制御した後にめっき
を施すと、めっき時の線温の上昇により残留応力の効果
がほとんどなくなってしまい、溶融めっき鋼線用線材に
適用しても十分な効果は得られなかった。
[0004] It is also known that by releasing the residual tensile stress on the surface of the steel wire, it is possible to suppress longitudinal cracking during twisting. For example, Japanese Patent Publication No. 3-66386 discloses that the surface of the steel wire has a compressive residual stress. Is disclosed. However, when plating is performed after controlling the residual stress, the effect of the residual stress almost disappears due to an increase in the wire temperature during plating, and a sufficient effect is not obtained even when applied to a wire for hot-dip coated steel wire. .

【0005】更に、従来の溶融めっき鋼線用線材は、パ
テンティング処理を施した後、伸線加工が行われてお
り、パテンティング処理をすることなく伸線加工される
線材は実用化されていなかった。
Further, conventional wire rods for hot-dip galvanized steel wires are subjected to wire drawing after being subjected to a patenting process. Wires which are drawn without a patenting process have been put to practical use. Did not.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、圧延材にパテンティング
処理を施さなくとも伸線でき、しかも高強度で且つ優れ
た耐縦割れ性を発揮する溶融めっき鋼線用線材を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can be drawn without applying a patenting treatment to a rolled material, and has high strength and excellent longitudinal crack resistance. An object of the present invention is to provide a wire rod for a hot-dip galvanized steel wire exhibiting the following.

【0007】[0007]

【課題を解決するための手段】上記目的を達成した本発
明の溶融めっき鋼線用線材とは、線材横断面の外周より
直径の1/16から1/4の位置に存在する第2相フェ
ライトの最大粒径が10μm以下であることを要旨とす
るものであり、Al:0.01〜0.05%(質量%、
以下同じ),N:30〜150ppmを含有し、上記N
のうち固溶N量が10ppm以下であることが望まし
く、Al及びNの含有量がAl/N≧4を満足すること
がより望ましい。
A wire rod for a hot-dip coated steel wire according to the present invention which has achieved the above object is a second phase ferrite present at a position 1/16 to 1/4 of the diameter from the outer periphery of the wire cross section. Is intended to have a maximum particle size of 10 μm or less, and Al: 0.01 to 0.05% (% by mass,
The same shall apply hereinafter), N: 30 to 150 ppm,
Of these, the amount of solute N is preferably 10 ppm or less, and more preferably, the content of Al and N satisfies Al / N ≧ 4.

【0008】またAl及びN以外の元素としてC:0.
7〜1.2%,Si:0.5〜2.0%,Mn:0.2
〜2.0%を含有し、残部Fe及び不可避不純物であれ
ば良く、更にCrを0.1〜1.0%含有することが、
強度や伸線加工性の向上という観点から推奨される。
Further, as elements other than Al and N, C: 0.
7 to 1.2%, Si: 0.5 to 2.0%, Mn: 0.2
To 2.0%, the balance being Fe and inevitable impurities, and further containing 0.1 to 1.0% of Cr.
It is recommended from the viewpoint of improving strength and drawability.

【0009】尚、本発明において固溶N量とは、化学分
析によって測定された鋼中の全N量と、抽出残渣法で得
られたAlN中のN量の差から計算された値である。
In the present invention, the solute N content is a value calculated from the difference between the total N content in steel measured by chemical analysis and the N content in AlN obtained by the extraction residue method. .

【0010】[0010]

【発明の実施の形態】耐縦割れ性には線径依存性があ
り、線径が細い程縦割れを起こすことなく高強度化を図
ることができる。例えばタイヤ用スチールコードの場
合、線径が0.2mm程度と細いことから300kgf/mm
2 以上の高強度材が得られている。これに対して、太径
の線材(例えば、線径5mm程度)では、およそ180
kgf/mm2 が強度の上限となっており、約180kgf/mm2
を超えると捻回時に縦割れが発生してしまう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The vertical cracking resistance has a wire diameter dependence, and the thinner the wire diameter, the higher the strength without the occurrence of vertical cracks. For example, in the case of a tire steel cord, the wire diameter is as thin as 0.2 mm, so it is 300 kgf / mm.
Two or more high-strength materials have been obtained. On the other hand, for a wire having a large diameter (for example, a wire diameter of about 5 mm), about 180
kgf / mm 2 is the upper limit of strength, about 180 kgf / mm 2
If it exceeds, vertical cracks will occur at the time of twisting.

【0011】本発明者らは、固溶Nの存在が線材の耐縦
割れ性に悪影響を及ぼしており、特にこの悪影響は太径
線材ほど顕著であって、この固溶N量が10ppmを超
えると捻回時に縦割れを発生することのない強度の上限
値(縦割れ限界引張強さ)が極端に低下することを突き
止め、鋼中の固溶N量を10ppm以下とすることによ
り優れた耐縦割れ性を発揮する溶融めっき鋼線用線材
を、先に出願した(特開平9−87803号)。但し、
上記溶融めっき鋼線用線材は伸線加工を行うにあたり、
パテンティング処理を施すことを前提としていた。その
後、本発明者らが鋭意研究を重ねた結果、Cを0.7%
以上含有する共析鋼又は過共析鋼であっても、パーライ
ト等の第1相に第2相としてフェライトが存在してお
り、この第2相フェライトの粒径を制御することによっ
て、パテンティング処理を施さなくても高強度で、耐縦
割れ性に優れた溶融めっき鋼線用線材が得られることを
見出し、本発明に想到した。
The present inventors have found that the presence of dissolved N has an adverse effect on the longitudinal cracking resistance of a wire, and this adverse effect is particularly remarkable for a large diameter wire, and the amount of dissolved N exceeds 10 ppm. It is found that the upper limit of strength (vertical crack limit tensile strength) at which vertical cracks do not occur during twisting is extremely reduced, and the amount of solid solution N in steel is set to 10 ppm or less to achieve excellent resistance. A wire rod for hot-dip galvanized steel wire exhibiting vertical cracking properties was previously filed (JP-A-9-87803). However,
The wire for the hot-dip galvanized steel wire is used for wire drawing.
It was assumed that a patenting process was performed. After that, the present inventors conducted intensive studies and found that C was 0.7%.
Even in the eutectoid steel or hypereutectoid steel contained above, ferrite exists as the second phase in the first phase such as pearlite, and by controlling the grain size of the second phase ferrite, the patenting is performed. The present inventors have found that a wire rod for hot-dip coated steel wire having high strength and excellent longitudinal crack resistance can be obtained without performing any treatment, and conceived the present invention.

【0012】上記第2相フェライトは、捻回加工の際に
内部欠陥として作用するものであり、この第2相フェラ
イトを起点として縦割れが発生する。図2に、後述する
実施例の結果を固溶N量と縦割れ限界引張強さで整理し
て示す通り、第2相フェライトの最大粒径が10μm以
下の場合には、固溶N量を10ppm以下にすることに
より縦割れ限界引張強さは大幅に向上するが、第2相フ
ェライトの最大粒径が10μmを超えると、固溶N量が
10ppm以下であっても、縦割れ限界引張強さはほと
んど向上しないことが分かる。特に、180kgf/m
2 を超える引張強さを有するZnめっき鋼線の縦割れ
を防止するには、第2相フェライトの最大粒径を10μ
m以下に制御することが必要である。尚、縦割れが発生
する領域は、主として圧延線材の横断面において、その
外周より直径の1/16から1/4の位置であることか
ら、この領域における第2相フェライトの最大粒径を1
0μm以下に制御することが非常に有効である。以下、
本発明の成分限定理由について説明する。
The second phase ferrite acts as an internal defect during twisting, and a vertical crack is generated starting from the second phase ferrite. As shown in FIG. 2, the results of the examples described below are arranged in terms of the amount of solute N and the critical tensile strength of longitudinal cracks. When the maximum grain size of the second phase ferrite is 10 μm or less, the amount of solute N is reduced. When the maximum grain size of the second phase ferrite exceeds 10 μm, even if the amount of solute N is 10 ppm or less, the longitudinal crack limit tensile strength is greatly improved by setting the tensile strength at 10 ppm or less. It can be seen that the degree hardly improves. In particular, 180 kgf / m
To prevent longitudinal cracking of Zn-plated steel wire having a tensile strength exceeding m 2 , the maximum grain size of the second phase ferrite should be 10 μm.
m needs to be controlled. The region where the vertical cracks occur is mainly located at 1/16 to 1/4 of the diameter from the outer periphery in the cross section of the rolled wire rod. Therefore, the maximum grain size of the second phase ferrite in this region is 1%.
It is very effective to control it to 0 μm or less. Less than,
The reasons for limiting the components of the present invention will be described.

【0013】Cは、強度を上げるために有効かつ経済的
な元素であり、C含有量を増加させるに伴い、伸線時の
加工硬化量、伸線後の強度が増加する。従って、C含有
量の下限を0.7%に設定した。但し、C量が多過ぎる
と初析セメンタイトの析出を防止できなくなるので、C
量の上限を1.2%とした。
C is an effective and economical element for increasing the strength. As the C content increases, the amount of work hardening during drawing and the strength after drawing increase. Therefore, the lower limit of the C content was set to 0.7%. However, if the amount of C is too large, precipitation of proeutectoid cementite cannot be prevented.
The upper limit of the amount was 1.2%.

【0014】Siは、脱酸剤として必要な元素であると
共に、フェライトに固溶し、固溶体強化に顕著な効果を
発揮する。さらに、フェライト中のSiは溶融亜鉛めっ
き処理による強度低下を低減させる効果があり、高強度
鋼線を製造するには不可欠の元素である。従って、下限
を0.5%に設定した。但し、過剰に添加すると伸線後
の鋼線の延性が低下するので、上限は2.0%とした。
[0014] Si is an element necessary as a deoxidizing agent, and also forms a solid solution with ferrite and exerts a remarkable effect on solid solution strengthening. Further, Si in ferrite has an effect of reducing a decrease in strength due to hot-dip galvanizing, and is an essential element for producing a high-strength steel wire. Therefore, the lower limit was set to 0.5%. However, if added excessively, the ductility of the steel wire after drawing is reduced, so the upper limit was set to 2.0%.

【0015】Mnも脱酸剤として必要な元素であると共
に、鋼の焼入れ性を向上させて鋼線の断面内の組織の均
一性を高める上で有効である。従って、下限を0.2%
に設定した。但し、Mn量が多過ぎると、Mnの偏析部
が形成され、マルテンサイトやベイナイト等の過冷組織
が生成して伸線加工性が劣化するので、上限は2.0%
とする。
Mn is also an element necessary as a deoxidizing agent, and is effective in improving the hardenability of steel and increasing the uniformity of the structure in the cross section of the steel wire. Therefore, the lower limit is 0.2%
Set to. However, if the amount of Mn is too large, a segregated portion of Mn is formed, and a supercooled structure such as martensite or bainite is generated to deteriorate wire drawability, so the upper limit is 2.0%.
And

【0016】Alは脱酸剤として効果的であり、またオ
ーステナイト粒度の粗大化防止に有効である。しかも鋼
中のNと結合して耐縦割れ性に有害な固溶Nを低減する
効果もあるので、0.01%以上必要である。但し、過
剰に添加しても効果が飽和すると共に、経済性を損なう
要因となるので0.05%を上限と定めた。
Al is effective as a deoxidizing agent and is also effective in preventing austenite grain size from becoming coarse. Moreover, it has an effect of reducing solid solution N which is harmful to longitudinal cracking resistance by bonding with N in steel, so that 0.01% or more is required. However, even if it is added excessively, the effect is saturated and the economy is impaired. Therefore, the upper limit is set to 0.05%.

【0017】Nは鋼中でAlの窒化物となり、加熱時の
オーステナイト粒度の粗大化防止に有効である。添加量
が30ppm以下では十分にその効果が発揮されないの
で、下限を30ppmに設定した。一方、過剰に添加す
ると、Al窒化物量が増加し過ぎて伸線性に悪影響を及
ぼすだけでなく、固溶N量が多くなり鋼線の耐縦割れ性
に悪影響を及ぼすので、上限は150ppmとする必要
がある。
N becomes a nitride of Al in the steel and is effective in preventing the austenite grain size from becoming coarse during heating. If the amount is 30 ppm or less, the effect is not sufficiently exhibited, so the lower limit is set to 30 ppm. On the other hand, if added in excess, not only does the amount of Al nitride increase too much, which adversely affects drawability, but also increases the amount of solute N and adversely affects the longitudinal cracking resistance of the steel wire, so the upper limit is 150 ppm. There is a need.

【0018】更に、Al及びNの含有量はAl/N≧4
とすることが固溶N量を10ppm以下とし、縦割れ限
界引張強さを高める上で非常に効果的である。図3は、
溶融めっき鋼線用線材のAl/Nの値と縦割れ限界引張
強さの関係を示すグラフであり、第2相フェライトの最
大粒径が10μm以下の場合には、Al/Nが4未満で
は縦割れ限界引張強さが小さく、Al/Nの値が4以上
で縦割れ限界引張強さが大きくなっていることが分か
る。尚、Alの原子量は26.98で、Nの原子量は1
4.0であるから、Al/Nの原子量比は1.93とな
る。従って、鋼中のAl/Nの比が1.93であれば、
理論的には全てのNがAlと化合しAlNとなるが、平
衡状態になるにはかなりの長時間を要し、量産は困難で
ある。図3のグラフから明らかな様に、Al/Nの値が
4以上で縦割れ限界引張強さが顕著に大きくなってお
り、Al/Nの値を4以上とすることにより固溶N量を
十分に低減させて耐縦割れ性を大幅に高めることができ
るのである。
Further, the content of Al and N is Al / N ≧ 4.
Is very effective in reducing the solute N content to 10 ppm or less and increasing the longitudinal tensile limit tensile strength. FIG.
It is a graph which shows the relationship of the value of Al / N of a wire rod for hot-dip coating steel wires and the critical tensile strength of a vertical crack, and when the maximum grain size of a 2nd phase ferrite is 10 micrometers or less, when Al / N is less than 4, It can be seen that the critical tensile strength at longitudinal cracks is small, and the critical tensile strength at longitudinal cracks is large when the value of Al / N is 4 or more. The atomic weight of Al is 26.98 and the atomic weight of N is 1
Since it is 4.0, the atomic weight ratio of Al / N is 1.93. Therefore, if the ratio of Al / N in steel is 1.93,
Theoretically, all N is combined with Al to form AlN, but it takes a considerably long time to reach an equilibrium state, and mass production is difficult. As is clear from the graph of FIG. 3, the critical tensile strength at longitudinal cracks is remarkably increased when the value of Al / N is 4 or more. It is possible to sufficiently reduce the vertical cracking resistance by sufficiently reducing it.

【0019】本発明の溶融めっき鋼線用線材では、上記
成分に加えてCrを0.1〜1.0%含有させてもよ
い。Crは、パーライトのラメラ間隔の微細化に有効で
あり、線材の強度及び伸線加工性を向上させるので、
0.1%以上添加することが望ましい。但し、多過ぎる
と、変態終了時間が長くなり過ぎ、設備の大型化を招い
たり、生産性の低下をもたらすので、上限は1.0%と
することが好ましい。
In the wire rod for a hot-dip coated steel wire of the present invention, Cr may be contained in an amount of 0.1 to 1.0% in addition to the above components. Cr is effective in reducing the lamella spacing of pearlite and improves the strength and drawability of the wire.
It is desirable to add 0.1% or more. However, if it is too large, the transformation end time becomes too long, which leads to an increase in the size of the equipment or a decrease in productivity. Therefore, the upper limit is preferably set to 1.0%.

【0020】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any change in the design based on the gist of the preceding and following aspects will be described. Are included within the technical scope of

【0021】[0021]

【実施例】表1に示す化学成分の鋼を真空溶解炉にて溶
製し、熱間圧延により線径11mmの鋼線を作製した。
このとき、線材横断面の第2相フェライトの粒径を制御
することを目的として、圧延時の載置温度を700〜9
50℃の範囲で変化させると共に、800℃から500
℃までの線材の冷却速度を1℃/sec から10℃/sec
まで変化させた。
EXAMPLE Steel having the chemical components shown in Table 1 was melted in a vacuum melting furnace, and a steel wire having a wire diameter of 11 mm was produced by hot rolling.
At this time, in order to control the grain size of the second phase ferrite in the cross section of the wire, the mounting temperature during rolling is set to 700 to 9
Change the temperature in the range of 50 ° C, and
Cooling rate of wire rod to 1 ℃ / sec from 1 ℃ / sec to 10 ℃ / sec
Changed.

【0022】得られた鋼線を、目標線径の4.9mmま
で減面率80.2%で連続伸線した。この時のダイス枚
数は7枚であり、いずれのダイスの出口部においても線
材を冷却することにより、線材温度を180℃以下に維
持した。得られた線材を用いて、以下の方法により縦割
れ限界引張強さを測定した。
The obtained steel wire was continuously drawn at a reduction in area of 80.2% to a target wire diameter of 4.9 mm. At this time, the number of dies was 7, and the temperature of the wire was maintained at 180 ° C. or lower by cooling the wire at the exit of each die. Using the obtained wire, the critical tensile strength of a vertical crack was measured by the following method.

【0023】伸線した鋼線を、200〜450℃の温度
範囲(10℃間隔)に15分間加熱(ブルーイング)処
理して空冷した鋼線を用いて引張試験と捻回試験を行
い、捻回試験の際に縦割れが発生しなくなる加熱温度の
引張強さを縦割れ限界引張強さとした。例えば、図1は
上記縦割れ限界引張強さを算出する方法を模式的に示す
グラフであり、100〜400℃の範囲における加熱処
理では捻回試験において縦割れが発生したことを示して
いる。一方引張試験においては、加熱温度が200℃で
引張強さは最大値を示していることが分かるが、捻回試
験において200℃前後は縦割れが発生する領域内にあ
り、縦割れが発生しない領域での引張強さは400℃に
おいて最大値を示している。本発明では、この値を縦割
れ限界引張強さとするものである。
The drawn steel wire is subjected to a heating (blueing) treatment in a temperature range of 200 to 450 ° C. (interval of 10 ° C.) for 15 minutes and a tensile test and a torsion test are performed using the air-cooled steel wire. The tensile strength at the heating temperature at which vertical cracks did not occur during the round test was defined as the critical tensile strength of vertical cracks. For example, FIG. 1 is a graph schematically showing a method for calculating the above-described vertical crack limit tensile strength, and shows that a vertical crack has occurred in a twist test in a heat treatment in a range of 100 to 400 ° C. On the other hand, in the tensile test, it can be seen that the heating temperature is 200 ° C., and the tensile strength shows the maximum value. However, in the torsion test, around 200 ° C. is in the region where vertical cracks occur, and no vertical cracks occur. The tensile strength in the region shows the maximum value at 400 ° C. In the present invention, this value is defined as the longitudinal crack limit tensile strength.

【0024】表1に、鋼線の化学成分及び第2相フェラ
イト粒径と、上記縦割れ限界引張強さを併記する。
Table 1 also shows the chemical composition of the steel wire, the grain size of the second phase ferrite, and the critical tensile strength of the vertical crack.

【0025】尚、固溶N量の測定方法は、伸線した鋼線
を用い、まず化学分析によって全N量を測定し、次に
抽出残渣法によってAlNの量を分析してAlと化合し
ているN量を求め、その差(−)を固溶N量とし
た。上記抽出残渣法でAlN量を分析するにあたって
は、まず10%アセチルアセトン系電解液を用いて鋼線
を溶かし、得られた溶液をポアサイズ0.2μmのフィ
ルターで吸収ろ過して残渣を抽出した。この残渣を用い
て中和滴定法でAlN量を定量した。
The method of measuring the amount of solute N is to use a drawn steel wire, first measure the total amount of N by chemical analysis, and then analyze the amount of AlN by the extraction residue method to combine with the Al. The difference (-) was determined as the solid solution N amount. In analyzing the amount of AlN by the above extraction residue method, first, a steel wire was dissolved using a 10% acetylacetone-based electrolyte, and the obtained solution was subjected to absorption filtration with a filter having a pore size of 0.2 μm to extract a residue. Using this residue, the amount of AlN was determined by a neutralization titration method.

【0026】また第2相フェライトの最大粒径は、線材
横断面の外周から直径の1/16から1/4の領域を電
子顕微鏡を用い観察し、最も大きな第2相フェライトを
倍率2000倍にて写真撮影し、その後画像解析装置を
用いて面積を測定し、等価な面積を持つ円の直径に換算
したものである。
The maximum grain size of the second phase ferrite can be determined by observing a region of 1/16 to 1/4 of the diameter from the outer periphery of the cross section of the wire using an electron microscope. In this case, the area is measured using an image analyzer and converted into the diameter of a circle having an equivalent area.

【0027】[0027]

【表1】 [Table 1]

【0028】No.1〜3,6,18,19,21,2
7,28は本発明例であり、縦割れ限界引張強さは高い
値を示している。
No. 1-3,6,18,19,21,2
Nos. 7 and 28 are examples of the present invention, and have a high value for the longitudinal crack limit tensile strength.

【0029】No.4,5,7,20,22は、フェラ
イト粒径が大き過ぎる場合の比較例であり、いずれも縦
割れ限界引張強さが低い。
No. Nos. 4, 5, 7, 20, and 22 are comparative examples in which the ferrite grain size is too large, and all have low longitudinal tensile limit tensile strength.

【0030】No.8,10,12はそれぞれC,S
i,Mnが少な過ぎる場合の比較例であり、縦割れ限界
引張強さが低い値を示している。No.9は、C量が多
過ぎる場合の比較例であり、初析セメンタイトが多くて
伸線性が劣化し、結果的に伸線途中で断線してしまっ
た。No.11はSiが多過ぎる場合の比較例であり、
線材の靭性が低下し、伸線途中で断線した。No.13
は、Mnが多過ぎる場合の比較例であり、過冷組織の存
在の為に伸線途中で断線してしまった。No.14は、
Alが少な過ぎる場合の比較例であり、AlNの析出量
が不十分でありオーステナイト粒が粗大化してしまい、
その結果伸線中に断線してしまった。No.15は,全
N量が多過ぎて、固溶N量が本発明範囲を超えて多くな
っている場合の比較例であり、縦割れ限界引張強さが低
い。No.24は、Cr量が多過ぎる場合の比較例であ
り、伸線中に断線した。また、No.14〜17,2
3,25,26は固溶N量が本発明範囲を超えて多過ぎ
る場合の比較例であり、縦割れ限界引張強さが低い。
No. 8, 10, 12 are C, S respectively
This is a comparative example in which i and Mn are too small, and shows a low value of critical tensile strength in longitudinal cracks. No. No. 9 is a comparative example in which the amount of C is too large, the amount of proeutectoid cementite is large, and the drawability is deteriorated, and as a result, the wire is broken during drawing. No. 11 is a comparative example in which Si is too much,
The toughness of the wire was reduced, and the wire was broken during drawing. No. 13
Is a comparative example when Mn is too large, and the wire was broken during drawing due to the existence of a supercooled structure. No. 14 is
This is a comparative example in which Al is too small, where the amount of AlN deposited is insufficient and austenite grains are coarsened,
As a result, the wire was broken during wire drawing. No. 15 is a comparative example in which the total N amount is too large and the solute N amount exceeds the range of the present invention, and the longitudinal crack limit tensile strength is low. No. 24 is a comparative example in which the amount of Cr is too large, and the wire was broken during the drawing. In addition, No. 14-17,2
Nos. 3, 25 and 26 are comparative examples in which the amount of solute N exceeds the range of the present invention and is too large, and the longitudinal tensile limit tensile strength is low.

【0031】[0031]

【発明の効果】本発明は以上の様に構成されているの
で、圧延材にパテンティング処理を施さなくとも伸線で
き、しかも高強度で且つ優れた耐縦割れ性を発揮する溶
融めっき鋼線用線材であって、縦割れ性の向上を目的と
して溶融めっき後に特別な加工や熱処理を必要としない
溶融めっき鋼線用線材を提供することができることとな
った。
Since the present invention is constructed as described above, it can be drawn without applying a patenting treatment to a rolled material, and is a hot-dip coated steel wire having high strength and excellent vertical cracking resistance. It has become possible to provide a wire for hot-dip coated steel wire which does not require special processing or heat treatment after hot-dip plating for the purpose of improving longitudinal cracking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】縦割れ限界引張強さを算出する方法を模式的に
示すグラフである。
FIG. 1 is a graph schematically showing a method of calculating a critical tensile strength of a vertical crack.

【図2】固溶N量と縦割れ限界引張強さの関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the amount of solute N and the critical tensile strength of a longitudinal crack.

【図3】Al/Nの値と縦割れ限界引張強さの関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the value of Al / N and the critical tensile strength of a vertical crack.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 線材横断面の外周より直径の1/16か
ら1/4の位置に存在する第2相フェライトの最大粒径
が10μm以下であることを特徴とする耐縦割れ性に優
れた溶融めっき鋼線用線材。
An excellent longitudinal cracking resistance characterized in that the maximum grain size of the second phase ferrite present at a position 1/16 to 1/4 of the diameter from the outer periphery of the cross section of the wire is 10 µm or less. Wire rod for hot-dip coated steel wire.
【請求項2】Al:0.01〜0.05%,N :30
〜150ppmを含有し、 上記Nのうち固溶N量が10ppm以下である請求項1
に記載の溶融めっき鋼線用線材。
2. Al: 0.01-0.05%, N: 30
2 to 150 ppm, wherein the amount of solute N in the N is 10 ppm or less.
The wire rod for hot-dip galvanized steel wire according to 1.
【請求項3】 Al及びNの含有量がAl/N≧4を満
足する請求項2に記載の溶融めっき鋼線用線材。
3. The hot-dip steel wire according to claim 2, wherein the contents of Al and N satisfy Al / N ≧ 4.
【請求項4】C :0.7〜1.2%,Si:0.5〜
2.0%,Mn:0.2〜2.0%を含有し、残部Fe
及び不可避不純物からなる請求項1〜3のいずれかに記
載の溶融めっき鋼線用線材。
4. C: 0.7-1.2%, Si: 0.5-
2.0%, Mn: 0.2 to 2.0%, with the balance Fe
The hot-dip galvanized steel wire according to any one of claims 1 to 3, comprising a unavoidable impurity.
【請求項5】 更に、Crを0.1〜1.0%含有する
請求項1〜4のいずれかに記載の溶融めっき鋼線用線
材。
5. The hot-dip steel wire according to claim 1, further comprising 0.1 to 1.0% of Cr.
JP01171298A 1998-01-23 1998-01-23 Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance Expired - Lifetime JP3439106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01171298A JP3439106B2 (en) 1998-01-23 1998-01-23 Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01171298A JP3439106B2 (en) 1998-01-23 1998-01-23 Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance

Publications (2)

Publication Number Publication Date
JPH11209847A true JPH11209847A (en) 1999-08-03
JP3439106B2 JP3439106B2 (en) 2003-08-25

Family

ID=11785665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01171298A Expired - Lifetime JP3439106B2 (en) 1998-01-23 1998-01-23 Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance

Country Status (1)

Country Link
JP (1) JP3439106B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same

Also Published As

Publication number Publication date
JP3439106B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
WO2011089782A1 (en) Wire material, steel wire, and process for production of wire material
WO2010150537A1 (en) HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF
US20030066575A1 (en) High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
WO2014157129A1 (en) High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
JP6687112B2 (en) Steel wire
JP6485612B1 (en) High strength steel wire
JP4638602B2 (en) High fatigue strength wire for steel wire, steel wire and manufacturing method thereof
JP7226548B2 (en) wire
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP5945196B2 (en) High strength steel wire
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP3965010B2 (en) High-strength direct patenting wire and method for producing the same
JP4267375B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP3176226B2 (en) Manufacturing method of high strength and high toughness hot-dip coated steel wire
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3439106B2 (en) Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3684186B2 (en) High-strength PC strand, manufacturing method thereof, PC floor slab using the same, concrete structure
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JPH08296008A (en) Production of high strength galvanized steel wire
JP3971034B2 (en) Hot rolled wire rod for high carbon steel wire with excellent longitudinal crack resistance and wire drawing
JP3125645B2 (en) Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance
JP3330233B2 (en) Manufacturing method of hot-dip Zn-Al plated steel wire
JPH08295992A (en) Wire rod to be descaled

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term