JP7226548B2 - wire - Google Patents

wire Download PDF

Info

Publication number
JP7226548B2
JP7226548B2 JP2021526947A JP2021526947A JP7226548B2 JP 7226548 B2 JP7226548 B2 JP 7226548B2 JP 2021526947 A JP2021526947 A JP 2021526947A JP 2021526947 A JP2021526947 A JP 2021526947A JP 7226548 B2 JP7226548 B2 JP 7226548B2
Authority
JP
Japan
Prior art keywords
wire
less
steel
hydrogen embrittlement
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021526947A
Other languages
Japanese (ja)
Other versions
JPWO2020256140A1 (en
Inventor
直樹 松井
浩 大羽
真 小此木
俊彦 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2020256140A1 publication Critical patent/JPWO2020256140A1/ja
Application granted granted Critical
Publication of JP7226548B2 publication Critical patent/JP7226548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Description

本開示は、線材に関する。 The present disclosure relates to wires.

近年、高強度ロープ用鋼線、橋梁ケーブル用鋼線、PC鋼線等の分野に使用される高強度鋼線には、1700MPa以上の高い引張強さが要求される。これら高強度鋼線は、例えば、直径5.0~16.0mmの圧延された線材をパテンティング処理して金属組織をパーライト組織とした後、伸線加工を行うことで製造される。
伸線加工後の鋼線の引張強さが高い場合、伸線加工において生じる加工発熱によってひずみ時効の影響を受け、脆化するおそれが高い。ひずみ時効によって高強度鋼線は、捻回試験での破断までの回転数(捻回値)が小さくなり、さらにデラミネーションと呼ばれる縦割れが発生する場合がある。捻回試験におけるデラミネーションの発生は、鋼線を製品とするための撚り線工程において破断要因となるため、製造性が劣化する。そのため、高強度鋼線では特に引張強さと捻回特性を両立することが望ましい。
また、鋼線の強度が高くなるほど、鋼線又は撚り線後の製品が腐食環境で使用された際、腐食の進行又は水素脆化によって破断が生じる危険性が高くなる。そのため、上記分野に用いられる高強度鋼線及びその素材となる線材には、優れた耐食性と耐水素脆化特性を有することが望まれる。
In recent years, a high tensile strength of 1700 MPa or more is required for high-strength steel wires used in fields such as steel wires for high-strength ropes, steel wires for bridge cables, and PC steel wires. These high-strength steel wires are manufactured, for example, by patenting a rolled wire rod having a diameter of 5.0 to 16.0 mm to make the metal structure into a pearlite structure, and then drawing the wire.
When the tensile strength of the steel wire after wire drawing is high, there is a high risk of embrittlement due to strain aging due to heat generated during wire drawing. Due to strain aging, the number of rotations (twisting value) before breaking in a twisting test decreases, and longitudinal cracks called delamination may occur in high-strength steel wires. Occurrence of delamination in the torsion test causes breakage in the wire stranding process for making the steel wire into a product, thus deteriorating productivity. Therefore, it is desirable that high-strength steel wires have both tensile strength and torsional properties.
In addition, the higher the strength of the steel wire, the higher the risk of breakage due to progress of corrosion or hydrogen embrittlement when the steel wire or stranded wire product is used in a corrosive environment. Therefore, high-strength steel wires used in the above fields and wire rods used as raw materials thereof are desired to have excellent corrosion resistance and hydrogen embrittlement resistance.

高強度鋼線の捻回特性を向上させる技術として、例えば特許文献1には、質量%で、C:0.75~1.10%、Si:0.10~1.40%、Mn:0.10~1.0%、Al:0~0.10%、Ti:0~0.10%、Cr:0~0.60%、V:0~0.10%、Nb:0~0.10%、Mo:0~0.20%、W:0~0.50%、B:0~0.0030%含有し、N:0.006%以下、P:0.03%以下、S:0.03%以下に制限され、残部が実質的にFeからなり、鋼線の軸線を含む軸方向に沿ったL断面の表面から100μmの深さよりも軸線側の領域において、金属組織が面積率で90%以上の伸線パーライトを含み、前記L断面の表面から100μmの深さまでの領域において、金属組織が面積率で70%以上の伸線パーライトを含み、鋼線の直径(D[mm])、鋼線の表面のビッカース硬さの標準偏差(σHV)、鋼線の降伏強度(Rp0.2)が、下記(1)式を満たし、引張強さが1770MPa以上の高強度を有する鋼線が提案されている。
σHV<(-9500×ln(d)+30000)×exp(-0.003×Rp0.2)・・・(1)
As a technique for improving the torsional properties of high-strength steel wires, for example, Patent Document 1 discloses, in mass %, C: 0.75 to 1.10%, Si: 0.10 to 1.40%, Mn: 0 .10-1.0%, Al: 0-0.10%, Ti: 0-0.10%, Cr: 0-0.60%, V: 0-0.10%, Nb: 0-0. 10%, Mo: 0-0.20%, W: 0-0.50%, B: 0-0.0030%, N: 0.006% or less, P: 0.03% or less, S: The area ratio of the metal structure is limited to 0.03% or less, the balance is substantially composed of Fe, and the metal structure is in the area on the side of the axis from the depth of 100 μm from the surface of the L cross section along the axial direction including the axis of the steel wire contains 90% or more of drawn pearlite, and in the region from the surface of the L cross section to a depth of 100 μm, the metal structure contains 70% or more of drawn pearlite in terms of area ratio, and the diameter of the steel wire (D [mm] ), the standard deviation (σHV) of the Vickers hardness of the surface of the steel wire, and the yield strength (Rp0.2) of the steel wire satisfy the following formula (1), and the tensile strength is a steel wire having a high strength of 1770 MPa or more is proposed.
σHV<(−9500×ln(d)+30000)×exp(−0.003×Rp0.2) (1)

また、高強度鋼線の耐水素脆化特性を向上させる技術として、例えば特許文献2では、C:0.70~1.20%、Si:0.10~2.00%、Mn:0.20~1.00%、P:0.030%以下、S:0.030%以下、N:0.0010~0.0100%、Al:0~0.100%、Cr:0~2.00%、V:0~0.30%、B:0~0.0050%、Ti:0~0.050%、Nb:0~0.050%、Zr:0~0.050%、Ni:0~2.00%、Cu:0~1.00%、Sn:0~0.50%、Mg:0~0.010%、Ca:0~0.010%、からなる化学成分であり、金属組織が95面積%以上のパーライト組織を有し、鋼線の軸を含む軸方向の断面における表層で測定したパーライトブロックの平均アスペクト比Rが2.0以上であり、鋼線の直径をDとしたとき、鋼線の軸を含む軸方向の断面において、(表層で測定した平均アスペクト比)/(0.25Dの位置で測定した平均アスペクト比)が1.1以上であり、引張強さが1800MPa以上である耐水素脆化特性に優れた高強度鋼線が提案されている。 Further, as a technique for improving the hydrogen embrittlement resistance of high-strength steel wires, for example, Patent Document 2 discloses C: 0.70 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.00%. 20-1.00%, P: 0.030% or less, S: 0.030% or less, N: 0.0010-0.0100%, Al: 0-0.100%, Cr: 0-2.00 %, V: 0-0.30%, B: 0-0.0050%, Ti: 0-0.050%, Nb: 0-0.050%, Zr: 0-0.050%, Ni: 0 ~2.00%, Cu: 0-1.00%, Sn: 0-0.50%, Mg: 0-0.010%, Ca: 0-0.010%, a chemical component consisting of metal The structure has a pearlite structure of 95 area% or more, the average aspect ratio R of the pearlite blocks measured in the surface layer in the axial cross section including the axis of the steel wire is 2.0 or more, and the diameter of the steel wire is D Then, in the cross section in the axial direction including the axis of the steel wire, (average aspect ratio measured at the surface layer) / (average aspect ratio measured at the position of 0.25D) is 1.1 or more, and the tensile strength is A high-strength steel wire having excellent hydrogen embrittlement resistance of 1800 MPa or more has been proposed.

さらに、特許文献3では、C:0.5~1.0%を含有する他、Cu,Ni及びTiよりなる群から選ばれる1種以上(但し、Cu及び/又はNiを含有する)であって、下記(1)式を満足するように含有する鋼からなり、パーライト組織の面積率を80%以上としたものであり、且つ1200N/mm以上の強度を有するものであることを特徴とする耐遅れ破壊性及び耐食性に優れた高強度鋼線が提案されている。
3.1≧3[Cu]+[Ni]+6[Ti]≧0.24(%) …(1)
但し、[Cu],[Ni]及び[Ti]は夫々Cu,Ni及びTiの含有量(質量%)を示す。
また、特許文献4には、C:0.39~0.65%、Si:1.5~2.5%、Mn:0.15~1.2%、P:0%超、0.015%以下、S:0%超、0.015%以下、Al:0.001~0.1%、Cu:0.1~0.80%、Ni:0.1~0.80%を含有し、残部が鉄及び不可避不純物であり、非拡散性水素量が0.40質量ppm以下であり、百分率で表されるフェライトの面積率が下記(1)式を満たすとともに、ベイナイトとマルテンサイトの合計面積率が2%以下であることを特徴とする高強度ばね用圧延材が提案されている。
フェライト面積率<{(0.77-[C])/0.77-[C]/3+0.08}×100・・・(1)
但し、上記(1)式中、[元素名]は各元素の質量%で表される含有量を意味する。
また、特許文献5では、C:0.55~0.75%、Si:0.1~1.0%、Mn:0.3~1.5%、Cr:0.1~2.0%、S:0.002~0.05%、Al:0.01~0.2%およびN:0.002~0.01%を含有し、残部はFeおよび不純物からなり、不純物中のPおよびOがそれぞれ、P:0.025%以下およびO:0.002%以下で、さらに下記の[1]式で表されるFn1が2.5~4.5である化学組成を有し、組織が、パーライト分率が90%以上、パーライトラメラの平均間隔が150~300nmで、かつパーライトラメラ間隔の標準偏差が25nm以下である、ことを特徴とする熱間圧延棒鋼または線材が提案されている。
Fn1=3Si+Mn+1.5Cr・・・[1]
ただし、[1]式中の元素記号は、各元素の含有量(質量%)を意味する。
Furthermore, in Patent Document 3, in addition to containing C: 0.5 to 1.0%, one or more selected from the group consisting of Cu, Ni and Ti (however, Cu and / or Ni is contained) It is characterized by being made of steel containing so as to satisfy the following formula (1), having an area ratio of pearlite structure of 80% or more, and having a strength of 1200 N/mm 2 or more. A high-strength steel wire with excellent delayed fracture resistance and corrosion resistance has been proposed.
3.1≧3[Cu]+[Ni]+6[Ti]≧0.24(%) (1)
However, [Cu], [Ni] and [Ti] indicate the contents (% by mass) of Cu, Ni and Ti, respectively.
Further, in Patent Document 4, C: 0.39 to 0.65%, Si: 1.5 to 2.5%, Mn: 0.15 to 1.2%, P: more than 0%, 0.015 % or less, S: more than 0%, 0.015% or less, Al: 0.001 to 0.1%, Cu: 0.1 to 0.80%, Ni: 0.1 to 0.80% , The balance is iron and inevitable impurities, the non-diffusible hydrogen content is 0.40 mass ppm or less, and the area ratio of ferrite expressed as a percentage satisfies the following formula (1), and the sum of bainite and martensite A high-strength rolled material for a spring has been proposed, characterized by having an area ratio of 2% or less.
Ferrite area ratio<{(0.77−[C])/0.77−[C]/3+0.08}×100 (1)
However, in the above formula (1), [element name] means the content of each element represented by mass %.
Further, in Patent Document 5, C: 0.55 to 0.75%, Si: 0.1 to 1.0%, Mn: 0.3 to 1.5%, Cr: 0.1 to 2.0% , S: 0.002-0.05%, Al: 0.01-0.2% and N: 0.002-0.01%, the balance being Fe and impurities, P and O has a chemical composition in which P: 0.025% or less and O: 0.002% or less, and Fn1 represented by the following formula [1] is 2.5 to 4.5, and a structure However, a hot-rolled steel bar or wire rod has been proposed, which has a pearlite fraction of 90% or more, an average pearlite lamellar spacing of 150 to 300 nm, and a standard deviation of the pearlite lamellar spacing of 25 nm or less. .
Fn1=3Si+Mn+1.5Cr [1]
However, the element symbol in the formula [1] means the content (% by mass) of each element.

特許文献1:国際公開第2018/012625号
特許文献2:国際公開第2018/021574号
特許文献3:特許第4124590号
特許文献4:特開2015-143391号公報
特許文献5:特開2014-37592号公報
Patent Document 1: International Publication No. 2018/012625 Patent Document 2: International Publication No. 2018/021574 Patent Document 3: Patent No. 4124590 Patent Document 4: JP-A-2015-143391 Patent Document 5: JP-A-2014-37592 publication

本開示は、1700MPa以上の高い引張強さ(ultimate tensile strength)が要求される高強度鋼線の素材として好適な線材であって、耐食性及び耐水素脆化特性に優れ、伸線加工後の鋼線においてデラミネーションが発生しにくい、捻回特性に優れた線材を提供することを課題とする。 The present disclosure is a wire suitable as a material for high-strength steel wires that require a high ultimate tensile strength of 1700 MPa or more, is excellent in corrosion resistance and hydrogen embrittlement resistance, and is steel after wire drawing. An object of the present invention is to provide a wire that is less prone to delamination and has excellent twisting properties.

上記課題を解決するための手段には、以下の態様が含まれる。
<1> 化学成分が、質量%で、
C:0.60~1.15%、
Si:0.01~1.80%、
Mn:0.20~0.90%、
P:0.015%以下、
S:0.015%以下、
Al:0.005~0.080%、
N:0.0015~0.0060%、
Cu:0.10~0.65%、
Ni:0.05~0.65%未満、
Cr:0~0.30%、
Mo:0~0.30%、
Ti:0~0.100%、
Nb:0~0.100%、
V:0~0.20%、
Sn:0~0.30%、
B:0~0.0050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
Zr:0~0.100%、
REM:0~0.0200%、並びに
残部:Fe及び不純物、からなり、
線材に含まれるC、Si、Mn、Cr、Cu、Ni、N、及びTiのそれぞれの元素の質量%での含有量を、[C]、[Si]、[Mn]、[Cr]、[Cu]、[Ni]、[N]、及び[Ti]で表した場合に、下記(1)~(3)を満たし、
(1)[Cu]/[Ni]>1.00
(2)1.70≦Y1≦4.50
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni]
(3)Y2<1.81
Y2=[C]+[Si]/10+A
Aは、a=350×([N]-0.29×[Ti])の値が、
a≧0の場合は、A=a
a<0の場合は、A=0
金属組織が、線材の中心軸を含む長手方向に平行な断面における面積率で90%以上のパーライト組織を含み、
前記線材の長手方向に任意の等間隔で採取した8個の各々のサンプルsi(iは1~8の整数)について、各サンプルの前記断面において前記線材の表面から深さ50μmの位置で測定されるビッカース硬さをそれぞれHvsiとし、前記Hvsiの平均値をHvsiave、最大値をHvsimaxとしたとき、下記(4)を満たす、線材。
(4)Hvsimax-Hvsiave≦50
<2> 前記任意の等間隔が、600mmの間隔である、<1>に記載の線材。
<3> 前記化学成分が、前記Feの一部に代えて、質量%で、
Cr:0.01~0.30%、
Mo:0.01~0.30%
Ti:0.002~0.100%、
Nb:0.002~0.100%、
V:0.01~0.20%、
Sn:0.01~0.30%、
B:0.0002~0.0050%
Ca:0.0002~0.0050%、
Mg:0.0002~0.0050%、
Zr:0.0002~0.100%、及び
REM:0.0002~0.0200%、
からなる群より選択される1種又は2種以上を含む、<1>又は<2>に記載の線材。
Means for solving the above problems include the following aspects.
<1> The chemical component is mass %,
C: 0.60 to 1.15%,
Si: 0.01 to 1.80%,
Mn: 0.20-0.90%,
P: 0.015% or less,
S: 0.015% or less,
Al: 0.005 to 0.080%,
N: 0.0015 to 0.0060%,
Cu: 0.10-0.65%,
Ni: less than 0.05 to 0.65%,
Cr: 0 to 0.30%,
Mo: 0-0.30%,
Ti: 0 to 0.100%,
Nb: 0 to 0.100%,
V: 0 to 0.20%,
Sn: 0 to 0.30%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
Zr: 0 to 0.100%,
REM: 0 to 0.0200%, and the balance: Fe and impurities,
The content in mass% of each element of C, Si, Mn, Cr, Cu, Ni, N, and Ti contained in the wire is expressed as [C], [Si], [Mn], [Cr], [ Cu], [Ni], [N], and [Ti] satisfy the following (1) to (3),
(1) [Cu]/[Ni]>1.00
(2) 1.70≤Y1≤4.50
Y1 = 3 x [Cr] + 5 x [Mn] + [Cu] + [Ni]
(3) Y<1.81
Y2=[C]+[Si]/10+A
A has a value of a = 350 x ([N] - 0.29 x [Ti])
If a≧0 then A=a
if a<0 then A=0
The metal structure contains a pearlite structure with an area ratio of 90% or more in a cross section parallel to the longitudinal direction including the central axis of the wire,
Eight samples si (i is an integer of 1 to 8) taken at arbitrary equal intervals in the longitudinal direction of the wire were measured at a depth of 50 μm from the surface of the wire in the cross section of each sample. A wire that satisfies the following (4), where Hv si is the Vickers hardness of each Hv si, Hv siave is the average value of the Hv si , and Hv simax is the maximum value.
(4) Hvsimax - Hvsiave≤50
<2> The wire according to <1>, wherein the arbitrary equal interval is an interval of 600 mm.
<3> The chemical component is replaced by a part of the Fe, in mass%,
Cr: 0.01 to 0.30%,
Mo: 0.01-0.30%
Ti: 0.002 to 0.100%,
Nb: 0.002 to 0.100%,
V: 0.01 to 0.20%,
Sn: 0.01 to 0.30%,
B: 0.0002 to 0.0050%
Ca: 0.0002 to 0.0050%,
Mg: 0.0002-0.0050%,
Zr: 0.0002-0.100%, and REM: 0.0002-0.0200%,
The wire according to <1> or <2>, including one or more selected from the group consisting of:

本開示によれば、1700MPa以上の高い引張強さが要求される高強度鋼線の素材として好適な線材であって、耐食性及び耐水素脆化特性に優れ、伸線加工後の鋼線においてデラミネーションが発生しにくい、捻回特性に優れた線材が提供される。 According to the present disclosure, a wire rod suitable as a material for a high-strength steel wire that requires a high tensile strength of 1700 MPa or more, has excellent corrosion resistance and hydrogen embrittlement resistance, and is detrimental to the steel wire after wire drawing. Provided is a wire that is less prone to lamination and has excellent twisting properties.

本開示の実施例で得られた、線材の引張強さと耐水素脆化特性の指標であるFIP破断時間の関係を示す図である。FIG. 4 is a diagram showing the relationship between the tensile strength of a wire rod and the FIP rupture time, which is an index of hydrogen embrittlement resistance, obtained in an example of the present disclosure. 本開示の実施例で得られた、伸線加工後の鋼線の引張強さと耐水素脆化特性の指標であるFIP破断時間の関係を示す図である。FIG. 2 is a diagram showing the relationship between the tensile strength of a steel wire after wire drawing and the FIP rupture time, which is an index of hydrogen embrittlement resistance, obtained in an example of the present disclosure.

本開示の一例である実施形態について説明する。
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。ただし、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
また、本開示に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよい。また、上限値又は下限値を実施例に示されている値に置き換えてもよい。
本開示において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本開示において、C(炭素)の含有量を、「C量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本開示において、線材又は鋼線の「表面」とは、外周面を意味する。また、線材又は鋼線を切断して採取されたサンプルの「表面」も外周面を意味する。
An embodiment that is an example of the present disclosure will be described.
In the present disclosure, a numerical range represented using "to" means a range including the numerical values described before and after "to" as lower and upper limits. However, the numerical range when "greater" or "less than" is attached to the numerical value described before and after "to" means the range that does not include these numerical values as the lower or upper limit.
In addition, in the numerical ranges described step by step in the present disclosure, the upper limit of one step of the numerical range may be replaced with the upper limit of another step of the numerical range. Lower limits of ranges may be replaced with lower limits of other numerical ranges recited. Also, the upper limit value or the lower limit value may be replaced with the values shown in the examples.
In the present disclosure, "%" indicating the content of a component (element) means "% by mass".
In the present disclosure, the content of C (carbon) may be referred to as "C amount". Contents of other elements may also be expressed similarly.
In the present disclosure, the "surface" of the wire rod or steel wire means the outer peripheral surface. The "surface" of a sample obtained by cutting a wire rod or steel wire also means the outer peripheral surface.

本発明者らは、前記した課題を解決するために、1700MPa以上の高い引張強さが要求される高強度鋼線の素材として好適な線材(本開示において「高強度鋼線用線材」と記す場合がある。)の耐食性、耐水素脆化特性、及び伸線加工後の捻回特性に及ぼす元素及び金属組織の影響などについて種々の検討を実施し、下記(a)~(c)の知見を得た。 In order to solve the above-described problems, the present inventors have developed a wire rod suitable as a material for high-strength steel wires that require a high tensile strength of 1700 MPa or more (referred to as "wire rod for high-strength steel wires" in the present disclosure). We conducted various studies on the effects of elements and metal structures on the corrosion resistance, hydrogen embrittlement resistance, and torsional characteristics after wire drawing, and found the following (a) to (c). got

(a)引張強さが1700MPa以上の高強度鋼線は、デラミネーションが発生しやすく、腐食又は水素脆化による破断を起こしやすい。高強度鋼線のデラミネーションの発生を抑え、腐食又は水素脆化による破断を防ぐためには、捻回特性が低下しないよう、素材となる線材の化学成分の範囲を考えて耐食性と耐水素脆化特性を向上させればよく、Cu:0.10~0.65%、Ni:0.05~0.65%未満を[Cu]>[Ni]を満足する範囲で含有し、下記式<1>で表されるY1が1.70≦Y1≦4.50を満足する範囲でMn、Cr、Cu、Niを含有させればよい。
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni] ・・・<1>
ここで、上記式における[Mn]、[Cr]、[Cu]、[Ni]は、それぞれの元素の質量%での含有量を表す。
(a) A high-strength steel wire having a tensile strength of 1700 MPa or more is likely to undergo delamination and breakage due to corrosion or hydrogen embrittlement. In order to suppress the occurrence of delamination of high-strength steel wires and prevent breakage due to corrosion or hydrogen embrittlement, it is necessary to consider the range of chemical composition of the wire material to prevent deterioration of torsional characteristics, corrosion resistance and hydrogen embrittlement resistance. It is sufficient to improve the characteristics, and Cu: 0.10 to 0.65% and Ni: less than 0.05 to 0.65% are contained in a range that satisfies [Cu]>[Ni], and the following formula <1 Mn, Cr, Cu, and Ni may be contained within a range in which Y1 represented by > satisfies 1.70≦Y1≦4.50.
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni] <1>
Here, [Mn], [Cr], [Cu], and [Ni] in the above formula represent the content of each element in mass %.

(b)高強度鋼線は、線材を伸線加工することで製造される。引張強さが1700MPa以上の高強度鋼線は、伸線加工におけるダイスとの摩擦熱等による温度上昇及び加工発熱が大きくなる傾向があり、ひずみ時効の影響を受けて脆化しやすい。ひずみ時効によって高強度鋼線は、捻回試験において、デラミネーションと呼ばれる縦割れが発生し、破断までの回転数、すなわち捻回値が小さくなる。さらに引張強さが1700MPa以上の高強度鋼線の腐食又は水素脆化による破断を防ぎつつ、かつ伸線加工によってひずみ時効の影響を最小限に抑え、伸線加工後の捻回値を向上させるためには、下記式<2>で表されるY2がY2<1.81を満足する範囲でC、Si、Ti、Nを含有させればよい。
Y2=[C]+[Si]/10+A ・・・<2>
ここで、式<2>におけるAは、下記式<4>によって算出される値がa≧0の場合はA=aであり、a<0の場合はA=0とする。
a=350×([N]-0.29×[Ti]) ・・・<4>
ここで、上記式における[C]、[Si]、[N]、[Ti]は、それぞれの元素の質量%での含有量を表し、Aは式<4>で表されるaに関連するパラメータである。
(b) A high-strength steel wire is manufactured by drawing a wire rod. A high-strength steel wire with a tensile strength of 1700 MPa or more tends to have a large temperature rise and work heat generation due to frictional heat with a die during wire drawing, and is easily embrittled by strain aging. Due to strain aging, longitudinal cracks called delamination occur in high-strength steel wires in a twisting test, and the number of rotations until breakage, that is, the twisting value, decreases. Furthermore, while preventing breakage due to corrosion or hydrogen embrittlement of high-strength steel wires with a tensile strength of 1700 MPa or more, the effect of strain aging is minimized by wire drawing, and the torsion value after wire drawing is improved. For this purpose, C, Si, Ti, and N should be contained within the range where Y2 represented by the following formula <2> satisfies Y2<1.81.
Y2=[C]+[Si]/10+A <2>
Here, A in the formula <2> is A=a when the value calculated by the following formula <4> is a≧0, and A=0 when a<0.
a=350×([N]−0.29×[Ti]) <4>
Here, [C], [Si], [N], and [Ti] in the above formula represent the content in mass% of each element, and A is related to a represented by formula <4> is a parameter.

(c)線材の耐食性及び耐水素脆化特性を向上させるために、Mn、Cr、Cu、Niを含有した場合、線材の焼き入れ性が高まり、線材の製造条件によって線材表層の硬度ばらつきが大きくなる傾向がある。この線材表層の硬度ばらつきが原因となり、線材の長手方向に表層硬度が局部的に高い部分が存在すると、耐水素脆化特性が急激に低下する。線材の耐水素脆化特性の低下は、線材を伸線加工することによって得られる高強度鋼線の耐水素脆化特性の低下を招く。そのため、線材の耐食性と耐水素脆化特性を同時に向上させるためには、特定の化学成分の範囲を満足するとともに、線材表層の硬度ばらつきを小さくし、表層硬度が局部的に高くなる部分を無くすことが必要である。 (c) When Mn, Cr, Cu, and Ni are contained in order to improve the corrosion resistance and hydrogen embrittlement resistance of the wire, the hardenability of the wire increases, and the hardness variation of the surface layer of the wire increases depending on the manufacturing conditions of the wire. tend to become Due to this variation in the hardness of the surface layer of the wire, if there is a portion with a locally high surface layer hardness in the longitudinal direction of the wire, the hydrogen embrittlement resistance drops sharply. The deterioration of the hydrogen embrittlement resistance of the wire leads to the deterioration of the hydrogen embrittlement resistance of the high-strength steel wire obtained by drawing the wire. Therefore, in order to simultaneously improve the corrosion resistance and hydrogen embrittlement resistance of the wire, it is necessary to satisfy the range of specific chemical components, reduce the hardness variation of the surface layer of the wire, and eliminate the part where the surface layer hardness is locally high. It is necessary.

本開示に係る線材は上記の知見に基づいて完成されたものであり、化学成分が、質量%で、
C:0.60~1.15%、
Si:0.01~1.80%、
Mn:0.20~0.90%、
P:0.015%以下、
S:0.015%以下、
Al:0.005~0.080%、
N:0.0015~0.0060%、
Cu:0.10~0.65%、
Ni:0.05~0.65%未満、
Cr:0~0.30%、
Mo:0~0.30%、
Ti:0~0.100%、
Nb:0~0.100%、
V:0~0.20%、
Sn:0~0.30%、
B:0~0.0050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
Zr:0~0.100%、
REM:0~0.0200%、並びに
残部:Fe及び不純物、からなり、
線材に含まれるC、Si、Mn、Cr、Cu、Ni、N、及びTiのそれぞれの元素の質量%での含有量を、[C]、[Si]、[Mn]、[Cr]、[Cu]、[Ni]、[N]、及び[Ti]で表した場合に、下記(1)~(3)を満たし、
(1)[Cu]/[Ni]>1.00
(2)1.70≦Y1≦4.50
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni]
(3)Y2<1.81
Y2=[C]+[Si]/10+A
Aは、a=350×([N]-0.29×[Ti])の値が、
a≧0の場合は、A=a
a<0の場合は、A=0
金属組織が、線材の中心軸を含む長手方向に平行な断面(本開示において「軸方向断面」と称する場合がある。)における面積率で90%以上のパーライト組織を含み、
線材の長手方向に任意の等間隔で採取した8個の各々のサンプルsi(iは1~8の整数)について、各サンプルの軸方向断面において、線材の表面(外周面)から深さ50μmの位置で測定されるビッカース硬さをそれぞれHvsiとし、Hvsiの平均値をHvsiave、最大値をHvsimaxとしたとき、下記(4)を満たす。
(4)Hvsimax-Hvsiave≦50
The wire according to the present disclosure has been completed based on the above knowledge, and the chemical component is, in mass%,
C: 0.60 to 1.15%,
Si: 0.01 to 1.80%,
Mn: 0.20-0.90%,
P: 0.015% or less,
S: 0.015% or less,
Al: 0.005 to 0.080%,
N: 0.0015 to 0.0060%,
Cu: 0.10-0.65%,
Ni: less than 0.05 to 0.65%,
Cr: 0 to 0.30%,
Mo: 0-0.30%,
Ti: 0 to 0.100%,
Nb: 0 to 0.100%,
V: 0 to 0.20%,
Sn: 0 to 0.30%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
Zr: 0 to 0.100%,
REM: 0 to 0.0200%, and the balance: Fe and impurities,
The content in mass% of each element of C, Si, Mn, Cr, Cu, Ni, N, and Ti contained in the wire is expressed as [C], [Si], [Mn], [Cr], [ Cu], [Ni], [N], and [Ti] satisfy the following (1) to (3),
(1) [Cu]/[Ni]>1.00
(2) 1.70≤Y1≤4.50
Y1 = 3 x [Cr] + 5 x [Mn] + [Cu] + [Ni]
(3) Y<1.81
Y2=[C]+[Si]/10+A
A has a value of a = 350 x ([N] - 0.29 x [Ti])
If a≧0 then A=a
if a<0 then A=0
The metal structure contains a pearlite structure with an area ratio of 90% or more in a cross section parallel to the longitudinal direction including the central axis of the wire (sometimes referred to as an "axial cross section" in the present disclosure),
For each of eight samples si (i is an integer of 1 to 8) taken at arbitrary equal intervals in the longitudinal direction of the wire, in the axial cross section of each sample, the surface (peripheral surface) of the wire at a depth of 50 μm When the Vickers hardness measured at each position is Hvsi , the average value of Hvsi is Hvsiave , and the maximum value is Hvsimax , the following (4) is satisfied.
(4) Hvsimax - Hvsiave≤50

<化学成分>
まず、本開示に係る高強度鋼線用線材に含有される元素の範囲を限定した理由を説明する。
本開示に係る高強度鋼線用線材の化学成分は、質量%で、C:0.60~1.15%、Si:0.01~1.80%、Mn:0.20~0.90%、P:0.015%以下、S:0.015%以下、Al:0.005~0.080%、N:0.0015~0.0060%、を含有し、さらに、[Cu]>[Ni]を満足する範囲でCu:0.10~0.65%、Ni:0.05~0.65%未満を含有し、さらに任意に含有される成分が、Cr:0~0.30%、Mo:0~0.30%、Ti:0~0.100%、Nb:0~0.100%、V:0~0.20%、Sn:0~0.30%、B:0~0.0050%、Ca:0~0.0050%、Mg:0~0.0050%、Zr:0~0.100%、及びREM:0~0.0200%であり、残部はFe及び不純物からなる。
<Chemical composition>
First, the reason for limiting the range of elements contained in the wire rod for high-strength steel wire according to the present disclosure will be described.
The chemical composition of the wire rod for high-strength steel wire according to the present disclosure is, in mass%, C: 0.60 to 1.15%, Si: 0.01 to 1.80%, Mn: 0.20 to 0.90. %, P: 0.015% or less, S: 0.015% or less, Al: 0.005 to 0.080%, N: 0.0015 to 0.0060%, and [Cu]> Cu: 0.10 to 0.65% and Ni: 0.05 to less than 0.65% within the range satisfying [Ni], and further optionally contained components are Cr: 0 to 0.30 %, Mo: 0-0.30%, Ti: 0-0.100%, Nb: 0-0.100%, V: 0-0.20%, Sn: 0-0.30%, B: 0 ~0.0050%, Ca: 0-0.0050%, Mg: 0-0.0050%, Zr: 0-0.100%, and REM: 0-0.0200%, the balance being Fe and impurities consists of

C:0.60~1.15%
Cは線材の引張強さを高めるため含有する。C量が0.60%未満では初析フェライトが生成し、高強度鋼線に必要な引張強さを確保できない。そのため、C量は0.60%以上とする。優れた耐水素脆化特性及び捻回特性を確保する観点から伸線加工の加工減面率を上げ過ぎずに、高強度鋼線を得るためには、C量は0.67%以上であることが好ましく、0.70%以上であることがより好ましく、0.85%以上であることが一層好ましい。一方、C量が1.15%を越えると、初析セメンタイト量が増加して伸線加工性が劣化するため、高強度鋼線を得ることが困難となるし、鋼線の捻回特性も劣化する。そのため、C量は1.10%以下とすることがよく、1.05%以下とすることがなお好ましい。
C: 0.60-1.15%
C is contained in order to increase the tensile strength of the wire. If the amount of C is less than 0.60%, pro-eutectoid ferrite is formed, and the tensile strength required for high-strength steel wires cannot be secured. Therefore, the amount of C is made 0.60% or more. In order to obtain a high-strength steel wire without excessively increasing the reduction in drawing area from the viewpoint of ensuring excellent hydrogen embrittlement resistance and torsional properties, the C content is 0.67% or more. is preferred, 0.70% or more is more preferred, and 0.85% or more is even more preferred. On the other hand, if the amount of C exceeds 1.15%, the amount of proeutectoid cementite increases and wire drawability deteriorates, making it difficult to obtain a high-strength steel wire. to degrade. Therefore, the C content is preferably 1.10% or less, more preferably 1.05% or less.

Si:0.01~1.80%
Siは固溶強化により引張強さを高める効果があり、耐水素脆化特性を高める効果がある。Si量が0.01%未満では、これらの効果が得られない。そのためSi量は0.01%以上にする。これら効果を確実に得るためには、Si量を0.21%以上含有させることが好ましく、0.70%以上とすることがなお好ましい。ただし、Si量が1.80%を越えると、これらの効果が飽和するとともに熱間延性が劣化して、線材を圧延する段階で表面疵が発生しやすくなるなど、製造性が低下する。また伸線加工後の高強度鋼線の捻回特性が劣化する。そのため、Si量は1.49%以下とすることが好ましく、1.35%以下とすることがなお好ましい。
Si: 0.01-1.80%
Si has the effect of increasing tensile strength through solid solution strengthening, and has the effect of increasing hydrogen embrittlement resistance. If the amount of Si is less than 0.01%, these effects cannot be obtained. Therefore, the amount of Si is made 0.01% or more. In order to reliably obtain these effects, the Si content is preferably 0.21% or more, more preferably 0.70% or more. However, when the amount of Si exceeds 1.80%, these effects are saturated and the hot ductility deteriorates. In addition, the torsional properties of the high-strength steel wire after wire drawing are degraded. Therefore, the Si content is preferably 1.49% or less, more preferably 1.35% or less.

Mn:0.20~0.90%
Mnは鋼の焼き入れ性を高め、パーライト変態後の鋼の引張強さを高める効果がある。Mn量が0.20%未満では上記効果が十分に得られない。そのためMn量は0.20%以上にする。これら効果を確実に得るためには、Mn量を0.30%以上含有させることが好ましく、0.35%以上とすることがなお好ましい。一方、Mn量が0.90%を越えると鋼の焼き入れ性が高くなり過ぎ、上記効果が飽和するとともに、線材の延性が低下し、伸線加工後に得られる高強度鋼線の捻回特性が劣化する。そのため、Mn量は0.80%以下とすることが好ましく、0.75%以下とすることがなお好ましい。
Mn: 0.20-0.90%
Mn has the effect of increasing the hardenability of steel and increasing the tensile strength of steel after pearlitic transformation. If the Mn content is less than 0.20%, the above effect cannot be sufficiently obtained. Therefore, the amount of Mn should be 0.20% or more. In order to reliably obtain these effects, the Mn content is preferably 0.30% or more, more preferably 0.35% or more. On the other hand, if the amount of Mn exceeds 0.90%, the hardenability of the steel becomes too high, the above effects are saturated, and the ductility of the wire is reduced, resulting in the twisting characteristics of the high-strength steel wire obtained after wire drawing. deteriorates. Therefore, the Mn content is preferably 0.80% or less, more preferably 0.75% or less.

P:0.015%以下
Pは、不純物として含有される。Pは結晶粒界に偏析して耐水素脆化特性を劣化させるとともに、伸線加工性も劣化させるため、P量は低ければ低い方が望ましい。そのため、P量の上限は0.015%である。P量の好ましい範囲は、0.012%以下であり、より好ましくは0.010%以下である。なお、P量の下限値は特に限定されないが、0%超でもよく、例えば、製鋼コスト低減の点から、0.0001%以上であってもよい。
P: 0.015% or less P is contained as an impurity. P segregates at grain boundaries to degrade hydrogen embrittlement resistance and wire drawability, so the lower the P content, the better. Therefore, the upper limit of the amount of P is 0.015%. A preferable range of the amount of P is 0.012% or less, more preferably 0.010% or less. Although the lower limit of the amount of P is not particularly limited, it may be more than 0%, and for example, it may be 0.0001% or more from the viewpoint of steelmaking cost reduction.

S:0.015%以下
Sは、不純物として含有される。Sは結晶粒界に偏析して耐水素脆化特性を劣化させるとともに、伸線加工性も劣化させるため、S量は抑制する必要がある。そのため、S量の上限は0.015%である。S量の好ましい範囲は、0.012%以下であり、より好ましい範囲は0.010%以下である。なお、S量の下限値は特に限定されないが、0%超でもよく、例えば、脱硫コスト低減の点から、0.0001%以上であってもよい。
S: 0.015% or less S is contained as an impurity. Since S segregates at grain boundaries and degrades hydrogen embrittlement resistance and wire drawability, the amount of S must be suppressed. Therefore, the upper limit of the amount of S is 0.015%. A preferable range of the S amount is 0.012% or less, and a more preferable range is 0.010% or less. The lower limit of the amount of S is not particularly limited, but may be more than 0%, for example, from the point of reducing desulfurization cost, it may be 0.0001% or more.

Al:0.005~0.080%
Alは脱酸元素であり、Al量が0.005%未満の場合、酸化物が粗大となり、水素脆化による割れの起点となることから、線材の耐水素脆化特性を低下させる。そのため、Al量は0.005%以上にする。上記効果を確実に得るために、Al量は0.008%以上であることが好ましく、0.010%以上であることが一層好ましい。しかし、Al量が0.080%を超えると、上記効果が飽和するとともに、Alを含む酸化物及び窒化物が粗大になり、圧延時に表面疵が発生するなど線材の製造性を低下させるし、かえって耐水素脆化特性を低下させる。そのため、Al量は0.060%以下とすることがよく、0.050%以下とすることがなお好ましい。
Al: 0.005-0.080%
Al is a deoxidizing element, and if the amount of Al is less than 0.005%, the oxide becomes coarse and becomes the starting point of cracks due to hydrogen embrittlement, which lowers the hydrogen embrittlement resistance of the wire. Therefore, the Al content is set to 0.005% or more. In order to reliably obtain the above effect, the Al content is preferably 0.008% or more, more preferably 0.010% or more. However, when the amount of Al exceeds 0.080%, the above effect is saturated, and the oxides and nitrides containing Al become coarse, and the manufacturability of the wire is reduced, such as the occurrence of surface defects during rolling. Rather, it lowers the hydrogen embrittlement resistance. Therefore, the Al content is preferably 0.060% or less, more preferably 0.050% or less.

N:0.0015~0.0060%
Nは鋼中でTiなどの合金元素と反応し、窒化物及び炭窒化物を形成して線材の結晶粒を微細化するため、延性を向上させる効果がある。そのため、N量は0.0015%以上にする。上記効果を確実に得るために、N量は0.0021%以上であることが好ましく、0.0025%以上であることが一層好ましい。一方、伸線加工によって高強度鋼線を製造する際、鋼中に固溶したNがひずみ時効に大きく影響し、捻回特性が低下するため、含有量には注意を要し、N量は0.0060%以下でなければならない。N量は0.0049%以下とすることが好ましく、0.0040%以下とすることがなお好ましい。
N: 0.0015-0.0060%
N reacts with alloying elements such as Ti in steel to form nitrides and carbonitrides to refine the crystal grains of the wire, thus improving ductility. Therefore, the amount of N should be 0.0015% or more. In order to reliably obtain the above effects, the N content is preferably 0.0021% or more, more preferably 0.0025% or more. On the other hand, when manufacturing high-strength steel wire by wire drawing, N dissolved in the steel has a large effect on strain aging and deteriorates torsional characteristics. Must be 0.0060% or less. The amount of N is preferably 0.0049% or less, more preferably 0.0040% or less.

Cu:0.10~0.65%
Cuは本開示に係る高強度鋼線用線材の耐食性及び耐水素脆化を向上する効果がある重要な元素であり、0.10%以上含有させる。Cuはパーライト組織内に固溶して存在するため、線材の耐食性及び耐水素脆化特性を向上する効果がある。Cuが0.10%未満の場合、上記効果は得られないため、Cu量は0.10%以上にする。上記効果を確実に得るために、Cu量は0.15%以上であることが好ましく、0.20%以上であることが一層好ましい。一方、0.65%を超えて含有した場合、線材を脆化させるため、伸線加工時に断線が発生しやすく、かえって線材の耐水素脆化特性を劣化させる。そのため、Cu量は0.65%以下とし、0.60%以下とすることが好ましく、0.50%以下とすることがなお好ましい。
Cu: 0.10-0.65%
Cu is an important element that has the effect of improving the corrosion resistance and hydrogen embrittlement resistance of the high-strength steel wire according to the present disclosure, and is contained in an amount of 0.10% or more. Since Cu exists in a solid solution in the pearlite structure, it has the effect of improving the corrosion resistance and hydrogen embrittlement resistance of the wire. If the Cu content is less than 0.10%, the above effect cannot be obtained, so the Cu content is made 0.10% or more. In order to reliably obtain the above effects, the Cu content is preferably 0.15% or more, more preferably 0.20% or more. On the other hand, when the content exceeds 0.65%, the wire material becomes brittle, so wire breakage is likely to occur during wire drawing, and rather the hydrogen embrittlement resistance of the wire material is deteriorated. Therefore, the Cu content is 0.65% or less, preferably 0.60% or less, and more preferably 0.50% or less.

Ni:0.05~0.65%未満
NiはCuを含有する線材を製造する際に、圧延時に表面疵を抑制するために必須の元素であり、線材の焼き入れ性も向上させる効果がある。ただし、過剰な含有は伸線加工時の割れを誘発し、耐水素脆化特性を劣化させる。上記効果を得るために、Niは0.05%以上含有させる。Niが0.05%未満の場合、圧延時に線材の表面に表面疵が発生し、伸線加工時の断線発生要因となるし、線材の耐水素脆化特性も劣化させる。上記効果を得るために、Ni量は0.10%以上であることが好ましく、0.15%以上であることが一層好ましい。一方、Ni量を0.65%以上含有した場合は焼き入れ性が高くなり過ぎ、かえって耐水素脆化特性を低下させる。そのため、Ni量は0.65%未満とし、0.60%以下とすることが好ましく、0.50%以下とすることがなお好ましい。
Ni: 0.05 to less than 0.65% Ni is an essential element for suppressing surface defects during rolling when producing a wire containing Cu, and has the effect of improving the hardenability of the wire. . However, an excessive content induces cracking during wire drawing and degrades hydrogen embrittlement resistance. In order to obtain the above effects, Ni is contained in an amount of 0.05% or more. If the Ni content is less than 0.05%, surface defects occur on the surface of the wire during rolling, causing wire breakage during wire drawing, and also deteriorating the hydrogen embrittlement resistance of the wire. In order to obtain the above effects, the Ni content is preferably 0.10% or more, more preferably 0.15% or more. On the other hand, when the Ni content is 0.65% or more, the hardenability becomes too high, and rather the hydrogen embrittlement resistance is lowered. Therefore, the Ni content is less than 0.65%, preferably 0.60% or less, and more preferably 0.50% or less.

また、Cu及びNiは[Cu]>[Ni]、すなわち、[Cu]/[Ni]>1.00を満足する範囲で含有することで、本開示における伸線加工後の高強度鋼線で良好な捻回特性を確保することができる。
[Cu]/[Ni]が1.00以下、すなわちNiの含有量がCuの含有量以上である場合、本開示に係る高強度鋼線用線材では焼き入れ性が高くなり過ぎるため、伸線加工した高強度鋼線で十分な捻回特性が確保できなくなる。そのため、Cu及びNiは[Cu]>[Ni]を満足する範囲で含有しなければならない。伸線加工後の鋼線の捻回特性を安定して確保するためには、[Cu]/[Ni]は1.20以上であることが好ましく、1.50以上であれば、さらに好ましい。Cu及びNiは[Cu]>[Ni]を満足すればよく、[Cu]/[Ni]に上限は限定されないが、過剰に高すぎる場合には、線材の熱間圧延の工程で表面疵が発生するなど線材の製造性が低下する。そのため、線材の製造性を考慮し、[Cu]/[Ni]は5以下であることが好ましく、4以下であることが、なお好ましい。
In addition, Cu and Ni are contained in a range that satisfies [Cu]>[Ni], that is, [Cu]/[Ni]>1.00, so that the high-strength steel wire after wire drawing in the present disclosure Good torsional characteristics can be secured.
When [Cu]/[Ni] is 1.00 or less, that is, when the Ni content is equal to or greater than the Cu content, the hardenability of the wire rod for high-strength steel wire according to the present disclosure becomes too high. Sufficient torsional properties cannot be secured with the worked high-strength steel wire. Therefore, Cu and Ni must be contained within a range that satisfies [Cu]>[Ni]. [Cu]/[Ni] is preferably 1.20 or more, more preferably 1.50 or more, in order to stably ensure the twisting properties of the steel wire after wire drawing. Cu and Ni should satisfy [Cu]>[Ni], and the upper limit of [Cu]/[Ni] is not limited. The manufacturability of the wire deteriorates, such as occurrence of Therefore, considering the manufacturability of the wire, [Cu]/[Ni] is preferably 5 or less, more preferably 4 or less.

本開示に係る高強度鋼線用線材は、任意元素として、Cr、Mo、Ti、Nb、V、Sn、B、Ca、Mg、Zr、REMの各元素の1種又は2種以上を含有してもよい。これらの任意元素を含有する場合、質量%で、Cr:0~0.30%、Mo:0~0.30%、Ti:0~0.100%、Nb:0~0.100%、V:0~0.20%、Sn:0~0.30%、B:0~0.0050%、Ca:0~0.0050%、Mg:0~0.0050%、Zr:0~0.100%、及びREM:0~0.0200%の1種又は2種以上を含有してもよい。 The wire rod for high-strength steel wire according to the present disclosure contains one or more of the elements Cr, Mo, Ti, Nb, V, Sn, B, Ca, Mg, Zr, and REM as arbitrary elements. may When these optional elements are contained, in mass%, Cr: 0 to 0.30%, Mo: 0 to 0.30%, Ti: 0 to 0.100%, Nb: 0 to 0.100%, V : 0-0.20%, Sn: 0-0.30%, B: 0-0.0050%, Ca: 0-0.0050%, Mg: 0-0.0050%, Zr: 0-0. 100%, and REM: 0 to 0.0200%, one or more of which may be contained.

Cr:0~0.30%
Crは線材の焼き入れ性を高め、パーライト変態後の線材の引張強さを高める効果があり、この効果を得たい場合に含有してもよい。この効果を得るためには、Cr量は0.01%以上含有させることが好ましい。上記効果を確実に得るために、Cr量は0.05%以上であることが好ましく、0.10%以上であることが一層好ましい。しかし、Cr量が0.30%を超えると、マルテンサイト又はベイナイト組織が生じ易くなって、伸線加工性及び伸線加工後の高強度鋼線の耐水素脆化特性を劣化させる。そのため、Crを含有させる場合、Cr量は0.30%以下とし、0.25%以下とすることが好ましく、0.20%以下とすることがなお好ましい。
Cr: 0-0.30%
Cr has the effect of increasing the hardenability of the wire and increasing the tensile strength of the wire after pearlite transformation, and may be contained when this effect is desired. In order to obtain this effect, it is preferable to contain 0.01% or more of Cr. In order to reliably obtain the above effects, the Cr content is preferably 0.05% or more, more preferably 0.10% or more. However, if the Cr content exceeds 0.30%, martensite or bainite structure is likely to occur, degrading the wire drawability and hydrogen embrittlement resistance of the high-strength steel wire after wire drawing. Therefore, when Cr is contained, the amount of Cr is 0.30% or less, preferably 0.25% or less, and more preferably 0.20% or less.

Mo:0~0.30%
Moは線材の焼き入れ性を高め、パーライト変態後の線材の引張強さを高める効果があり、この効果を得たい場合に含有してもよい。この効果を得るためには、Mo量は0.01%以上であることが好ましい。上記効果を確実に得るために、Mo量は0.03%以上であることが好ましく、0.05%以上であることが一層好ましい。しかし、Mo量を0.30%を超えて含有させると、マルテンサイト又はベイナイト組織が生じ易くなって、伸線加工性及び伸線加工後の高強度鋼線の耐水素脆化特性を劣化させる。そのため、Moを含有させる場合、Mo量は0.30%以下とし、0.20%以下とすることが好ましく、0.10%以下とすることがなお好ましい。
Mo: 0-0.30%
Mo has the effect of increasing the hardenability of the wire and increasing the tensile strength of the wire after pearlite transformation, and may be contained when this effect is desired. In order to obtain this effect, the Mo content is preferably 0.01% or more. In order to reliably obtain the above effects, the Mo content is preferably 0.03% or more, more preferably 0.05% or more. However, if the Mo content exceeds 0.30%, a martensite or bainite structure is likely to occur, degrading the wire drawability and hydrogen embrittlement resistance of the high-strength steel wire after wire drawing. . Therefore, when Mo is contained, the Mo content is 0.30% or less, preferably 0.20% or less, and more preferably 0.10% or less.

Ti:0~0.100%
TiはC又はNと結合して炭化物又は炭窒化物を析出し、結晶粒を細粒化して線材の延性を向上させる効果があり、伸線加工後の耐水素脆化特性及び捻回特性を向上させる効果がある。また、Tiの含有によって固溶Nを低減させることができるため、ひずみ時効を抑制し、伸線加工後の鋼線の捻回特性を向上する効果もある。Ti含有による上記効果は、本開示に係る高強度鋼線用線材を得るのに有効であることからTiは積極的に含有してよい。これら効果を得るためには、Tiは0.002%以上含有させればよい。上記効果を確実に得るために、Ti量は0.005%以上であることが好ましく、0.008%以上であることが一層好ましい。しかし、Tiを0.10%を超えて含有させても、上記効果が飽和するだけではなく、線材の強度が高くなり過ぎ、かえって伸線加工後の鋼線の耐水素脆化特性及び捻回特性が劣化する。そのため、Tiを含有させる場合、Ti量は0.10%以下とし、0.050%以下とすることが好ましく、0.025%以下とすることがなお好ましい。
Ti: 0-0.100%
Ti combines with C or N to precipitate carbides or carbonitrides, which has the effect of refining crystal grains and improving the ductility of the wire rod. have the effect of improving In addition, since the content of Ti can reduce dissolved N, it also has the effect of suppressing strain aging and improving the torsional properties of the steel wire after wire drawing. Since the above-mentioned effect due to the inclusion of Ti is effective in obtaining the high-strength steel wire rod according to the present disclosure, Ti may be positively included. In order to obtain these effects, Ti should be contained in an amount of 0.002% or more. In order to reliably obtain the above effects, the Ti content is preferably 0.005% or more, more preferably 0.008% or more. However, even if the Ti content exceeds 0.10%, not only does the above effect saturate, but the strength of the wire rod becomes too high, and the hydrogen embrittlement resistance and torsion resistance of the steel wire after wire drawing are rather increased. characteristics deteriorate. Therefore, when Ti is contained, the amount of Ti is 0.10% or less, preferably 0.050% or less, and more preferably 0.025% or less.

Nb:0~0.100%
Nbは炭化物又は炭窒化物を析出し、結晶粒を細粒化して線材の延性を向上させる効果があり、伸線加工後の耐水素脆化特性及び捻回特性を向上させる効果がある。この効果を得るためには、Nbは0.002%以上含有させることが好ましい。上記効果を確実に得るために、Nb量は0.005%以上であることが好ましく、0.008%以上であることが一層好ましい。しかし、Nbを0.100%を超えて含有させても、上記効果が飽和するだけではなく、分塊圧延によって鋼片を得る段階又は線材を圧延する段階で表面疵が発生しやすくなり、製造性が悪化する。そのため、Nbを含有させる場合、Nb量は0.100%以下とし、0.050%以下とすることが好ましく、0.025%以下とすることがなお好ましい。
Nb: 0-0.100%
Nb precipitates carbides or carbonitrides, refines crystal grains, and has the effect of improving the ductility of the wire, and has the effect of improving hydrogen embrittlement resistance and torsional properties after wire drawing. In order to obtain this effect, it is preferable to contain 0.002% or more of Nb. In order to reliably obtain the above effects, the Nb content is preferably 0.005% or more, more preferably 0.008% or more. However, even if the content of Nb exceeds 0.100%, not only does the above effect saturate, but surface defects are likely to occur at the stage of obtaining a billet by blooming or at the stage of rolling a wire rod. sexuality worsens. Therefore, when Nb is contained, the amount of Nb is 0.100% or less, preferably 0.050% or less, and more preferably 0.025% or less.

V:0~0.20%
Vは炭化物VCを析出して、引張強さを高めるとともに、耐水素脆化特性を向上させる効果があり、この効果を得たい場合に含有してもよい。この効果を得るためには、Vは0.01%以上含有させることが好ましい。上記効果を確実に得るために、V量は0.03%以上であることが好ましく、0.05%以上であることが一層好ましい。しかし、Vを0.20%を超えて含有させても、上記効果が飽和するだけではなく、伸線加工後の鋼線の耐水素脆化特性及び捻回特性が劣化する。そのため、Vを含有させる場合、V量は0.20%以下とし、0.15%以下とすることが好ましく、0.10%以下とすることがなお好ましい。
V: 0-0.20%
V precipitates carbide VC, and has the effect of increasing tensile strength and improving hydrogen embrittlement resistance. In order to obtain this effect, the V content is preferably 0.01% or more. In order to reliably obtain the above effect, the V content is preferably 0.03% or more, more preferably 0.05% or more. However, even if the V content exceeds 0.20%, not only the above effect is saturated, but also the hydrogen embrittlement resistance and torsional properties of the steel wire after wire drawing are deteriorated. Therefore, when V is contained, the amount of V is 0.20% or less, preferably 0.15% or less, and more preferably 0.10% or less.

Sn:0~0.30%
Snはパーライト組織に固溶して、耐食性及び耐水素脆化特性を高める効果があり、この効果を得たい場合に含有してもよい。この効果を得るためには、Snは0.01%以上含有させることが好ましい。上記効果を確実に得るために、Sn量は0.03%以上であることが好ましく、0.05%以上であることが一層好ましい。しかし、Snを0.30%を超えて含有させても、上記効果が飽和するだけではなく、線材を脆化させるため、圧延時に表面疵が発生し、圧延材の製造性が悪くなる。そのため、Snを含有させる場合には、Sn量は0.01~0.30%とすることが好ましい。そのため、Snを含有させる場合、Sn量は0.30%以下とし、0.20%以下とすることが好ましく、0.15%以下とすることがなお好ましい。
Sn: 0-0.30%
Sn dissolves in the pearlite structure and has the effect of enhancing corrosion resistance and hydrogen embrittlement resistance. In order to obtain this effect, Sn is preferably contained in an amount of 0.01% or more. In order to reliably obtain the above effects, the Sn content is preferably 0.03% or more, more preferably 0.05% or more. However, even if the Sn content exceeds 0.30%, not only does the above effect saturate, but also the wire becomes embrittled, surface defects occur during rolling, and the manufacturability of the rolled material deteriorates. Therefore, when Sn is contained, the amount of Sn is preferably 0.01 to 0.30%. Therefore, when Sn is contained, the amount of Sn is 0.30% or less, preferably 0.20% or less, and more preferably 0.15% or less.

B:0~0.0050%
Bは等温変態後のパーライト組織分率を高め、伸線加工後の高強度鋼線の捻回特性を改善する効果があり、この効果を得たい場合に含有してもよい。この効果を得るためには、Bは0.0002%以上含有させることが好ましい。上記効果を確実に得るために、B量は0.0005%以上であることが好ましく、0.0007%以上であることが一層好ましい。しかし、Bを0.0050%を超えて含有させても、上記効果が飽和するだけではなく、線材を脆化させてしまい、圧延時に表面疵が発生し、製造性が悪くなるとともに、伸線加工後の高強度鋼線の捻回特性をかえって劣化させる。そのため、Bを含有させる場合、B量は0.0050%以下とし、0.0030%以下とすることが好ましく、0.0020%以下とすることがなお好ましい。
B: 0 to 0.0050%
B has the effect of increasing the pearlite structure fraction after isothermal transformation and improving the twisting properties of the high-strength steel wire after wire drawing, and may be contained when this effect is desired. In order to obtain this effect, B is preferably contained in an amount of 0.0002% or more. In order to reliably obtain the above effect, the amount of B is preferably 0.0005% or more, more preferably 0.0007% or more. However, even if the content of B exceeds 0.0050%, not only does the above effect saturate, but the wire becomes embrittled, surface defects occur during rolling, productivity deteriorates, and wire drawing Rather, it deteriorates the torsional properties of the high-strength steel wire after processing. Therefore, when B is contained, the amount of B is 0.0050% or less, preferably 0.0030% or less, and more preferably 0.0020% or less.

Ca:0~0.0050%
Caは、MnS中に固溶し、MnSを微細に分散する効果があり、耐水素脆化特性を改善する効果があるため、効果を得たい場合に含有してもよい。Caは含有しなくてもよいが(Ca:0%)、Caによって耐水素脆化特性を改善する効果を得るためには、Caは0.0002%以上含有させればよく、より高い効果を得たい場合には、0.0005%以上を含有させればよい。しかし、Ca量が0.0050%を超えて含有しても、その効果は飽和するし、鋼中の酸素と反応して生成する酸化物が粗大となり、伸線加工後の捻回特性の低下を招く。したがって、含有させる場合の適正なCa量は、0.0050%以下である。耐水素脆化特性及び捻回特性を向上させる観点から、Ca量は0.0030%以下であることが好ましく、0.0025%以下であれば一層好ましい。
Ca: 0-0.0050%
Ca forms a solid solution in MnS, has the effect of finely dispersing MnS, and has the effect of improving hydrogen embrittlement resistance. Ca does not have to be contained (Ca: 0%), but in order to obtain the effect of improving hydrogen embrittlement resistance by Ca, Ca should be contained in an amount of 0.0002% or more, and a higher effect can be obtained. If desired, the content should be 0.0005% or more. However, even if the amount of Ca exceeds 0.0050%, the effect is saturated, and the oxides formed by reacting with oxygen in the steel become coarse, resulting in a decrease in torsional characteristics after wire drawing. invite. Therefore, the proper amount of Ca to contain is 0.0050% or less. From the viewpoint of improving hydrogen embrittlement resistance and torsional properties, the Ca content is preferably 0.0030% or less, and more preferably 0.0025% or less.

Mg:0~0.0050%
Mgは、MnS中に固溶し、MnSを微細に分散する効果があり、耐水素脆化特性を改善する効果があるため、効果を得たい場合に含有してもよい。Mgは含有しなくてもよいが(Mg:0%)、Mgによって耐水素脆化特性を改善する効果を得るためには、Mgは0.0002%以上含有させればよく、より高い効果を得たい場合には、0.0005%以上を含有させればよい。しかし、Mg量が0.0050%を超えて含有しても、その効果は飽和するし、鋼中の酸素と反応して生成する酸化物が粗大となり、伸線加工後の捻回特性の低下を招く。したがって、含有させる場合の適正なMg量は、0.0050%以下である。耐水素脆化特性及び捻回特性を向上させる観点から、Mg量は0.0030%以下であることが好ましく、0.0025%以下であれば一層好ましい。
Mg: 0-0.0050%
Mg dissolves in MnS, has the effect of finely dispersing MnS, and has the effect of improving the resistance to hydrogen embrittlement. Mg does not have to be contained (Mg: 0%), but in order to obtain the effect of improving the hydrogen embrittlement resistance by Mg, it is sufficient to contain 0.0002% or more of Mg, and a higher effect can be obtained. If desired, the content should be 0.0005% or more. However, even if the Mg content exceeds 0.0050%, the effect is saturated, and the oxides formed by reacting with oxygen in the steel become coarse, resulting in a decrease in torsional characteristics after wire drawing. invite. Therefore, the proper amount of Mg to contain is 0.0050% or less. From the viewpoint of improving hydrogen embrittlement resistance and torsional properties, the Mg content is preferably 0.0030% or less, more preferably 0.0025% or less.

Zr:0~0.100%
Zrは、Oと反応して酸化物を生成し、微量に含有すれば酸化物を微細に分散し、伸線加工後の耐水素脆化特性及び捻回特性を抑制する効果があり、その効果を得たい場合に含有してもよい。この効果を得るためには、Zrは0.0002%以上含有させればよく、より高い効果を得たい場合には、0.001%以上を含有させればよい。しかし、Zrの含有量が0.10%を超えて含有させた場合、その効果は飽和するし、粗大な窒化物又は硫化物を生成するため、かえって伸線加工後の耐水素脆化特性及び捻回特性の低下を招く。したがって、含有させる場合のZrの含有量は、0.100%以下である。伸線加工後の耐水素脆化特性及び捻回特性に悪影響を与える介在物を低減させる観点から、Zrの含有量は0.080%以下であることが好ましく、0.050%以下であれば一層好ましい。
Zr: 0-0.100%
Zr reacts with O to form an oxide, and if contained in a trace amount, the oxide is finely dispersed, and has the effect of suppressing hydrogen embrittlement resistance and torsional characteristics after wire drawing. It may be included if you want to obtain In order to obtain this effect, the Zr content should be 0.0002% or more, and if a higher effect is desired, the Zr content should be 0.001% or more. However, when the content of Zr exceeds 0.10%, the effect is saturated, and coarse nitrides or sulfides are formed, so the hydrogen embrittlement resistance after wire drawing is rather reduced. This leads to deterioration of torsional characteristics. Therefore, the content of Zr when it is included is 0.100% or less. From the viewpoint of reducing inclusions that adversely affect hydrogen embrittlement resistance and torsional properties after wire drawing, the Zr content is preferably 0.080% or less, and if it is 0.050% or less More preferred.

REM:0~0.0200%
REMは希土類元素の総称であり、REMの含有量は希土類元素の合計含有量である。REMはCa及びMgと同じようにMnS中に固溶し、MnSを微細に分散する効果がある。MnSを微細に分散することで、耐水素脆化特性を改善することができるため、含有してもよい。REMは含有しなくてもよいが(REM:0%)、REMによって耐水素脆化特性を改善する効果を得るためには、REMは0.0002%以上含有させればよく、より高い効果を得たい場合には、0.0005%以上を含有させればよい。しかし、REM量が0.020%を超えて含有しても、その効果は飽和するし、鋼中の酸素と反応して生成する酸化物が粗大となり、かえって伸線加工後の捻回特性の低下を招く。したがって、含有させる場合の適正なREM量は、0.0200%以下である。耐水素脆化特性及び捻回特性を向上させる観点から、REM量は0.0100%以下であることが好ましく、0.0050%以下であれば一層好ましい。
REM: 0-0.0200%
REM is a generic term for rare earth elements, and the content of REM is the total content of rare earth elements. Like Ca and Mg, REM dissolves in MnS and has the effect of finely dispersing MnS. By finely dispersing MnS, hydrogen embrittlement resistance can be improved, so it may be contained. REM does not have to be contained (REM: 0%), but in order to obtain the effect of improving hydrogen embrittlement resistance by REM, REM should be contained in an amount of 0.0002% or more, and a higher effect can be obtained. If desired, the content should be 0.0005% or more. However, even if the amount of REM exceeds 0.020%, the effect is saturated, and the oxides formed by reacting with oxygen in the steel become coarse, and the twisting characteristics after wire drawing are rather deteriorated. lead to decline. Therefore, the appropriate amount of REM when contained is 0.0200% or less. From the viewpoint of improving hydrogen embrittlement resistance and torsional properties, the REM content is preferably 0.0100% or less, more preferably 0.0050% or less.

残部:Fe及び不純物
残部はFe及び不純物である。「不純物」とは、意図せずに鋼材中に含有される成分であり、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入するものを指す。不純物としては、P、S、Nのほか、上記任意元素のうち意図せずに鋼材中に含有される元素、さらに、O(酸素)などが挙げられる。例えば、O(酸素)は、多量に含まれると鋼中で生成する酸化物が粗大となり、伸線加工後の捻回特性の低下を招くことから0.0030%以下であることが好ましく、さらには0.0025%以下であることが望ましい。
Balance: Fe and Impurities The balance is Fe and impurities. “Impurities” are components that are unintentionally contained in steel materials, and refer to those that are mixed from ores, scraps, or manufacturing environments used as raw materials during the industrial production of steel materials. Impurities include, in addition to P, S, and N, elements that are unintentionally contained in the steel among the arbitrary elements described above, and O (oxygen). For example, O (oxygen) is preferably 0.0030% or less because if it is contained in a large amount, oxides formed in the steel become coarse and lead to deterioration in torsion characteristics after wire drawing. is preferably 0.0025% or less.

本開示に係る高強度鋼線用線材は、上記範囲で各成分を含有するとともに、下記式<1>で表されるY1が1.70≦Y1≦4.50、式<2>で表されるY2がY2<1.81を満足する。
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni] ・・・<1>
Y2=[C]+[Si]/10+A ・・・<2>
a=350×([N]-0.29×[Ti]) ・・・<4>
ここで、上記式における[C]、[Si]、[Mn]、[Cr]、[Cu]、[Ni]、[N]、[Ti]は、それぞれの元素の質量%での含有量を表し、式<2>におけるAは上記式<4>で表されるaに関連するパラメータであり、式<4>によって算出される値がa≧0の場合はA=aであり、a<0の場合はA=0とする。
なお、本開示に係る線材においてCr及びTiは任意元素であり、これらの任意元素が本開示に係る線材に実質的に含まれない場合(無添加、すなわち、不純物レベルである場合)は、その元素の含有量は「0」としてY1、Y2、aをそれぞれ算出する。
The wire rod for high-strength steel wire according to the present disclosure contains each component in the above range, and Y1 represented by the following formula <1> is 1.70 ≤ Y1 ≤ 4.50, and is represented by the formula <2>. , satisfies Y2<1.81.
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni] <1>
Y2=[C]+[Si]/10+A <2>
a=350×([N]−0.29×[Ti]) <4>
Here, [C], [Si], [Mn], [Cr], [Cu], [Ni], [N], and [Ti] in the above formula represent the content of each element in mass%. where A in formula <2> is a parameter related to a represented by formula <4> above, and when the value calculated by formula <4> is a≧0, A=a and a< If 0, then A=0.
It should be noted that Cr and Ti are optional elements in the wire according to the present disclosure, and if these optional elements are not substantially contained in the wire according to the present disclosure (no addition, that is, the impurity level), the Y1, Y2, and a are calculated assuming that the element content is "0".

Y1は、主に高強度鋼線用線材の焼き入れ性に関わり、線材の引張強さを高め、耐水素脆化特性を向上させるために必要なパラメータである。また、Y1を1.70≦Y1≦4.50の範囲とすることで高強度鋼線用線材の耐水素脆化特性を向上させることができ、伸線加工後の高強度鋼線の耐水素脆化特性を向上させることができる。 Y1 is mainly related to the hardenability of the wire for high-strength steel wire, and is a parameter necessary for increasing the tensile strength of the wire and improving the hydrogen embrittlement resistance. In addition, by setting Y1 within the range of 1.70 ≤ Y1 ≤ 4.50, the hydrogen embrittlement resistance of the wire rod for high-strength steel wire can be improved, and the hydrogen resistance of the high-strength steel wire after wire drawing can be improved. Embrittlement properties can be improved.

高強度鋼線は、化学成分及び金属組織を適切に制御した線材を伸線加工することによって得ることができる。伸線加工前に、線材を再加熱してパテンティング処理を行ったり、圧延後に直接、塩浴炉に浸漬して等温変態処理を行うこと等により、中心部まで均一性が高い微細パーライト組織とすることが好ましい。Y1は、線材の焼き入れ性を制御し、表面から中心部まで均一性が高い微細なパーライト組織として必要な強度を与えると共に、線材の耐水素脆化特性を向上させるのに必要なパラメータであり、1.70以上4.50以下でなければならない。Y1が1.70未満の場合、耐水素脆化特性が低下し、伸線加工後の鋼線においても、十分な耐水素脆化特性を得ることができない。上記効果を確実に得るために、Y1は2.00以上であることが好ましく、2.50以上であることがなお好ましい。一方、Y1が4.50を超える場合、パテンティング処理又は圧延後の等温変態処理後に、ベイナイト及びマルテンサイトなどのパーライト組織以外の非パーライト組織が生成し、かえって線材の耐水素脆化特性を低下させる。Y1は4.50以下とし、4.22以下であることが好ましい。線材の強度を確保し、より安定的に耐水素脆化特性を確保したい場合は、Y1は4.00以下とすればよく、3.75以下であれば、なお好ましい。 A high-strength steel wire can be obtained by drawing a wire whose chemical composition and metallographic structure are appropriately controlled. Prior to wire drawing, the wire is reheated for patenting treatment, or directly immersed in a salt bath furnace for isothermal transformation treatment after rolling. preferably. Y1 is a parameter necessary for controlling the hardenability of the wire, giving the necessary strength as a fine pearlite structure with high uniformity from the surface to the center, and improving the hydrogen embrittlement resistance of the wire. , from 1.70 to 4.50. If Y1 is less than 1.70, the hydrogen embrittlement resistance deteriorates, and the steel wire after wire drawing cannot obtain sufficient hydrogen embrittlement resistance. In order to reliably obtain the above effect, Y1 is preferably 2.00 or more, more preferably 2.50 or more. On the other hand, when Y1 exceeds 4.50, a non-pearlite structure other than a pearlite structure such as bainite and martensite is generated after patenting treatment or isothermal transformation treatment after rolling, and the hydrogen embrittlement resistance of the wire is rather reduced. Let Y1 is 4.50 or less, preferably 4.22 or less. In order to ensure the strength of the wire and more stably ensure hydrogen embrittlement resistance, Y1 may be 4.00 or less, and more preferably 3.75 or less.

Y2は、主に伸線加工後の鋼線の捻回特性に影響を及ぼすパラメータである。本開示に係る高強度鋼線用線材は、耐食性及び耐水素脆化特性を向上させるため、Cu及びNiを含有しており、線材の引張強さが比較的高いため、伸線加工でのダイスとの摩擦熱等による温度上昇によって、ひずみ時効の影響を受けて脆化しやすく、伸線加工後の鋼線の捻回特性が低下しやすい。特に、伸線加工によるひずみ時効には、C、Si、鋼中に固溶したNが大きく影響するため、Y2は下記式<2>の通りに表すことができる。
Y2=[C]+[Si]/10+A ・・・<2>
a=350×([N]-0.29×[Ti]) ・・・<4>
ここで、上記式における[C]、[Si]、[N]、[Ti]は、それぞれの元素の質量%での含有量を表し、Aは式<4>で表されるaに関連するパラメータである。式<4>の右辺は固溶Nの影響を表しており、右辺の値が負になる場合は、固溶Nによるひずみ時効に及ぼす影響がなくなるので、A=0となる。伸線加工におけるひずみ時効の影響を最小限に抑えるため、Y2の値は1.81未満とする。Y2が1.81以上の場合、伸線加工によるひずみ時効の影響により、伸線加工後の捻回特性が低下する。伸線加工後の捻回特性を向上させるために、Y2の値は1.70未満であることが好ましく、1.50未満であればなお好ましい。Y2の値は1.81未満であればよく、特に下限値は限定されないが、伸線加工後の引張強さを確保する観点から、0.50以上であることが好ましく、0.80以上であれば、さらに好ましい。
Y2 is a parameter that mainly affects the torsional properties of the steel wire after wire drawing. The wire for high-strength steel wire according to the present disclosure contains Cu and Ni in order to improve corrosion resistance and hydrogen embrittlement resistance, and the tensile strength of the wire is relatively high. Due to the temperature rise due to frictional heat, etc., the steel wire tends to become embrittled under the influence of strain aging, and the torsional characteristics of the steel wire after wire drawing tend to deteriorate. In particular, strain aging due to wire drawing is greatly affected by C, Si, and N solid-dissolved in steel, so Y2 can be represented by the following formula <2>.
Y2=[C]+[Si]/10+A <2>
a=350×([N]−0.29×[Ti]) <4>
Here, [C], [Si], [N], and [Ti] in the above formula represent the content in mass% of each element, and A is related to a represented by formula <4> is a parameter. The right side of Equation <4> represents the effect of solute N, and when the value of the right side is negative, A=0 because the effect of solute N on strain aging disappears. The value of Y2 should be less than 1.81 to minimize the effects of strain aging on wire drawing. When Y2 is 1.81 or more, the torsional properties after wire drawing are degraded due to the effect of strain aging due to wire drawing. In order to improve the twisting property after wire drawing, the value of Y2 is preferably less than 1.70, more preferably less than 1.50. The value of Y2 may be less than 1.81, and the lower limit is not particularly limited, but from the viewpoint of ensuring the tensile strength after wire drawing, it is preferably 0.50 or more, It is even better if there is.

<金属組織>
本開示に係る高強度鋼線用線材の金属組織は、フェライトとセメンタイトの層状組織であるパーライト組織が90%以上を占める。これは線材をパテンティング処理する段階又は等温変態処理する段階で、化学成分、変態前のγ粒径、又は冷却速度の変化によってフェライト、ベイナイト、又はマルテンサイトが生成する場合があり、これらの組織は、線材の長手方向における表層硬度のばらつきを増大させ、線材の耐水素脆化特性を低下させる。線材の長手方向における表層硬度のばらつきが大きい場合、伸線加工後の鋼線の耐水素脆化特性及び捻回特性が低下する。本開示に係る高強度鋼線用線材の金属組織は、パーライト組織が92%以上であることが好ましく、95%以上であることがより好ましい。
なお、パーライト組織以外の残部組織(非パーライト組織)としては、マルテンサイト、ベイナイト、初析フェライト、初析セメンタイトなどが挙げられる。非パーライト組織としては、伸線加工後の鋼線の捻回特性及び耐水素脆化特性を極端に低下させない点から初析フェライト及び疑似パーライトが好ましく、疑似パーライトがより好ましい。なお、パーライト組織はラメラ構造を保つパーライトを指し、ラメラ構造が崩れた疑似パーライトは非パーライト組織として本開示では取り扱う。
<Metal structure>
The metallic structure of the wire rod for high-strength steel wire according to the present disclosure is 90% or more of the pearlite structure, which is a layered structure of ferrite and cementite. Ferrite, bainite, or martensite may be generated due to changes in the chemical composition, the γ grain size before transformation, or the cooling rate in the stage of patenting the wire or the stage of isothermal transformation. increases the variation in surface layer hardness in the longitudinal direction of the wire and reduces the hydrogen embrittlement resistance of the wire. When the variation in surface layer hardness in the longitudinal direction of the wire is large, the hydrogen embrittlement resistance and torsional characteristics of the drawn steel wire are degraded. The metallic structure of the wire rod for high-strength steel wire according to the present disclosure preferably has a pearlite structure of 92% or more, more preferably 95% or more.
In addition, examples of the residual structure (non-pearlite structure) other than the pearlite structure include martensite, bainite, pro-eutectoid ferrite, and pro-eutectoid cementite. As the non-pearlite structure, pro-eutectoid ferrite and quasi-pseudo-pearlite are preferable, and quasi-pseudo-pearlite is more preferable, from the viewpoint that the torsional properties and hydrogen embrittlement resistance of the steel wire after wire drawing are not significantly deteriorated. Note that the pearlite structure refers to pearlite that maintains the lamellar structure, and the quasi-perlite whose lamellar structure has collapsed is treated as a non-pearlite structure in the present disclosure.

<特性>
(表層硬度のばらつき)
線材の長手方向に生じる化学成分又は金属組織のばらつきに起因する線材表層の硬度ばらつきは、耐水素脆化特性にも影響を及ぼし、伸線加工後の鋼線の特性にも大きな影響を及ぼす。特に、耐水素脆化特性は線材表層の硬度ばらつきが影響し、線材表層に硬度が高い部分が存在すると、水素脆化の起点となるため、耐水素脆化特性が低下する。
本開示に係る線材は、任意の等間隔で8個のサンプルを採取し、各サンプルの軸方向断面(中心軸を含む長手方向に平行な断面)において線材の表面から深さ50μmの位置(以下、「50μm深さ」と記す場合がある。)で測定されるビッカース硬さHvsiの最大値Hvsimaxと平均値Hvsiaveとの関係が下記(4)を満たすようにする。
(4)Hvsimax-Hvsiave≦50
<Characteristics>
(Variation in surface layer hardness)
Variations in the hardness of the surface layer of the wire due to variations in the chemical composition or metallographic structure occurring in the longitudinal direction of the wire affect the hydrogen embrittlement resistance and also greatly affect the properties of the steel wire after wire drawing. In particular, the resistance to hydrogen embrittlement is affected by variations in the hardness of the surface layer of the wire, and if there is a portion with high hardness in the surface layer of the wire, it becomes a starting point for hydrogen embrittlement, resulting in a decrease in the resistance to hydrogen embrittlement.
For the wire according to the present disclosure, eight samples were taken at arbitrary equal intervals, and the axial cross section (cross section parallel to the longitudinal direction including the central axis) of each sample was located at a depth of 50 μm from the surface of the wire (hereinafter , and sometimes referred to as “50 μm depth”), the relationship between the maximum value Hv simax and the average value Hv siave of the Vickers hardness Hv si measured at a depth of 50 μm satisfies the following (4).
(4) Hvsimax - Hvsiave≤50

なお、本開示において線材の「表層」とは、線材の表面(外周面)から深さ100μmまでの領域であり、表層の中間地点の50μm深さで硬度測定を行う。
ビッカース硬さを測定するためのサンプルは、測定対象となる線材の長さに応じて任意の等間隔で採取する。線材は、通常、リング状に巻かれた状態で製造されるため、1リングに相当する長さ以上の線材であれば、1リングに相当する長さから等間隔で8個のサンプルを採取して各サンプルのビッカース硬さを測定し、各サンプルのビッカース硬さの平均値と最大値を求めることが好ましい。具体的には、線材の長手方向から600mmの間隔をあけ、25mm長さで採取した8個の各サンプルsi(iは1~8の整数)について、各サンプルで測定される、軸方向断面(中心軸を含む長手方向に平行な断面)の線材の表面から深さ50μmの位置におけるビッカース硬さの各サンプル内の平均値をそれぞれHvsi、8個のHvsi(iは1~8の整数)の最大値をHvsimaxとしたとき、式<3>で表されるY3の値を50以下にする。
In the present disclosure, the “surface layer” of the wire is a region from the surface (peripheral surface) of the wire to a depth of 100 μm, and the hardness is measured at a depth of 50 μm at the midpoint of the surface layer.
Samples for measuring Vickers hardness are taken at arbitrary equal intervals according to the length of the wire to be measured. Wire rods are usually manufactured in a ring-shaped wound state, so if the wire rod has a length equal to or greater than one ring, 8 samples are taken at equal intervals from the length corresponding to one ring. It is preferable to measure the Vickers hardness of each sample by using a measuring tape, and obtain the average value and the maximum value of the Vickers hardness of each sample. Specifically, the axial cross section ( The average value of the Vickers hardness in each sample at a depth of 50 μm from the surface of the wire (cross section parallel to the longitudinal direction including the central axis) is Hv si , 8 Hv si (i is an integer from 1 to 8 ) is set to Hv simax , the value of Y3 represented by the formula <3> is set to 50 or less.

Figure 0007226548000001
Figure 0007226548000001

式<3>の右辺は、8個のサンプルで得られたHvsiの最大値Hvsimaxと8個のサンプルで得られたHvsiの下記式(n=8)で算出される平均値Hvsiave(本開示において「全体平均ビッカース硬さ」と称する場合がある。)との差を示している。The right side of the formula <3> is the maximum value Hv simax of Hv si obtained from 8 samples and the average value Hv siave of Hv si obtained from 8 samples calculated by the following formula (n=8). (which may be referred to as “overall average Vickers hardness” in the present disclosure).

Figure 0007226548000002
Figure 0007226548000002

各サンプルのHvsiは、線材から軸方向断面を樹脂埋めして鏡面研磨したサンプルを用い、自動ビッカース硬度計によって軸方向断面における線材の表面から深さ50μmの位置を0.98Nの荷重で1つのサンプルにつき200μmのピッチで50点(すなわち、10mm長さ)測定して求めればよい。
こうして求めた8個のHvsiのうち、最大値であるHvsimaxは、600mmの間隔をあけて採取した25mm長さの8個のサンプルの中で、軸方向断面における線材の表面から深さ50μmの位置の硬度が最も高いサンプルのビッカース硬度であり、言い換えれば線材の長手方向における表層硬度のばらつきのなかで、最も高い平均硬度が測定された部位のビッカース硬度を意味している。線材の水素脆化は、線材表層の硬度ばらつきが影響し、線材表層の硬度が局部的に高い部分が破壊の起点となって、水素脆化による破断が発生する。8個のサンプルで測定されたHvsimaxが他のサンプルも含めた50μm深さ位置の全体平均ビッカース硬さよりも、50を超えて高い場合、その部位において水素脆化による破断可能性が高まり、線材の耐水素脆化特性が低下する。さらに線材を伸線加工することで得られる鋼線では、長手方向における表層硬度のばらつきはさらに大きくなり、鋼線における耐水素脆化特性の低下はより顕著になる。Y3の値が50以下であれば、線材の耐水素脆化特性を低下させることが抑制され、さらに伸線加工によって得られる鋼線の耐水素脆化特性の低下も抑制される。Y3の値は、耐水素脆化特性を向上させる観点から小さいほど好ましく、30以下であることが好ましく、さらに25以下であればなお好ましい。
Hv si of each sample was measured by using a sample whose axial cross section was embedded in resin and mirror-polished from the wire, and measured at a depth of 50 μm from the surface of the wire in the axial cross section with an automatic Vickers hardness tester under a load of 0.98 N. It can be obtained by measuring 50 points (that is, 10 mm length) at a pitch of 200 μm for each sample.
Of the eight Hv si thus obtained, the maximum value, Hv simax , was found at a depth of 50 μm from the surface of the wire rod in the axial cross-section among eight samples of 25 mm length collected at intervals of 600 mm. In other words, it means the Vickers hardness of the portion where the highest average hardness was measured among the surface layer hardness variations in the longitudinal direction of the wire. Hydrogen embrittlement of a wire is affected by variations in the hardness of the surface layer of the wire, and the portion of the surface of the wire having a locally high hardness serves as the starting point of fracture, resulting in fracture due to hydrogen embrittlement. If Hv simax measured in eight samples is higher than the overall average Vickers hardness at a depth of 50 μm including other samples by more than 50, the possibility of breakage due to hydrogen embrittlement at that site increases, and the wire rod The hydrogen embrittlement resistance of is lowered. Furthermore, in the steel wire obtained by wire drawing, the variation in surface layer hardness in the longitudinal direction becomes even greater, and the reduction in hydrogen embrittlement resistance in the steel wire becomes more pronounced. If the value of Y3 is 50 or less, the deterioration of the hydrogen embrittlement resistance of the wire is suppressed, and the deterioration of the hydrogen embrittlement resistance of the steel wire obtained by wire drawing is also suppressed. From the viewpoint of improving hydrogen embrittlement resistance, the value of Y3 is preferably as small as possible, preferably 30 or less, and more preferably 25 or less.

線材の長手方向から600mmの間隔をあけて採取される25mm長さのサンプル数は8である。すなわち、8個のサンプルについて、軸方向断面における線材の表面から深さ50μmの位置におけるビッカース硬さの各サンプル内の平均値Hvsiを求めれば、線材表層の硬度ばらつきを知ることができる。線材表層の硬度ばらつきは、圧延して捲き取られた線材コイルの少なくとも1リングに相当する範囲で表層硬度のばらつきを調査することが好ましい。これは、熱間圧延後にオーステナイト域で捲き取られた線材リングは前後のリングと一部が重なった状態でコンベア上を搬送されるため、一つのリングの中で接触している部位、あるいは距離が近い部位(重なり部)と、前後のリングと離れている部位(非重なり部)が存在している。このような理由により、捲き取り後にコイルの1リング内で冷却速度の違いが生じるため、重なり部と非重なり部のパーライト変態温度に差が生じる。これによって重なり部と非重なり部のパーライトラメラ間隔に差が生じ、結果として大きな表層硬度のばらつきが生じる。一方、線材コイル内の各リングは基本的に同条件(一定の条件)で捲き取られているので、各リング間のばらつきは小さい。そのため、600mmの間隔をあけて、8個のサンプルを採取すれば、線材の長手方向の略4200mmの範囲で表層硬度のばらつきを検証したこととなり、線材コイルの1リング以上に相当する長さで表層硬度のばらつきを検証できる。上述の通り各リング間のバラツキは小さいので、上記のサンプル採取法によって線材コイル内のバラツキを検証できる。The number of samples of 25 mm length taken at intervals of 600 mm from the longitudinal direction of the wire is eight. That is, by finding the average value Hvsi of the Vickers hardness in each sample at a depth of 50 μm from the surface of the wire in the axial cross section for eight samples, it is possible to know the hardness variation of the surface layer of the wire. It is preferable to investigate the hardness variation of the surface layer of the wire material in a range corresponding to at least one ring of the rolled and wound wire material coil. This is because the wire rod rings wound in the austenite region after hot rolling are transported on the conveyor while partially overlapping the front and rear rings, so the contact area or distance in one ring There is a portion (overlapping portion) where the rings are close to each other and a portion (non-overlapping portion) which is separated from the front and rear rings. For this reason, a difference in cooling rate occurs within one ring of the coil after winding, resulting in a difference in pearlite transformation temperature between the overlapping portion and the non-overlapping portion. This causes a difference in the pearlite lamellar spacing between the overlapping portion and the non-overlapping portion, resulting in a large variation in surface layer hardness. On the other hand, since the rings in the wire coil are basically wound under the same conditions (constant conditions), variations between the rings are small. Therefore, if 8 samples are taken at intervals of 600 mm, the variation in surface layer hardness is verified in a range of approximately 4200 mm in the longitudinal direction of the wire, and the length is equivalent to one or more rings of the wire coil. Variation in surface layer hardness can be verified. Since the variation between each ring is small as described above, the variation within the wire coil can be verified by the sampling method described above.

なお、本開示に係る線材の長さ及び製造時の1リングの長さは特に限定されず、線材からサンプルを採取する間隔は600mmに限定されない。本開示に係る線材は、長さに関わらず、また、ビッカース硬さを測定するためのサンプルを採取する間隔に関わらず、Hvsimax-Hvsiave≦50を満たすことで、特性を満足することができる。なお、実際の線材の製造においては、線材の長さ方向にバラツキが生じる。このため製造方法を適宜調整すれば、線材の長さ方向にバラツキを低減した線材が得られる。1リングの長さが約4200mmの線材であれば、ビッカース硬さ試験を600mm間隔で行うことで、線材コイルの長さ方向に特性を確認することができる。また、1リングの長さが4200mmでない場合は、1リングに相当する長さから等間隔で8個のサンプルを採取して各サンプルのビッカース硬さHvsiを測定し、最大値Hvsimax最大値と平均値Hvsiaveの差を算出することで線材コイルの長さ方向のビッカース硬さを確認することができる。また、線材の長さが1リングに満たない場合は、全体から等間隔で8個のサンプルを採取して各サンプルのビッカース硬さHvsiを測定し、最大値Hvsimaxと平均値Hvsiaveの差を算出することが好ましい。The length of the wire according to the present disclosure and the length of one ring at the time of manufacture are not particularly limited, and the interval at which samples are taken from the wire is not limited to 600 mm. The wire according to the present disclosure satisfies the characteristics by satisfying Hv simax −Hv siave ≦50 regardless of the length and regardless of the interval at which samples for measuring Vickers hardness are taken. can. In addition, in the actual production of the wire rod, variations occur in the length direction of the wire rod. Therefore, if the manufacturing method is appropriately adjusted, a wire with reduced variation in the length direction of the wire can be obtained. If the length of one ring is about 4200 mm, the Vickers hardness test can be performed at intervals of 600 mm to confirm the characteristics in the length direction of the wire coil. In addition, when the length of one ring is not 4200 mm, 8 samples are taken at equal intervals from the length corresponding to one ring, the Vickers hardness Hv si of each sample is measured, and the maximum value Hv simax maximum value and the average value Hv siave , the Vickers hardness in the length direction of the wire coil can be confirmed. In addition, when the length of the wire is less than one ring, 8 samples are taken at equal intervals from the whole, the Vickers hardness Hv si of each sample is measured, and the maximum value Hv simax and the average value Hv siave Preferably the difference is calculated.

(引張強さ)
線材及び鋼線の強度が高ければ高いほど、腐食の進行又は水素脆化による破断を発生しやすいが、本開示に係る高強度鋼線用線材を用いて鋼線を製造した場合、引張強さが1700MPaを超える場合であっても、耐食性及び耐水素脆化特性に優れるため、鋼線又は撚り線後の製品を腐食環境で使用した場合にも破断が発生しにくくなる。また、線材の引張強さが高くない場合でも伸線加工での加工減面率を大きくすることで、引張強さが1700MPaを超える高強度鋼線を得ることができるが、伸線加工の加工減面率を大きくし過ぎた場合、捻回特性が低下するし、耐水素脆化特性も低下する。そのため、伸線加工前の線材で引張強さを1000MPa以上とし、伸線加工の加工減面率を過剰に大きくすることなく、高強度鋼線を製造することが好ましい。線材の段階で微細パーライト組織として1000MPa以上の引張強さがあれば、伸線加工後の鋼線における引張強さ及び耐水素脆化特性の低下が抑制される。
鋼線における捻回特性及び耐水素脆化特性を向上させるため、線材の引張強さが1200MPa以上であればより好ましく、1300MPa以上であれば、さらに好ましい。
一方、線材の引張強さが1650MPaを超える場合は、線材の延性が低下し、伸線加工後の鋼線の捻回特性及び耐水素脆化特性がかえって低下する可能性がある。この観点から、線材の引張強さは1600MPa以下であることが好ましく、1550MPa以下であれば、さらに好ましい。
(Tensile strength)
The higher the strength of the wire rod and steel wire, the more likely it is that breakage due to progression of corrosion or hydrogen embrittlement will occur. is more than 1700 MPa, the corrosion resistance and hydrogen embrittlement resistance are excellent, so even when the steel wire or stranded wire product is used in a corrosive environment, breakage is less likely to occur. In addition, even if the tensile strength of the wire is not high, it is possible to obtain a high-strength steel wire with a tensile strength exceeding 1700 MPa by increasing the reduction in area during wire drawing. If the area reduction rate is too large, the torsion characteristics will deteriorate and the hydrogen embrittlement resistance will also deteriorate. Therefore, it is preferable to manufacture a high-strength steel wire by setting the tensile strength of the wire before drawing to 1000 MPa or more and without excessively increasing the reduction in area during drawing. If the steel wire has a tensile strength of 1000 MPa or more as a fine pearlite structure at the wire rod stage, the deterioration of the tensile strength and hydrogen embrittlement resistance of the steel wire after wire drawing is suppressed.
In order to improve the torsional properties and hydrogen embrittlement resistance of the steel wire, the tensile strength of the wire is more preferably 1200 MPa or more, more preferably 1300 MPa or more.
On the other hand, if the tensile strength of the wire exceeds 1650 MPa, the ductility of the wire may decrease, and the torsional properties and hydrogen embrittlement resistance of the drawn steel wire may rather decrease. From this point of view, the tensile strength of the wire is preferably 1600 MPa or less, more preferably 1550 MPa or less.

本開示に係る高強度鋼線用線材を用いて伸線加工することで、1700MPaを超える高い強度でも、耐食性と耐水素脆化特性に優れた高強度鋼線を得ることができる。これは、線材を製造する段階で化学成分の偏析、金属組織、及び線材表層の硬度分布を制御し、耐食性と耐水素脆化特性を向上させているためである。
本開示に係る線材は、優れた耐食性と耐水素脆化特性を有し、伸線加工後の鋼線における捻回特性にも優れることから、伸線加工によって強度を高め、高強度ロープ用鋼線、橋梁ケーブル用鋼線、PC鋼線等の高強度鋼線として利用可能である。
By drawing using the wire rod for high-strength steel wire according to the present disclosure, it is possible to obtain a high-strength steel wire excellent in corrosion resistance and hydrogen embrittlement resistance even at a high strength exceeding 1700 MPa. This is because the segregation of chemical components, the metallographic structure, and the hardness distribution of the surface layer of the wire are controlled at the stage of manufacturing the wire to improve corrosion resistance and hydrogen embrittlement resistance.
The wire rod according to the present disclosure has excellent corrosion resistance and hydrogen embrittlement resistance, and also has excellent twisting properties in the steel wire after wire drawing. It can be used as high-strength steel wires such as wires, steel wires for bridge cables, and PC steel wires.

<測定方法>
線材の金属組織、線材及び鋼線の引張強さ、線材の表層硬度のばらつき、線材の耐食性、線材及び鋼線の耐水素脆化特性、並びに鋼線の捻回特性はそれぞれ以下の方法で調査した。
<Measurement method>
Metal structure of wire, tensile strength of wire and steel wire, dispersion of surface layer hardness of wire, corrosion resistance of wire, resistance to hydrogen embrittlement of wire and steel wire, and twisting property of steel wire are investigated by the following methods. bottom.

〈1〉線材の金属組織:
線材の金属組織の面積率は、線材の長手方向に平行であり、中心軸を通る断面を樹脂埋めしたミクロサンプルを鏡面研磨した後、ピクラール溶液を用いて金属組織を現出させた。次に、線材の直径をDとしたとき、線材表面から0.25Dの深さの位置に相当する部位の金属組織を走査型電子顕微鏡(SEM)を用いて、1000倍の倍率で10箇所の組織写真を撮影した。撮影された各写真についてセメンタイトとフェライトの層状組織と判断される、パーライト組織に相当する部分を塗りつぶし、画像解析によって面積値を測定してパーライト面積率を算出し、10箇所の測定値を平均してパーライト面積率を求めた。なお、パーライト組織以外の組織は、部分的に生成したマルテンサイト、ベイナイト、及び初析フェライトなど、セメンタイトとフェライトの層状組織であるパーライト組織として判別できない非パーライト組織である。
<1> Metal structure of wire:
The area ratio of the metal structure of the wire is parallel to the longitudinal direction of the wire. After mirror-polishing a micro sample in which the cross section passing through the central axis is filled with resin, the metal structure is exposed using a picral solution. Next, when the diameter of the wire is D, the metal structure of the portion corresponding to the position of the depth of 0.25D from the surface of the wire was examined using a scanning electron microscope (SEM) at a magnification of 1000 times at 10 locations. A tissue photo was taken. For each photograph taken, the part corresponding to the pearlite structure, which is judged to be a layered structure of cementite and ferrite, is painted over, the area value is measured by image analysis, the pearlite area ratio is calculated, and the measured values at 10 locations are averaged. The pearlite area ratio was obtained by The structure other than the pearlite structure is a non-pearlite structure such as partially formed martensite, bainite, and proeutectoid ferrite, which cannot be distinguished as a pearlite structure that is a layered structure of cementite and ferrite.

〈2〉線材及び鋼線の引張強さ:
引張試験は、線材及び伸線加工後の鋼線の長手方向に250~300mmの間隔をあけて採取した、400mm長さの試験片を用い、JIS Z 2241:2011に準拠して行った。試験片が破断に至るまでの最大試験力を引張試験前に測定した直径から求められる断面積で除し、引張強さを求めた。試験は8本の試験片を用いて測定し、その平均値を線材及び鋼線の引張強さとした。
<2> Tensile strength of wire and steel wire:
The tensile test was performed in accordance with JIS Z 2241:2011 using test pieces of 400 mm in length, taken at intervals of 250 to 300 mm in the longitudinal direction of the wire rod and steel wire after wire drawing. The tensile strength was determined by dividing the maximum test force until the test piece broke by the cross-sectional area obtained from the diameter measured before the tensile test. The test was measured using eight test pieces, and the average value was taken as the tensile strength of the wire rod and steel wire.

〈3〉線材の表層硬度のばらつき:
表層硬度の測定は、線材の長手方向に600mmの間隔(等間隔の一例)をあけて採取した、25mm長さの試験片を用いた。試験片は、8個(n=8)のサンプルを採取し、線材の長さ方向に平行な断面を樹脂埋めした後、鏡面研磨したミクロサンプルを用いた。各ミクロサンプルに対し、自動ビッカース硬度計を用いてJIS Z 2244:2009に準拠して、硬度測定を行った。硬度測定の試験荷重は0.98Nであり、各ミクロサンプルにおける線材表面から50μm深さの位置におけるビッカース硬度を50箇所測定して平均値を算出し、各試験片のHvsi(i=1、2、・・・8)を求めた。さらに、各ミクロサンプルで測定されたHvsiの最大値Hvsimaxを求め、併せてHvsiの全体平均ビッカース硬さHvsiaveを算出し、下記式<3>で表されるY3を算出した。
<3> Variation in surface layer hardness of wire:
For the measurement of the surface layer hardness, 25 mm long test pieces were used, which were sampled at intervals of 600 mm (an example of equal intervals) in the longitudinal direction of the wire. Eight (n=8) samples were taken as the test piece, and after filling the cross section parallel to the length direction of the wire with a resin, a mirror-polished micro sample was used. For each micro sample, hardness measurement was performed using an automatic Vickers hardness tester in accordance with JIS Z 2244:2009. The test load for hardness measurement is 0.98 N, the Vickers hardness is measured at 50 locations at a depth of 50 μm from the wire rod surface in each micro sample, the average value is calculated, and the Hv si (i = 1, 2, . . . 8). Further, the maximum value Hv simax of Hv si measured for each micro sample was determined, the overall average Vickers hardness Hv siave of Hv si was calculated, and Y3 represented by the following formula <3> was calculated.

Figure 0007226548000003
Figure 0007226548000003

〈4〉線材の耐食性:
線材の中心部軸方向から長さ100mmで切断した試験片の外周部を均等に削って直径7mmに機械加工したφ7×100mmLの試験片を各2本ずつ切り出した。腐食試験は、塩水噴霧が可能な乾湿繰り返し腐食試験機を用い、(1)塩水噴霧(5%NaCl噴霧、35℃、2hr)、(2)乾燥(湿度20%、60℃、4hr)、(3)湿潤(湿度95%、50℃、2hr)を1サイクルとする試験を行った。試験期間は12週間とし、各2本の試験片の腐食による体積減少率を求め、その平均値を各線材の耐食性の評価指標とした。腐食による体積減少率(%)は下記式によって求めた。
腐食体積減少率(%)=100×(腐食試験前の試験片体積-腐食試験後の試験片体積)/腐食試験前の試験片体積
腐食試験前の試験片体積は、試験前に、位置を変えて3点測定した試験片の直径及び試験片長さの平均値を求め、腐食試験前の試験片体積を算出した。腐食試験後の試験片体積は、腐食試験後にサンドブラストを使って試験片表面の腐食生成物を完全に除去した後、位置を変えて3点測定した試験片の直径及び試験片長さの平均値を求め、腐食試験後の試験片体積を算出した。
<4> Corrosion resistance of wire:
Two test pieces each of φ7×100 mmL were cut out by machining the outer circumference of the test piece with a length of 100 mm from the center axial direction of the wire rod to a diameter of 7 mm by shaving evenly. The corrosion test uses a dry-wet repeated corrosion tester capable of spraying salt water, (1) salt spray (5% NaCl spray, 35 ° C., 2 hr), (2) drying (humidity 20%, 60 ° C., 4 hr), ( 3) A test was conducted in which one cycle was wet (95% humidity, 50°C, 2 hours). The test period was 12 weeks, and the volume reduction rate due to corrosion of each two test pieces was determined, and the average value was used as the corrosion resistance evaluation index of each wire. The volume reduction rate (%) due to corrosion was determined by the following formula.
Corrosion volume reduction rate (%) = 100 × (specimen volume before corrosion test - specimen volume after corrosion test) / specimen volume before corrosion test The average value of the diameter and length of the test piece measured at three different points was obtained, and the volume of the test piece before the corrosion test was calculated. The test piece volume after the corrosion test is the average value of the diameter and length of the test piece measured at three different positions after completely removing corrosion products from the surface of the test piece using sandblasting after the corrosion test. and the volume of the test piece after the corrosion test was calculated.

〈5〉線材及び鋼線の耐水素脆化特性:
線材及び伸線加工後の鋼線の耐水素脆化特性は、国際プレストレストコンクリート連盟(Federation Internationale de la Precontrainte)で規格化されたFIP試験によって評価した。線材あるいは伸線加工後の鋼線を酸洗処理して表面のスケール又は潤滑皮膜を除去した後、矯直加工を行って真直性を確保し、700mmL長さに切断したサンプルを試験片として用いた。次いで試験片の中心部を含む200mm長さが浸漬できる溶液セルを用い、50℃のチオシアン酸アンモニウム(NHSCN)水溶液に試験片を浸漬させた状態とし、引張試験から得た破断荷重の70%の一定荷重を試験片に負荷し、破断までの時間を測定した。破断時間の上限は200時間とした。試験は各線材、あるいは各鋼線から採取した6本の試験片に対して行い、破断時間の平均値を算出し、線材及び鋼線の耐水素脆化特性を評価した。
<5> Hydrogen embrittlement resistance of wire and steel wire:
The resistance to hydrogen embrittlement of the wire rod and the steel wire after wire drawing was evaluated by the FIP test standardized by the International Federation of Prestressed Concrete (Federation Internationale de la Precontraint). A wire rod or steel wire after wire drawing is pickled to remove surface scale or lubricating film, then straightened to ensure straightness, and a sample cut to a length of 700 mmL is used as a test piece. board. Next, using a solution cell in which a 200 mm length including the center of the test piece can be immersed, the test piece was immersed in an aqueous ammonium thiocyanate (NH 4 SCN) solution at 50 ° C., and the breaking load obtained from the tensile test was 70. % constant load was applied to the test piece, and the time until breakage was measured. The upper limit of the breaking time was 200 hours. The test was performed on six test pieces taken from each wire rod or each steel wire, and the average value of the rupture time was calculated to evaluate the hydrogen embrittlement resistance of the wire rod and steel wire.

〈6〉鋼線の捻回特性:
伸線加工後の鋼線の捻回特性は、鋼線の直径の100倍の長さで捻回試験ができるように鋼線を切断し、矯直加工を行った後、1分間に15回転の速さで断線が発生するまで、鋼線を捻回する捻回試験を行った。デラミネーションの発生は、捻回時のトルク曲線を測定し、断線が発生する前にトルクが20%以上減少した場合にデラミネーションが発生したと判断した。捻回試験は各鋼線について5本ずつ行い、1本もデラミネーションが発生しなかった場合を捻回特性が良好であると判断した。
<6> Twisting properties of steel wire:
The torsion characteristics of the steel wire after wire drawing are determined by cutting the steel wire so that the torsion test can be performed at a length 100 times the diameter of the steel wire, straightening it, and then rotating it 15 times per minute. A twisting test was performed in which the steel wire was twisted until breakage occurred at a speed of . The occurrence of delamination was determined by measuring the torque curve during twisting and judging that delamination had occurred when the torque decreased by 20% or more before breakage occurred. The twisting test was performed on five steel wires for each wire, and the twisting characteristics were judged to be good when delamination did not occur in even one wire.

<線材の製造方法>
本開示に係る高強度鋼線用線材は、本開示の要件を満たせば、線材の製造方法によらず、本開示の鋼線の効果は得ることができるが、例えば、下記に示す製造方法によって、線材を製造し、それを素材として高強度鋼線を製造すればよい。なお、下記の製造プロセスは一例であり、下記以外のプロセスによって化学成分及びその他の要件が本開示の範囲である線材が得られた場合であっても、その線材は本開示に係る線材に含まれる。
<Manufacturing method of wire>
The wire for high-strength steel wire according to the present disclosure can obtain the effects of the steel wire of the present disclosure regardless of the wire manufacturing method as long as the requirements of the present disclosure are satisfied. , a wire rod is manufactured, and a high-strength steel wire is manufactured using it as a material. The following manufacturing process is an example, and even if a wire whose chemical composition and other requirements are within the scope of the present disclosure is obtained by a process other than the following, the wire is included in the wire according to the present disclosure. be

本開示に係る高強度鋼線用線材は、鋼を溶製する段階での化学成分の調整並びに、鋳片の加熱条件及び圧延時の加熱温度など製造条件をコントロールし、線材の長手方向に生じる化学成分の偏析を低減したり、均一性が高いパーライト組織に制御することが好ましい。
具体的には、C、Si、Mn、Cu、Ni、Al等の化学成分を調整し、転炉又は電気炉等によって溶製、鋳造された鋼塊又は鋳片は、分塊圧延の工程を経て、製品圧延用素材となる鋼片とする。製品圧延前、すなわち分塊圧延の加熱時か、あるいはその前の鋼塊又は鋳片の段階で、1260℃以上で12hr以上の加熱処理をする。その後、鋼片を再加熱して熱間で製品圧延し、所定の径の線材として最終的に仕上げる。
このように線材へ製品圧延する前の段階で高温かつ長時間の加熱処理を加えることで、化学成分の偏析を抑えることができるため、製品圧延後の線材の長手方向における表層硬度のばらつきを抑えることができる。また、このように、通常の製造条件では行わない高温・長時間での加熱処理及び、溶鋼から鋳片又は鋼塊へ凝固させるときの冷却速度を制御するなど、化学成分の偏析を低減するための工程を加えることで、圧延後の線材の長手方向における硬度ばらつきを低減させることが可能となる。
In the wire rod for high-strength steel wire according to the present disclosure, the chemical composition is adjusted at the stage of melting the steel, and the manufacturing conditions such as the heating conditions of the slab and the heating temperature during rolling are controlled, and the It is preferable to reduce the segregation of chemical components or to control the pearlite structure to have a high uniformity.
Specifically, a steel ingot or slab obtained by adjusting the chemical components such as C, Si, Mn, Cu, Ni, Al, etc., and melting and casting in a converter or an electric furnace is subjected to a blooming process. After passing through, it is made into a billet that will be used as a raw material for product rolling. Heat treatment is performed at 1260° C. or higher for 12 hours or longer before product rolling, that is, at the time of heating for blooming, or at the stage of steel ingots or slabs prior to that. After that, the steel slab is reheated and hot-rolled into a product, and finally finished as a wire rod having a predetermined diameter.
By applying a high-temperature, long-time heat treatment to the wire rod before it is rolled into a product, segregation of the chemical components can be suppressed, so variations in surface layer hardness in the longitudinal direction of the wire rod after product rolling can be suppressed. be able to. In addition, in order to reduce the segregation of chemical components, such as controlling the cooling rate when solidifying molten steel into cast slabs or steel ingots, such as heat treatment at high temperatures and long hours that are not performed under normal manufacturing conditions. By adding the step of (2), it is possible to reduce variations in hardness in the longitudinal direction of the wire rod after rolling.

次いで、分塊圧延によって得られた鋼片を再加熱し、1000℃以上の加熱を行う。この際の加熱は、オーステナイト粒の粗大化と混粒化を抑制するために1150℃以下、好ましくは1130℃以下とすればよい。また、加熱温度到達後の保持時間は、オーステナイト粒の混粒化を抑制するために、90分未満とするのが好ましい。 Next, the steel slab obtained by blooming is reheated to 1000° C. or higher. The heating at this time should be 1150° C. or less, preferably 1130° C. or less, in order to suppress coarsening and mixed grains of austenite grains. In addition, the holding time after reaching the heating temperature is preferably less than 90 minutes in order to suppress the mixing of austenite grains.

前記条件で加熱した鋼片を粗圧延に次いで、仕上げ圧延を行い、直径が5.0~16.0mmの線材を得る。この際、仕上げ圧延の温度は850℃~950℃の範囲内で調整する。850℃を下回ればオーステナイト粒が微細化し過ぎてパーライト変態が不均一となり、950℃を超えればその後の冷却過程でオーステナイト粒の制御が難しくなり、線材表層の硬度ばらつきが大きくなる。その後、熱間圧延後の鋼材を、800℃を下回らない温度で15秒間以上保持し、オーステナイト粒を調整する。次いで、500~580℃の温度で保持した溶融ソルトに直接浸漬を行ってパーライト組織に等温変態させた後、冷却すればよい。あるいは、熱延鋼材を衝風冷却により室温程度まで冷却した後、A点以上のオーステナイト領域の温度での加熱を行い、500~600℃の温度で保持した溶融鉛に浸漬してパーライト組織に等温変態させた後、冷却してもよい。The steel slab heated under the above conditions is subjected to rough rolling and then finish rolling to obtain a wire rod having a diameter of 5.0 to 16.0 mm. At this time, the temperature of finish rolling is adjusted within the range of 850°C to 950°C. If the temperature is below 850°C, the austenite grains become too fine and the pearlite transformation becomes uneven. Thereafter, the hot-rolled steel material is held at a temperature not lower than 800° C. for 15 seconds or more to adjust the austenite grains. Next, the steel is directly immersed in molten salt maintained at a temperature of 500 to 580° C. to isothermally transform into a pearlite structure, and then cooled. Alternatively, after cooling the hot-rolled steel material to about room temperature by air blow cooling, it is heated at a temperature in the austenite region of A3 point or higher, and immersed in molten lead maintained at a temperature of 500 to 600 ° C to form a pearlite structure. After the isothermal transformation, cooling may be performed.

<鋼線の製造方法>
一例として上述のプロセスによって得た線材を用いて、伸線加工を行い、必要な径の鋼線とすればよい。伸線加工の加工減面率は、必要とされる鋼線の直径と強度に応じて決定すればよいが、過剰に伸線加工の加工減面率を大きくし過ぎると、伸線加工後の鋼線の捻回特性及び耐水素脆化特性が低下してしまう。伸線加工の加工減面率は、70~92%とするのがよい。加工減面率が70%未満では、所要の引張強さが得られ難い。一方、加工減面率が92%を超えると、鋼線の捻回特性及び耐水素脆化特性が低下し易い。伸線加工の方法については特に限定されないが、鋼線表層の硬度ばらつきを低下するために、伸線加工後に鋼線を水冷するなど、伸線加工中の加工発熱による鋼線のひずみ時効を抑制する方法とするのが好ましい。
また、必要に応じて伸線加工後に、溶融亜鉛めっき、ブルーイング、又はヒートストレッチング処理など鋼線を加熱する工程を実施してもよい。
<Manufacturing method of steel wire>
As an example, the wire obtained by the above-described process may be drawn into a steel wire having a required diameter. The area reduction rate for wire drawing may be determined according to the required diameter and strength of the steel wire. The torsional properties and hydrogen embrittlement resistance of the steel wire are degraded. The area reduction rate of wire drawing is preferably 70 to 92%. If the reduction in area by working is less than 70%, it is difficult to obtain the required tensile strength. On the other hand, if the reduction in area by working exceeds 92%, the torsional properties and hydrogen embrittlement resistance of the steel wire tend to deteriorate. The wire drawing method is not particularly limited, but in order to reduce the hardness variation of the surface layer of the steel wire, the steel wire is water-cooled after the wire drawing process to suppress the strain aging of the steel wire due to the heat generated during the wire drawing process. It is preferable to use the method of
In addition, a step of heating the steel wire, such as hot dip galvanizing, bluing, or heat stretching treatment, may be carried out after wire drawing, if necessary.

以下、本開示に係る線材及び鋼線について実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本開示に係る線材及び鋼線を制限するものではない。 Hereinafter, the wire rod and steel wire according to the present disclosure will be described more specifically with reference to examples. However, these examples do not limit the wire and steel wire according to the present disclosure.

具体的には、表1、表2に示す化学成分の鋼を溶製し、以下の方法で線材及び鋼線を作製した。なお、表1、表2中の「-」の表記は、当該元素の含有量が不純物レベルであり、実質的に含有されていないと判断できることを示す。また、表2~表5において下線を付した値は、本開示の範囲外である、又は前述した製造方法(製造条件)を満たさないことを意味する。 Specifically, steels having chemical compositions shown in Tables 1 and 2 were melted, and wire rods and steel wires were produced by the following methods. The notation of "-" in Tables 1 and 2 indicates that the content of the element is at the level of impurities, and it can be determined that the element is not substantially contained. In addition, the underlined values in Tables 2 to 5 mean that they are outside the scope of the present disclosure or do not satisfy the manufacturing method (manufacturing conditions) described above.

Figure 0007226548000004
Figure 0007226548000004

Figure 0007226548000005
Figure 0007226548000005

化学成分が同等である鋼を用いて、引張強さ又は長手方向における表層硬度のばらつきが異なる線材を造り分けるため、表3に示す試験No.a0、a1、a0-1~a0-4、試験No.b0、b1、b0-1~b0-4の製造条件によって線材を圧延した。 Test Nos. shown in Table 3 were used to produce wire rods with different variations in tensile strength or surface layer hardness in the longitudinal direction using steels with the same chemical composition. a0, a1, a0-1 to a0-4, Test No. The wire was rolled under manufacturing conditions b0, b1, b0-1 to b0-4.

Figure 0007226548000006
Figure 0007226548000006

[線材及び鋼線の製造(1)]
表1に示す化学成分の鋼No.A0、A1、B0、B1を溶製した。鋼No.A0とA1、鋼No.B0とB1はほぼ同等成分であるが、引張強さ又は長手方向における表層硬度のばらつきが異なる線材を造り分けるために、試験No.a0とb0については、それぞれ鋼No.A0とB0の化学成分の鋳片を用いて、鋼片へ分塊圧延を行う前に、鋳片を1280℃に加熱し、24hr保持する加熱処理を行い、122mm角に分塊圧延した鋼片を圧延用素材とした。
試験No.a1とb1については、それぞれ鋼No.A1とB1の鋳片を用い、鋼片へ分塊圧延を行う前に、1260℃以上の温度で加熱を行わず、通常条件である1200℃で4hr保持する加熱を行い、122mm角に分塊圧延した鋼片を圧延用素材とした。次いで、それぞれの鋼片を1100℃で60分間加熱した後、線材に圧延した。この際、仕上げ圧延温度は表3に示す通りであり、仕上げ圧延後、線材コイルに捲き取った。捲き取った線材コイルは、そのまま550℃に保持した溶融ソルト浴に直接浸漬して等温変態処理を行った後、300℃以下まで水冷して線材を得た。
[Manufacture of wire rods and steel wires (1)]
Steel No. of the chemical composition shown in Table 1. A0, A1, B0 and B1 were melted. Steel no. A0 and A1, steel no. B0 and B1 have substantially the same composition, but in order to produce different wires with different variations in tensile strength or surface layer hardness in the longitudinal direction, Test No. For a0 and b0, steel No. Using a slab with chemical compositions of A0 and B0, before blooming into a steel slab, the slab was heated to 1280° C., subjected to heat treatment for 24 hours, and bloomed into a 122 mm square. was used as a material for rolling.
Test no. For a1 and b1, steel No. Using slabs A1 and B1, before blooming into steel slabs, heating was performed at 1200° C. under normal conditions for 4 hours without heating at a temperature of 1260° C. or higher, and the slabs were bloomed into 122 mm squares. The rolled steel slab was used as a material for rolling. Each billet was then heated at 1100° C. for 60 minutes and then rolled into a wire rod. At this time, the finish rolling temperature was as shown in Table 3, and after the finish rolling, the wire rod was coiled. The wound wire coil was directly immersed in a molten salt bath maintained at 550° C. for isothermal transformation treatment, and then water-cooled to 300° C. or less to obtain a wire.

試験No.a0-1~a0-4は鋼No.A0の鋳片を、試験No.b0-1~b0-4は鋼No.B0の鋳片をそれぞれ用い、鋼片へ分塊圧延を行う前に、鋳片を1280℃に加熱し、24hr保持する加熱処理を行い、122mm角に分塊圧延した鋼片を圧延用素材として用いた。同じ成分の鋼であっても、引張強さ又は長手方向の表層硬度ばらつきが異なる線材を造り分けるため、圧延条件を表3に示すように変化させた。具体的には、試験No.a0-1、b0-1は、線材圧延の際の加熱温度を1150℃以上とし、試験No.a0-2、b0-2は線材圧延の際の加熱の保持時間を90分以上とした。また、試験No.a0-3、b0-3は線材圧延の仕上げ圧延温度を850℃以下として圧延し、試験No.a0-4、b0-4は、線材圧延の仕上げ圧延温度を950℃以上で圧延した。その他は表3に示す圧延条件とし、仕上げ圧延後、線材コイルに捲き取った。捲き取った線材コイルは、そのまま550℃に保持した溶融ソルト浴に直接浸漬して等温変態処理を行った後、300℃以下まで水冷して線材を得た。 Test no. Steel Nos. a0-1 to a0-4. A0 slabs were subjected to test no. b0-1 to b0-4 are steel Nos. B0 slabs are used, and before blooming into steel slabs, the slabs are heated to 1280 ° C., subjected to heat treatment for 24 hours, and bloomed into 122 mm squares. Using. The rolling conditions were changed as shown in Table 3 in order to produce different wire rods with different tensile strength or surface layer hardness variations in the longitudinal direction, even if the steels had the same composition. Specifically, Test No. For a0-1 and b0-1, the heating temperature during wire rod rolling was set to 1150° C. or higher, and Test No. For a0-2 and b0-2, the heating holding time during wire rolling was set to 90 minutes or longer. Also, test no. a0-3 and b0-3 were rolled at a finish rolling temperature of wire rod rolling of 850° C. or less. A0-4 and b0-4 were rolled at a finish rolling temperature of 950° C. or higher in wire rod rolling. Other than that, the rolling conditions were as shown in Table 3, and after the finish rolling, the wire rod was wound into a coil. The wound wire coil was directly immersed in a molten salt bath maintained at 550° C. for isothermal transformation treatment, and then water-cooled to 300° C. or less to obtain a wire.

次いで、それぞれの線材を伸線加工し、鋼線を製造した。具体的には、それぞれの線材を酸洗処理してスケールを除去した後、潤滑性を向上させるため、表面に化成処理によってりん酸亜鉛皮膜を形成させ、超硬ダイスを用いて伸線加工を行った。伸線加工は各ダイスでの加工減面率が20%前後となるように調整したパススケジュールで線径5.2mmとなるまで伸線加工(この条件による伸線加工を「伸線加工A」と称する場合がある。)を行った。次いで、伸線加工した鋼線を400℃に加熱した鉛浴に30sec浸漬させ、水冷した。 Then, each wire was drawn to produce a steel wire. Specifically, after each wire is pickled to remove scale, a zinc phosphate film is formed on the surface by chemical conversion treatment to improve lubricity, and wire drawing is performed using a carbide die. gone. The wire drawing process is performed until the wire diameter is 5.2 mm with a pass schedule adjusted so that the reduction in area for each die is about 20% (the wire drawing process under these conditions is called "wire drawing process A". ) was performed. Next, the drawn steel wire was immersed in a lead bath heated to 400° C. for 30 seconds and cooled with water.

[評価(1)]
上述の方法によって得られた試験No.a0、a1、a0-1~a0-4、試験No.b0、b1、b0-1~b0-4の線材及び鋼線について、線材の金属組織、線材及び鋼線の引張強さ、線材の表層硬度のばらつき、線材の耐食性、線材及び鋼線の耐水素脆化特性、並びに鋼線の捻回特性を評価した。その結果を表4Aに示す。パーライト以外の金属組織としては、初析フェライト及び疑似パーライトの一方又は両方が観察された。
[Evaluation (1)]
Test No. obtained by the method described above. a0, a1, a0-1 to a0-4, Test No. Regarding the wires and steel wires of b0, b1, b0-1 to b0-4, the metallographic structure of the wires, the tensile strength of the wires and steel wires, the variation in the surface layer hardness of the wires, the corrosion resistance of the wires, and the hydrogen resistance of the wires and steel wires The embrittlement properties and torsional properties of the steel wire were evaluated. The results are shown in Table 4A. One or both of pro-eutectoid ferrite and pseudo-pearlite were observed as the metallographic structure other than pearlite.

Figure 0007226548000007
Figure 0007226548000007

試験No.a0、a0-1、a0-4の線材について、任意の位置において線材の長手方向に50mmの間隔をあけてそれぞれ25mm長さで採取した8個の各サンプルについて表層硬度を測定した。結果を表4Bに示す。表4Bにおいて線材の表層硬度以外の項目は表4Aと同様である。 Test no. For the wires of a0, a0-1, and a0-4, the surface layer hardness was measured for each of eight samples of 25 mm length taken at arbitrary positions at intervals of 50 mm in the longitudinal direction of the wire. Results are shown in Table 4B. In Table 4B, the items other than the surface layer hardness of the wire are the same as in Table 4A.

Figure 0007226548000008
Figure 0007226548000008

[線材及び鋼線の製造(2)]
本開示における化学成分の効果を確認するため、表2に示した化学成分の鋼No.C1~C24、及び鋼No.D1~D22を電気炉にて溶製した。鋼No.C1~C24は本開示の要件を満足する実施例、鋼No.D1~D22は本開示の要件のうち、いずれか一つ以上を満足していない比較例の鋼である。
鋼片へ分塊圧延を行う前に、鋼No.C1~C24、及び鋼No.D1~D22の鋳片をそれぞれ1280℃狙いで加熱し、24hr保持する加熱処理を行い、続いて122mm角に分塊圧延した鋼片を圧延用素材とした。
次いで、鋼片をそれぞれ1080℃狙いの加熱温度で60分間加熱した後、線径8.0~12.5mmの線材に圧延した。この際、仕上げ圧延温度は900℃狙いとし、線材コイルに捲き取った。捲き取った線材コイルは、そのまま550℃に保持した溶融ソルト浴に直接浸漬して等温変態処理を行い、300℃以下まで水冷して線材を得た。
[Manufacture of wire rods and steel wires (2)]
In order to confirm the effect of the chemical composition in the present disclosure, steel No. 2 having the chemical composition shown in Table 2 was tested. C1-C24, and Steel No. D1 to D22 were melted in an electric furnace. Steel no. C1-C24 are examples satisfying the requirements of the present disclosure, Steel Nos. D1-D22 are comparative steels that do not satisfy any one or more of the requirements of the present disclosure.
Before blooming into billets, steel no. C1-C24, and Steel No. The slabs of D1 to D22 were each heated at a target of 1280° C., heat-treated for 24 hours, and then bloomed into 122 mm squares to obtain rolling stock.
Next, the steel slabs were each heated at a heating temperature of 1080° C. for 60 minutes, and then rolled into wire rods having a wire diameter of 8.0 to 12.5 mm. At this time, the finish rolling temperature was aimed at 900° C., and the wire rod was coiled. The wound wire coil was directly immersed in a molten salt bath maintained at 550° C. for isothermal transformation treatment, and water-cooled to 300° C. or lower to obtain a wire.

それぞれの線材を伸線加工し、鋼線を製造した。具体的には、前述の伸線加工Aと同じ方法で線径3.8~5.2mmの鋼線となるように、伸線加工を行った。次いで、伸線加工した鋼線を400℃に加熱した鉛浴に30sec浸漬させ、水冷した。 Each wire rod was drawn to produce a steel wire. Specifically, wire drawing was performed by the same method as wire drawing A described above so as to obtain a steel wire with a wire diameter of 3.8 to 5.2 mm. Next, the drawn steel wire was immersed in a lead bath heated to 400° C. for 30 seconds and cooled with water.

[評価(2)]
上述の方法によって得られた試験No.c1~c24、及び試験No.d1~d22の線材、及び鋼線について、既述の方法により、線材の金属組織、線材及び鋼線の引張強さ、線材の表層硬度のばらつき、線材の耐食性、線材及び鋼線の耐水素脆化特性、並びに鋼線の捻回特性をそれぞれ評価した。その結果を表5に示す。パーライト以外の金属組織としては、マルテンサイト、ベイナイト、初析フェライトおよび疑似パーライトが観察された。
[Evaluation (2)]
Test No. obtained by the method described above. c1 to c24, and Test No. For the wire rods and steel wires of d1 to d22, the metallographic structure of the wire rod, the tensile strength of the wire rod and the steel wire, the variation in surface layer hardness of the wire rod, the corrosion resistance of the wire rod, and the hydrogen embrittlement resistance of the wire rod and steel wire were measured by the method described above. The bending properties and the twisting properties of the steel wire were evaluated respectively. Table 5 shows the results. As metal structures other than pearlite, martensite, bainite, proeutectoid ferrite and pseudo-pearlite were observed.

Figure 0007226548000009
Figure 0007226548000009

図1に本開示の実施例で得られた、線材の引張強さと耐水素脆化特性の指標であるFIP破断時間の関係を示す。
図2に本開示の実施例で得られた、伸線加工後の鋼線の引張強さと耐水素脆化特性の指標であるFIP破断時間の関係を示す。
FIG. 1 shows the relationship between the tensile strength of the wire and the FIP rupture time, which is an index of hydrogen embrittlement resistance, obtained in the examples of the present disclosure.
FIG. 2 shows the relationship between the tensile strength of the steel wire after wire drawing and the FIP rupture time, which is an index of hydrogen embrittlement resistance, obtained in the examples of the present disclosure.

表4A及び表4Bから、本開示の実施例である試験No.a0、b0は、本開示における化学成分とその他の要件を満足し、かつ線材の製造条件が適切であることから、いずれも線材の耐食性の評価指標である腐食体積減少率が25%未満、耐水素脆化特性の指標であるFIPの破断時間が100hr以上であり、耐食性と耐水素脆化特性に優れた線材が得られている。さらに、試験No.a0、b0で得られた伸線加工後の鋼線においても、引張強さが1700MPa以上であり、FIP破断時間が30hr以上、捻回試験においてもデラミネーションが発生しておらず、耐水素脆化特性に優れた鋼線が得られている。
また、表層部のおけるビッカース硬さは、1リングの長さを想定した600mm間隔でサンプルを採取して測定した場合に限らず、50mmの間隔でサンプルを採取して測定した場合でも、「Hvsimax-Hvsiave≦50」の関係を満たせば有効であることがわかる。
From Tables 4A and 4B, test no. Since a0 and b0 satisfy the chemical composition and other requirements in the present disclosure and the manufacturing conditions of the wire are appropriate, the corrosion volume reduction rate, which is an evaluation index of the corrosion resistance of the wire, is less than 25%. The FIP rupture time, which is an index of hydrogen embrittlement properties, is 100 hours or longer, and a wire rod excellent in corrosion resistance and hydrogen embrittlement resistance is obtained. Furthermore, test no. Even in the steel wires after wire drawing obtained in a0 and b0, the tensile strength was 1700 MPa or more, the FIP breaking time was 30 hr or more, no delamination occurred in the torsion test, and hydrogen embrittlement resistance was observed. A steel wire with excellent hardening properties is obtained.
In addition, the Vickers hardness of the surface layer is not limited to the case where samples are taken and measured at intervals of 600 mm assuming the length of one ring, and even when samples are taken and measured at intervals of 50 mm, "Hv simax - Hv siave ≤ 50", it is effective.

これに対し、試験No.a1と試験No.a0-1~a0-4は、それぞれ試験No.a0とほぼ同じ化学成分である鋼A1又は同じ化学成分である鋼No.A0を用い、また、試験No.b1と試験No.b0-1~b0-4は、それぞれ試験No.b0とほぼ同じ化学成分である鋼No.B1又は同じ化学成分である鋼No.B0を用いて線材を圧延したが、線材の製造条件が適切でなかったために、表層硬度のばらつき又はパーライト組織の面積率が本開示の要件を満足していない。そのため、線材の耐水素脆化特性が劣っており、伸線加工後の鋼線の耐水素脆化特性が劣っている。また、試験No.a0-1~a0-4、試験No.b0-1~b0-4では、伸線加工後の鋼線の捻回試験でデラミネーションが発生しており、捻回特性にも劣っている。 On the other hand, Test No. a1 and test no. a0-1 to a0-4 are test numbers. Steel A1, which has almost the same chemical composition as a0, or Steel No., which has the same chemical composition. A0 was used, and test no. b1 and test no. b0-1 to b0-4 are test Nos. Steel No. which has almost the same chemical composition as b0. B1 or steel no. A wire rod was rolled using B0, but the manufacturing conditions for the wire rod were not appropriate, so the variation in surface layer hardness or the area ratio of the pearlite structure did not satisfy the requirements of the present disclosure. Therefore, the hydrogen embrittlement resistance of the wire is inferior, and the hydrogen embrittlement resistance of the steel wire after wire drawing is inferior. Also, test no. a0-1 to a0-4, Test No. In b0-1 to b0-4, delamination occurs in the twisting test of the steel wire after wire drawing, and the twisting characteristics are also inferior.

表5から、本開示の実施例である試験No.c1~c24は、いずれも化学成分と本開示の要件を満足し、かつ鋼材の製造条件が適切であることから、引張強さがいずれも1000MPa~1650MPaの範囲であり、耐食性及び、同等の引張強さで比較した場合に耐水素脆化特性が優れている。 From Table 5, test no. All of c1 to c24 satisfy the chemical composition and the requirements of the present disclosure, and the steel manufacturing conditions are appropriate. Excellent resistance to hydrogen embrittlement when compared in terms of strength.

試験No.d1、d2は[Cu]/[Ni]<1.00であり、さらにd2はY2も1.81以上であり、伸線加工後の鋼線においてデラミネーションが発生しており、捻回特性が悪い。また、鋼線での耐水素脆化特性も実施例における同等レベルの引張強さの鋼線と比べて、劣っている。
試験No.d3はY1の値が1.70未満であり、線材の耐水素脆化特性及び伸線加工後の鋼線の耐水素脆化特性が劣っている。
試験No.d4はY1の値が4.50を超えており、線材の耐水素脆化特性及び伸線加工後の鋼線の耐水素脆化特性、捻回特性が劣っている。
試験No.d5はY2の値が1.81以上であり、線材の耐水素脆化特性及び伸線加工後の鋼線の耐水素脆化特性、捻回特性が劣っている。
試験No.d6、d7、d8、d10、d12~d21については、本開示における化学成分のいずれかが本開示の範囲外、又は、Y2の値が1.81以上であり、線材の耐水素脆化特性及び/又は伸線加工後の鋼線の耐水素脆化特性、捻回特性が劣っている。
試験No.d9、d22は化学成分が本開示の範囲外であり、伸線加工する段階で断線が生じたことから、鋼線の引張強さ、耐水素脆化特性、捻回特性を調査しなかった。
試験No.d11は化学成分が本開示の範囲外(Y2も1.81以上)であり、線材を圧延した段階で、大きな表面疵が現れていたことから、線材の耐食性、耐水素脆化特性を調査せず、さらに伸線加工を行わなかった。
Test no. [Cu]/[Ni]<1.00 for d1 and d2, and Y2 for d2 is also 1.81 or more. bad. Also, the hydrogen embrittlement resistance of the steel wire is inferior to that of the steel wires of the examples having the same level of tensile strength.
Test no. In d3, the value of Y1 is less than 1.70, and the hydrogen embrittlement resistance of the wire and the hydrogen embrittlement resistance of the steel wire after wire drawing are inferior.
Test no. In d4, the value of Y1 exceeds 4.50, and the hydrogen embrittlement resistance of the wire and the hydrogen embrittlement resistance and torsional characteristics of the steel wire after wire drawing are inferior.
Test no. In d5, the value of Y2 is 1.81 or more, and the hydrogen embrittlement resistance of the wire rod and the hydrogen embrittlement resistance and torsional characteristics of the steel wire after wire drawing are inferior.
Test no. For d6, d7, d8, d10, d12 to d21, any of the chemical components in the present disclosure is outside the scope of the present disclosure, or the value of Y2 is 1.81 or more, and the hydrogen embrittlement resistance of the wire and / Or the steel wire after wire drawing is inferior in hydrogen embrittlement resistance and twisting characteristics.
Test no. The chemical components of d9 and d22 were outside the scope of the present disclosure, and wire breakage occurred during the wire drawing process. Therefore, the tensile strength, hydrogen embrittlement resistance, and twisting properties of the steel wire were not investigated.
Test no. The chemical composition of d11 is outside the range of the present disclosure (Y2 is also 1.81 or more), and large surface defects appeared at the stage of rolling the wire, so the corrosion resistance and hydrogen embrittlement resistance of the wire should be investigated. No further wire drawing was performed.

本開示に係る線材の用途等は、上述した実施形態及び実施例に限定されない。例えば、本開示に係る線材は、引張強さが1700MPa以上の鋼線の素材に限定されず、要求される引張強さが1700MPa未満である鋼線の素材として用いてもよい。 Applications and the like of the wire according to the present disclosure are not limited to the embodiments and examples described above. For example, the wire according to the present disclosure is not limited to a steel wire material with a tensile strength of 1700 MPa or more, and may be used as a steel wire material with a required tensile strength of less than 1700 MPa.

2019年6月19日に出願された日本特許出願2019-113720の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2019-113720 filed on June 19, 2019 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (3)

化学成分が、質量%で、
C:0.60~1.15%、
Si:0.01~1.80%、
Mn:0.20~0.90%、
P:0.015%以下、
S:0.015%以下、
Al:0.005~0.080%、
N:0.0015~0.0060%、
Cu:0.10~0.65%、
Ni:0.05~0.65%未満、
Cr:0~0.30%、
Mo:0~0.30%、
Ti:0~0.100%、
Nb:0~0.100%、
V:0~0.20%、
Sn:0~0.30%、
B:0~0.0050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
Zr:0~0.100%、
REM:0~0.0200%、並びに
残部:Fe及び不純物、からなり、
線材に含まれるC、Si、Mn、Cr、Cu、Ni、N、及びTiのそれぞれの元素の質量%での含有量を、[C]、[Si]、[Mn]、[Cr]、[Cu]、[Ni]、[N]、及び[Ti]で表した場合に、下記(1)~(3)を満たし、
(1)[Cu]/[Ni]>1.00
(2)1.70≦Y1≦4.50
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni]
(3)Y2<1.81
Y2=[C]+[Si]/10+A
Aは、a=350×([N]-0.29×[Ti])の値が、
a≧0の場合は、A=a
a<0の場合は、A=0
金属組織が、線材の中心軸を含む長手方向に平行な断面における面積率で90%以上のパーライト組織を含み、
前記線材の長手方向に50mmの間隔で採取した8個の各々のサンプルsi(iは1~8の整数)について、各サンプルの前記断面において前記線材の表面から深さ50μmの位置で測定されるビッカース硬さをそれぞれHvsiとし、前記Hvsiの平均値をHvsiave、最大値をHvsimaxとしたとき、下記(4)を満たす、線材。
(4)Hvsimax-Hvsiave≦50
The chemical composition, in mass %,
C: 0.60 to 1.15%,
Si: 0.01 to 1.80%,
Mn: 0.20-0.90%,
P: 0.015% or less,
S: 0.015% or less,
Al: 0.005 to 0.080%,
N: 0.0015 to 0.0060%,
Cu: 0.10-0.65%,
Ni: less than 0.05 to 0.65%,
Cr: 0 to 0.30%,
Mo: 0-0.30%,
Ti: 0 to 0.100%,
Nb: 0 to 0.100%,
V: 0 to 0.20%,
Sn: 0 to 0.30%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
Zr: 0 to 0.100%,
REM: 0 to 0.0200%, and the balance: Fe and impurities,
The content in mass% of each element of C, Si, Mn, Cr, Cu, Ni, N, and Ti contained in the wire is expressed as [C], [Si], [Mn], [Cr], [ Cu], [Ni], [N], and [Ti] satisfy the following (1) to (3),
(1) [Cu]/[Ni]>1.00
(2) 1.70≤Y1≤4.50
Y1 = 3 x [Cr] + 5 x [Mn] + [Cu] + [Ni]
(3) Y<1.81
Y2=[C]+[Si]/10+A
A has a value of a = 350 x ([N] - 0.29 x [Ti])
If a≧0 then A=a
if a<0 then A=0
The metal structure contains a pearlite structure with an area ratio of 90% or more in a cross section parallel to the longitudinal direction including the central axis of the wire,
Eight samples si (i is an integer of 1 to 8) taken at intervals of 50 mm in the longitudinal direction of the wire are measured at a depth of 50 μm from the surface of the wire in the cross section of each sample. A wire that satisfies the following (4), where Hv si is the Vickers hardness, Hv siave is the average value of Hv si , and Hv simax is the maximum value.
(4) Hvsimax - Hvsiave≤50
化学成分が、質量%で、
C:0.60~1.15%、
Si:0.01~1.80%、
Mn:0.20~0.90%、
P:0.015%以下、
S:0.015%以下、
Al:0.005~0.080%、
N:0.0015~0.0060%、
Cu:0.10~0.65%、
Ni:0.05~0.65%未満、
Cr:0~0.30%、
Mo:0~0.30%、
Ti:0~0.100%、
Nb:0~0.100%、
V:0~0.20%、
Sn:0~0.30%、
B:0~0.0050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
Zr:0~0.100%、
REM:0~0.0200%、並びに
残部:Fe及び不純物、からなり、
線材に含まれるC、Si、Mn、Cr、Cu、Ni、N、及びTiのそれぞれの元素の質量%での含有量を、[C]、[Si]、[Mn]、[Cr]、[Cu]、[Ni]、[N]、及び[Ti]で表した場合に、下記(1)~(3)を満たし、
(1)[Cu]/[Ni]>1.00
(2)1.70≦Y1≦4.50
Y1=3×[Cr]+5×[Mn]+[Cu]+[Ni]
(3)Y2<1.81
Y2=[C]+[Si]/10+A
Aは、a=350×([N]-0.29×[Ti])の値が、
a≧0の場合は、A=a
a<0の場合は、A=0
金属組織が、線材の中心軸を含む長手方向に平行な断面における面積率で90%以上のパーライト組織を含み、
前記線材の長手方向に600mmの間隔で採取した8個の各々のサンプルsi(iは1~8の整数)について、各サンプルの前記断面において前記線材の表面から深さ50μmの位置で測定されるビッカース硬さをそれぞれHv si とし、前記Hv si の平均値をHv siave 、最大値をHv simax としたとき、下記(4)を満たす、線材。
(4)Hv simax -Hv siave ≦50
The chemical composition, in mass %,
C: 0.60 to 1.15%,
Si: 0.01 to 1.80%,
Mn: 0.20-0.90%,
P: 0.015% or less,
S: 0.015% or less,
Al: 0.005 to 0.080%,
N: 0.0015 to 0.0060%,
Cu: 0.10-0.65%,
Ni: less than 0.05 to 0.65%,
Cr: 0 to 0.30%,
Mo: 0-0.30%,
Ti: 0 to 0.100%,
Nb: 0 to 0.100%,
V: 0 to 0.20%,
Sn: 0 to 0.30%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
Zr: 0 to 0.100%,
REM: 0 to 0.0200%, and
Balance: Fe and impurities,
The content in mass% of each element of C, Si, Mn, Cr, Cu, Ni, N, and Ti contained in the wire is expressed as [C], [Si], [Mn], [Cr], [ Cu], [Ni], [N], and [Ti] satisfy the following (1) to (3),
(1) [Cu]/[Ni]>1.00
(2) 1.70≤Y1≤4.50
Y1 = 3 x [Cr] + 5 x [Mn] + [Cu] + [Ni]
(3) Y<1.81
Y2=[C]+[Si]/10+A
A has a value of a = 350 x ([N] - 0.29 x [Ti])
If a≧0 then A=a
if a<0 then A=0
The metal structure contains a pearlite structure with an area ratio of 90% or more in a cross section parallel to the longitudinal direction including the central axis of the wire,
Eight samples si (i is an integer of 1 to 8) taken at intervals of 600 mm in the longitudinal direction of the wire are measured at a depth of 50 μm from the surface of the wire in the cross section of each sample . A wire that satisfies the following (4), where Hv si is the Vickers hardness , Hv siave is the average value of Hv si , and Hv simax is the maximum value .
( 4) Hvsimax - Hvsiave≤50
前記化学成分が、前記Feの一部に代えて、質量%で、
Cr:0.01~0.30%、
Mo:0.01~0.30%
Ti:0.002~0.100%、
Nb:0.002~0.100%、
V:0.01~0.20%、
Sn:0.01~0.30%、
B:0.0002~0.0050%
Ca:0.0002~0.0050%、
Mg:0.0002~0.0050%、
Zr:0.0002~0.100%、及び
REM:0.0002~0.0200%、
からなる群より選択される1種又は2種以上を含む、請求項1又は請求項2に記載の線材。
The chemical component is replaced by a part of the Fe, in % by mass,
Cr: 0.01 to 0.30%,
Mo: 0.01-0.30%
Ti: 0.002 to 0.100%,
Nb: 0.002 to 0.100%,
V: 0.01 to 0.20%,
Sn: 0.01 to 0.30%,
B: 0.0002 to 0.0050%
Ca: 0.0002 to 0.0050%,
Mg: 0.0002-0.0050%,
Zr: 0.0002-0.100%, and REM: 0.0002-0.0200%,
The wire according to claim 1 or 2, comprising one or more selected from the group consisting of:
JP2021526947A 2019-06-19 2020-06-19 wire Active JP7226548B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019113720 2019-06-19
JP2019113720 2019-06-19
PCT/JP2020/024248 WO2020256140A1 (en) 2019-06-19 2020-06-19 Wire rod

Publications (2)

Publication Number Publication Date
JPWO2020256140A1 JPWO2020256140A1 (en) 2020-12-24
JP7226548B2 true JP7226548B2 (en) 2023-02-21

Family

ID=74037145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021526947A Active JP7226548B2 (en) 2019-06-19 2020-06-19 wire

Country Status (4)

Country Link
EP (1) EP3988678B1 (en)
JP (1) JP7226548B2 (en)
CN (1) CN113748224B (en)
WO (1) WO2020256140A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111589893A (en) * 2020-04-16 2020-08-28 江苏兴达钢帘线股份有限公司 Steel wire for reinforcing rubber hose and production process thereof
CN114807767B (en) * 2022-05-06 2023-01-13 鞍钢股份有限公司 High-carbon steel wire rod with double complex phase structures and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193183A (en) 2001-12-28 2003-07-09 Kobe Steel Ltd High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JP2009280836A (en) 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor
JP2014177691A (en) 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability and grindability
JP2017025369A (en) 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire
JP2017025370A (en) 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742801B2 (en) 2012-08-20 2015-07-01 新日鐵住金株式会社 Hot rolled steel bar or wire rod
JP6212473B2 (en) 2013-12-27 2017-10-11 株式会社神戸製鋼所 Rolled material for high-strength spring and high-strength spring wire using the same
US10081846B2 (en) * 2014-02-06 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Steel wire
US10597748B2 (en) * 2015-10-23 2020-03-24 Nippon Steel Corporation Steel wire rod for wire drawing
EP3486345A4 (en) 2016-07-14 2019-12-25 Nippon Steel Corporation Steel wire
BR112019000924A2 (en) 2016-07-29 2019-04-30 Nippon Steel & Sumitomo Metal Corporation high strength steel wire
JP2019113720A (en) 2017-12-25 2019-07-11 日本精機株式会社 Vehicle surrounding display control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193183A (en) 2001-12-28 2003-07-09 Kobe Steel Ltd High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JP2009280836A (en) 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor
JP2014177691A (en) 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability and grindability
JP2017025369A (en) 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire
JP2017025370A (en) 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire

Also Published As

Publication number Publication date
CN113748224B (en) 2022-05-03
EP3988678A4 (en) 2022-07-06
EP3988678B1 (en) 2023-12-06
WO2020256140A1 (en) 2020-12-24
JPWO2020256140A1 (en) 2020-12-24
EP3988678A1 (en) 2022-04-27
CN113748224A (en) 2021-12-03

Similar Documents

Publication Publication Date Title
JP4842408B2 (en) Wire, steel wire, and method for manufacturing wire
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
JP6180351B2 (en) High strength steel wire and high strength steel wire with excellent stretchability
US10597748B2 (en) Steel wire rod for wire drawing
JPWO2008093466A1 (en) PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP6687112B2 (en) Steel wire
KR20190021379A (en) High strength steel wire
WO2019004454A1 (en) High-strength steel wire
JP7226548B2 (en) wire
JP6725007B2 (en) wire
KR101660616B1 (en) Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring
JP2018197375A (en) Hot rolling wire for wire drawing
JP5945196B2 (en) High strength steel wire
WO2017191792A1 (en) Steel wire for spring having exceptional spring coiling properties, and method for producing same
KR102534998B1 (en) hot rolled wire rod
KR20170002541A (en) Steel wire
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
JP2021161444A (en) Steel wire material for wire drawing
JP6922726B2 (en) Hot rolled wire
JP7469642B2 (en) High-strength steel wire
WO2017170515A1 (en) Steel wire
JP2021161445A (en) Steel wire material
JP2024029554A (en) galvanized steel wire
JP2021195566A (en) High carbon steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R151 Written notification of patent or utility model registration

Ref document number: 7226548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151