WO2016002413A1 - Wire material for steel wire, and steel wire - Google Patents

Wire material for steel wire, and steel wire Download PDF

Info

Publication number
WO2016002413A1
WO2016002413A1 PCT/JP2015/065863 JP2015065863W WO2016002413A1 WO 2016002413 A1 WO2016002413 A1 WO 2016002413A1 JP 2015065863 W JP2015065863 W JP 2015065863W WO 2016002413 A1 WO2016002413 A1 WO 2016002413A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
wire
amount
steel wire
pro
Prior art date
Application number
PCT/JP2015/065863
Other languages
French (fr)
Japanese (ja)
Inventor
友信 石田
智一 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CA2951799A priority Critical patent/CA2951799A1/en
Priority to KR1020167036839A priority patent/KR20170013340A/en
Priority to CN201580034203.5A priority patent/CN106661687A/en
Priority to EP18171309.0A priority patent/EP3378964A1/en
Priority to MX2016017005A priority patent/MX2016017005A/en
Priority to EP15814624.1A priority patent/EP3165625A4/en
Priority to US15/321,034 priority patent/US20170198375A1/en
Publication of WO2016002413A1 publication Critical patent/WO2016002413A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present invention relates to a wire for steel wire that is a material of a high-strength steel wire used for a wire rope, PC steel wire, and the like, and such a steel wire.
  • a high-strength steel wire rod excellent in bending fatigue characteristics is also useful as a material for a PC (Pressed Concrete) steel wire. Specifically, such a wire for a steel wire is required not to generate low cycle fatigue that occurs when the number of repetitions is 10 4 to 10 5 .
  • Patent Document 1 discloses a technique for improving fatigue strength by finely depositing BN inclusions in steel.
  • Patent Document 2 discloses a technique for obtaining a high-strength wire by controlling the wire structure to a pearlite structure in which the area ratio of pro-eutectoid ferrite is 3% or less by directly performing a melt salt patenting treatment after hot rolling. It is disclosed.
  • the metal structure of the wire is a pearlite structure of 95% or more, and the maximum value and the average value of the pearlite block particle size of the pearlite at the center of the cross section perpendicular to the axial direction of the wire are within a predetermined range.
  • a technique for obtaining a highly ductile wire rod by controlling is disclosed. This technique also discloses that it is useful to adjust the volume fraction of pro-eutectoid ferrite to 2% or less in order to improve the wire drawing workability.
  • Patent Document 1 The characteristic that is a problem in the technique of Patent Document 1 is high cycle fatigue that occurs near the fatigue limit of 10 7 repetitions, and the mechanism is different from that of the low cycle fatigue.
  • products that are exposed to the outside air for a long time, such as wire rope cracks are likely to occur in the surface layer due to oxidation of the surface layer, penetration of hydrogen, friction between strands, etc., far exceeding the original fatigue limit Therefore, it is necessary to take measures to suppress the crack growth.
  • the present invention has been made in view of the circumstances as described above, and its purpose is excellent in low cycle fatigue characteristics and is useful as a material for high-strength steel wires such as wire ropes and PC steel wires, And it is providing the steel wire which can exhibit such a characteristic.
  • the wire rod for steel wire of the present invention that can solve the above-mentioned problems is, in mass%, C: 0.70 to 1.3%, Si: 0.1 to 1.5%, Mn: 0.1 to 1. 5%, N: 0.001 to 0.006%, Al: 0.001 to 0.10%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.010%, P: 0 %, 0.030% or less, S: 0% or more and 0.030% or less, the balance being iron and inevitable impurities, pearlite as the main phase, and the area ratio of proeutectoid ferrite is 1. It has a gist in that it is 0% or less and the average thickness of pro-eutectoid ferrite is 5 ⁇ m or less.
  • the average thickness of pro-eutectoid ferrite means the average value of thickness in the width direction of pro-eutectoid ferrite when the pro-eutectoid ferrite is observed with an optical microscope.
  • the wire for steel wire of the present invention is further mass%, (A) Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less, (B) Ni: more than 0%, 0.5% or less and Nb: at least one kind of more than 0%, 0.5% or less, (C) Co: more than 0%, 1.0% or less, (D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less, Etc. are also preferable.
  • the content of solute B is preferably 0.0003% or more.
  • the present invention also includes a steel wire having the chemical composition of the steel described above and having a 100,000 times fatigue strength ⁇ satisfying the relationship of the following formula (1) with a tensile strength TS (Tensile Strength). ⁇ > 0.45TS (1)
  • the bending fatigue strength of a steel wire after cold working (drawing) can be reduced by reducing the area ratio of proeutectoid ferrite in the steel wire before drawing and reducing the thickness thereof. It is possible to improve the fatigue characteristics. In particular, it exhibits excellent characteristics against low cycle fatigue caused by repeated stress loading of about 10 4 to 10 5 times.
  • FIG. 1 is a schematic explanatory view showing an implementation status of a four-point bending fatigue test.
  • FIG. 2 is a drawing-substituting micrograph showing an example of the observed pro-eutectoid ferrite grains.
  • the present inventors diligently investigated the factors that influence the low cycle fatigue characteristics in a steel wire material having a metal structure mainly composed of pearlite. As a result, it was found that pro-eutectoid ferrite slightly precipitated in the pearlite structure (hereinafter sometimes abbreviated as “pre-deposition ⁇ ”) promotes the progress of fatigue cracks. In a high carbon steel with a carbon content of 0.70% or more, as shown in FIG. 2 to be described later, the pro-eutectoid ⁇ precipitates in a plate shape at the prior austenite grain boundaries. The present inventors completed the present invention by finding out that excellent low cycle fatigue characteristics can be exhibited by reducing the thickness after setting the content to 1.0% or less.
  • the area ratio of pro-eutectoid ⁇ is preferably 0.8% or less, and more preferably 0.6% or less.
  • B is effective to reduce the area ratio of proeutectoid ⁇ .
  • the area ratio reduction effect of the pro-eutectoid ⁇ is exhibited when B exists as a solid solution B, and the amount deposited as a compound such as BN loses that effect. Therefore, in the steel wire rod of the present invention, it is necessary to control the N content and the B content within appropriate ranges, and it is preferable to manufacture them under manufacturing conditions in which BN hardly precipitates.
  • the average thickness of the pro-eutectoid ⁇ needs to be 5 ⁇ m or less.
  • the average thickness of pro-eutectoid ⁇ is preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • Ti inclusions such as TiC are finely dispersed in the steel, particularly in the vicinity of grain boundaries, and a large number of pro-eutectoid ⁇ precipitation nuclei are formed and the nuclei grow. It is effective to suppress this.
  • the steel wire rod according to the present invention needs to have its chemical composition appropriately adjusted from the viewpoint of exerting its basic characteristics when applied to a wire or the like.
  • the chemical component composition including the amounts of B, N, and Ti described above is as follows. Note that “%” in the chemical composition is all “mass%”.
  • C is an element effective for increasing the strength, and the strength of the wire before cold working (steel wire) and the strength of the steel wire after cold working improves as the amount of C increases.
  • the amount of C also affects the amount of precipitation of pro-eutectoid ⁇ . If the amount of C is small, precipitation of pro-eutectoid ⁇ cannot be sufficiently suppressed. Therefore, the C amount is set to 0.70% or more.
  • the amount of C is preferably 0.74% or more, and more preferably 0.78% or more.
  • pro-eutectoid cementite hereinafter sometimes abbreviated as “pre-deposition ⁇ ”
  • the C amount is set to 1.3% or less.
  • the amount of C is preferably 1.2% or less, more preferably 1.1% or less.
  • Si has an action as a deoxidizer and also has an action of improving the strength of the wire.
  • the Si amount was determined to be 0.1% or more.
  • the amount of Si is preferably 0.15% or more, and more preferably 0.20% or more.
  • the Si amount is set to 1.5% or less.
  • the amount of Si is preferably 1.4% or less, and more preferably 1.3% or less.
  • Mn has a deoxidizing effect similar to Si, but has an effect of increasing the toughness and ductility of steel by fixing S in the steel as MnS.
  • the amount of Mn is set to 0.1% or more.
  • the amount of Mn is preferably 0.15% or more, more preferably 0.20% or more.
  • Mn is an element that is easily segregated, and if added excessively, the hardenability of the Mn segregated portion is excessively increased, and a supercooled structure such as martensite may be generated. Therefore, the amount of Mn is set to 1.5% or less.
  • the amount of Mn is preferably 1.4% or less, more preferably 1.3% or less.
  • N (N: 0.001 to 0.006%) N combines with B in the steel to form BN, and the effect of B is lost. Further, N in a solid solution state causes a decrease in torsional characteristics due to strain aging during wire drawing, and if it is remarkable, causes vertical cracks. In order to prevent these harmful effects, the N content is 0.006% or less.
  • the N amount is preferably 0.005% or less, and more preferably 0.004% or less.
  • the N amount is set to 0.001% or more.
  • the N amount is preferably 0.0015% or more, more preferably 0.0020% or more.
  • Al is an effective deoxidizing element. It also has the effect of forming a nitride such as AlN to refine the crystal grains. In order to effectively exhibit such an effect, the Al content is set to 0.001% or more.
  • the amount of Al is preferably 0.002% or more, and more preferably 0.003% or more.
  • Al is set to 0.10% or less.
  • the amount of Al is preferably 0.09% or less, and more preferably 0.08% or less.
  • Ti forms carbides such as TiC and serves to reduce the particle size (thickness) of pro-eutectoid ⁇ . Moreover, it combines with N in the steel to form a nitride such as TiN, and has the function of preventing the twisting characteristics from being lowered by N. In order to effectively exhibit these effects, the Ti content is 0.02% or more.
  • the amount of Ti is preferably 0.03% or more, more preferably 0.04% or more.
  • the amount of Ti becomes excessive, a large amount of Ti-based inclusions such as TiC and TiN are precipitated, increasing the disconnection at the time of wire drawing. Therefore, the Ti content is 0.20% or less.
  • the amount of Ti is preferably 0.15% or less, more preferably 0.10% or less.
  • B (B: 0.0005 to 0.010%, preferably 0.0003% or more as solute B) B functions to prevent the generation of proeutectoid ⁇ and reduce the area ratio.
  • the amount of B needs to be 0.0005% or more.
  • the lower limit of the preferable amount of B is 0.0007% or more, more preferably 0.001% or more.
  • Fe—B compounds such as FeB 2, which are compounds with Fe, precipitate and cause cracking during hot rolling, so the amount of B needs to be 0.010% or less. is there.
  • the amount of B is preferably 0.008% or less, and more preferably 0.006% or less.
  • P 0% or more, 0.030% or less
  • P segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the smaller the content, the better. Therefore, the P content is 0.030% or less.
  • the amount of P is preferably 0.025% or less, and more preferably 0.020% or less.
  • the amount of P may be 0%, but is usually contained at 0.001% or more.
  • S (S: 0% or more, 0.030% or less) S, like P, segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the content is preferably as small as possible. Therefore, the S amount is 0.030% or less.
  • the amount of S is preferably 0.025% or less, and more preferably 0.020% or less.
  • the amount of S may be 0%, but is usually contained at 0.001% or more.
  • the basic components of the wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
  • the wire of the present invention further improves properties such as strength, toughness, ductility, etc.
  • D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less, Etc. are also preferable.
  • Cr and V are elements useful in increasing the strength (tensile strength) of the wire, and these may be used alone or in combination of two or more.
  • Cr has the effect of increasing the strength and toughness of the wire rod by reducing the pearlite lamella spacing.
  • the Cr content is preferably 0.05% or more.
  • the amount of Cr is more preferably 0.10% or more, and still more preferably 0.15% or more.
  • the Cr amount is preferably 1.0% or less.
  • the amount of Cr is more preferably 0.8% or less, and still more preferably 0.6% or less.
  • V has the effect of improving the strength of the wire by forming carbonitride. Further, in the same manner as Nb, nitride forms excessive solid solution N and nitride after precipitation of AlN and contributes to refinement of crystal grains, and also has an effect of suppressing aging embrittlement by fixing solid solution N.
  • the V amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • V is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the V amount is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.2% or less.
  • Ni and Nb are elements useful for increasing the toughness of the steel wire, and these may be used alone or in combination of two or more.
  • Ni is an element that enhances the toughness of the steel wire after drawing.
  • the Ni content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Ni content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Nb like Ti and Al, forms a nitride, contributes to improving the toughness of the steel wire by refining crystal grains, and also has the effect of suppressing aging embrittlement by fixing solid solution N.
  • the Nb content is preferably 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
  • Nb is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the amount of Nb is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.3% or less.
  • Co over 0%, 1.0% or less
  • Co has the effect of reducing the formation of pro-eutectoid cementite and making the structure a uniform pearlite structure, particularly when the amount of C is high.
  • the Co content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Co content is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Mo more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less
  • Mo is an element that improves the corrosion resistance of the steel wire.
  • the Mo amount is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Mo amount is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Cu is an element that improves the corrosion resistance of steel wires.
  • the amount of Cu is preferably 0.05% or more, more preferably 0.08% or more, and further preferably 0.10% or more.
  • the amount of Cu is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Mo and Cu may be contained in combination of one or two kinds.
  • the wire rod before cold drawing is usually produced by melting, split-rolling and hot-rolling steel with appropriately controlled chemical components, and further performing patenting treatment as necessary.
  • the contents of Ti, B and N are within the above ranges. It is important to appropriately control the precipitation behavior of TiC and BN while appropriately controlling.
  • the slab is heated to 1200 ° C. or higher to decompose the coarse TiC precipitated during casting.
  • the heating temperature is lower than 1200 ° C., coarse TiC remains in the wire, and the thickness of the pro-eutectoid ⁇ cannot be sufficiently reduced, so that the fatigue strength is lowered.
  • This heating temperature is more preferably 1250 ° C. or more, and further preferably 1300 ° C. or more. However, if the heating temperature becomes too high, melting of the wire material occurs, so the temperature is usually set to about 1400 ° C.
  • the coarse BN in the billet is sufficiently decomposed, and then sufficiently cooled by water cooling after rolling, and rolled material ( It is preferable to control the mounting temperature of the wire) on the laying head to 800 to 1000 ° C.
  • the mounting temperature is more preferably 980 ° C. or lower, and further preferably 950 ° C. or lower.
  • the mounting temperature is preferably 800 ° C. or higher.
  • the mounting temperature is more preferably 820 ° C. or higher, and further preferably 850 ° C. or higher.
  • the strain rate in the final four passes of rolling it is preferable to set the strain rate in the final four passes of rolling to 0.5 second ⁇ 1 or more, to refine crystal grains by dynamic recrystallization, and to precipitate fine TiC. . If the strain rate is less than 0.5 sec ⁇ 1 , TiC cannot be sufficiently refined, and the average thickness of proeutectoid ⁇ cannot be sufficiently reduced.
  • the strain rate at this time is more preferably 0.8 sec ⁇ 1 or more, and further preferably 1.0 sec ⁇ 1 or more. However, from the viewpoint of equipment load, the strain rate is usually preferably 5 seconds -1 or less.
  • strain rate V ⁇ is equal to the cross-sectional area S 0 (m 2 ) before entering the first roll, four rolls before the final pass, and the cross-sectional area S 4 (m 2 ) after passing the final pass.
  • total passage time (rolling time) t (seconds) of 4 passes can be expressed by the following equation (2).
  • V ⁇ ⁇ ln (S 0 / S 4 ) ⁇ / t (2)
  • the wire After mounting, the wire is cooled on a cooling conveyor, and pearlite transformation is caused during this cooling, but it is preferable to rapidly cool the pearlite transformation at an average cooling rate of 5 ° C./second or more.
  • the average cooling rate at this time is slow, the pro-eutectoid ⁇ is likely to precipitate and become coarse at high temperatures, and the thickness of the pro-eutectoid ⁇ may not be sufficiently reduced.
  • the average cooling rate is less than 5 ° C./second, a structure with extremely rough lamellar spacing called “corse pearlite” is deposited locally, which may reduce the drawability.
  • the temperature of a wire may be measured and the point (inflection point) where a cooling curve may change by transformation heat_generation
  • the average cooling rate is more preferably 10 ° C./second or more, and further preferably 15 ° C./second or more.
  • a preferable upper limit of the average cooling rate is 100 ° C./second or less, and more preferably 50 ° C./second or less.
  • the wire obtained as described above can be used as a steel wire by drawing (cold working) as it is, but it may be subjected to a patenting treatment before the drawing. By performing such a patenting process before wire drawing, the strength of the wire can be increased and the variation in strength can be reduced.
  • the wire material structure is subjected to a patenting treatment after drawing to some extent from the rolled material, and the wire material structure is converted into an unprocessed pearlite. It is also useful to perform further wire drawing after returning to the tissue.
  • a patenting treatment by performing a patenting treatment, the pro-eutectoid ⁇ obtained during hot rolling is lost, but if finely precipitated TiC and a sufficient amount of solute B are secured, general patenting can be performed.
  • An appropriate area ratio and average thickness of pro-eutectoid ⁇ can be obtained depending on processing conditions.
  • the heating temperature when the patenting treatment is performed (hereinafter, this temperature may be referred to as “reheating temperature”) is preferably about 900 to 1000 ° C., more preferably 920 ° C. or more and 980 ° C. or less.
  • the reheating temperature is preferably 900 ° C. or more from the viewpoint of preventing the remaining of insoluble carbides and making the structure completely austenitic.
  • TiC becomes coarse or solute B is N.
  • the area ratio and average thickness of a predetermined pro-eutectoid ⁇ may not be obtained.
  • the holding temperature in the patenting treatment is preferably about 530 to 600 ° C., more preferably 550 ° C. or higher and 580 ° C. or lower.
  • the wire rod according to the present invention has a sufficiently reduced amount of pro-eutectoid ⁇ that promotes the generation and propagation of fatigue cracks, and the thickness thereof is controlled to be small.
  • Products such as wire ropes and PC steel wires that use all or part of the wires have better fatigue properties than normal products.
  • the tensile strength and fatigue strength are in a proportional relationship, but the steel wire manufactured from the wire of the present invention has a 100,000 times fatigue strength ⁇ satisfying the relationship of the following formula (1) with the tensile strength TS.
  • the present invention also includes such a steel wire.
  • the present invention also includes products such as wire ropes manufactured using all or part of such steel wires. ⁇ > 0.45TS (1)
  • the area ratio of proeutectoid ⁇ was measured by embedding the collected sample in resin or the like, mirror polishing, observing with an optical microscope using a mixed solution of trinitrol phenol and ethanol, and measuring the area ratio by image analysis. .
  • the part whitened by the above-mentioned corrosive liquid is the pro-eutectoid ⁇ .
  • the diameter of the wire was D
  • the D / 4 portion of the cross section was considered as the representative structure, and images were taken at a magnification of 400 times to evaluate a total of 5 fields of view.
  • the “area ratio of pro-eutectoid ⁇ ” shown in Table 4 below shows the average value.
  • a cross section points out a surface perpendicular
  • the area ratio of pearlite was also measured by this method.
  • P indicates that the pearlite structure is 95 area% or more, that is, pearlite is the main phase.
  • P + ⁇ ” or P + ⁇ indicates a structure in which the pearlite structure is less than 95 area%, and in addition to the pearlite structure, ferrite ( ⁇ ) and cementite ( ⁇ ) are mixed.
  • the amount of solute B was evaluated by measuring the electrolytic extraction residue. Electrolytic extraction residue measurement using a 10% acetylacetone solution was carried out, and the amount of compound type B in the residue was measured by a bromester method using a mesh with an opening of 0.1 ⁇ m. The solid solution B amount was determined by subtracting the compound type B amount from the total B amount in the steel. The results are shown in Table 4 below. The sample used for the bromester method was 3 g. Moreover, since the amount of solid solution B does not change unless it receives a heat history of 900 ° C. or higher, the amount of solid solution B may be investigated with a steel wire after cold working.
  • the obtained wire coil was drawn to produce a steel wire (wire), and a tensile test, a twisting property evaluation, and a fatigue property evaluation were performed.
  • Table 5 shows the reduction in area during wire drawing and the wire diameter of the steel wire obtained by wire drawing.
  • the twisting property was evaluated based on the twist value (number of times of rupture twist) required for rupture after conducting a twist test.
  • the twist value was normalized by converting the distance between the chucks (test wire length) to 100 times the wire diameter d (100d). Moreover, the normal fracture surface and the vertical crack were discriminated by the fracture surface observation, and even one of the five vertical cracks was described as “with vertical crack” in Table 5 below.
  • the fatigue characteristics were evaluated by repeatedly performing a four-point bending fatigue test using a jig that supported four points.
  • 1 is a test piece (wire)
  • 2 is a direction in which repeated stress is applied
  • is a support point.
  • the maximum stress amplitude in the passed sample was defined as 100,000 times fatigue strength ⁇ .
  • the 100,000 times fatigue strength ⁇ is shown in Table 5 below.
  • the stress waveform was a sine wave and the frequency was 10 Hz.
  • test No. for 1-3, 10-21 the chemical component composition and the metal structure (perlite area ratio, area ratio of pro-eutectoid ⁇ , average thickness of pro-eutectoid ⁇ ) are all within the ranges specified by the present invention.
  • a tensile strength standard, for example, 1620 to 1770 MPa when the wire diameter is 7.0 mm
  • “Piano wire type B” described in G 3522 (1991) the relationship of the above equation (1) is obtained.
  • a steel wire (wire) that achieves satisfactory fatigue strength is obtained.
  • test no. Examples 4 to 9 and 22 to 27 are examples in which any of the requirements of the present invention is not satisfied. Of these, test no. As shown in Table 2, since the heating temperature at the time of the block rolling was low as shown in Table 2, coarse TiC was precipitated, and as shown in Table 4, the average thickness of proeutectoid ⁇ was increased and the fatigue strength was lowered.
  • Test No. No. 22 is an example using the steel type P having a small amount of C. As shown in Table 4, both the area ratio and the average thickness of the pro-eutectoid ⁇ were increased, and the twisting characteristics and fatigue strength were lowered.
  • Test No. No. 23 is an example using the steel type Q having a large amount of C. Since a large amount of proeutectoid cementite was precipitated, it was broken during wire drawing.
  • Test No. No. 24 is an example using the steel type R with a small amount of Ti.
  • the amount of TiC was small, the average thickness of proeutectoid ⁇ was increased, and the fatigue strength was lowered.
  • Test No. No. 25 is an example using the steel type S with a large amount of Ti, and a large amount of Ti-based inclusions were precipitated and disconnected during wire drawing.
  • Test No. No. 26 is an example using the steel type T having a large amount of B, and a sample was not obtained due to disconnection during hot rolling.
  • Test No. 27 is an example using the steel type U with a small amount of B.
  • the area ratio of the pro-eutectoid ⁇ was increased, and the twisting characteristics and fatigue strength were reduced.
  • FIG. 2 shows test No. 1 as an example.
  • 3 is a drawing-substituting micrograph showing an example of pro-eutectoid ⁇ observed in FIG.
  • An ellipse 3 shown in FIG. 2 indicates the deposition position of proeutectoid ⁇ . From FIG. 2, it can be seen that the pro-eutectoid ⁇ is precipitated in a plate shape, and the “width direction” and “length direction” of the grains can be easily distinguished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Provided is a wire material for steel wire, the wire material having excellent low cyclic fatigue characteristics and being useful as a raw material for high-strength steel wire for wire rope, PC steel wire, or the like. Also provided is a steel wire that can exhibit said characteristics. A wire material for steel wire according to the present invention contains, by mass%, 0.70%-1.3% of C, 0.1%-1.5% of Si, 0.1%-1.5% of Mn, 0.001%-0.006% of N, 0.001%-0.10% of Al, 0.02%-0.20% of Ti, 0.0005%-0.010% of B, 0%-0.030% of P, and 0%-0.030% of S, the remainder being iron and unavoidable impurities, the main phase being pearlite, the area ratio of proeutectoid ferrite being 1.0% or less, and the average thickness of the proeutectoid ferrite being 5 μm or less.

Description

鋼線用線材および鋼線Steel wire rod and steel wire
 本発明は、ワイヤロープやPC鋼線等に用いられる高強度の鋼線の素材となる鋼線用線材、およびそのような鋼線に関する。 The present invention relates to a wire for steel wire that is a material of a high-strength steel wire used for a wire rope, PC steel wire, and the like, and such a steel wire.
 エレベータ用ロープやクレーンの巻上げロープなど、繰り返し曲げ応力が付加される鋼撚り線においては、素線の曲げ疲労特性がロープの設計強度や寿命を決定する重要因子である。近年では、エレベータの高速化やクレーンの小型化に伴うロープの軽量化ニーズが増大しており、それを実現する曲げ疲労特性に優れた高強度な鋼線用線材が求められている。また曲げ疲労特性に優れた高強度な鋼線用線材は、PC(Prestressed Concrete)鋼線の素材としても有用である。こうした鋼線用線材には、具体的には、繰り返し回数が104~105回で起きる低サイクル疲労が発生しないことが要求される。 In steel strands that are repeatedly subjected to bending stress, such as elevator ropes and crane hoisting ropes, the bending fatigue characteristics of the strands are important factors that determine the design strength and life of the ropes. In recent years, the need for weight reduction of ropes accompanying the increase in the speed of elevators and the miniaturization of cranes has increased, and a high-strength steel wire rod excellent in bending fatigue characteristics that realizes it has been demanded. In addition, a high-strength wire rod for steel wire excellent in bending fatigue characteristics is also useful as a material for a PC (Pressed Concrete) steel wire. Specifically, such a wire for a steel wire is required not to generate low cycle fatigue that occurs when the number of repetitions is 10 4 to 10 5 .
 線材の特性を改善する技術として、これまでにも様々提案されている。例えば、特許文献1では、鋼中にBN系介在物を微細析出させることによって疲労強度を向上させる技術が開示されている。 Various techniques have been proposed so far for improving the properties of the wire. For example, Patent Document 1 discloses a technique for improving fatigue strength by finely depositing BN inclusions in steel.
 特許文献2には、熱間圧延後に直接溶融ソルトパテンティング処理することによって、線材の組織を、初析フェライトの面積率が3%以下のパーライト組織に制御して、高強度線材を得る技術が開示されている。 Patent Document 2 discloses a technique for obtaining a high-strength wire by controlling the wire structure to a pearlite structure in which the area ratio of pro-eutectoid ferrite is 3% or less by directly performing a melt salt patenting treatment after hot rolling. It is disclosed.
 また特許文献3では、線材の金属組織を、95%以上のパーライト組織とし、且つ線材の軸方向に垂直な断面の中心部のパーライトのパーライトブロック粒径の最大値や平均値を所定の範囲に制御することによって高延性の線材を得る技術が開示されている。またこの技術では、伸線加工性を良好にする上で、初析フェライトの体積率を2%以下に調整することが有用であることも開示されている。 Further, in Patent Document 3, the metal structure of the wire is a pearlite structure of 95% or more, and the maximum value and the average value of the pearlite block particle size of the pearlite at the center of the cross section perpendicular to the axial direction of the wire are within a predetermined range. A technique for obtaining a highly ductile wire rod by controlling is disclosed. This technique also discloses that it is useful to adjust the volume fraction of pro-eutectoid ferrite to 2% or less in order to improve the wire drawing workability.
特開2011-225990号公報JP 2011-225990 A 特開2007-39800号公報JP 2007-39800 A 国際公開第2007/139234号International Publication No. 2007/139234
 上記特許文献1の技術で問題にしている特性は、繰り返し回数が107回の疲労限近くで起こる高サイクル疲労であり、上記低サイクル疲労とはメカニズムが異なる。ワイヤロープの様な長期間外気に晒される製品においては、表層部の酸化や水素の侵入、素線同士の摩擦などの影響によって、表層部に亀裂が発生しやすく、本来の疲労限よりも遥かに低寿命で断線が生じる可能性があるため、亀裂進展を抑制する対策を講じる必要がある。 The characteristic that is a problem in the technique of Patent Document 1 is high cycle fatigue that occurs near the fatigue limit of 10 7 repetitions, and the mechanism is different from that of the low cycle fatigue. In products that are exposed to the outside air for a long time, such as wire rope, cracks are likely to occur in the surface layer due to oxidation of the surface layer, penetration of hydrogen, friction between strands, etc., far exceeding the original fatigue limit Therefore, it is necessary to take measures to suppress the crack growth.
 また、上記特許文献2の技術では、高強度線材を得るには、熱間圧延後に直接的にパテンティング処理を行なうことができる特殊な設備が必要となり、設備投資が増大することになる。またこのような設備は、線材をコンベア上で搬送させつつ冷却する、所謂ステルモア冷却設備に比べて、生産性やメンテナンス性に劣るという欠点もある。しかも、線材中の初析フェライトの面積率を低減するだけでは、十分な低サイクル疲労特性の向上効果が発揮されない。 Moreover, in the technique of the above-mentioned Patent Document 2, in order to obtain a high-strength wire, special equipment that can perform a patenting process directly after hot rolling is required, which increases capital investment. In addition, such equipment also has a disadvantage that it is inferior in productivity and maintainability as compared with a so-called steermore cooling equipment that cools a wire rod while being conveyed on a conveyor. In addition, only by reducing the area ratio of pro-eutectoid ferrite in the wire, sufficient effect of improving low cycle fatigue characteristics cannot be exhibited.
 また、上記特許文献3に記載の要件を規定しただけでは、低サイクル疲労特性については十分な効果が得られない。 In addition, if only the requirements described in Patent Document 3 are specified, sufficient effects cannot be obtained with respect to the low cycle fatigue characteristics.
 本発明は上記のような事情に鑑みてなされたものであり、その目的は、低サイクル疲労特性に優れ、ワイヤロープやPC鋼線等の高強度鋼線の素材として有用な鋼線用線材、およびこのような特性を発揮できる鋼線を提供することにある。 The present invention has been made in view of the circumstances as described above, and its purpose is excellent in low cycle fatigue characteristics and is useful as a material for high-strength steel wires such as wire ropes and PC steel wires, And it is providing the steel wire which can exhibit such a characteristic.
 上記課題を解決し得た本発明の鋼線用線材は、質量%で、C:0.70~1.3%、Si:0.1~1.5%、Mn:0.1~1.5%、N:0.001~0.006%、Al:0.001~0.10%、Ti:0.02~0.20%、B:0.0005~0.010%、P:0%以上、0.030%以下、S:0%以上、0.030%以下、を夫々含有し、残部が鉄および不可避不純物であり、パーライトを主相とし、初析フェライトの面積率が1.0%以下であると共に、初析フェライトの平均厚みが5μm以下である点に要旨を有する。 The wire rod for steel wire of the present invention that can solve the above-mentioned problems is, in mass%, C: 0.70 to 1.3%, Si: 0.1 to 1.5%, Mn: 0.1 to 1. 5%, N: 0.001 to 0.006%, Al: 0.001 to 0.10%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.010%, P: 0 %, 0.030% or less, S: 0% or more and 0.030% or less, the balance being iron and inevitable impurities, pearlite as the main phase, and the area ratio of proeutectoid ferrite is 1. It has a gist in that it is 0% or less and the average thickness of pro-eutectoid ferrite is 5 μm or less.
 尚、「パーライトを主相とする」とは、金属組織の95面積%以上がパーライト組織であることを意味する。また、初析フェライトの平均厚みとは、初析フェライトを光学顕微鏡で観察したときに、初析フェライトの幅方向厚みの平均値を意味する。 Incidentally, “with pearlite as the main phase” means that 95% by area or more of the metal structure is a pearlite structure. The average thickness of pro-eutectoid ferrite means the average value of thickness in the width direction of pro-eutectoid ferrite when the pro-eutectoid ferrite is observed with an optical microscope.
 本発明の鋼線用線材は、更に、質量%で、
(a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種、
(b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種、
(c)Co:0%超、1.0%以下、
(d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種、
等を含有することも好ましい。
The wire for steel wire of the present invention is further mass%,
(A) Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less,
(B) Ni: more than 0%, 0.5% or less and Nb: at least one kind of more than 0%, 0.5% or less,
(C) Co: more than 0%, 1.0% or less,
(D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less,
Etc. are also preferable.
 本発明の鋼線用線材において、固溶Bの含有量が0.0003%以上であることが好ましい。 In the wire for steel wire of the present invention, the content of solute B is preferably 0.0003% or more.
 本発明は、上記した鋼の化学成分組成からなり、10万回疲労強度σが、引張強度TS(Tensile Strength)とで下記(1)式の関係を満足する鋼線も包含する。
σ>0.45TS …(1)
The present invention also includes a steel wire having the chemical composition of the steel described above and having a 100,000 times fatigue strength σ satisfying the relationship of the following formula (1) with a tensile strength TS (Tensile Strength).
σ> 0.45TS (1)
 本発明によれば、伸線加工前の鋼線材の初析フェライトの面積率を低減し、且つその厚みを小さくすることによって、冷間加工(伸線加工)後の鋼線の曲げ疲労強度を向上させて、優れた疲労特性を発揮させることができる。特に、104~105回程度の繰り返し応力負荷で生じる低サイクル疲労に対して、優れた特性を発揮する。 According to the present invention, the bending fatigue strength of a steel wire after cold working (drawing) can be reduced by reducing the area ratio of proeutectoid ferrite in the steel wire before drawing and reducing the thickness thereof. It is possible to improve the fatigue characteristics. In particular, it exhibits excellent characteristics against low cycle fatigue caused by repeated stress loading of about 10 4 to 10 5 times.
図1は、4点曲げ疲労試験の実施状況を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an implementation status of a four-point bending fatigue test. 図2は、観察された初析フェライト粒の例を示す図面代用顕微鏡写真である。FIG. 2 is a drawing-substituting micrograph showing an example of the observed pro-eutectoid ferrite grains.
 本発明者らは、パーライトを主相とする金属組織である鋼線材において、低サイクル疲労特性を左右する因子を鋭意調査した。その結果、パーライト組織中に僅かに析出した初析フェライト(以下、「初析α」と略記することがある)が疲労亀裂の進展を促進することを突き止めた。炭素含有量が0.70%以上となるような高炭素鋼では、後記の図2に示すように、初析αは旧オーステナイト粒界に板状に析出するが、初析αの面積率を1.0%以下にした上で、その厚みを低減することで優れた低サイクル疲労特性が発揮できることを見出し、本発明を完成した。 The present inventors diligently investigated the factors that influence the low cycle fatigue characteristics in a steel wire material having a metal structure mainly composed of pearlite. As a result, it was found that pro-eutectoid ferrite slightly precipitated in the pearlite structure (hereinafter sometimes abbreviated as “pre-deposition α”) promotes the progress of fatigue cracks. In a high carbon steel with a carbon content of 0.70% or more, as shown in FIG. 2 to be described later, the pro-eutectoid α precipitates in a plate shape at the prior austenite grain boundaries. The present inventors completed the present invention by finding out that excellent low cycle fatigue characteristics can be exhibited by reducing the thickness after setting the content to 1.0% or less.
 主相がパーライト組織である鋼線材においては、初析αとパーライトの界面にボイドが生じ、疲労亀裂の進展を促進する。したがって、初析αの面積率をできるだけ低減し、界面の量を減少させることが重要である。また初析αの面積率を低減することで、捻回試験時の縦割れを抑制する効果も得られる。縦割れが起きると、撚り線加工に耐えられないので、縦割れする鋼線は不良と判断される。これらの効果を考えると、初析αの面積率を、金属組織全体に対する割合で1.0%以下にする必要がある。初析αの面積率は、好ましくは0.8%以下であり、より好ましくは0.6%以下である。 In steel wire rods with a pearlite structure as the main phase, voids are generated at the interface between pro-eutectoid α and pearlite, which promotes the development of fatigue cracks. Therefore, it is important to reduce the area ratio of proeutectoid α as much as possible and reduce the amount of the interface. Moreover, the effect which suppresses the vertical crack at the time of a twist test is also acquired by reducing the area ratio of pro-eutectoid (alpha). If a vertical crack occurs, the steel wire that is longitudinally cracked is judged to be defective because it cannot withstand the stranded wire processing. Considering these effects, it is necessary to make the area ratio of pro-eutectoid α 1.0% or less as a percentage of the entire metal structure. The area ratio of pro-eutectoid α is preferably 0.8% or less, and more preferably 0.6% or less.
 初析αの面積率を低減するには、Bの添加が有効である。初析αの面積率低減効果を発揮するのは、Bが固溶Bとして存在する場合であり、BNの様な化合物として析出した分はその効果を失うことになる。したがって、本発明の鋼線材では、N量、B量を適切な範囲に制御することが必要であり、またBNが析出しにくい製造条件で製造することが好ましい。 B is effective to reduce the area ratio of proeutectoid α. The area ratio reduction effect of the pro-eutectoid α is exhibited when B exists as a solid solution B, and the amount deposited as a compound such as BN loses that effect. Therefore, in the steel wire rod of the present invention, it is necessary to control the N content and the B content within appropriate ranges, and it is preferable to manufacture them under manufacturing conditions in which BN hardly precipitates.
 一方、初析αの厚みが大きくなると、界面に発生したボイドへの応力集中によってボイドが拡大し、疲労亀裂の進展を助長して疲労強度を低下させる。厚みが小さい初析αは、伸線加工によって変形し、無害化するが、厚みの大きい初析αは伸線加工後にも残存して曲げ疲労強度(以下、単に「疲労強度」と呼ぶことがある)を低下させる。具体的には、初析αの平均厚みを5μm以下にする必要がある。初析αの平均厚みは、好ましくは4μm以下であり、より好ましくは3μm以下である。 On the other hand, when the thickness of the pro-eutectoid α increases, the void expands due to the stress concentration on the void generated at the interface, which promotes the progress of fatigue cracks and decreases the fatigue strength. The pro-eutectoid α having a small thickness is deformed and rendered harmless by the wire drawing process, but the pro-eutect α having a large thickness remains after the wire drawing process and may be called bending fatigue strength (hereinafter simply referred to as “fatigue strength”). Lower). Specifically, the average thickness of the pro-eutectoid α needs to be 5 μm or less. The average thickness of pro-eutectoid α is preferably 4 μm or less, and more preferably 3 μm or less.
 初析αの平均厚みを小さくするためには、TiCを始めとするTi系介在物を鋼中、特に粒界近傍に微細分散させ、初析αの析出核を多数生成し、且つその核成長を抑制することが有効である。そのためには、鋼線材中のTi量を適切な範囲に制御することが必要となり、更にはTiCなどTi系介在物が微細析出しやすい製造条件で製造することが好ましい。 In order to reduce the average thickness of pro-eutectoid α, Ti inclusions such as TiC are finely dispersed in the steel, particularly in the vicinity of grain boundaries, and a large number of pro-eutectoid α precipitation nuclei are formed and the nuclei grow. It is effective to suppress this. For this purpose, it is necessary to control the amount of Ti in the steel wire to an appropriate range, and it is preferable that the Ti-based inclusions such as TiC are produced under production conditions that are likely to precipitate finely.
 本発明に係る鋼線材は、ワイヤなどに適用したときにその基本的な特性を発揮させる上からも、その化学成分組成も適切に調整する必要がある。上記したB、N、Tiの量も含め、その化学成分組成は以下の通りである。尚、化学成分組成における「%」は、いずれも「質量%」である。 The steel wire rod according to the present invention needs to have its chemical composition appropriately adjusted from the viewpoint of exerting its basic characteristics when applied to a wire or the like. The chemical component composition including the amounts of B, N, and Ti described above is as follows. Note that “%” in the chemical composition is all “mass%”.
 (C:0.70~1.3%)
 Cは、強度の上昇に有効な元素であり、C量の増加に伴って、冷間加工前の線材(鋼線材)、および冷間加工後の鋼線の強度が向上する。またC量は、初析αの析出量にも影響を与え、C量が少ないと初析αの析出を十分に抑制できない。そこで、C量は0.70%以上と定めた。C量は、好ましくは0.74%以上であり、より好ましくは0.78%以上である。しかし、C量が過剰になり過ぎると、初析セメンタイト(以下、「初析θ」と略記することがある)が析出し、伸線加工中に断線を引き起こす。そこで、C量は1.3%以下と定めた。C量は、好ましくは1.2%以下であり、より好ましくは1.1%以下である。
(C: 0.70 to 1.3%)
C is an element effective for increasing the strength, and the strength of the wire before cold working (steel wire) and the strength of the steel wire after cold working improves as the amount of C increases. The amount of C also affects the amount of precipitation of pro-eutectoid α. If the amount of C is small, precipitation of pro-eutectoid α cannot be sufficiently suppressed. Therefore, the C amount is set to 0.70% or more. The amount of C is preferably 0.74% or more, and more preferably 0.78% or more. However, when the amount of C becomes excessive, pro-eutectoid cementite (hereinafter sometimes abbreviated as “pre-deposition θ”) precipitates and causes wire breakage during wire drawing. Therefore, the C amount is set to 1.3% or less. The amount of C is preferably 1.2% or less, more preferably 1.1% or less.
 (Si:0.1~1.5%)
 Siは、脱酸剤としての作用を有し、また線材の強度を向上させる作用も有する。これらの作用を有効に発揮させるために、Si量を0.1%以上と定めた。Si量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。一方、Si量が過剰になり過ぎると、冷間伸線性を悪化させ、断線率の増加を引き起こす。そこで、Si量を1.5%以下と定めた。Si量は好ましくは1.4%以下であり、より好ましくは1.3%以下である。
(Si: 0.1-1.5%)
Si has an action as a deoxidizer and also has an action of improving the strength of the wire. In order to effectively exhibit these actions, the Si amount was determined to be 0.1% or more. The amount of Si is preferably 0.15% or more, and more preferably 0.20% or more. On the other hand, when the amount of Si becomes excessive, cold drawability is deteriorated, and the disconnection rate is increased. Therefore, the Si amount is set to 1.5% or less. The amount of Si is preferably 1.4% or less, and more preferably 1.3% or less.
 (Mn:0.1~1.5%)
 Mnは、Siと同様に脱酸作用も有しているが、特に鋼中のSをMnSとして固定して、鋼の靭性および延性を高める作用を有している。これらの作用を有効に発揮させるために、Mn量は0.1%以上とする。Mn量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。しかしながら、Mnは偏析し易い元素であり、過剰に添加すると、Mn偏析部の焼入れ性が過剰に増大し、マルテンサイト等の過冷組織を生成させる恐れがある。そこで、Mn量は1.5%以下と定めた。Mn量は、好ましくは1.4%以下であり、より好ましくは1.3%以下である。
(Mn: 0.1 to 1.5%)
Mn has a deoxidizing effect similar to Si, but has an effect of increasing the toughness and ductility of steel by fixing S in the steel as MnS. In order to effectively exhibit these actions, the amount of Mn is set to 0.1% or more. The amount of Mn is preferably 0.15% or more, more preferably 0.20% or more. However, Mn is an element that is easily segregated, and if added excessively, the hardenability of the Mn segregated portion is excessively increased, and a supercooled structure such as martensite may be generated. Therefore, the amount of Mn is set to 1.5% or less. The amount of Mn is preferably 1.4% or less, more preferably 1.3% or less.
 (N:0.001~0.006%)
 Nは、鋼中のBと化合してBNを形成し、Bによる効果を失わせる。また、固溶状態のNは伸線時に歪み時効による捻回特性の低下を引き起こし、著しい場合には縦割れを招く。これらの弊害を防ぐために、N量は0.006%以下とする。N量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。一方、少量であればTiNやAlNなどの窒化物によって結晶粒を微細化し、線材の延性を高める効果がある。そのような効果を発揮させるために、N量は0.001%以上とする。N量は、好ましくは0.0015%以上、より好ましくは0.0020%以上である。
(N: 0.001 to 0.006%)
N combines with B in the steel to form BN, and the effect of B is lost. Further, N in a solid solution state causes a decrease in torsional characteristics due to strain aging during wire drawing, and if it is remarkable, causes vertical cracks. In order to prevent these harmful effects, the N content is 0.006% or less. The N amount is preferably 0.005% or less, and more preferably 0.004% or less. On the other hand, if the amount is small, there is an effect that the crystal grains are refined by a nitride such as TiN or AlN and the ductility of the wire is increased. In order to exhibit such an effect, the N amount is set to 0.001% or more. The N amount is preferably 0.0015% or more, more preferably 0.0020% or more.
 (Al:0.001~0.10%)
 Alは、有効な脱酸元素である。また、AlNの様な窒化物を形成して結晶粒を微細化する効果も有する。このような効果を有効に発揮させるために、Al量は0.001%以上とする。Al量は、好ましくは0.002%以上であり、より好ましくは0.003%以上である。一方、Alを過剰に添加するとAl23の様な酸化物を形成し、伸線時の断線を増加させる。こうした観点から、Al量は0.10%以下とする。Al量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
(Al: 0.001 to 0.10%)
Al is an effective deoxidizing element. It also has the effect of forming a nitride such as AlN to refine the crystal grains. In order to effectively exhibit such an effect, the Al content is set to 0.001% or more. The amount of Al is preferably 0.002% or more, and more preferably 0.003% or more. On the other hand, when Al is added excessively, an oxide such as Al 2 O 3 is formed, and the disconnection at the time of wire drawing is increased. From such a viewpoint, the Al amount is set to 0.10% or less. The amount of Al is preferably 0.09% or less, and more preferably 0.08% or less.
 (Ti:0.02~0.20%)
 Tiは、TiCの様な炭化物を形成し、初析αの粒径(厚み)を低減する働きがある。また、鋼中のNと化合してTiNの様な窒化物を形成し、Nによる捻回特性の低下を防ぐ働きもある。それらの効果を有効に発揮させるために、Ti量は0.02%以上とする。Ti量は、好ましくは0.03%以上、より好ましくは0.04%以上である。一方、Ti量が過剰になると、TiCやTiN等のTi系介在物が多量に析出し、伸線時の断線を増加させる。したがって、Ti量は0.20%以下とする。Ti量は、好ましくは0.15%以下であり、より好ましくは0.10%以下である。
(Ti: 0.02 to 0.20%)
Ti forms carbides such as TiC and serves to reduce the particle size (thickness) of pro-eutectoid α. Moreover, it combines with N in the steel to form a nitride such as TiN, and has the function of preventing the twisting characteristics from being lowered by N. In order to effectively exhibit these effects, the Ti content is 0.02% or more. The amount of Ti is preferably 0.03% or more, more preferably 0.04% or more. On the other hand, when the amount of Ti becomes excessive, a large amount of Ti-based inclusions such as TiC and TiN are precipitated, increasing the disconnection at the time of wire drawing. Therefore, the Ti content is 0.20% or less. The amount of Ti is preferably 0.15% or less, more preferably 0.10% or less.
 (B:0.0005~0.010%、好ましくは固溶Bとして0.0003%以上)
 Bは、初析αの生成を妨げ、その面積率を低減する働きがある。しかし、BNの様な化合物を形成した場合には、このような作用を発揮しない。Bの効果を有効に発揮させるために、B量は0.0005%以上とする必要がある。好ましいB量の下限は0.0007%以上であり、より好ましくは0.001%以上である。一方、B量が過剰になると、Feとの化合物であるFe-B系化合物、例えばFeB2が析出し、熱間圧延時の割れを引き起こすため、B量は0.010%以下にする必要がある。B量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。また、固溶Bとして鋼中に0.0003%以上含有されることが好ましく、より好ましくは0.0005%以上である。
(B: 0.0005 to 0.010%, preferably 0.0003% or more as solute B)
B functions to prevent the generation of proeutectoid α and reduce the area ratio. However, such a function is not exhibited when a compound such as BN is formed. In order to effectively exhibit the effect of B, the amount of B needs to be 0.0005% or more. The lower limit of the preferable amount of B is 0.0007% or more, more preferably 0.001% or more. On the other hand, when the amount of B is excessive, Fe—B compounds such as FeB 2, which are compounds with Fe, precipitate and cause cracking during hot rolling, so the amount of B needs to be 0.010% or less. is there. The amount of B is preferably 0.008% or less, and more preferably 0.006% or less. Moreover, it is preferable to contain 0.0003% or more as solid solution B in steel, More preferably, it is 0.0005% or more.
 (P:0%以上、0.030%以下)
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させ、疲労強度を低下させるため、その含有量は少なければ少ないほど好ましい。したがって、P量は0.030%以下とする。P量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。P量は0%であってもよいが、通常0.001%以上で含まれる。
(P: 0% or more, 0.030% or less)
P segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the smaller the content, the better. Therefore, the P content is 0.030% or less. The amount of P is preferably 0.025% or less, and more preferably 0.020% or less. The amount of P may be 0%, but is usually contained at 0.001% or more.
 (S:0%以上、0.030%以下)
 Sは、Pと同様に旧オーステナイト粒界に偏析して粒界を脆化させ、疲労強度を低下させるため、その含有量は少なければ少ないほど好ましい。したがって、S量は0.030%以下とする。S量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。S量は0%であってもよいが、通常0.001%以上で含まれる。
(S: 0% or more, 0.030% or less)
S, like P, segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the content is preferably as small as possible. Therefore, the S amount is 0.030% or less. The amount of S is preferably 0.025% or less, and more preferably 0.020% or less. The amount of S may be 0%, but is usually contained at 0.001% or more.
 本発明の線材の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。 The basic components of the wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
 また本発明の線材は、強度、靭性、延性等の特性を更に向上させるため、必要に応じて、更に、
(a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種、
(b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種、
(c)Co:0%超、1.0%以下、
(d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種、
等を含有することも好ましい。
In addition, the wire of the present invention further improves properties such as strength, toughness, ductility, etc.
(A) Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less,
(B) Ni: more than 0%, 0.5% or less and Nb: at least one kind of more than 0%, 0.5% or less,
(C) Co: more than 0%, 1.0% or less,
(D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less,
Etc. are also preferable.
 (Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種)
 CrおよびVは、線材の強度(引張強度)を高める上で有用な元素であり、これらは1種または2種を併用して含有させてもよい。
(Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less)
Cr and V are elements useful in increasing the strength (tensile strength) of the wire, and these may be used alone or in combination of two or more.
 特にCrは、パーライトのラメラ間隔を微細化し、線材の強度や靭性を高める作用を有する。このような作用を有効に発揮させるために、Cr量は0.05%以上が好ましい。Cr量は、より好ましくは0.10%以上であり、更に好ましくは0.15%以上である。一方、Cr量が過剰になり過ぎると、焼入れ性が向上して熱間圧延中に過冷組織を発生させる危険性が高まるため、Cr量は1.0%以下とすることが好ましい。Cr量は、より好ましくは0.8%以下であり、更に好ましくは0.6%以下である。 Especially, Cr has the effect of increasing the strength and toughness of the wire rod by reducing the pearlite lamella spacing. In order to effectively exhibit such action, the Cr content is preferably 0.05% or more. The amount of Cr is more preferably 0.10% or more, and still more preferably 0.15% or more. On the other hand, if the amount of Cr becomes excessive, the hardenability is improved and the risk of generating a supercooled structure during hot rolling increases, so the Cr amount is preferably 1.0% or less. The amount of Cr is more preferably 0.8% or less, and still more preferably 0.6% or less.
 Vは炭窒化物を形成して線材の強度を向上させる効果がある。また、Nbと同様にAlNが析出した後の余剰の固溶Nと窒化物を形成し、結晶粒微細化に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮させるために、V量は0.01%以上が好ましく、より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかし、Vは高価な元素であり、過剰に添加してもその効果は飽和し、経済的に無駄であるため、V量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.2%以下である。 V has the effect of improving the strength of the wire by forming carbonitride. Further, in the same manner as Nb, nitride forms excessive solid solution N and nitride after precipitation of AlN and contributes to refinement of crystal grains, and also has an effect of suppressing aging embrittlement by fixing solid solution N. In order to effectively exhibit such an action, the V amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more. However, V is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the V amount is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.2% or less.
 (Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種)
 NiおよびNbは、鋼線の靭性を高める上で有用な元素であり、これらは1種または2種を併用して含有させてもよい。
(Ni: more than 0%, 0.5% or less and Nb: more than 0%, 0.5% or less)
Ni and Nb are elements useful for increasing the toughness of the steel wire, and these may be used alone or in combination of two or more.
 特にNiは、伸線後の鋼線の靭性を高める元素である。このような作用を有効に発揮させるために、Ni量は0.05%以上が好ましく、より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。しかし、Niは過剰に添加してもその効果が飽和し、経済的に無駄である。したがって、Ni量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。 Especially Ni is an element that enhances the toughness of the steel wire after drawing. In order to effectively exhibit such an action, the Ni content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more. However, even if Ni is added excessively, the effect is saturated and it is economically wasteful. Therefore, the Ni content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
 Nbは、TiやAlと同様に窒化物を形成し、結晶粒を微細化して鋼線の靭性向上に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮させるために、Nb量は0.01%以上が好ましく、より好ましくは0.03%以上、更に好ましくは0.05%以上である。しかし、Nbは高価な元素であり、過剰に添加してもその効果は飽和し、経済的に無駄であるため、Nb量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。 Nb, like Ti and Al, forms a nitride, contributes to improving the toughness of the steel wire by refining crystal grains, and also has the effect of suppressing aging embrittlement by fixing solid solution N. In order to effectively exhibit such an action, the Nb content is preferably 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more. However, Nb is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the amount of Nb is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.3% or less.
 (Co:0%超、1.0%以下)
 Coは、特にC量が高い場合に初析セメンタイトの生成を低減し、組織を均一なパーライト組織にする作用を有する。この作用を有効に発揮させるために、Co量は0.05%以上が好ましく、より好ましくは0.1%以上、更に好ましくは0.2%以上である。しかし、Coは過剰に添加してもその効果が飽和し、経済的に無駄である。したがって、Co量は1.0%以下が好ましく、より好ましくは0.8%以下であり、更に好ましくは0.6%以下である。
(Co: over 0%, 1.0% or less)
Co has the effect of reducing the formation of pro-eutectoid cementite and making the structure a uniform pearlite structure, particularly when the amount of C is high. In order to effectively exhibit this action, the Co content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more. However, even if Co is added excessively, the effect is saturated and it is economically wasteful. Therefore, the Co content is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
 (Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種)
 Moは、鋼線の耐食性を向上させる元素である。このような作用を有効に発揮させるために、Mo量は0.05%以上が好ましく、より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。しかし、Mo量が過剰になると、熱間圧延時に過冷組織が発生しやすくなり、また延性も劣化する。そこでMo量は0.5%以下が好ましく、より好ましくは0.4%以下であり、更に好ましくは0.3%以下である。
(Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less)
Mo is an element that improves the corrosion resistance of the steel wire. In order to effectively exhibit such action, the Mo amount is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more. However, when the amount of Mo becomes excessive, a supercooled structure is likely to occur during hot rolling, and ductility also deteriorates. Therefore, the Mo amount is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
 Cuは、Moと同様に鋼線の耐食性を向上させる元素である。このような作用を有効に発揮させるために、Cu量は0.05%以上が好ましく、より好ましくは0.08%以上であり、更に好ましくは0.10%以上である。しかし、Cu量が過剰になると、Sと反応して粒界部にCuSを偏析させ、線材製造過程で疵を発生させる。このような影響を避けるために、Cu量は0.5%以下が好ましく、より好ましくは0.4%以下であり、更に好ましくは0.3%以下である。 Cu, like Mo, is an element that improves the corrosion resistance of steel wires. In order to effectively exhibit such an action, the amount of Cu is preferably 0.05% or more, more preferably 0.08% or more, and further preferably 0.10% or more. However, when the amount of Cu becomes excessive, it reacts with S to segregate CuS at the grain boundary part, and generates soot in the wire manufacturing process. In order to avoid such influence, the amount of Cu is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
 MoおよびCuは、1種または2種を併用して含有させてもよい。 Mo and Cu may be contained in combination of one or two kinds.
 次に、本発明に係る鋼線用線材を製造できる方法について説明する。 Next, a method for producing the steel wire rod according to the present invention will be described.
 冷間伸線前の線材は、通常、化学成分を適切に制御した鋼を溶製、分塊圧延および熱間圧延し、更に必要に応じてパテンティング処理することにより製造される。本発明で規定する要件(金属組織、初析α面積率、初析αの平均厚み)を満足させつつ本発明の線材を製造するにあたっては、Ti、BおよびNの含有量を上記の範囲に適正に制御した上で、TiCやBNの析出挙動を適切にコントロールすることが重要である。 The wire rod before cold drawing is usually produced by melting, split-rolling and hot-rolling steel with appropriately controlled chemical components, and further performing patenting treatment as necessary. In producing the wire rod of the present invention while satisfying the requirements (metal structure, pro-eutectoid α area ratio, pro-eutectoid α average thickness) defined in the present invention, the contents of Ti, B and N are within the above ranges. It is important to appropriately control the precipitation behavior of TiC and BN while appropriately controlling.
 まず、分塊圧延では、鋳片を1200℃以上に加熱し、鋳造時に析出した粗大なTiCを分解することが好ましい。加熱温度が1200℃よりも低いと、線材に粗大なTiCが残存し、初析αの厚みを十分に小さくできないので、疲労強度が低下する。この加熱温度は、より好ましくは1250℃以上であり、更に好ましくは1300℃以上である。しかし、加熱温度が高くなり過ぎると、線材の溶融が生じるので、通常は1400℃程度までに設定される。 First, in the partial rolling, it is preferable that the slab is heated to 1200 ° C. or higher to decompose the coarse TiC precipitated during casting. When the heating temperature is lower than 1200 ° C., coarse TiC remains in the wire, and the thickness of the pro-eutectoid α cannot be sufficiently reduced, so that the fatigue strength is lowered. This heating temperature is more preferably 1250 ° C. or more, and further preferably 1300 ° C. or more. However, if the heating temperature becomes too high, melting of the wire material occurs, so the temperature is usually set to about 1400 ° C.
 続いて熱間圧延を行なうにあたっては、1000℃以上の温度範囲に加熱することにより、ビレット中の粗大なBNを十分に分解した上で、圧延後の水冷で十分に冷却して、圧延材(線材)のレイングヘッドでの載置温度を800~1000℃に制御することが好ましい。載置温度が1000℃を超えると、載置後のコンベヤ上での冷却中に、線材中に多量のBNが析出し、固溶Bが十分に確保できない恐れがある。載置温度は、より好ましくは980℃以下であり、更に好ましくは950℃以下である。また、載置温度が800℃未満となると、線材の変形抵抗が増大し、例えば、コイリングできないなどレイングヘッドでの載置不良が生じる可能性がある。従って載置温度は800℃以上とすることが好ましい。載置温度は、より好ましくは820℃以上であり、更に好ましくは850℃以上である。 Subsequently, when performing hot rolling, by heating to a temperature range of 1000 ° C. or higher, the coarse BN in the billet is sufficiently decomposed, and then sufficiently cooled by water cooling after rolling, and rolled material ( It is preferable to control the mounting temperature of the wire) on the laying head to 800 to 1000 ° C. When the mounting temperature exceeds 1000 ° C., a large amount of BN is precipitated in the wire during cooling on the conveyor after mounting, and there is a possibility that the solid solution B cannot be sufficiently secured. The mounting temperature is more preferably 980 ° C. or lower, and further preferably 950 ° C. or lower. Further, when the mounting temperature is less than 800 ° C., the deformation resistance of the wire increases, and there is a possibility that a mounting failure in the laying head may occur, for example, coiling cannot be performed. Accordingly, the mounting temperature is preferably 800 ° C. or higher. The mounting temperature is more preferably 820 ° C. or higher, and further preferably 850 ° C. or higher.
 また熱間圧延を実施する際に、圧延の最終4パスにおける歪み速度を0.5秒-1以上とし、動的再結晶によって結晶粒を微細化すると共に、微細なTiCを析出させることが好ましい。上記歪み速度が0.5秒-1よりも小さくなると、TiCを十分に微細化することができず、初析αの平均厚みを十分に小さくできない。このときの歪み速度は、より好ましくは0.8秒-1以上、更に好ましくは1.0秒-1以上である。しかし、設備負荷の問題から、上記歪み速度は、通常は5秒-1以下とすることが好ましい。尚、歪み速度Vεは、最終パスから4パス手前のロールである一つ目のロールに入線する前の断面積S0(m2)と、最終パス通過後の断面積S4(m2)と、4パスの合計通過時間(圧延時間)t(秒)を用いて、下記(2)式で表わせる。
Vε={ln(S0/S4)}/t …(2)
Further, when hot rolling is performed, it is preferable to set the strain rate in the final four passes of rolling to 0.5 second −1 or more, to refine crystal grains by dynamic recrystallization, and to precipitate fine TiC. . If the strain rate is less than 0.5 sec −1 , TiC cannot be sufficiently refined, and the average thickness of proeutectoid α cannot be sufficiently reduced. The strain rate at this time is more preferably 0.8 sec −1 or more, and further preferably 1.0 sec −1 or more. However, from the viewpoint of equipment load, the strain rate is usually preferably 5 seconds -1 or less. Note that the strain rate Vε is equal to the cross-sectional area S 0 (m 2 ) before entering the first roll, four rolls before the final pass, and the cross-sectional area S 4 (m 2 ) after passing the final pass. And the total passage time (rolling time) t (seconds) of 4 passes can be expressed by the following equation (2).
Vε = {ln (S 0 / S 4 )} / t (2)
 載置後、冷却コンベヤ上で線材を冷却し、この冷却中にパーライト変態を起こさせるが、パーライト変態開始までの平均冷却速度を5℃/秒以上として急冷することが好ましい。このときの平均冷却速度が遅くなると、初析αが高温で析出して粗大化しやすくなり、初析αの厚みを十分に小さくできない恐れがある。また、平均冷却速度が5℃/秒より小さくなると、局所的にコーズパーライトと呼ばれるラメラ間隔が極端に粗い組織が析出し、伸線性を低下させることもある。尚、パーライト変態の開始については、線材の温度を測定し、変態発熱によって冷却曲線が変化する点(変曲点)を求めれば良い。この平均冷却速度は、より好ましくは10℃/秒以上であり、更に好ましくは15℃/秒以上である。平均冷却速度の好ましい上限は100℃/秒以下であり、より好ましくは50℃/秒以下である。 After mounting, the wire is cooled on a cooling conveyor, and pearlite transformation is caused during this cooling, but it is preferable to rapidly cool the pearlite transformation at an average cooling rate of 5 ° C./second or more. When the average cooling rate at this time is slow, the pro-eutectoid α is likely to precipitate and become coarse at high temperatures, and the thickness of the pro-eutectoid α may not be sufficiently reduced. Further, when the average cooling rate is less than 5 ° C./second, a structure with extremely rough lamellar spacing called “corse pearlite” is deposited locally, which may reduce the drawability. In addition, about the start of pearlite transformation, the temperature of a wire may be measured and the point (inflection point) where a cooling curve may change by transformation heat_generation | fever should just be calculated | required. The average cooling rate is more preferably 10 ° C./second or more, and further preferably 15 ° C./second or more. A preferable upper limit of the average cooling rate is 100 ° C./second or less, and more preferably 50 ° C./second or less.
 上記のようにして得られた線材は、そのまま伸線加工(冷間加工)して鋼線として使用できるが、伸線加工前にパテンティング処理を施しても良い。こうした伸線加工前のパテンティング処理を施すことによって、線材の強度を高め、且つ強度ばらつきを低減することができる。 The wire obtained as described above can be used as a steel wire by drawing (cold working) as it is, but it may be subjected to a patenting treatment before the drawing. By performing such a patenting process before wire drawing, the strength of the wire can be increased and the variation in strength can be reduced.
 また細径の鋼線を製造する場合のように、伸線加工度が大きくなることが予想されるときは、圧延材からある程度伸線した後にパテンティング処理を施し、線材組織を未加工のパーライト組織に戻した上で、更に伸線加工を行なうことも有用である。このとき、パテンティング処理を施すことで、熱間圧延時に得られた初析αは失われるが、微細析出したTiCと十分な量の固溶Bが確保されていれば、一般的なパテンティング処理条件によって適切な初析αの面積率と平均厚みを得ることができる。 In addition, when it is expected that the degree of wire drawing will increase, as in the case of manufacturing a thin steel wire, the wire material structure is subjected to a patenting treatment after drawing to some extent from the rolled material, and the wire material structure is converted into an unprocessed pearlite. It is also useful to perform further wire drawing after returning to the tissue. At this time, by performing a patenting treatment, the pro-eutectoid α obtained during hot rolling is lost, but if finely precipitated TiC and a sufficient amount of solute B are secured, general patenting can be performed. An appropriate area ratio and average thickness of pro-eutectoid α can be obtained depending on processing conditions.
 パテンティング処理を施すときの加熱温度(以下、この温度を「再加熱温度」と呼ぶことがある)は、900~1000℃程度が好ましく、より好ましくは920℃以上、980℃以下である。再加熱温度は、未固溶炭化物の残存を防ぎ、組織を完全にオーステナイト化する観点から、900℃以上であることが好ましいが、あまり高温になると、TiCが粗大化したり、固溶BがNと反応して減少することで、所定の初析αの面積率、平均厚さが得られないことがある。また、パテンティング処理での保持温度は530~600℃程度が好ましく、より好ましくは550℃以上、580℃以下である。 The heating temperature when the patenting treatment is performed (hereinafter, this temperature may be referred to as “reheating temperature”) is preferably about 900 to 1000 ° C., more preferably 920 ° C. or more and 980 ° C. or less. The reheating temperature is preferably 900 ° C. or more from the viewpoint of preventing the remaining of insoluble carbides and making the structure completely austenitic. However, when the temperature is too high, TiC becomes coarse or solute B is N. In some cases, the area ratio and average thickness of a predetermined pro-eutectoid α may not be obtained. The holding temperature in the patenting treatment is preferably about 530 to 600 ° C., more preferably 550 ° C. or higher and 580 ° C. or lower.
 本発明の線材は、疲労亀裂の発生、進展を助長する初析αの量が十分に低減され、且つその厚さが小さく制御されているため、これを冷間加工した鋼線や、その鋼線を全部または一部に用いたワイヤロープやPC鋼線などの製品は、通常品よりも疲労特性に優れている。一般に、引張強度と疲労強度は比例関係にあるが、本発明の線材から製造された鋼線は、10万回疲労強度σが、引張強度TSとで下記(1)式の関係を満足することを特徴としており、本発明はこの様な鋼線をも包含する。また、本発明は、こうした鋼線を全部または一部に使用して製造されたワイヤロープ等の製品をも包含する。
σ>0.45TS …(1)
The wire rod according to the present invention has a sufficiently reduced amount of pro-eutectoid α that promotes the generation and propagation of fatigue cracks, and the thickness thereof is controlled to be small. Products such as wire ropes and PC steel wires that use all or part of the wires have better fatigue properties than normal products. Generally, the tensile strength and fatigue strength are in a proportional relationship, but the steel wire manufactured from the wire of the present invention has a 100,000 times fatigue strength σ satisfying the relationship of the following formula (1) with the tensile strength TS. The present invention also includes such a steel wire. The present invention also includes products such as wire ropes manufactured using all or part of such steel wires.
σ> 0.45TS (1)
 本願は、2014年7月1日に出願された日本国特許出願第2014-136222号に基づく優先権の利益を主張するものである。日本国特許出願第2014-136222号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2014-136222 filed on July 1, 2014. The entire contents of the specification of Japanese Patent Application No. 2014-136222 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.
 下記表1に示す化学成分組成の鋼塊を、下記表2に示した条件で分塊圧延、熱間圧延して線材コイルに加工し、一部のものは更に下記表3に示した条件でパテンティング処理を行った。下記表2に示した圧延線径と下記表3に示したパテンティング線径が異なるものは、中間伸線を挟んで熱処理したことを示している。 Steel ingots having the chemical composition shown in Table 1 below are subjected to split rolling and hot rolling under the conditions shown in Table 2 below to form wire coils, and some of them are further subjected to the conditions shown in Table 3 below. A patenting process was performed. The difference between the rolling wire diameters shown in Table 2 below and the patenting wire diameters shown in Table 3 below indicates that the heat treatment was performed with the intermediate wire in between.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 仕上げ伸線前の線材から採取したサンプルを用い、引張試験、金属組織(初析αの面積率、パーライト面積率、初析αの平均厚み)の評価、固溶B量の測定を、下記の方法によって実施した。 Using samples taken from the wire before the finish drawing, tensile test, evaluation of metal structure (area ratio of pro-eutectoid α, pearlite area ratio, average thickness of pro-eutectoid α), measurement of solid solution B amount are as follows. Performed by method.
 (引張試験)
 採取したサンプルの引張強度TS(Tensile Strength)は、JIS Z 2241(2011)に準拠して測定した。結果を下記表4に示す。
(Tensile test)
Tensile strength TS (Tensile Strength) of the collected sample was measured according to JIS Z 2241 (2011). The results are shown in Table 4 below.
 (初析αの面積率の評価)
 初析αの面積率は、採取したサンプルを樹脂等に埋め込んで鏡面研磨し、腐食液にトリニトルフェノールとエタノールの混合液を用い、光学顕微鏡で観察し、画像解析によってその面積率を測定した。上記腐食液によって白く浮かび上がった部分が初析αである。線材の直径をDとしたとき、横断面のD/4部を代表組織と考え、倍率400倍で撮影して合計5視野を評価した。下記表4に示した「初析αの面積率」は、その平均値を示す。尚、横断面とは線材長手方向に対して垂直な面を指す。
(Evaluation of area ratio of proeutectoid α)
The area ratio of proeutectoid α was measured by embedding the collected sample in resin or the like, mirror polishing, observing with an optical microscope using a mixed solution of trinitrol phenol and ethanol, and measuring the area ratio by image analysis. . The part whitened by the above-mentioned corrosive liquid is the pro-eutectoid α. When the diameter of the wire was D, the D / 4 portion of the cross section was considered as the representative structure, and images were taken at a magnification of 400 times to evaluate a total of 5 fields of view. The “area ratio of pro-eutectoid α” shown in Table 4 below shows the average value. In addition, a cross section points out a surface perpendicular | vertical with respect to a wire rod longitudinal direction.
 また、この方法によって、パーライトの面積率も測定した。尚、下記表4における金属組織の項目において、「P」と示したものは、パーライト組織が95面積%以上、即ち、パーライトが主相であることを示している。また、「P+α」や「P+θ」と示したものは、パーライト組織が95面積%未満で、パーライト組織の他に、フェライト(α)やセメンタイト(θ)が混合した組織を示している。 Moreover, the area ratio of pearlite was also measured by this method. In addition, in the item of the metal structure in Table 4 below, “P” indicates that the pearlite structure is 95 area% or more, that is, pearlite is the main phase. Moreover, what is indicated as “P + α” or “P + θ” indicates a structure in which the pearlite structure is less than 95 area%, and in addition to the pearlite structure, ferrite (α) and cementite (θ) are mixed.
 (初析αの平均厚みの評価)
 上記と同様に鏡面研磨した試料を、SEM(Scanning Erectron Microscope)によって組織観察し、観察された初析α粒の10個の厚みを測定し、その平均値を求め、1個当たりの厚みを算出した。測定は上記と同様に横断面のD/4部にて行なった。結果を下記表4に示す。
(Evaluation of average thickness of proeutectoid α)
A sample polished in the same manner as described above was observed by SEM (Scanning Electron Microscope), and the thickness of 10 of the observed pro-eutectoid α grains was measured, and the average value was obtained to calculate the thickness per piece. did. The measurement was performed at D / 4 part of the cross section in the same manner as above. The results are shown in Table 4 below.
 (固溶B量の測定)
 固溶B量は、電解抽出残渣測定で評価した。10%アセチルアセトン溶液を用いた電解抽出残渣測定を行ない、目開き:0.1μmのメッシュを用い、残渣中の化合物型B量をブロムエステル法で測定した。鋼中の全B量から化合物型B量を差し引くことで、固溶B量を求めた。結果を下記表4に示す。尚、ブロムエステル法に用いた試料は、3gとした。また固溶B量は、900℃以上の熱履歴を受けない限り変化しないため、冷間加工後の鋼線で調査しても良い。
(Measurement of solid solution B amount)
The amount of solute B was evaluated by measuring the electrolytic extraction residue. Electrolytic extraction residue measurement using a 10% acetylacetone solution was carried out, and the amount of compound type B in the residue was measured by a bromester method using a mesh with an opening of 0.1 μm. The solid solution B amount was determined by subtracting the compound type B amount from the total B amount in the steel. The results are shown in Table 4 below. The sample used for the bromester method was 3 g. Moreover, since the amount of solid solution B does not change unless it receives a heat history of 900 ° C. or higher, the amount of solid solution B may be investigated with a steel wire after cold working.
 次に、得られた線材コイルを伸線加工して鋼線(ワイヤ)を作製し、引張試験、捻回特性の評価、疲労特性の評価を実施した。下記表5に、伸線加工時の減面率と、伸線加工により得られた鋼線の線径を示す。 Next, the obtained wire coil was drawn to produce a steel wire (wire), and a tensile test, a twisting property evaluation, and a fatigue property evaluation were performed. Table 5 below shows the reduction in area during wire drawing and the wire diameter of the steel wire obtained by wire drawing.
 (引張試験)
 鋼線の引張強度TSおよび降伏点YP(Yield Point)は、JIS Z 2241(2011)に準拠して測定した。結果を下記表5に示す。また、引張強度TSに0.45を掛けた値を下記表5に示す。
(Tensile test)
The tensile strength TS and the yield point YP (Yield Point) of the steel wire were measured according to JIS Z 2241 (2011). The results are shown in Table 5 below. The values obtained by multiplying the tensile strength TS by 0.45 are shown in Table 5 below.
 (捻回特性の評価)
 捻回特性は、捻回試験を行ない、破断までに要した捻回値(破断捻回数)に基づいて評価した。下記表5中の捻回値は、N=5本の平均値である。このとき、捻り速度は52回/分、張力は500gf(4.9N)とした。尚、捻回値は、チャック間距離(試験線長)を、線径dの100倍(100d)に換算して規格化した。また、破面観察によって正常破面と縦割れを判別し、5本中1本でも縦割れしたものは、後記表5において「縦割れあり」と記載した。
(Evaluation of twisting characteristics)
The twisting property was evaluated based on the twist value (number of times of rupture twist) required for rupture after conducting a twist test. The twist value in the following Table 5 is an average value of N = 5. At this time, the twisting speed was 52 times / minute, and the tension was 500 gf (4.9 N). The twist value was normalized by converting the distance between the chucks (test wire length) to 100 times the wire diameter d (100d). Moreover, the normal fracture surface and the vertical crack were discriminated by the fracture surface observation, and even one of the five vertical cracks was described as “with vertical crack” in Table 5 below.
 (疲労特性の評価)
 疲労特性は、4点支持となる治具によって、繰り返し4点曲げ疲労試験を実施して評価した。図1において、1は試験片(線材)、2は繰り返し応力を付加する向き、○は支持点を示す。試験は片曲げで行ない、最大応力と最小応力の差を応力振幅と定義した。種々の応力振幅で10万回の繰り返し曲げを行ない、N=3本の試験で全て破断(断線)しなかったものを合格、1本でも破断したものは不合格と判定した。合格した試料における最大の応力振幅を、10万回疲労強度σと定義した。10万回疲労強度σを下記表5に示す。尚、応力波形は正弦波、周波数は10Hzとした。
(Evaluation of fatigue characteristics)
The fatigue characteristics were evaluated by repeatedly performing a four-point bending fatigue test using a jig that supported four points. In FIG. 1, 1 is a test piece (wire), 2 is a direction in which repeated stress is applied, and ◯ is a support point. The test was performed by half bending, and the difference between the maximum stress and the minimum stress was defined as the stress amplitude. Bending was performed 100,000 times with various stress amplitudes, and N = 3 tests that were not broken (disconnected) were all accepted, and even one that was broken was judged as unacceptable. The maximum stress amplitude in the passed sample was defined as 100,000 times fatigue strength σ. The 100,000 times fatigue strength σ is shown in Table 5 below. The stress waveform was a sine wave and the frequency was 10 Hz.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、次のように考察できる。 From these results, it can be considered as follows.
 まず試験No.1~3、10~21は、化学成分組成、金属組織(パーライトの面積率、初析αの面積率、初析αの平均厚み)がいずれも本発明で規定する範囲内にあるため、JIS G 3522(1991)に記載されている「ピアノ線B種」を上回る引張強度(規格では、例えば線径が7.0mmで1620~1770MPa)を得た上で、上記(1)式の関係を満足する疲労強度を達成する鋼線(ワイヤ)が得られている。 First, test No. For 1-3, 10-21, the chemical component composition and the metal structure (perlite area ratio, area ratio of pro-eutectoid α, average thickness of pro-eutectoid α) are all within the ranges specified by the present invention. After obtaining a tensile strength (standard, for example, 1620 to 1770 MPa when the wire diameter is 7.0 mm) exceeding “Piano wire type B” described in G 3522 (1991), the relationship of the above equation (1) is obtained. A steel wire (wire) that achieves satisfactory fatigue strength is obtained.
 これに対し、試験No.4~9、22~27は、本発明の要件のいずれかが満たされていなかった例である。このうち試験No.4は、表2に示すように分塊圧延時の加熱温度が低かったため、粗大なTiCが析出して表4に示すように初析αの平均厚みが大きくなり、疲労強度が低下した。 In contrast, test no. Examples 4 to 9 and 22 to 27 are examples in which any of the requirements of the present invention is not satisfied. Of these, test no. As shown in Table 2, since the heating temperature at the time of the block rolling was low as shown in Table 2, coarse TiC was precipitated, and as shown in Table 4, the average thickness of proeutectoid α was increased and the fatigue strength was lowered.
 試験No.5は、表2に示すように熱間圧延時の加熱温度が低かったため、表4に示すように初析αの面積率が増加し、また固溶Bも少なくなり、疲労強度が低下した。 Test No. As shown in Table 2, since the heating temperature during hot rolling was low as shown in Table 2, the area ratio of proeutectoid α increased as shown in Table 4, the solid solution B also decreased, and the fatigue strength decreased.
 試験No.6は、表2に示すように仕上げ圧延時の歪み速度が小さかったため、粗大なTiCが析出して表4に示すように初析αの平均厚みが大きくなり、疲労強度が低下した。 Test No. In Table 6, since the strain rate during finish rolling was small as shown in Table 2, coarse TiC was precipitated, and as shown in Table 4, the average thickness of pro-eutectoid α was increased, and the fatigue strength was lowered.
 試験No.7は、表2に示すように熱間圧延後の載置温度が低かったため、載置不良が起きて試料が得られなかった。 Test No. As shown in Table 2, since the mounting temperature after hot rolling was low as shown in Table 2, a mounting failure occurred and a sample was not obtained.
 試験No.8は、表2に示すように熱間圧延後の載置温度が高く、TiCが粗大化したために表4に示すように初析αの平均厚みが大きくなり、疲労強度が低下した。 Test No. As shown in Table 2, since the mounting temperature after hot rolling was high as shown in Table 2 and TiC was coarsened, the average thickness of proeutectoid α was increased as shown in Table 4 and the fatigue strength was lowered.
 試験No.9は、表2に示すように載置後の平均冷却速度が遅く、表4に示すように初析αの平均厚みが大きくなって、疲労強度が低下した。 Test No. As shown in Table 2, the average cooling rate after mounting was slow as shown in Table 2, the average thickness of proeutectoid α was increased as shown in Table 4, and the fatigue strength decreased.
 試験No.22は、C量が少なかった鋼種Pを用いた例であり、表4に示すように初析αの面積率と平均厚みが共に大きくなって、捻回特性と疲労強度が低下した。 Test No. No. 22 is an example using the steel type P having a small amount of C. As shown in Table 4, both the area ratio and the average thickness of the pro-eutectoid α were increased, and the twisting characteristics and fatigue strength were lowered.
 試験No.23は、C量が多かった鋼種Qを用いた例であり、多量の初析セメンタイトが析出したために伸線中に断線した。 Test No. No. 23 is an example using the steel type Q having a large amount of C. Since a large amount of proeutectoid cementite was precipitated, it was broken during wire drawing.
 試験No.24は、Ti量が少なかった鋼種Rを用いた例であり、TiC量が少なく、初析αの平均厚みが大きくなって疲労強度が低下した。 Test No. No. 24 is an example using the steel type R with a small amount of Ti. The amount of TiC was small, the average thickness of proeutectoid α was increased, and the fatigue strength was lowered.
 試験No.25は、Ti量が多かった鋼種Sを用いた例であり、多量のTi系介在物が析出して伸線中に断線した。 Test No. No. 25 is an example using the steel type S with a large amount of Ti, and a large amount of Ti-based inclusions were precipitated and disconnected during wire drawing.
 試験No.26は、B量が多かった鋼種Tを用いた例であり、熱間圧延時に断線して試料が得られなかった。 Test No. No. 26 is an example using the steel type T having a large amount of B, and a sample was not obtained due to disconnection during hot rolling.
 試験No.27は、B量が少なかった鋼種Uを用いた例であり、初析αの面積率が大きくなり、捻回特性と疲労強度が低下した。 Test No. 27 is an example using the steel type U with a small amount of B. The area ratio of the pro-eutectoid α was increased, and the twisting characteristics and fatigue strength were reduced.
 図2は、実施例である試験No.3で観察された初析αの例を示す図面代用顕微鏡写真である。図2に示した楕円3は初析αの析出位置を示している。図2から、初析αが板状に析出しており、粒の「幅方向」と「長さ方向」を容易に判別できることが分かる。
 
FIG. 2 shows test No. 1 as an example. 3 is a drawing-substituting micrograph showing an example of pro-eutectoid α observed in FIG. An ellipse 3 shown in FIG. 2 indicates the deposition position of proeutectoid α. From FIG. 2, it can be seen that the pro-eutectoid α is precipitated in a plate shape, and the “width direction” and “length direction” of the grains can be easily distinguished.

Claims (4)

  1.  質量%で、
     C :0.70~1.3%、
     Si:0.1~1.5%、
     Mn:0.1~1.5%、
     N :0.001~0.006%、
     Al:0.001~0.10%、
     Ti:0.02~0.20%、
     B :0.0005~0.010%、
     P :0%以上、0.030%以下、
     S :0%以上、0.030%以下、
    を夫々含有し、残部が鉄および不可避不純物であり、
     パーライトを主相とし、
     初析フェライトの面積率が1.0%以下であると共に、
     初析フェライトの平均厚みが5μm以下である鋼線用線材。
    % By mass
    C: 0.70 to 1.3%,
    Si: 0.1 to 1.5%,
    Mn: 0.1 to 1.5%
    N: 0.001 to 0.006%,
    Al: 0.001 to 0.10%,
    Ti: 0.02 to 0.20%,
    B: 0.0005 to 0.010%,
    P: 0% or more, 0.030% or less,
    S: 0% or more, 0.030% or less,
    Each of which is iron and inevitable impurities,
    With pearlite as the main phase,
    While the area ratio of pro-eutectoid ferrite is 1.0% or less,
    A steel wire rod having an average thickness of pro-eutectoid ferrite of 5 μm or less.
  2.  更に、質量%で、以下の(a)~(d)のいずれかに属する1種以上を含有する請求項1に記載の鋼線用線材。
    (a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種
    (b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種
    (c)Co:0%超、1.0%以下
    (d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種
    The steel wire rod according to claim 1, further comprising one or more of the following (a) to (d) in mass%.
    (A) Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less (b) Ni: more than 0%, 0.5% or less and Nb: more than 0% (C) Co: more than 0%, 1.0% or less (d) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less At least one of
  3.  固溶Bの含有量が0.0003%以上である請求項1または2に記載の鋼線用線材。 The wire rod for steel wire according to claim 1 or 2, wherein the content of solute B is 0.0003% or more.
  4.  請求項1または2に記載の鋼の化学成分組成からなり、10万回疲労強度σが、引張強度TSとで下記(1)式の関係を満足するものである鋼線。
    σ>0.45TS …(1)
    A steel wire comprising the chemical composition of the steel according to claim 1 or 2 and having a 100,000 times fatigue strength σ satisfying the relationship of the following formula (1) with the tensile strength TS.
    σ> 0.45TS (1)
PCT/JP2015/065863 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire WO2016002413A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2951799A CA2951799A1 (en) 2014-07-01 2015-06-02 Wire rod for steel wire, and steel wire
KR1020167036839A KR20170013340A (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire
CN201580034203.5A CN106661687A (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire
EP18171309.0A EP3378964A1 (en) 2014-07-01 2015-06-02 Wire rod for steel wire, and steel wire
MX2016017005A MX2016017005A (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire.
EP15814624.1A EP3165625A4 (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire
US15/321,034 US20170198375A1 (en) 2014-07-01 2015-06-02 Wire rod for steel wire, and steel wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136222 2014-07-01
JP2014136222A JP2016014168A (en) 2014-07-01 2014-07-01 Wire rod for steel wire and steel wire

Publications (1)

Publication Number Publication Date
WO2016002413A1 true WO2016002413A1 (en) 2016-01-07

Family

ID=55018965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065863 WO2016002413A1 (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire

Country Status (8)

Country Link
US (1) US20170198375A1 (en)
EP (2) EP3165625A4 (en)
JP (1) JP2016014168A (en)
KR (1) KR20170013340A (en)
CN (2) CN106661687A (en)
CA (1) CA2951799A1 (en)
MX (1) MX2016017005A (en)
WO (1) WO2016002413A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336205A1 (en) * 2016-12-16 2018-06-20 Posco High-strength steel wire and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212327A1 (en) * 2017-05-18 2018-11-22 新日鐵住金株式会社 Wire, steel wire, and method for manufacturing steel wire
CN107630171A (en) * 2017-09-22 2018-01-26 张家港沙工科技服务有限公司 A kind of crane tensile type metal lifting rope
KR102079550B1 (en) * 2018-08-09 2020-02-21 주식회사 포스코 Steel wire with excellent kink properties, steel wire rod for steel wire, and methods for manufacturing thereof
KR102059095B1 (en) * 2019-07-02 2019-12-24 홍덕산업(주) Steel wire having excellent straightness quality and manufacturing method thereof
JP7440758B2 (en) * 2020-03-30 2024-02-29 日本製鉄株式会社 wire rod and steel wire
CN111974798B (en) * 2020-07-24 2022-05-27 柳州钢铁股份有限公司 Method for increasing thickness of iron scale on surface of wire rod
CN116356588B (en) * 2023-04-06 2024-01-19 任丘市海峰电力科技有限公司 Preparation method of steel strand

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199978A (en) * 1998-01-12 1999-07-27 Kobe Steel Ltd Steel for wire drawing excellent in twistability and its production
JP2002146479A (en) * 2000-11-06 2002-05-22 Kobe Steel Ltd Wire rod for wire drawing having excellent twisting characteristic and its production method
JP2005232549A (en) * 2004-02-20 2005-09-02 Kobe Steel Ltd High-strength pc steel wire superior in twisting characteristics
JP2007039800A (en) * 2005-06-29 2007-02-15 Nippon Steel Corp High-strength wire rod having superior rod drawability, manufacturing method therefor, and high-strength steel wire having superior rod drawability
JP2008133539A (en) * 2006-10-31 2008-06-12 Kobe Steel Ltd Hard drawn spring steel wire superior in fatigue characteristic and wire drawing property
WO2008093466A1 (en) * 2007-01-31 2008-08-07 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208446B (en) * 2005-06-29 2012-07-04 新日本制铁株式会社 High-strength wire rod having superior rod drawability, and manufacturing method therefor
JP5162875B2 (en) * 2005-10-12 2013-03-13 新日鐵住金株式会社 High strength wire rod excellent in wire drawing characteristics and method for producing the same
CA2617381C (en) 2006-06-01 2013-09-17 Nippon Steel Corporation High-carbon steel wire rod of high ductility
JP5195009B2 (en) * 2008-05-13 2013-05-08 新日鐵住金株式会社 Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP5201009B2 (en) * 2009-03-05 2013-06-05 新日鐵住金株式会社 High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
EP2554704A4 (en) 2010-04-01 2016-06-15 Kobe Steel Ltd High-carbon steel wire with excellent suitability for wiredrawing and fatigue property after wiredrawing
JP5521885B2 (en) * 2010-08-17 2014-06-18 新日鐵住金株式会社 Steel wire for machine parts with high strength and excellent hydrogen embrittlement resistance, machine parts and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199978A (en) * 1998-01-12 1999-07-27 Kobe Steel Ltd Steel for wire drawing excellent in twistability and its production
JP2002146479A (en) * 2000-11-06 2002-05-22 Kobe Steel Ltd Wire rod for wire drawing having excellent twisting characteristic and its production method
JP2005232549A (en) * 2004-02-20 2005-09-02 Kobe Steel Ltd High-strength pc steel wire superior in twisting characteristics
JP2007039800A (en) * 2005-06-29 2007-02-15 Nippon Steel Corp High-strength wire rod having superior rod drawability, manufacturing method therefor, and high-strength steel wire having superior rod drawability
JP2008133539A (en) * 2006-10-31 2008-06-12 Kobe Steel Ltd Hard drawn spring steel wire superior in fatigue characteristic and wire drawing property
WO2008093466A1 (en) * 2007-01-31 2008-08-07 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165625A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336205A1 (en) * 2016-12-16 2018-06-20 Posco High-strength steel wire and method of manufacturing the same

Also Published As

Publication number Publication date
EP3378964A1 (en) 2018-09-26
EP3165625A4 (en) 2017-11-22
EP3165625A1 (en) 2017-05-10
JP2016014168A (en) 2016-01-28
KR20170013340A (en) 2017-02-06
MX2016017005A (en) 2017-05-12
CN106661687A (en) 2017-05-10
US20170198375A1 (en) 2017-07-13
CA2951799A1 (en) 2016-01-07
CN109576448A (en) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP4842408B2 (en) Wire, steel wire, and method for manufacturing wire
JP6180351B2 (en) High strength steel wire and high strength steel wire with excellent stretchability
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
US20100212786A1 (en) High-Strength Steel Wire Excellent In Ductility and Method of Manufacturing the Same
JP5802162B2 (en) Wire rod and steel wire using the same
JP5833485B2 (en) Wire rod and steel wire using the same
CN107406950B (en) High-carbon steel wire rod and steel wire having excellent drawability
JP6687112B2 (en) Steel wire
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP7226548B2 (en) wire
JP5977699B2 (en) High-strength wire for high-strength steel wire, high-strength steel wire, high-strength galvanized steel wire, and manufacturing method thereof
JP2014101569A (en) Method of manufacturing steel wire material for spring
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
EP3115478B1 (en) High-carbon steel wire having superior wire drawing properties and method for producing same
JP5945196B2 (en) High strength steel wire
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
WO2020080415A1 (en) Hot-rolled wire rod
WO2016002414A1 (en) Wire material for steel wire, and steel wire
JP2018162523A (en) Wire material for steel wire, and steel wire
JPH11269607A (en) Wire drawing type high strength steel wire rod and its production
JP6946891B2 (en) High-strength steel wire
JP2018162524A (en) Wire material for steel wire, and steel wire
JP2024029554A (en) galvanized steel wire
JP2013067866A (en) High-strength cold-rolled steel sheet superior in bending property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2951799

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015814624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/017005

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15321034

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167036839

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE