JPH11269607A - Wire drawing type high strength steel wire rod and its production - Google Patents

Wire drawing type high strength steel wire rod and its production

Info

Publication number
JPH11269607A
JPH11269607A JP7869298A JP7869298A JPH11269607A JP H11269607 A JPH11269607 A JP H11269607A JP 7869298 A JP7869298 A JP 7869298A JP 7869298 A JP7869298 A JP 7869298A JP H11269607 A JPH11269607 A JP H11269607A
Authority
JP
Japan
Prior art keywords
wire
cementite
final
steel wire
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7869298A
Other languages
Japanese (ja)
Other versions
JP3277878B2 (en
Inventor
Yoshihiro Ofuji
善弘 大藤
Takanari Hamada
貴成 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07869298A priority Critical patent/JP3277878B2/en
Publication of JPH11269607A publication Critical patent/JPH11269607A/en
Application granted granted Critical
Publication of JP3277878B2 publication Critical patent/JP3277878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a wire drawing type high strength steel wire rod free from the generation of vertical cracking in a twisting test and having <=0.4 mm diameter and >=4150 NPa TS and to provide a method for producing it. SOLUTION: This wire drawing type high strength steel wire rod is the one having a compsn. contg., by weight, 0.8 to 1.2%, C, 0.1 to 1.5% Si, 0.2 to 1% Mn, <=0.003% Al, 0 to 1% Cr, 0 to 0.5% Mo, 0 to 0.3% V and 0 to 2% Co and also composed of cementite in which the volume ratio is regulated to 6.0×C (weight %) to 12.0×C (weight %) volume % and the average grain size is regulated to 2 to 10 nm, and the balance ferrite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車タイ
ヤ、コンベヤベルトなどの補強のために用いられるスチ
ールコード用の高強度鋼線材およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel wire for a steel cord used for reinforcing automobile tires, conveyor belts, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、一般に自動車タイヤなどに用いら
れるスチールコードワイヤ(以後、「ワイヤ」、または
「コードワイヤ」と記す)は、直径0.2mm前後の高
炭素鋼鋼線をストランドに撚ったもので、現状では鋼線
の引張強さ(TS)が3200MPa前後のものが多
い。この従来のコードワイヤの製造方法および特性は次
の通りである。
2. Description of the Related Art Conventionally, a steel cord wire generally used for automobile tires and the like (hereinafter referred to as "wire" or "cord wire") is formed by twisting a high carbon steel wire having a diameter of about 0.2 mm into a strand. At present, many steel wires have a tensile strength (TS) of around 3200 MPa. The manufacturing method and characteristics of this conventional code wire are as follows.

【0003】まず、5.5mmφ程度の鋼線を冷間伸線
と鉛パテンティングとを繰り返しすことによって、1.
2mmφ前後の鋼線にした後、最終鉛パテンティング工
程で約900℃に加熱後、600℃前後の鉛浴に浸漬
し、TSが1200MPa前後の伸線用鋼線を得る。こ
れを酸洗、めっきした後、0.2mmφ前後まで伸線し
て、TSが3200MPa前後のワイヤを得ている。
[0003] First, a steel wire having a diameter of about 5.5 mm is repeatedly subjected to cold drawing and lead patenting.
After being formed into a steel wire having a diameter of about 2 mm, the steel wire is heated to about 900 ° C. in a final lead patenting step, and then immersed in a lead bath at about 600 ° C. to obtain a steel wire for drawing having a TS of about 1200 MPa. This is pickled and plated, and then drawn to about 0.2 mmφ to obtain a wire having a TS of about 3200 MPa.

【0004】近年、自動車の燃費向上を目的としてタイ
ヤ軽量化の要求が強まっているため、より高強度のコー
ドワイヤが産業界から要望されている。この要望に対し
て、合金元素の添加、最終伸線での減面率の増加などの
手法により、コードワイヤの高強度化が図られている。
[0004] In recent years, there has been an increasing demand for weight reduction of tires for the purpose of improving fuel efficiency of automobiles, and therefore, a higher strength cord wire has been demanded from the industry. In response to this demand, the strength of the cord wire has been increased by a technique such as addition of an alloying element or an increase in the area reduction rate in the final drawing.

【0005】例えば、特開平6−279924号公報に
は、0.40mmφ以下でTSが4000MPa以上の
高強度極細線用の低合金鋼線材が開示されている。しか
しながら、この特開平6−279924号公報では、捻
回特性で最も重視される捻回試験における縦割れについ
て、まったく言及されていない。さらに、この低合金鋼
線材には合金元素としてBが含まれるが、文献(金属学
会誌:金子、西沢、千葉:30巻(1966年),p.263:とくに
Fig.3)に示されているように、BはFe−C擬二元系
状態図でのAcm線を顕著に上昇させるため、鉛パテン
ティングなどの熱処理のオーステナイト化において、セ
メンタイトまたは炭硼化物が残存しやすい。この残存し
たセメンタイトまたは炭硼化物は、通常、凝集粗大化し
ており、これらを起点として冷間伸線中に断線が生じる
場合が多い。
[0005] For example, Japanese Patent Application Laid-Open No. 6-279924 discloses a low-alloy steel wire rod for high-strength ultrafine wires having a diameter of 0.40 mm or less and a TS of 4000 MPa or more. However, JP-A-6-279924 does not mention vertical cracking in a twisting test, which is most important in twisting characteristics. Furthermore, although this low alloy steel wire contains B as an alloying element, it is described in the literature (Journal of the Institute of Metals: Kaneko, Nishizawa, Chiba: Volume 30 (1966), p.263: especially
As shown in Fig. 3), B significantly increases the Acm line in the Fe-C quasi-binary phase diagram. Therefore, in the austenitization of heat treatment such as lead patenting, cementite or boride is used. Are likely to remain. The remaining cementite or carbohydrate is usually agglomerated and coarse, and breakage often occurs during cold drawing from these as starting points.

【0006】また特開平7−113119号公報には、
最終仕上げダイスの減面率を2〜8%にすることによ
り、TSが3800MPa以上、絞り30%以上で、か
つ捻回試験時に縦割れを生じない極細鋼線を得る方法が
開示されている。しかしながら実施例において、TSが
最も高いもので、高々4128MPaしかない。
Japanese Patent Application Laid-Open No. Hei 7-113119 discloses that
It discloses a method of obtaining an ultrafine steel wire having a TS of 3800 MPa or more, a drawing of 30% or more, and no longitudinal cracking during a torsion test by reducing the area reduction rate of the final finishing die to 2 to 8%. However, in the example, the TS is the highest, at most 4128 MPa.

【0007】上記した特開平6−279924号公報、
および特開平7−113119号公報の方法を用いれ
ば、極細鋼線の高強度化が一応可能であるが、工業的に
安定して、最終伸線後のTSが4150MPa以上で、
かつ捻回試験で縦割れを防止することはできない。
The above-mentioned JP-A-6-279924,
By using the method disclosed in Japanese Patent Application Laid-Open No. Hei 7-113119, it is possible to increase the strength of ultrafine steel wire, but it is industrially stable, and the TS after final drawing is 4150 MPa or more.
In addition, vertical cracking cannot be prevented by the torsion test.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、合金
元素の含有率と最終伸線後の鋼中の組織を制限すること
により、捻回試験で縦割れを防止できる、0.4mmφ
以下でTS4150MPa以上を有する高強度鋼線材お
よびその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to limit the content of alloying elements and the structure in steel after final drawing to prevent longitudinal cracks in a torsion test.
An object of the present invention is to provide a high-strength steel wire having TS4150 MPa or more and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は試験を重ねた
結果、TS4150MPa以上を有する、捻回試験で縦
割れが発生しない高強度鋼線を得るためには、下記の
、およびに示す条件を満たさねばならないことを
見いだした。
As a result of repeated tests, the present inventor has found that in order to obtain a high-strength steel wire having a TS of 4150 MPa or more and having no longitudinal crack in a twist test, the following conditions and Have to be met.

【0010】最終伸線後にセメンタイトが平均粒径2
〜10nmに分断されていること。
After final drawing, cementite has an average particle size of 2
It is divided to 10 nm.

【0011】最終伸線前に、体積%で、15×C量(重量
%)%程度であったセメンタイトが、最終伸線後に6.0×C
量(重量%)〜12.0×C量(重量%)%の範囲に減少している
こと。
Before the final drawing, a volume of 15 × C (by weight)
%) Cementite was about 6.0 × C after final drawing.
Amount (% by weight) to 12.0 x C amount (% by weight)%.

【0012】上記の鋼中の組織を得るためには、熱処
理(パテンティング)および最終伸線処理を制御する必
要があること。
In order to obtain the structure in the steel, it is necessary to control the heat treatment (patenting) and the final drawing.

【0013】本発明は上記の事項に基づき、現場での生
産試験を経て完成されたもので、下記の伸線強化型高強
度線材およびその製造方法を要旨とする。
The present invention has been completed on the basis of the above-mentioned matters and has undergone a production test on site, and has the following draw-strengthened high-strength wire and a method of manufacturing the same.

【0014】(1)重量%で、C:0.8〜1.2%、
Si:0.1〜1.5%、Mn:0.2〜1%、Al:
0.003%以下、Cr:0〜1%、Mo:0〜0.5
%、V:0〜0.3%、およびCo:0〜2%を含み、
残部はFeおよび不可避的不純物からなる化学組成を備
え、鋼中の組織が、体積比率が6.0×C(重量%)〜12.0×
C(重量%)%で、その平均粒径が、2〜10nmであるセメ
ンタイトと残部は実質的にフェライトからなる鋼である
伸線強化型高強度線材。
(1) C: 0.8 to 1.2% by weight,
Si: 0.1 to 1.5%, Mn: 0.2 to 1%, Al:
0.003% or less, Cr: 0 to 1%, Mo: 0 to 0.5
%, V: 0 to 0.3%, and Co: 0 to 2%,
The balance has a chemical composition consisting of Fe and unavoidable impurities, and the structure in the steel has a volume ratio of 6.0 × C (% by weight) to 12.0 ×
A drawn-strengthened high-strength wire rod comprising C (% by weight)%, a cementite having an average particle diameter of 2 to 10 nm and a balance substantially consisting of ferrite.

【0015】(2)鋼線に、下記の熱処理を1回また
は複数回施して伸線処理を行い、最終伸線処理前に当該
鋼線表面にめっき処理を施し、冷間で下記の条件で最
終伸線処理を行う上記(1)の線材の製造方法。
(2) The steel wire is subjected to the following heat treatment one or more times to perform wire drawing, and before the final wire drawing, the surface of the steel wire is subjected to plating, and the steel wire is cold and is subjected to the following conditions. The method for producing a wire according to the above (1), wherein the final wire drawing is performed.

【0016】熱処理 (a)オーステナイト化 温度:900〜1100℃ 保持時間:0〜120秒 (b)変態処理 温度:500〜650℃ 保持時間:3〜30秒 最終伸線処理 (a)加工度 :真ひずみ(ln(S0/Sf))で、3.0〜
4.5 ただし、lnは自然対数、S0は最終伸線前の断面積、Sf
最終伸線後の断面積を表す。
Heat treatment (a) Austenitizing temperature: 900 to 1100 ° C Holding time: 0 to 120 seconds (b) Transformation temperature: 500 to 650 ° C Holding time: 3 to 30 seconds Final drawing process (a) Degree of work: True strain (ln (S 0 / S f ))
4.5 However, ln is the cross-sectional area of the natural logarithm, S 0 is final drawing ago, S f represents the cross-sectional area after the final drawing.

【0017】(b)ダイス数:15〜30 (c)ダイス角度:7〜15゜ (d)巻き取り部での伸線速度:400〜2000m/分 ここで、最終伸線処理とは最後の熱処理の後の伸線処理
をいう。上記(2)の伸線処理を施す前の「鋼線」は、
通常、熱間圧延により製造された直径5.5mm程度の
鋼線をいう。上記の「熱処理」は一般に「パテンティン
グ処理」と呼ばれるが、本明細書の説明では、原則とし
て「熱処理」と記載する。上記において、ダイス角度と
はダイスの入り口の最大孔径の部分から最小孔径の部分
までのテーパの勾配角をさす。
(B) Number of dies: 15 to 30 (c) Die angle: 7 to 15 ° (d) Drawing speed at the winding section: 400 to 2000 m / min Here, the final drawing process is the last process. This refers to wire drawing after heat treatment. The “steel wire” before the wire drawing process (2) is performed
Usually, it refers to a steel wire having a diameter of about 5.5 mm manufactured by hot rolling. The above "heat treatment" is generally called "patenting treatment", but in the description of this specification, it is described as "heat treatment" in principle. In the above description, the die angle refers to a taper gradient angle from a portion having a maximum hole diameter to a portion having a minimum hole diameter at the entrance of the die.

【0018】[0018]

【発明の実施の形態】つぎに本発明を設定した理由につ
いて説明する。以後の説明で、合金元素の「%」は「重
量%」を意味する。
Next, the reason why the present invention is set will be described. In the following description, “%” of the alloy element means “% by weight”.

【0019】(A)化学組成 本発明が対象とする鋼線には、熱間圧延後、中間伸線を
行った後、最終熱処理、最終伸線が行われ、所定の特性
(TS、延性など)が付与される。この最終製品におけ
る特性の付与と、工業的な生産性を確保することも考慮
して、鋼線の化学成分は下記の範囲に限定する。
(A) Chemical Composition The steel wire to which the present invention is applied is subjected to intermediate drawing after hot rolling, followed by final heat treatment and final drawing to obtain predetermined properties (TS, ductility, etc.). ) Is given. In consideration of imparting properties to the final product and securing industrial productivity, the chemical composition of the steel wire is limited to the following range.

【0020】C:0.8〜1.2% CはワイヤのTSを上げるのに有効な元素である。Cが
0.8%未満であると最終伸線後のTSが4150MP
aに達しない。一方、1.2%を超えると初析セメンタ
イトの生成防止が困難になり、冷間伸線時に断線が頻発
する。よって、Cの範囲は、0.8〜1.2%とする。
C: 0.8 to 1.2% C is an effective element for increasing the TS of the wire. When C is less than 0.8%, TS after final drawing is 4150MP.
does not reach a. On the other hand, if it exceeds 1.2%, it becomes difficult to prevent the formation of proeutectoid cementite, and disconnection frequently occurs during cold drawing. Therefore, the range of C is set to 0.8 to 1.2%.

【0021】Si:0.1〜1.5% SiはワイヤのTSを上げるのに有効な元素であるほ
か、脱酸剤としても必要である。Siは脱酸剤として
0.1%以上含む必要がある。一方、1.5%を超える
と捻回特性が劣化し、捻回試験で縦割れを発生する。よ
って、Siは、0.1〜1.5%とする。
Si: 0.1 to 1.5% Si is an effective element for increasing the TS of the wire, and is also required as a deoxidizing agent. Si must be contained in an amount of 0.1% or more as a deoxidizing agent. On the other hand, if it exceeds 1.5%, the torsion characteristics deteriorate, and a vertical crack occurs in the torsion test. Therefore, Si is set to 0.1 to 1.5%.

【0022】Mn:0.2〜1% Mnは、ワイヤのTSを上げるのに有効な元素であるほ
か、Sによる熱間脆性の防止に必要である。これらの効
果を発揮させるためにはMnを0.2%以上含む必要が
ある。一方、1%を超えるとMnが鋼線の中心部に偏析
し易いため、熱間圧延後のワイヤの中心部にマルテンサ
イトやベイナイトが生成する。この結果、一次伸線での
加工性が低下する。よって、Mnの範囲は、0.2〜1
%とする。
Mn: 0.2-1% Mn is an effective element for increasing the TS of the wire, and is necessary for preventing hot brittleness due to S. In order to exhibit these effects, it is necessary to contain Mn at 0.2% or more. On the other hand, if it exceeds 1%, Mn tends to segregate in the center of the steel wire, so that martensite and bainite are formed in the center of the wire after hot rolling. As a result, the workability in the primary drawing decreases. Therefore, the range of Mn is 0.2 to 1
%.

【0023】Al:0.003%以下 Alは鋼中でAl23を主成分とする酸化物系介在物を
作り、最終伸線時に断線する原因となる。上記の悪影響
はAlを0.003%以下にすることで、防止できる。
よって、Al含有量の範囲は、0.003%以下とす
る。
Al: 0.003% or less Al forms oxide inclusions mainly composed of Al 2 O 3 in steel and causes wire breakage at the time of final drawing. The above adverse effects can be prevented by setting the content of Al to 0.003% or less.
Therefore, the range of the Al content is set to 0.003% or less.

【0024】本発明での伸線強化型高強度線材は、上記
の成分範囲を満たし、残部がFeと不可避不純物であれ
ば目標とする性能に達する。さらにCr、Mo、V、C
oの内、1種以上を下記の範囲で含有させれば、性能を
一段と高めることができる。
The wire-strengthened high-strength wire according to the present invention satisfies the above-mentioned component ranges, and reaches the target performance if the balance is Fe and inevitable impurities. Cr, Mo, V, C
If one or more of the components o are contained in the following range, the performance can be further enhanced.

【0025】Cr:0〜1% Crは含まなくてもよい。しかし、さらにCrを含む
と、パーライトのラメラ間隔が低減し、TSを上げるこ
とが可能である。しかし、1%を超えるとオーステナイ
トからパーライトへ変態に要する時間が30秒を超え、
生産性が低下する。よってCrは、0〜1%とする。
Cr: 0 to 1% Cr may not be contained. However, when Cr is further contained, the lamella spacing of pearlite is reduced, and the TS can be increased. However, if it exceeds 1%, the time required for transformation from austenite to pearlite exceeds 30 seconds,
Productivity decreases. Therefore, Cr is set to 0 to 1%.

【0026】Mo:0〜0.5% Moは含まなくてもよい。しかし、Moは、ワイヤのT
Sを上げるのに有効なので、より高強度とする場合には
添加する。Moを含む場合、0.1%未満ではその効果
が明確でないので、0.1%以上の含有率とすることが
望ましい。一方、0.5%を超えるとオーステナイトか
らパーライトへの変態に要する時間が30秒を超え生産
性が低下するので、含む場合には0.5%以下とする。
Mo: 0 to 0.5% Mo may not be contained. However, Mo has a T
Since it is effective for increasing S, it is added when higher strength is required. When Mo is contained, the effect is not clear if it is less than 0.1%, so that the content is desirably 0.1% or more. On the other hand, if the content exceeds 0.5%, the time required for transformation from austenite to pearlite exceeds 30 seconds and the productivity is reduced.

【0027】V:0〜0.3%、 Vは含まなくてもよい。しかし、VはワイヤのTSを上
げるのに有効なので、一層高強度化を図るためには添加
する。Vを含む場合、0.05%未満では効果が発現し
にくいので、0.05%以上の含有率とすることが望ま
しい。一方、0.3%を超えると製鋼時に粗大なVCが
生成して、それが熱間圧延後にも残存し、冷間伸線時に
断線が頻発するので、含む場合には0.3%以下とす
る。
V: 0 to 0.3%, V may not be contained. However, V is effective for increasing the TS of the wire, and is added to further increase the strength. When V is included, the effect is less likely to be exhibited if the content is less than 0.05%, so that the content is preferably 0.05% or more. On the other hand, if it exceeds 0.3%, coarse VC is generated during steelmaking and remains after hot rolling, and breakage frequently occurs during cold drawing. I do.

【0028】Co:0〜2% Coは含まなくてもよい。しかし、Coは初析セメンタ
イトの生成を抑制するのに有効であり、とくにパテンテ
ィング処理において冷却速度を大きくとれない場合には
添加する。ただし、0.2%未満では明瞭な効果を得ら
れないので、その効果を発揮させるためには0.2%以
上含むことが望ましい。一方、2%を超えるとオーステ
ナイトからパーライトへの変態に要する時間が30秒よ
り長くなり、生産性が低下するで、含む場合には2%以
下とする。
Co: 0 to 2% Co may not be contained. However, Co is effective for suppressing the formation of proeutectoid cementite, and is added particularly when the cooling rate cannot be increased in the patenting treatment. However, if the content is less than 0.2%, a clear effect cannot be obtained. Therefore, in order to exhibit the effect, it is desirable to include 0.2% or more. On the other hand, if it exceeds 2%, the time required for transformation from austenite to pearlite is longer than 30 seconds, and productivity is reduced.

【0029】本発明が対象とするの線材の上記以外の他
の化学成分の組成に関しては特別な限定を加える必要は
ない。最終製品において要求される特性の付与が可能で
あり、かつ工業的な生産性を確保できるような成分範囲
でありさえすれば良い。
There is no need to impose any particular restrictions on the composition of the other chemical components of the wire to which the present invention is directed. It is only necessary that the component range be such that the characteristics required in the final product can be imparted and industrial productivity can be ensured.

【0030】具体的には、例えば、上記の範囲の合金を
含み、かつ上記以外の元素としてCu:0〜1%、N
i:0〜2%、Ti:0〜0.2%、Nb:0〜0.2
%、N:0〜0.03%、B:0〜0.005%、P
b:0〜0.3%、希土類元素:0〜0.1%、Ca:
0〜0.01%、Mg:0〜0.01%を含有し、不純
物としてP:0.05%以下、S:0.05%以下を含
む鋼であれば良い。
Specifically, for example, the alloy contains the alloy in the above range, and contains Cu: 0 to 1%, N
i: 0 to 2%, Ti: 0 to 0.2%, Nb: 0 to 0.2
%, N: 0 to 0.03%, B: 0 to 0.005%, P
b: 0 to 0.3%, rare earth element: 0 to 0.1%, Ca:
Any steel may be used as long as it contains 0 to 0.01%, Mg: 0 to 0.01%, and contains P: 0.05% or less and S: 0.05% or less as impurities.

【0031】なお、鋼材または最終製品における特性向
上などを目的とする場合には、上記以外の元素の範囲を
さらに限定して、Cu:0.05〜1%、Ni:0.3
〜2%、Ti:0.03〜0.1%、Nb:0.02〜
0.1%、N:0.001〜0.03%、B:0.00
03〜0.005%、Pb:0.02〜0.3%、希土
類元素:0.002〜0.1%、Ca:0.0005〜
0.01%、Mg:0.0005〜0.01%とするこ
とが好ましい。さらに不純物としてのPは0.05%以
下、S:0.05%以下とすることが好ましい。
When the purpose is to improve the properties of steel materials or final products, the range of elements other than those described above is further limited to Cu: 0.05 to 1% and Ni: 0.3.
~ 2%, Ti: 0.03-0.1%, Nb: 0.02-
0.1%, N: 0.001 to 0.03%, B: 0.00
03-0.005%, Pb: 0.02-0.3%, rare earth element: 0.002-0.1%, Ca: 0.0005-
It is preferable to set 0.01% and Mg: 0.0005 to 0.01%. Further, it is preferable that P as an impurity is 0.05% or less and S: 0.05% or less.

【0032】(B)最終伸線後の鋼中の組織 次に最終伸線後の鋼中の組織の限定理由について説明す
る。
(B) Structure in Steel after Final Drawing Next, the reason for limiting the structure in steel after final drawing will be described.

【0033】本発明では上記化学成分の要件を満たす鋼
材を熱間圧延後、一次伸線を行った後、最終熱処理、最
終伸線が行われ、所定の特性(TS、延性など)を付与
される。
In the present invention, a steel material satisfying the above requirements for the chemical components is hot-rolled, subjected to primary drawing, then subjected to final heat treatment and final drawing, and given predetermined characteristics (TS, ductility, etc.). You.

【0034】このとき合金成分と共に、最終伸線後の鋼
線の鋼中の組織が、TSと捻回特性に密接に関係してい
ることが判明した。
At this time, it was found that the structure in the steel of the steel wire after the final drawing was closely related to the TS and the torsion characteristics together with the alloy components.

【0035】図1は、縦軸を最終伸線後のセメンタイト
粒径とし、横軸を(セメンタイトの体積%)/{C(重
量%)}として後記する実施例の試験値をプロットした図
である。各プロットの試験体の化学組成はいずれも本発
明の範囲内にあるものを選んだ。図1において、最終伸
線後のTSが4150MPaで、かつ、捻回試験で縦割
れが発生しないものを○印でプロットした。一方、「最
終伸線後のTSが4150MPa以上」、および、「捻
回試験で縦割れが発生しない」、のいずれか一方、また
は両方を満足しないものを×で表記した。図1より、セ
メンタイト粒径が2〜10nmで、かつ、セメンタイト
の一部が分解して(セメンタイト体積%)/{C(重量
%)}が6〜12であるときに限り、最終伸線後のTSが
4150MPa以上で、かつ、捻回試験で縦割れが発生
しないことが分かる。
FIG. 1 is a graph in which test values of Examples described later are plotted with the vertical axis representing the cementite particle diameter after final drawing and the horizontal axis representing (volume% of cementite) / {C (weight%)}. is there. The chemical composition of the specimen in each plot was selected within the scope of the present invention. In FIG. 1, those having a TS of 4150 MPa after the final wire drawing and having no longitudinal crack in the torsion test are plotted with ○ marks. On the other hand, those that do not satisfy one or both of “TS after final drawing is 4150 MPa or more” and “No longitudinal crack occurs in twisting test” are indicated by ×. From FIG. 1, the cementite particle size is 2 to 10 nm, and part of the cementite is decomposed (volume% of cementite) / ΔC (weight)
%) 6 is 6 to 12, it can be seen that the TS after the final drawing is 4150 MPa or more, and that no vertical cracks occur in the twist test.

【0036】セメンタイトの平均径が2nm未満、また
は10nmを超えるときは、引張試験で絞りが低下して
おり、捻回試験で縦割れが発生する。
When the average diameter of the cementite is less than 2 nm or more than 10 nm, the drawing is reduced in the tensile test and the vertical crack is generated in the twist test.

【0037】セメンタイトの体積%とC含有率の比が6
未満の場合、引張試験で絞りが低下しており、捻回試験
で縦割れが発生する。一方、上記の比が12を超えると
TSが不足したり、捻回試験で縦割れが発生しやすくな
る。
The ratio of the volume% of cementite to the C content is 6
If it is less than 1, the drawing is reduced in the tensile test, and a vertical crack is generated in the twist test. On the other hand, when the above ratio exceeds 12, TS becomes insufficient or vertical cracks are liable to occur in a twist test.

【0038】伸線処理によりセメンタイトの体積%が減
少する理由は、まだ解明されていない。また、伸線によ
りセメンタイト、フェライトの組織変化が生じているこ
とは、盛んに議論されているが、セメンタイトの体積%
が減少するとの明文化された資料はない。本発明者はこ
のセメンタイトの体積率が減少する現象を一応つぎのよ
うな熱力学から説明する立場をとる。伸線によりセメン
タイトが分断された結果、直径がナノメーター(nm)
オーダーになるとセメンタイトと鋼との界面の面積が大
きくなり、界面エネルギーが大きくなり、その結果、セ
メンタイトが不安定となり、その一部が分解する。本発
明者は、一応、この考え方で説明するが、この考え方に
拘泥するつもりはなく、一定の製造条件のもとで目標と
する鋼中の組織を得ることができれば、その条件を採用
し、本発明の製造条件を設定した。
The reason why the volume% of cementite is reduced by the drawing treatment has not been elucidated yet. Further, it has been actively discussed that the structural change of cementite and ferrite is caused by wire drawing.
There is no covenant document that the decline will occur. The present inventor takes a position to explain the phenomenon that the volume fraction of cementite decreases from the following thermodynamics. As a result of the cementite being divided by wire drawing, the diameter is nanometer (nm)
When the order is reached, the area of the interface between cementite and steel increases, and the interface energy increases. As a result, cementite becomes unstable and a part of the cementite decomposes. The present inventor, for the first time, will explain with this concept, but does not intend to be bound by this concept, if the target structure in steel can be obtained under certain manufacturing conditions, adopt that condition, The production conditions of the present invention were set.

【0039】セメンタイトの平均粒径および(セメンタ
イト体積%)/C含有率の求め方は実施例で詳しく説明
する。
The method for determining the average particle size of cementite and the content of (cementite volume%) / C will be described in detail in Examples.

【0040】(C)製造方法 伸線処理は通常ダイス孔を通して引き抜くことにより行
う。
(C) Manufacturing Method The wire drawing process is usually performed by drawing through a die hole.

【0041】(C−1)熱処理(パテンティング) 通常の熱間圧延で得られた鋼線にそのまま伸線処理を施
し、加工硬化後、熱処理を施してもよいし、熱間圧延後
の鋼線を直ちに熱処理し伸線処理を施してもよい。熱処
理は伸線処理中に1回だけでもよいし、複数回施しても
よい。この熱処理において、オーステナイト化温度を9
00℃以上とするのは、セメンタイトをすべて固溶し均
一な組織を得るためである。一方、オーステナイト化温
度が1100℃以上になるとオーステナイト粒径が粗大
化し熱処理後の鋼線の延性が低下し、伸線中に断線を生
じやすくなる。セメンタイトが固溶すればよいのでオー
ステナイト化保持時間の下限は実質的に0も含む。一
方、保持時間が120秒を超えると、生産性が阻害され
るので、0〜120秒とする。なお、この保持時間は、
事前に熱電対による測温や計算シミュレーションで鋼線
の温度推移を定めたうえで、実際は在炉時間で管理する
ことになる。
(C-1) Heat Treatment (Patenting) The steel wire obtained by ordinary hot rolling may be subjected to wire drawing as it is, and may be subjected to heat treatment after work hardening, or the steel after hot rolling. The wire may be immediately heat-treated and subjected to wire drawing. The heat treatment may be performed only once or a plurality of times during the drawing process. In this heat treatment, the austenitizing temperature was 9
The reason why the temperature is set to 00 ° C. or higher is to obtain a uniform structure by dissolving all cementite. On the other hand, when the austenitizing temperature is 1100 ° C. or higher, the austenite grain size becomes coarse, the ductility of the steel wire after the heat treatment is reduced, and the wire is easily broken during drawing. The lower limit of the austenitization holding time includes substantially zero, since cementite may be in solid solution. On the other hand, if the holding time exceeds 120 seconds, productivity is impaired, so the time is set to 0 to 120 seconds. The holding time is
After the temperature transition of the steel wire is determined in advance by temperature measurement using a thermocouple or calculation simulation, it is actually managed based on the furnace time.

【0042】変態処理は、微細パーライト、または微細
パーライトと少量の上部ベイナイトを得るために行う。
したがって、本発明のC含有率の場合は、変態を生じさ
せるための等温保持温度は500〜650℃の温度域と
する。500℃未満では、上部ベイナイトが主相となり
伸線中に断線を生じやすくなる。一方、650℃を超え
ると、粗大パーライト等が生成し、目標とするTSを確
保できず、さらに伸線中に断線を生じやすい。変態処理
温度での保持時間は、3〜30秒とする。3秒未満では
オーステナイトが全て微細パーライト等に変態していな
いので、その後の冷却によりマルテンサイト等が生成し
断線の原因となる。一方、30秒を超えると生産性に悪
影響を及ぼすので30秒以下とする。
The transformation treatment is performed to obtain fine pearlite or fine pearlite and a small amount of upper bainite.
Therefore, in the case of the C content of the present invention, the isothermal holding temperature for causing transformation is in a temperature range of 500 to 650 ° C. If the temperature is lower than 500 ° C., the upper bainite becomes the main phase, and the wire tends to break during drawing. On the other hand, when the temperature exceeds 650 ° C., coarse pearlite or the like is generated, a target TS cannot be secured, and disconnection is likely to occur during wire drawing. The holding time at the transformation temperature is 3 to 30 seconds. If the time is less than 3 seconds, all of the austenite has not been transformed into fine pearlite or the like, so that martensite or the like is generated by subsequent cooling, which causes disconnection. On the other hand, if the time exceeds 30 seconds, the productivity is adversely affected.

【0043】(C−2)最終伸線処理 最終伸線処理はダイスを通して引き抜きにより行う。最
終伸線処理におけるダイスの数は15〜30個とする。
ダイス数が15未満ではつぎに説明する加工度の条件を
満たそうとするとダイス1個あたりの加工度が過大とな
り断線等を生じ易い。一方、ダイス数が30を超えると
各ダイスでの加工量が小さくなり、セメンタイトが有効
に破砕されず、分断できない。
(C-2) Final Drawing Processing The final drawing processing is performed by drawing through a die. The number of dice in the final wire drawing process is 15 to 30.
If the number of dies is less than 15, the degree of processing per one die is excessively large and disconnection or the like is likely to occur when trying to satisfy the condition of the degree of processing described below. On the other hand, when the number of dies exceeds 30, the processing amount in each die becomes small, and cementite is not effectively crushed and cannot be divided.

【0044】各ダイスのダイス角度は7〜15゜とす
る。ダイス角度が7゜未満ではつぎに説明する加工度を
確保できない。一方、ダイス角度が15゜を超えると、
ダイス1個あたりの加工度が過大となり、断線の危険性
が高くなる。
The die angle of each die is 7 to 15 °. If the die angle is less than 7 °, the processing degree described below cannot be secured. On the other hand, when the die angle exceeds 15 °,
The degree of processing per die becomes excessive, and the risk of disconnection increases.

【0045】上記の全てのダイスを引き抜かれることに
より鋼線に加えられる加工度は、真ひずみ(ln(S0/
Sf))で3.0〜4.5とする。真ひずみが3.0未満
では加工度が不足して、たとえ、セメンタイトの平均粒
径、セメンタイトの体積%が本発明の定義範囲内に入っ
ても、TSが4150MPa未満になる。一方、4.5
を超えると鋼中の組織は本発明の定義範囲に入るが断線
の可能性が高くなる。
The degree of working applied to the steel wire by drawing all the dies is true strain (ln (S 0 /
S f )) is set to 3.0 to 4.5. If the true strain is less than 3.0, the workability is insufficient, and the TS becomes less than 4150 MPa even if the average particle size of cementite and the volume% of cementite fall within the defined range of the present invention. On the other hand, 4.5
If it exceeds, the structure in the steel falls within the definition range of the present invention, but the possibility of disconnection increases.

【0046】最終伸線処理は冷間で行う。冷間とは、上
記したように外部から加熱処理を施さないという意味
で、伸線処理の結果、温度は当然上昇する。伸線では潤
滑油、エマルジョン等を用いるが、液体による潤滑に限
定されず黒鉛等の固体による潤滑であってもよい。潤滑
剤の温度(使用開始時の温度)は特に限定しないが、潤
滑特性の観点から、後記する実施例の表2に示す温度付
近であることが望ましい。
The final drawing process is performed cold. Cold means that the heat treatment is not performed from the outside as described above, and the temperature naturally rises as a result of the wire drawing. Although lubricating oil, emulsion, and the like are used in wire drawing, the lubrication is not limited to liquid lubrication but may be solid lubrication such as graphite. The temperature of the lubricant (the temperature at the start of use) is not particularly limited, but is preferably around the temperature shown in Table 2 in Examples described later from the viewpoint of lubrication characteristics.

【0047】最終伸線処理前の鋼線は必ずめっきが施さ
れていなければならない。めっきが施されていないと潤
滑が不十分となり焼き付き等が生じ断線が起きやすく、
断線が生じないまでも表面に傷がつきやすい。めっきの
種類は、真鍮めっき、銅めっき等何でもよい。
The steel wire before the final wire drawing must be plated. If plating is not applied, lubrication will be insufficient and seizure etc. will occur and disconnection will easily occur,
Even if there is no break, the surface is easily scratched. The type of plating may be anything, such as brass plating or copper plating.

【0048】巻き取り部分での伸線速度は、400〜2
000m/分とする。400m/分未満の場合は、工業
的な面から生産性が不十分である。一方、2000m/
分を超えると鋼線の破断の危険性が大きくなる。
The drawing speed at the winding portion is 400 to 2
000 m / min. When it is less than 400 m / min, the productivity is insufficient from an industrial point of view. On the other hand, 2000m /
Exceeding the minutes increases the risk of breakage of the steel wire.

【0049】[0049]

【実施例】つぎに実施例により本発明の効果を説明す
る。
EXAMPLES Next, the effects of the present invention will be described with reference to examples.

【0050】表1は試験材の鋼の化学組成を示す。Table 1 shows the chemical composition of the test steel.

【0051】[0051]

【表1】 [Table 1]

【0052】表1に示す鋼A〜Vを通常の方法により1
50kg真空炉を用いて溶製した。これらの鋼のうち、
鋼B〜E、G、I、K、M、N、P、Q、SおよびTは
本発明例であり、一方、鋼A、F、H、J、L、O、
R、UおよびVは比較例である。
The steels A to V shown in Table 1 were prepared by the usual method.
It was melted using a 50 kg vacuum furnace. Of these steels,
Steels BE, G, I, K, M, N, P, Q, S and T are examples of the present invention, while steels A, F, H, J, L, O,
R, U and V are comparative examples.

【0053】次いで、これらの鋼塊を通常の方法によっ
て線径5.5mmの鋼線に熱間圧延した後、コイル状に
巻き取り、室温まで冷却した。この5.5mmφの鋼線
を1.4mmφまで冷間伸線した後、熱処理を施した。
Next, these steel ingots were hot-rolled into steel wires having a wire diameter of 5.5 mm by a usual method, wound up in a coil shape, and cooled to room temperature. After the 5.5 mmφ steel wire was cold drawn to 1.4 mmφ, heat treatment was performed.

【0054】図2はこの熱処理を施す装置の概要を示
す。同図に示す加熱炉によって鋼線を1000℃に10
秒保持した後、570℃の鉛浴中に30秒浸漬して熱処
理を行った。さらに通常の方法で真鍮めっきを行った
後、表2に示す条件で0.2mmφまで最終伸線し、引
張試験および捻回試験を行った。捻回試験は、最終伸線
後の直径の100倍の長さである20mmの長さの部分
を、試験材が破断するまで、15回転/分で捻回した。
破断後の試験片の形状を観察して、縦割れがあるかどう
かを決定した。
FIG. 2 shows an outline of an apparatus for performing this heat treatment. The steel wire is heated to 1000 ° C by the heating furnace shown in FIG.
After holding for 2 seconds, it was immersed in a lead bath at 570 ° C. for 30 seconds to perform heat treatment. Further, after performing brass plating by a usual method, the wire was finally drawn to 0.2 mmφ under the conditions shown in Table 2, and a tensile test and a twist test were performed. In the torsion test, a portion having a length of 20 mm, which is 100 times the diameter after the final drawing, was twisted at 15 revolutions / minute until the test material broke.
By observing the shape of the test piece after breaking, it was determined whether or not there was a vertical crack.

【0055】[0055]

【表2】 [Table 2]

【0056】最終伸線後の鋼中の組織中でのセメンタイ
トの平均粒径は、透過型電子顕微鏡を用いた暗視野像に
よってセメンタイトを観察し、100個のセメンタイト
粒の(短径+長径)/2の平均値によって求めた。
The average particle size of cementite in the structure of the steel after the final drawing was determined by observing the cementite by a dark-field image using a transmission electron microscope and calculating the (minor axis + major axis) of 100 cementite grains. / 2.

【0057】また、セメンタイトの体積%はつぎの方法
により測定した。セメンタイト分解の結果、排出された
炭素は、昇温するとセメンタイトとして再析出して発熱
反応を示すことを利用し、示差走査熱量計により、分解
したセメンタイト量を測定した。最終伸線後のセメンタ
イトの体積%は、最終伸線前の体積%である15×C(重
量%)から分解したセメンタイト量を差し引いて求めた。
The volume percentage of cementite was measured by the following method. As a result of the decomposition of cementite, the amount of carbon decomposed was measured by a differential scanning calorimeter, utilizing the fact that the carbon discharged as a cementite reprecipitated when the temperature was raised and exhibited an exothermic reaction. The volume% of the cementite after the final drawing was determined by subtracting the amount of decomposed cementite from 15 × C (% by weight) which is the volume% before the final drawing.

【0058】表3はこれらの試験結果を示す。Table 3 shows the results of these tests.

【0059】[0059]

【表3】 [Table 3]

【0060】同表によれば、本発明の定義範囲から外れ
た比較例の場合には、伸線後のTSが4150MPa未
満であるか、捻回試験時に縦割れが発生するか、または
その両方が該当する。試験番号27、37はセメンタイ
トの平均粒径が2nm未満であるため、また、試験番号
41はセメンタイトが10nmを超えるため、捻回試験
で縦割れが発生した。
According to the table, in the case of the comparative example which is out of the defined range of the present invention, TS after drawing is less than 4150 MPa, longitudinal cracking occurs in a twist test, or both. Is applicable. In Test Nos. 27 and 37, since the average particle size of cementite was less than 2 nm, and in Test No. 41, since cementite exceeded 10 nm, vertical cracks occurred in the twist test.

【0061】試験番号25、35、36は(セメンタイ
ト体積%)/{C含有率(重量%)}が6未満のため、試
験番号30、32は(セメンタイト体積%)/{C含有
率(重量%)}が12を超えるため捻回試験で縦割れが発
生した。
Test Nos. 25, 35 and 36 have (Cementite volume%) / {C content (% by weight)} of less than 6, and Test Nos. 30 and 32 have (Cementite volume%) / ΔC content (weight%). %)} Exceeds 12, vertical cracks occurred in the twisting test.

【0062】試験番号1はCの含有率(以下、「%」は
「重量%」をさす)が0.8%未満のため、試験番号2
は(セメンタイト体積%)/(C含有率)が12を超え
るため、最終伸線後のTSが4150MPa未満であっ
た。
Test No. 1 has a C content (hereinafter, “%” means “% by weight”) of less than 0.8%.
Since (cementite volume%) / (C content) exceeds 12, TS after final drawing was less than 4150 MPa.

【0063】試験番号6はCの含有率が1.2%を超え
るため、試験番号18はVの含有率が0.3%を超える
ため、試験番号22はAlの含有率が0.003%を超
えるため、伸線加工性が悪く、最終伸線中に断線した。
Test No. 6 had a C content exceeding 1.2%, test No. 18 had a V content exceeding 0.3%, and test No. 22 had an Al content of 0.003%. , The wire drawing workability was poor, and the wire was broken during the final wire drawing.

【0064】試験番号10はMnの含有率が1%を超え
るため、試験番号12はCrの含有率が1%を超えるた
め、試験番号15はMoの含有率が0.5%を超えるた
め、試験番号21はCoの含有率が2%を超えるため、
マルテンサイトが生成し、そのため最終伸線中に断線し
た。
Test No. 10 has a Mn content of more than 1%, test No. 12 has a Cr content of more than 1%, and test No. 15 has a Mo content of more than 0.5%. Test No. 21 has a Co content of more than 2%,
Martensite was formed and thus broke during the final drawing.

【0065】試験番号8はSi含有率が1.5%を超え
るため、捻回特性が悪く、捻回試験で縦割れが発生し
た。
In Test No. 8, since the Si content exceeded 1.5%, the torsion characteristics were poor, and vertical cracks occurred in the torsion test.

【0066】これに対して、本発明例では、伸線後のT
Sが4150MPa以上であり、かつ捻回試験で縦割れ
が発生しないことが明らかである。
On the other hand, in the example of the present invention, T
It is clear that S is 4150 MPa or more and that no vertical crack occurs in the twist test.

【0067】[0067]

【発明の効果】本発明によれば、従来に比べ、最終伸線
後のTSが高く、かつ捻回試験で縦割れの発生しない伸
線強化型高強度鋼線を安定して得ることが可能である。
According to the present invention, it is possible to stably obtain a drawn-strengthened high-strength steel wire which has a higher TS after final drawing and does not cause longitudinal cracks in a twist test, as compared with the prior art. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TSが4150MPa以上で、かつ捻回試験で
縦割れが発生しないセメンタイト平均粒径、および(セ
メンタイトの体積%)/{C(重量%)}の範囲を示す。
FIG. 1 shows the average particle diameter of cementite having a TS of 4150 MPa or more and no longitudinal cracking in a twist test, and the range of (volume% of cementite) / {C (weight%)}.

【図2】実施例の試験の熱処理に用いた装置の模式図で
ある。
FIG. 2 is a schematic diagram of an apparatus used for heat treatment in a test of an example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.8〜1.2%、Si:
0.1〜1.5%、Mn:0.2〜1%、Al:0.0
03%以下、Cr:0〜1%、Mo:0〜0.5%、
V:0〜0.3%、およびCo:0〜2%を含み、残部
はFeおよび不可避的不純物からなる化学組成を備え、
鋼中の組織が、体積比率が6.0×C(重量%)〜12.0×C
(重量%)%で、その平均粒径が2〜10nmであるセメンタ
イトと残部実質的にフェライトからなる伸線強化型高強
度鋼線材。
(1) C: 0.8-1.2% by weight, Si:
0.1-1.5%, Mn: 0.2-1%, Al: 0.0
03% or less, Cr: 0 to 1%, Mo: 0 to 0.5%,
V: 0 to 0.3%, and Co: 0 to 2%, with the balance having a chemical composition of Fe and unavoidable impurities,
The structure in steel has a volume ratio of 6.0 × C (% by weight) to 12.0 × C
(% By weight)%, a wire-strengthened high-strength steel wire comprising cementite having an average particle diameter of 2 to 10 nm and the balance substantially of ferrite.
【請求項2】線材に、下記の熱処理を1回または複数
回含む伸線処理を行い、最終伸線処理前に当該鋼線表面
にめっき処理を施し、冷間で下記の条件で最終伸線処
理を行うことを特徴とする請求項1の線材の製造方法。 熱処理 (a)オーステナイト化 温度:900〜1100℃ 保持時間:0〜120秒 (b)変態処理 温度:500〜650℃ 保持時間:3〜30秒 最終伸線処理 (a)加工度 :真ひずみ(ln(S0/Sf))で、3.0〜
4.5 ただし、lnは自然対数、S0は最終伸線前の断面積、Sf
最終伸線後の断面積を表す。 (b)ダイス数:15〜30 (c)ダイス角度:7〜15゜ (d)巻き取り部での伸線速度:400〜2000m/分
2. A wire rod is subjected to a drawing process including one or more of the following heat treatments, and a plating process is performed on the surface of the steel wire before the final drawing process. The method for producing a wire according to claim 1, wherein the treatment is performed. Heat treatment (a) Austenitizing Temperature: 900 to 1100 ° C Holding time: 0 to 120 seconds (b) Transformation temperature: 500 to 650 ° C Holding time: 3 to 30 seconds Final wire drawing (a) Degree of work: True strain ( ln (S 0 / S f ))
4.5 However, ln is the cross-sectional area of the natural logarithm, S 0 is final drawing ago, S f represents the cross-sectional area after the final drawing. (b) Number of dies: 15 to 30 (c) Die angle: 7 to 15 ° (d) Drawing speed at the winding section: 400 to 2000 m / min
JP07869298A 1998-03-26 1998-03-26 Wire drawing reinforced high-strength steel wire and method of manufacturing the same Expired - Fee Related JP3277878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07869298A JP3277878B2 (en) 1998-03-26 1998-03-26 Wire drawing reinforced high-strength steel wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07869298A JP3277878B2 (en) 1998-03-26 1998-03-26 Wire drawing reinforced high-strength steel wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11269607A true JPH11269607A (en) 1999-10-05
JP3277878B2 JP3277878B2 (en) 2002-04-22

Family

ID=13668927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07869298A Expired - Fee Related JP3277878B2 (en) 1998-03-26 1998-03-26 Wire drawing reinforced high-strength steel wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3277878B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
US7258756B2 (en) 2003-10-23 2007-08-21 Kobe Steel, Ltd. Very thin, high carbon steel wire and method of producing same
WO2011126073A1 (en) 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
CN102644029A (en) * 2012-05-14 2012-08-22 武汉科技大学 Micro-alloyed cord steel wire rod with high strain drawing performance
KR101461724B1 (en) * 2012-11-27 2014-11-14 주식회사 포스코 High strength steel wire
CN105296739A (en) * 2014-07-11 2016-02-03 鞍钢钢绳有限责任公司 Heat treatment process for microalloyed steel wire
KR20180110002A (en) 2016-03-28 2018-10-08 신닛테츠스미킨 카부시키카이샤 Steel wire with excellent resistance to delayed fracture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800147B2 (en) 2001-09-10 2004-10-05 Kobe Steel, Ltd. High-strength steel wire excelling in resistance to strain aging embrittlement and longitudinal cracking, and method for production thereof
US7258756B2 (en) 2003-10-23 2007-08-21 Kobe Steel, Ltd. Very thin, high carbon steel wire and method of producing same
WO2011126073A1 (en) 2010-04-08 2011-10-13 新日本製鐵株式会社 Wire material for saw wire and method for producing same
CN102644029A (en) * 2012-05-14 2012-08-22 武汉科技大学 Micro-alloyed cord steel wire rod with high strain drawing performance
KR101461724B1 (en) * 2012-11-27 2014-11-14 주식회사 포스코 High strength steel wire
CN105296739A (en) * 2014-07-11 2016-02-03 鞍钢钢绳有限责任公司 Heat treatment process for microalloyed steel wire
KR20180110002A (en) 2016-03-28 2018-10-08 신닛테츠스미킨 카부시키카이샤 Steel wire with excellent resistance to delayed fracture

Also Published As

Publication number Publication date
JP3277878B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
JP2005206853A (en) High carbon steel wire rod having excellent wire drawability, and production method therefor
EP1361289B1 (en) High strength spring made of heat-treated steel wire
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP5945196B2 (en) High strength steel wire
JP4646850B2 (en) High carbon steel wire rod with excellent resistance to breakage of copper
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3456455B2 (en) Steel wire rod, steel wire, and method for producing them
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP6501036B2 (en) Steel wire
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JPH0949018A (en) Production of steel wire for reinforcing rubber
JP2000001751A (en) High strength steel wire having disconnection resistance
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3300932B2 (en) Manufacturing method of high strength steel wire
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
US5658399A (en) Bainite wire rod and wire for drawing and methods of producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees