WO2019004454A1 - High-strength steel wire - Google Patents

High-strength steel wire Download PDF

Info

Publication number
WO2019004454A1
WO2019004454A1 PCT/JP2018/024904 JP2018024904W WO2019004454A1 WO 2019004454 A1 WO2019004454 A1 WO 2019004454A1 JP 2018024904 W JP2018024904 W JP 2018024904W WO 2019004454 A1 WO2019004454 A1 WO 2019004454A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
wire
area ratio
pearlite structure
high strength
Prior art date
Application number
PCT/JP2018/024904
Other languages
French (fr)
Japanese (ja)
Inventor
真 小此木
直樹 松井
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP18824446.1A priority Critical patent/EP3647446A4/en
Priority to KR1020197038563A priority patent/KR20200016289A/en
Priority to CN201880042600.0A priority patent/CN110832096A/en
Priority to JP2018565078A priority patent/JP6485612B1/en
Publication of WO2019004454A1 publication Critical patent/WO2019004454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present disclosure relates to high strength steel wire.
  • high strength steel wires such as rope steel wires, bridge cable steel wires, PC steel wires etc.
  • high carbon steel wire is patented and made into pearlite structure, then wire drawn and aged steel wires It is manufactured using.
  • a high strength steel wire having a tensile strength of 1960 MPa or more is required for the purpose of reduction of construction cost or weight reduction of a structure.
  • high strength steel wire has a small number of revolutions (breaking value) until fracture in a twisting test, and sometimes vertical cracks called delamination may occur, so it is an issue to have both twisting characteristics and high strength. It has become.
  • Patent Document 1 proposes a steel wire in which the hardness in the region of 0.1 d (d is the diameter of the wire) is adjusted from the surface layer in the cross section of the steel wire. It is done.
  • Patent Document 2 proposes a high-strength galvanized steel wire having a helical processed structure with two or more turns in the same direction with respect to a length per 100 d (d: wire diameter).
  • Patent Document 3 the area ratio of non-pearlite structure is 10% or less in the portion of depth from the surface layer to 50 ⁇ m, the area ratio of non-pearlite structure is 5% or less in the entire cross section, and the plating adhesion amount is on the surface
  • a galvanized steel wire plated with zinc of 300 to 500 g / m 2 has been proposed.
  • Patent Document 4 proposes a method of manufacturing a steel wire which passes tension between steel wires and passes a plurality of rolls at a bending angle after drawing.
  • T (20 + log t) 12 12700 (T: bruising temperature indicated by absolute temperature, t: bruce indicated by time) at a temperature of 430 ° C. or higher
  • T bruising temperature indicated by absolute temperature
  • t bruce indicated by time
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-336459
  • Patent Document 2 Japanese Patent No. 3130445
  • Patent Document 3 Japanese Patent No. 5169839
  • Patent Document 4 Japanese Patent No. 3725576
  • Patent Document No. 5 Japanese Patent No. 2553612
  • Patent Document 5 describes that a twisting characteristic can be improved by performing a predetermined bluing treatment on a steel wire after wire drawing.
  • a wire rod obtained by hot rolling and cooling by a usual method is reheated in a usual atmosphere (that is, an atmospheric atmosphere), immersed in a molten lead bath, cooled and drawn.
  • a predetermined bluing treatment is performed on the obtained steel wire. Therefore, by decarburization of the surface layer portion in the manufacturing process, the area ratio of pearlite structure of the surface layer portion of the steel wire becomes low, and there is a large room for improvement of the twisting characteristics.
  • one aspect of the present disclosure is to provide a high-strength steel wire having high strength and excellent twisting characteristics.
  • the component composition is in mass%, C: 0.85 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.20 to 1.00%, P: 0.030% or less, S: 0.030% or less, N: 0.0010 to 0.0080%, B: 0 to 0.0050%, Al: 0 to 0.100%, Ti: 0 to 0.050%, Cr: 0 to 0.60%, V: 0 to 0.10%, Nb: 0 to 0.050%, Zr: 0 to 0.050%, and Ni: 0 to 1.00% Containing the balance Fe and impurities,
  • the area ratio of pearlite structure in the steel wire is 90% or more
  • the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more
  • the area ratio of lamellar pearlite structure having an average length of cementite of 1.0 ⁇ m or more is
  • the composition of the steel wire is, in mass%, one or more of B: 0.0001 to 0.0050%, Al: 0.001 to 0.100%, and Ti: 0.001 to 0.050%.
  • the high strength steel wire as described in ⁇ 1> containing 2 or more types.
  • the composition of the steel wire is, in mass%, Cr: 0.01 to 0.60%, V: 0.01 to 0.10%, Nb: 0.001 to 0.050%, Zr: 0.
  • the high strength steel wire according to ⁇ 1> or ⁇ 2> containing one or more of 001 to 0.050% and Ni: 0.01 to 1.00%.
  • ⁇ 4> The high-strength steel wire according to any one of ⁇ 1> to ⁇ 3>, wherein the diameter of the steel wire is 1.5 to 8.0 mm.
  • ⁇ 5> The high strength steel wire according to any one of ⁇ 1> to ⁇ 4>, wherein a plated layer having any one of a Zn layer and a Zn alloy layer is coated on the surface of the steel wire.
  • a high strength steel wire having high strength and excellent twisting characteristics is provided.
  • FIG. 1 is a schematic view for explaining an observation area for measuring an area ratio of pearlite structure in an inner portion and a surface portion of a steel wire.
  • FIG. 2 is a schematic view for explaining an observation area for measuring the area ratio of the lamellar pearlite structure and the area ratio of the divided pearlite structure.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value. Further, a numerical range in which “super” or “less than” is added to the numerical values described before and after “to” means a range that does not include these numerical values as the lower limit value or the upper limit value.
  • the content of the element of the component composition is expressed as an element amount (for example, an amount of C, an amount of Si, etc.).
  • “%” means “mass%” about content of the element of a component composition.
  • the term “step” is included in the term if the intended purpose of the step is achieved, even if it can not be distinguished clearly from the other steps, not only an independent step.
  • a cross section including the central axis of the steel wire and parallel to the central axis includes the central axis of the steel wire and is cut along the longitudinal direction of the steel wire (that is, the drawing direction) parallel to the central axis It shows a cross section.
  • the "central axis” indicates an imaginary line extending in the axial direction, passing through the center point of the cross section orthogonal to the axial direction (longitudinal direction) of the steel wire.
  • the length of cementite indicates the length of the long axis of cementite in pearlite structure when a cross section including the central axis of the steel wire and parallel to the central axis is observed.
  • the inside of a steel wire shows the area
  • the surface layer part of a steel wire shows the area
  • the high strength steel wire according to the present embodiment is a high strength steel wire having a predetermined component composition and having a metal structure satisfying the following (1) and (2) and having a tensile strength of 1960 MPa or more. .
  • the area ratio of the lamellar pearlite structure having an average length of cementite of 1.0 ⁇ m or more among the structures in the entire steel wire is 30% or more and 65% or less, and the average length of cementite is 0
  • the area ratio of the divided perlite structure which is 30 ⁇ m or less is 20% or more and 50% or less.
  • the high-strength steel wire according to the present embodiment is a steel wire having high strength and excellent twisting characteristics by the above configuration.
  • the high strength steel wire according to the present embodiment was found by the following findings.
  • the metallographic structure of the steel wire is pearlite, and the lamellar pearlite structure with a long cementite length and the cementite length It is effective to make a mixed structure of short and divided perlite tissue.
  • the pearlite structure has a layered structure of cementite phase and ferrite phase.
  • the metallographic structure of the drawn steel wire is pearlite structure with fine layer spacing, pearlite structure with irregularly bent layers, pearlite structure with locally sheared layers, etc. Is a heterogeneous and complex organization.
  • the inventors investigated in detail the effects of the component composition and the metal structure of the steel wire on the torsion characteristics.
  • the present inventors obtained the following findings.
  • the area ratio of the non-pearlite structure of the steel wire is reduced (that is, the area ratio of the pearlite structure of the steel wire is increased) and the cementite has a long lamellar pearlite structure and a long length.
  • the pearlite structure is a mixture of a divided pearlite structure having a short cementite length, the twisting characteristics are improved even with a high strength steel wire having a tensile strength of 1960 MPa or more.
  • the high-strength steel wire according to the present embodiment is a steel wire having high strength and excellent twisting characteristics.
  • the high-strength steel wire according to the present embodiment is a steel wire having a tensile strength of 1960 MPa or more and excellent in torsion characteristics, and can be used, for example, as a steel wire for ropes, steel wire for bridge cables, PC steel wire, etc. . Therefore, the high-strength steel wire according to the present embodiment contributes, for example, to weight reduction of civil engineering and buildings and reduction of construction costs, and is extremely useful in industry.
  • composition of the high strength steel wire is, in mass%, C: 0.85 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.20 to 1.00%, P: 0. 030% or less, S: 0.030% or less, N: 0.0010 to 0.0080%, B: 0 to 0.0050%, Al: 0 to 0.100%, Ti: 0 to 0.050%, Cr: 0 to 0.60%, V: 0 to 0.10%, Nb: 0 to 0.050%, Zr: 0 to 0.050%, and Ni: 0 to 1.00% It consists of the balance Fe and impurities. However, B, Al, Ti, Cr, V, Nb, Zr, and Ni are optional elements. That is, these elements may not be contained in the high strength steel wire.
  • the amount of C is added to secure the tensile strength of the steel wire. If the amount of C is less than 0.85%, pro-eutectoid ferrite is formed, and it is difficult to secure a predetermined tensile strength. On the other hand, when the amount of C exceeds 1.20%, the amount of proeutectoid cementite increases and the wire drawability deteriorates. Therefore, the amount of C is set to 0.85 to 1.20%.
  • the lower limit of the preferable C amount to achieve both high strength and wire drawability is 0.90%.
  • the upper limit of the preferable C amount which makes high strength and wire-drawing workability compatible is 1.10%.
  • Si has the effect of enhancing tensile strength by solid solution strengthening, as well as enhancing the relaxation characteristics. If the amount of Si is less than 0.10%, these effects are insufficient. When the amount of Si exceeds 2.00%, these effects are saturated and the hot ductility is deteriorated to lower the manufacturability. Therefore, the amount of Si is set to 0.10 to 2.00%.
  • the lower limit of the preferred amount of Si is 0.50%. More preferably, the lower limit of the amount of Si may be 1.00%.
  • the upper limit of the preferable amount of Si is 1.80%. The upper limit of the amount of Si is more preferably 1.50%.
  • Mn has the effect of increasing the tensile strength of the steel after pearlite transformation. If the amount of Mn is less than 0.20%, the effect is insufficient. When the amount of Mn exceeds 1.00%, the effect is saturated. Therefore, the amount of Mn is set to 0.20 to 1.00%.
  • the lower limit of the preferable amount of Mn is 0.30%.
  • the upper limit of the preferable amount of Mn is 0.90%.
  • P and S are contained in the steel wire as impurities. P and S should be suppressed because they deteriorate ductility. Therefore, the upper limit of both P amount and S amount was made into 0.030%.
  • the upper limit of preferable P amount and S amount is 0.020%.
  • the upper limit of more preferable P amount and S amount is 0.015% or less.
  • the lower limit of P amount and S amount is preferably 0% (that is, although it is good not to include), it is more than 0% (or 0.0001% or more) from the viewpoint of reducing de-P cost and desulfurization cost. Good to have.
  • N forms nitrides with Al, Ti, Nb, V, etc., and has the effect of refining the grain size and improving the ductility. If the amount of N is less than 0.0010%, these effects are not obtained. If the amount of N exceeds 0.0080%, wire drawability and ductility are deteriorated. Therefore, the N content is set to 0.0010 to 0.0080%.
  • the lower limit of the preferable N amount is 0.0020%.
  • the upper limit of the preferable N amount is 0.0060%.
  • the upper limit of the more preferable N amount is 0.0050%.
  • B 0.0001 to 0.0050%
  • Al 0.001 to 100% by mass. It may contain one or more of 0.100% and Ti: 0.001 to 0.050%.
  • the B is segregated at grain boundaries as solid solution B to suppress the formation of non-pearlite structure, and has an effect of improving twisting characteristics and wire drawability. If the B content exceeds 0.0050%, carbides may be formed at grain boundaries to deteriorate drawability. Therefore, the B content is preferably 0.0001 to 0.0050%.
  • the lower limit of the preferable B amount is 0.0005%.
  • the upper limit of the preferable B amount is 0.0030%.
  • the upper limit of the amount of B is more preferably 0.0020%.
  • Al functions as a deoxidizing element.
  • Al has the effect of forming AlN to refine crystal grains and improving ductility, the effect of reducing solid solution N and improving ductility, and promoting the formation of solid solution B to form a non-pearlite structure.
  • the Al content is preferably 0.001 to 0.100%.
  • the lower limit of the preferred amount of Al is 0.010%.
  • the lower limit of the amount of Al is more preferably 0.020%.
  • the upper limit of the preferable amount of Al is 0.080%.
  • the upper limit of the amount of Al is more preferably 0.070%.
  • Ti functions as a deoxidizing element.
  • Ti precipitates carbides and nitrides to increase tensile strength, reduces grain size to improve ductility, reduces solid solution N, and improves wire drawability, solid There is an effect of promoting the formation of melt B, suppressing the formation of non-pearlite structure, and improving the twist characteristics and wire drawability.
  • the amount of Ti is preferably 0.001 to 0.050%.
  • the lower limit of the preferred amount of Ti is 0.010%.
  • the upper limit of the preferable Ti amount is 0.030%.
  • the upper limit of the amount of Ti is more preferably 0.025%.
  • the high strength steel wire according to the present embodiment has Cr: 0.01 to 0.60%, V: 0.01 to 0.10%, Nb: 0.001 to 200 for the purpose of improving the characteristics described below. It may contain one or more of 0.050%, Zr: 0.001 to 0.050%, and Ni: 0.01 to 1.00%.
  • the Cr has the effect of increasing the tensile strength of the steel after pearlite transformation.
  • the amount of Cr exceeds 0.60%, a martensitic structure tends to be formed, which may deteriorate wire drawability and twisting characteristics.
  • the amount of Cr is preferably 0.01 to 0.60%.
  • the upper limit of the preferable amount of Cr is 0.50%.
  • the upper limit of the amount of Cr is more preferably 0.40%.
  • V has the effect of precipitating carbide VC and enhancing the tensile strength. If the V content exceeds 0.10%, the alloy cost may increase and the twisting characteristics may be degraded. Therefore, the V content is preferably 0.01 to 0.10%.
  • the upper limit of the preferable V amount is 0.08%.
  • the upper limit of the more preferable V amount is 0.07%.
  • Nb has an effect of precipitating carbides and nitrides to enhance tensile strength, an effect of refining crystal grains to improve ductility, and an effect of reducing solid solution N to improve wire drawability.
  • the Nb content is preferably 0.001 to 0.050%.
  • the upper limit of the preferable Nb amount is 0.030%.
  • the upper limit of the more preferable Nb amount is 0.020%.
  • Zr functions as a deoxidizing element. Further, Zr has the effect of reducing the solid solution S by forming a sulfide and improving the ductility. If the Zr content exceeds 0.050%, these effects saturate and coarse oxides may be formed, which may deteriorate wire drawability. Therefore, the amount of Zr is preferably 0.001 to 0.050%. The upper limit of the preferable amount of Zr is 0.030%. The upper limit of the more preferable amount of Zr is 0.020%.
  • Ni has the effect of suppressing the penetration of hydrogen and improving the resistance to hydrogen embrittlement.
  • the amount of Ni exceeds 1.00%, the alloy cost is increased, and a martensitic structure is easily formed, which may deteriorate wire drawability. Therefore, the amount of Ni is preferably 0.01 to 1.00%.
  • the upper limit of the preferable amount of Ni is 0.50%.
  • the upper limit of the amount of Ni is more preferably 0.30%.
  • the balance is Fe and impurities.
  • impurity refers to a component contained in the raw material or a component which is mixed in the process of production and is not intentionally contained. Furthermore, the impurities also include components that are intentionally contained, but in an amount that does not affect the performance of the steel wire.
  • O etc. are mentioned, for example. O is unavoidably contained in the steel wire and exists as an oxide such as Al or Ti. When the amount of O is high, coarse oxides are formed, which causes breakage during wire drawing. Therefore, it is preferable to suppress the amount of O to 0.010% or less.
  • the area ratio of pearlite structure in the steel wire is 90% or more, and the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more.
  • the area ratio of the pearlite structure is an area ratio in a cross section including the central axis of the line and parallel to the central axis.
  • the lower limit of the area ratio of pearlite structure is set to 90%.
  • the lower limit of the area ratio of the preferred perlite structure is 95%.
  • the lower limit of the area ratio of the more preferable pearlite structure is 97%.
  • the upper limit of the area ratio of the pearlite structure may be 100% or 99%.
  • the remaining structure i.e., non-pearlite structure
  • pearlite structure is ferrite, bainite, tempered bainite, martensite, tempered martensite, proeutectoid cementite or the like.
  • the lower limit of the area ratio of pearlite structure in the surface layer portion of the steel wire is set to 80%.
  • the lower limit of the area ratio of the preferred pearlite structure is 85%.
  • the lower limit of the area ratio of the more preferable pearlite structure is 90%.
  • the upper limit of the area ratio of the pearlite structure may be 95% or 99%.
  • the area ratio of the perlite structure may be 100%.
  • a method of setting the area ratio of the pearlite structure of the surface layer portion of the steel wire to 80% or more for example, a method of containing B and further containing at least one of Al and Ti, or hot There is a method of controlling the cooling rate of the wire after rolling. By performing either or both of these methods, it is possible to increase the area ratio of pearlite structure in the surface layer of the steel wire.
  • the remaining structure i.e. non-pearlite structure
  • pearlite structure is ferrite, bainite, tempered bainite, martensite, tempered martensite, proeutectoid cementite or the like.
  • a lamellar pearlite structure having a long cementite length and a divided pearlite structure having a short cementite length are used. It is effective to make the pearlite tissue mixed in an appropriate ratio.
  • the steel wire in this embodiment has a non-uniform and complicated structure including the dislocation introduced by wire drawing after wire drawing and before the aging treatment.
  • ordinary hot dip galvanizing treatment or equivalent aging treatment with heat treatment
  • the microscopic mechanical properties after plating treatment or after aging treatment
  • Such a steel wire has a small twist value because it locally deforms when subjected to torsional deformation.
  • appropriate aging treatment or plating treatment under appropriate conditions
  • the "lamellar pearlite structure” as used herein refers to a pearlite structure in which cementite has a long length and an average length of 1.0 ⁇ m or more.
  • the part having a relatively small influence by the aging treatment is a lamellar pearlite structure. If the area ratio of the lamellar pearlite structure is less than 30%, the strength is reduced (that is, it is difficult to obtain a strength of 1960 MPa or more), and if it exceeds 65%, the twisting property is degraded. Therefore, the area ratio of the lamellar pearlite structure is 30% or more and 65% or less.
  • the lower limit of the area ratio of the preferred lamellar perlite structure is 40%, more preferably 50%.
  • the upper limit of the area ratio of the preferred lamellar pearlite structure is 60%.
  • the "divided perlite structure" as used herein refers to a pearlite structure having a short cementite length and an average length of 0.30 ⁇ m or less.
  • the strain formed by wire drawing and the structure formed as a result of the cementite in the pearlite being divided by the influence of the aging treatment is a divided pearlite structure.
  • the area ratio of the divided pearlite structure is set to 20% or more and 50% or less.
  • the lower limit of the area ratio of the preferable split pearlite structure is 25%, and the more preferable lower limit is 30%.
  • the upper limit of the area ratio of a preferable divided pearlite structure is 45%, more preferably 40%.
  • the method of setting the area ratio of split pearlite structure of steel wire to 20% or more and 50% or less is, for example, 80% or more of area ratio of pearlite structure of surface layer portion after wire drawing at a total reduction ratio of 65 to 95%.
  • There is a method of holding the steel wire which is at 500 to 600 ° C. for 1 s or more and 20 s or less, or a method for holding the steel wire at 420 to 480 ° C. for 60 s or more and 600 s or less.
  • the measurement method of the organization was as follows.
  • the area ratio of the pearlite structure inside the steel wire is determined by the following procedure.
  • a cross section including the central axis of the steel wire and parallel to the central axis (hereinafter also referred to as “L cross section”) is etched with picral to reveal a metal structure.
  • a metallographic structure in a region of 50 ⁇ m in the radial direction of the steel wire ⁇ 60 ⁇ m in the longitudinal direction of the steel wire is photographed at a magnification of 2000 times by a SEM (scanning electron microscope).
  • the location of the SEM photograph of the metallographic structure is a position of a depth of 0.25 D in the radial direction of the steel wire from the surface (that is, the outer peripheral surface) of the steel wire and At a depth of 0.5 D from the surface in the radial direction of the steel wire, three points are provided at intervals of 5 mm in the longitudinal direction of the steel wire, for a total of six places (see FIG. 1).
  • OA1 shows the area
  • Non-perlite structures structures of ferrite, bainite, tempered bainite, martensite, tempered martensite, and proeutectoid cementite
  • the percent area of pearlite tissue is determined by subtracting the area of non-perlite tissue from the entire field of view. And this is measured about two samples, and let the average value of a total of 12 measured be the area ratio of the pearlite structure
  • the pearlite structure of the surface layer portion of the steel wire is determined according to the following procedure.
  • the L cross section of the steel wire is etched with picral to reveal a metallographic structure.
  • the metallographic structure in the region of 50 ⁇ m from the surface in the depth direction (radial direction of the steel wire) and 60 ⁇ m in the longitudinal direction of the steel wire, including the surface of the steel wire, is photographed by SEM at 2000 ⁇ magnification.
  • the places where the SEM photograph of the metal structure is taken are six places at intervals of 5 mm in the longitudinal direction of the steel wire (see FIG. 1).
  • OA2 shows the area
  • Non-perlite structures structures of ferrite, bainite, tempered bainite, martensite, tempered martensite, and proeutectoid cementite
  • the area ratio is determined by image analysis.
  • the percent area of pearlite tissue is determined by subtracting the area of non-perlite tissue from the entire field of view. And this was measured about two samples, and the average value of a total of 12 measured was made into the area ratio of the pearlite structure of the surface layer part of a steel wire.
  • the area ratio of the lamellar pearlite structure and the area ratio of the divided perlite structure are determined according to the following procedure.
  • the L cross section of the steel wire is etched with picral to reveal a metallographic structure.
  • a metallographic structure in a region of 8 ⁇ m in the radial direction of the steel wire ⁇ 12 ⁇ m in the longitudinal direction of the steel wire is photographed at a magnification of 10000 by SEM.
  • the location of the SEM photograph of the metallographic structure is 50 ⁇ m deep from the surface of the steel wire to the radial direction of the steel wire, and from the surface of the steel wire to the radial direction of the steel wire Three points at a distance of 5 mm in the direction parallel to the longitudinal direction of the steel wire, at a position of depth of 0.25 D and at a position of depth of 0.5 D in the radial direction of the steel wire from the surface of the steel wire There are nine places (see Figure 2). Note that, in FIG. 2, OA indicates an area for taking a SEM photograph.
  • the area ratio of the divided perlite structure is also the same procedure as described above, and the SEM photograph of the metal structure is taken, and the length of the long axis of cementite is measured by image analysis in three cementite close to each intersection where the perlite structure exists. Then, the average value of the long axis lengths of cementite (that is, the average length) is determined. Determine the number of intersections where the average value of the major axis lengths of three cementite in the vicinity of the intersection is 0.30 ⁇ m or less, and calculate the percentage of the value divided by the number of all intersections including the intersection where there is no pearlite structure , And the area ratio of the divided perlite structure.
  • the tensile strength of the high strength steel wire will be described. If the tensile strength of the steel wire is less than 1960 MPa, for example, when the steel wire is applied to a civil engineering / building structure application, the effects of reduction in construction cost and weight reduction become small. Therefore, the lower limit of the tensile strength of the steel wire is set to 1960 MPa.
  • the upper limit of the tensile strength of the steel wire is not particularly limited, but if the tensile strength is too high, the ductility may be reduced and cracking may occur when wire drawing is performed. In this respect, the upper limit of the tensile strength of the steel wire is preferably 3000 MPa (preferably 2800 MPa, more preferably 2500 MPa).
  • the high-strength steel wire according to the present embodiment may be a high-strength steel wire used for a rope steel wire, a bridge cable steel wire, a PC steel wire, and the like. Therefore, if the wire diameter (diameter) of the steel wire is less than 1.5 mm, the cost at the time of manufacturing these products increases, and if it exceeds 8.0 mm, the strength and twisting characteristics are easily deteriorated. Therefore, the wire diameter (diameter) of the steel wire is preferably 1.5 mm to 8.0 mm. A more preferable range of the wire diameter (diameter) of the steel wire is 3.0 mm to 7.5 mm.
  • a plating layer having any one of a Zn layer and a Zn alloy layer may be coated on the surface of the steel wire.
  • the Zn alloy layer include a ZnAl layer, a ZnAlMg alloy layer, and the like.
  • the high strength steel wire used for the steel wire for ropes, the steel wire for bridge cables, etc. may use the steel wire by which the surface was plated. And, even if the surface is plated, the high strength steel wire according to this embodiment is a steel wire which is high in strength and excellent in twisting characteristics.
  • the surface of the steel wire or the surface of the plated steel wire may be coated with a resin coating layer (for example, an epoxy resin layer).
  • Method of manufacturing high strength steel wire An example of the manufacturing method of the high strength steel wire concerning this embodiment is explained.
  • a steel piece having the component composition of the high strength steel wire according to the present embodiment is heated to 1000 to 1150 ° C., and thermal rolling is performed at a finish rolling temperature of 850 to 1000 ° C. It has a process of obtaining a wire rod by rolling.
  • modes (1) to (6) having the following steps can be mentioned as steps after the step of obtaining a wire rod.
  • a steel piece having the component composition of the high strength steel wire according to the present embodiment is heated to 1000 to 1150 ° C.
  • the heating temperature is less than 1000 ° C.
  • deformation resistance in hot rolling increases and rolling cost increases.
  • the heating temperature exceeds 1150 ° C.
  • the lower limit of the preferred heating temperature range is 1050.degree.
  • the upper limit of the preferred heating temperature range is 1100 ° C.
  • the heated billet is hot-rolled at a finish rolling temperature of 850 to 1000 ° C. to obtain a wire rod.
  • a finish rolling temperature 850 to 1000 ° C.
  • deformation resistance in hot rolling increases and rolling cost increases.
  • finish rolling temperature exceeds 1000 ° C.
  • the lower limit of the preferred finish rolling temperature range is 870 ° C.
  • the upper limit of the preferred finish rolling temperature range is 980 ° C.
  • the finish rolling temperature refers to the surface temperature of the wire immediately after finish rolling.
  • the wire rod at 850 to 1000 ° C. is cooled to 500 to 600 ° C. at an average cooling rate of 30 to 80 ° C./s from 800 ° C. to 600 ° C. Do.
  • the average cooling rate is less than 30 ° C./s, the area ratio of the non-pearlite structure in the surface layer increases, and the wire drawability and the twisting property deteriorate.
  • the manufacturing cost increases.
  • the lower limit of the preferred average cooling rate range is 40 ° C./s.
  • the upper limit of the preferable average cooling rate range is 75 ° C./s.
  • an average cooling rate refers to the surface cooling rate of a wire.
  • the cooling temperature is less than 500 ° C.
  • the pearlite area ratio becomes small, and the twisting characteristics deteriorate.
  • the cooling temperature exceeds 600 ° C.
  • the strength decreases.
  • the lower limit of the preferred cooling temperature range is 530.degree.
  • the upper limit of the preferred cooling temperature range is 580 ° C.
  • the wire after cooling to 500 to 600 ° C. is subjected to pearlite transformation treatment by holding the wire at 500 to 600 ° C. for 50 seconds or more.
  • the holding temperature is less than 500 ° C.
  • the pearlite area ratio becomes small, and the twisting characteristics deteriorate.
  • the holding temperature exceeds 600 ° C., the strength decreases.
  • the lower limit of the preferred holding temperature range is 530 ° C.
  • the upper limit of the preferred holding temperature range is 580 ° C. If the holding time is less than 50 s, pearlite transformation is incomplete, martensite is formed, and wire drawability and twisting characteristics deteriorate.
  • the upper limit of the holding time is preferably 150 s.
  • the lower limit of the preferred holding time range is 60 s.
  • the upper limit of the preferred holding time range is 120 s.
  • the holding at 500 to 600 ° C. is performed, for example, by a molten salt bath.
  • the wire rod at 850 to 1000 ° C. is cooled at an average cooling rate of 700 to 550 ° C. at 1.0 to 5.0 ° C./s
  • the cooling is performed by, for example, a blast cooling facility such as Stelmore. If the average cooling rate is less than 1.0 ° C./s, the strength decreases. When the average cooling rate exceeds 5.0 ° C./s, microscopic variations in strength and metallographic structure become large, and the torsion characteristics deteriorate.
  • the lower limit of the preferred average cooling rate range is 1.2 ° C./s.
  • the upper limit of the preferred average cooling rate range is 3.0 ° C./s.
  • the wire rod cooled to room temperature (for example 25 ° C.) is reheated to 800 to 1050 ° C. and held for 20 s or more at 480 to 600 ° C.
  • room temperature for example 25 ° C.
  • the austenitizing is insufficient and a uniform pearlite structure can not be obtained, and the strength is lowered and the wire drawability is deteriorated.
  • the reheating temperature exceeds 1050 ° C., the area ratio of the non-pearlite structure in the surface layer increases, and the wire drawability and the twisting property deteriorate.
  • the lower limit of the preferred reheating temperature range is 940 ° C.
  • the upper limit of the preferred reheating temperature range is 1020 ° C.
  • the holding temperature is less than 480 ° C.
  • the area ratio of pearlite structure decreases and the twisting characteristics deteriorate.
  • the holding temperature exceeds 600 ° C.
  • the lamellar spacing of the perlite structure increases and the strength decreases.
  • the lower limit of the preferred holding temperature range is 520 ° C.
  • the upper limit of the preferred holding temperature range is 590.degree. If the holding time is less than 20 s, pearlite transformation becomes incomplete, martensite is formed, and wire drawability and twisting characteristics deteriorate.
  • the upper limit of the holding time is preferably 120 s.
  • the lower limit of the preferred retention time range is 30 s.
  • the upper limit of the preferred retention time range is 80 s.
  • the atmosphere for the reheat heat treatment is, for example, an inert gas (such as Ar gas), a neutral gas (such as nitrogen gas), or an endothermic modified gas.
  • the reheating treatment may be heating for a short time such as induction heating.
  • the holding at 480 to 600 ° C. is performed, for example, in a molten lead bath. Instead of the molten lead bath, a molten salt bath, a fluidized bed or the like may be used.
  • the wire rod after the above pearlite transformation treatment or after cooling (specifically, the wire rod after cooling to room temperature (for example, 25 ° C.) is drawn at a total reduction of 65 to 95%, and 500 to 600 ° C. Hold for 1 s or more and 20 s or less to obtain a steel wire. By holding at 500 to 600 ° C. for 1 s or more and 20 s or less, the twisting characteristic is improved.
  • the heat treatment after wire drawing is also referred to as "aging treatment”. If the total reduction rate is less than 65%, the strength decreases. If the total area reduction rate exceeds 95%, the ductility of the steel wire is reduced, and the wire drawability and twisting characteristics are degraded.
  • the preferred total reduction rate is 70 to 90%.
  • the total area reduction rate is the difference between the cross-sectional area of the wire before drawing (the area of the surface perpendicular to the longitudinal direction of the wire) and the cross-sectional area of the steel wire after drawing / wire drawing It is a value calculated by cross section area of wire before processing ⁇ 100.
  • the holding temperature is less than 500 ° C., there is no effect of improving the twisting characteristics.
  • the holding temperature exceeds 600 ° C., the strength decreases.
  • the preferred holding temperature range is 510-550.degree. If the holding time is less than 1 s, there is no effect of improving the twisting characteristics. If the holding time exceeds 20 s, the strength decreases.
  • the preferred holding temperature range is 2 to 15 s.
  • the holding temperature is less than 420 ° C., the twisting characteristic is degraded.
  • the preferred holding temperature range is 430-470.degree. If the holding time is less than 60 s, the twisting characteristics deteriorate. If the holding time exceeds 600 s, the manufacturing cost increases.
  • the preferred holding temperature range is 100 to 500 s.
  • the manufacturing method of the high strength steel wire according to the present embodiment is a step of performing plating treatment at 420 to 480 ° C. for covering the plating layer having any one of Zn layer and Zn alloy layer after the above-mentioned aging treatment May be included.
  • Plating treatment for coating a plating layer having a Zn layer and any one layer of Zn alloy layer on the surface of a steel wire is performed under the conditions of 60s to 600s at 420 to 480 ° C, or 1s to 20s at 500 to 600 ° C. You may have the process performed on condition of the following. Also in this case, a similar structure is formed on the steel wire due to the temperature change of the steel wire accompanying the plating process.
  • the surface of the steel wire is plated under the conditions of temperature and time corresponding to the above-mentioned aging treatment to provide the structural state of the steel wire according to the present embodiment, and any of the Zn layer and the Zn alloy layer A high strength steel wire coated with a plating layer having one layer is obtained.
  • the method for manufacturing a high strength steel wire according to the present embodiment further includes the step of covering the surface of the steel wire or the surface of the plated steel wire with a resin coating layer (for example, an epoxy resin layer). May be Even if the resin coating layer is present, excellent strength and twisting characteristics can be realized as long as the steel wire present inside the resin coating layer has the structure state of the steel wire according to the present embodiment.
  • a resin coating layer for example, an epoxy resin layer
  • a steel wire was manufactured as follows using the steel pieces of steel types A to S having the component compositions shown in Table 1 under the conditions shown in Tables 2 to 6.
  • steel wires of test numbers 1 to 30 shown in Table 2 were manufactured as follows. First, after heating a steel piece, it was hot-rolled, and the obtained wire was wound into a ring and cooled to 500 to 600.degree. Next, the obtained wire was immersed in a molten salt bath at the rear of a hot rolling line to perform patenting (perlite transformation). Thereafter, the wire rod cooled to room temperature (25 ° C.) was drawn to the wire diameter shown in Table 2 (denoted as the wire diameter after wire drawing), and after heating, it was heated and aged. Through these steps, steel wires shown in Test Nos. 1 to 30 were produced.
  • the steel wires of test numbers 31 to 34 shown in Table 3 were manufactured as follows. First, after heating a steel piece, it hot-rolled, wound the obtained wire rod like ring shape, and carried out blast cooling. Thereafter, the wire rod cooled to room temperature (25 ° C.) was drawn to the wire diameter shown in Table 3, and after the drawing, it was heated and aged. Through these steps, steel wires shown in Test Nos. 31 to 34 were manufactured.
  • steel wires of test numbers 35 to 40 shown in Table 4 were manufactured as follows. After heating the billet, it was hot-rolled, and the obtained wire was wound into a ring, and cooled at an average cooling rate of 2.0 ° C./s. Next, the wire rod cooled to room temperature (25 ° C.) was reheated in a predetermined atmosphere and immersed in a molten lead bath. Thereafter, the wire rod cooled to room temperature (25 ° C.) was subjected to wire drawing to the wire diameter shown in Table 4, and after the wire drawing was heated for aging treatment. Through these steps, steel wires shown in Test Nos. 35 to 40 were manufactured.
  • the steel wire of the test number 41 shown in Table 5 was manufactured as follows. First, after heating a steel piece, it was hot-rolled, and the obtained wire was wound into a ring and cooled to 500 to 600.degree. Next, the obtained wire rod was dipped in a molten salt bath after the hot rolling line for patenting treatment. Thereafter, the wire rod cooled to room temperature (25 ° C.) was subjected to wire drawing to the wire diameter shown in Table 5, and after the wire drawing was heated for aging treatment. Thereafter, it was subjected to hot dip galvanization treatment. Through these steps, a steel wire shown in Test No. 41 was manufactured.
  • the steel wire of the test number 42 shown in Table 6 was manufactured like the steel wire of the test number 22 except having changed the order of wiredrawing and aging treatment.
  • the steel wires of test numbers 1 to 11, 21 to 25, 30 to 32, 35 to 38, and 41 that satisfy all the requirements specified in the present disclosure have a tensile strength of 1960 MPa or more and a twisting characteristic of It turns out that it is good.
  • the area ratio of pearlite structure is less than the lower limit of the present disclosure.
  • the area ratio of the divided perlite structure is out of the range of the present disclosure.
  • the steel wires of test numbers 18 and 40 the area ratio of pearlite structure in the surface layer portion is lower than the lower limit of the present disclosure.
  • the steel wire of test number 40 is an example corresponded to the steel wire of patent document 5.
  • the area ratio of the lamellar pearlite structure exceeds the upper limit of the present disclosure.
  • the area ratio of the lamellar pearlite structure and the area ratio of the divided perlite structure are out of the scope of the present disclosure.
  • the steel wires of test numbers 15 and 34 are any of the area ratio of pearlite structure inside the steel wire, the area ratio of pearlite structure of the surface layer of the steel wire, the area ratio of lamellar pearlite structure, and the area ratio of divided pearlite structure
  • the thigh is out of the scope of the present disclosure.
  • the test numbers 19, 20 have a C amount outside the scope of the present disclosure.
  • any of the steel wires outside the scope of the present disclosure has poor twisting characteristics or insufficient tensile strength of the steel wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high-strength steel wire comprising a predetermined material composition, wherein: in a cross-section including a central axis of the steel wire and parallel to the central axis, the area ratio of pearlite structures in the steel wire is 90% or greater, the area ratio of pearlite structures in a surface layer part of the steel wire is 80% or greater, and from among the structures over the whole of the steel wire, the area ratio of lamellar pearlite structures with an average cementite length of 1.0 µm or larger is 30% to 65%, and the area ratio of fragmented pearlite structures with an average cementite length of 0.30 µm or smaller is 20% to 50%; and the steel wire has a tensile strength of 1,960 MPa or greater.

Description

高強度鋼線High strength steel wire
 本開示は、高強度鋼線に関わるものである。 The present disclosure relates to high strength steel wire.
 ロープ用鋼線、橋梁ケーブル用鋼線、PC鋼線等の高強度鋼線は、高炭素鋼線材をパテンティング処理してパーライト組織にした後、伸線加工を行い、時効処理した鋼線を用いて製造されている。近年は、施工コストの低減又は構造物の軽量化を目的に、引張強さが1960MPa以上の高強度鋼線が求められている。しかしながら、高強度鋼線は、捻回試験において破断までの回転数(捻回値)が小さく、さらにデラミネーションと呼ばれる縦割れが発生する場合があり、捻回特性と高強度の両立が課題となっている。 For high strength steel wires such as rope steel wires, bridge cable steel wires, PC steel wires etc., high carbon steel wire is patented and made into pearlite structure, then wire drawn and aged steel wires It is manufactured using. In recent years, a high strength steel wire having a tensile strength of 1960 MPa or more is required for the purpose of reduction of construction cost or weight reduction of a structure. However, high strength steel wire has a small number of revolutions (breaking value) until fracture in a twisting test, and sometimes vertical cracks called delamination may occur, so it is an issue to have both twisting characteristics and high strength. It has become.
 高強度鋼線の捻回特性を向上させる技術として、特許文献1には、鋼線の横断面において、表層から0.1d(dは鋼線直径)の領域の硬度を調整した鋼線が提案されている。
 特許文献2では、100d(d:線径)当たりの長さに対して同一方向に2回転以上のらせん状の加工組織を有する高強度亜鉛めっき鋼線が提案されている。
 特許文献3では、表層から50μmまでの深さの部分において非パーライト組織の面積率が10%以下であり、全断面において非パーライト組織の面積率が5%以下であり、表面に、めっき付着量が300~500g/mの亜鉛めっきが施されためっき鋼線が提案されている。
As a technique for improving the torsion characteristics of high strength steel wires, Patent Document 1 proposes a steel wire in which the hardness in the region of 0.1 d (d is the diameter of the wire) is adjusted from the surface layer in the cross section of the steel wire. It is done.
Patent Document 2 proposes a high-strength galvanized steel wire having a helical processed structure with two or more turns in the same direction with respect to a length per 100 d (d: wire diameter).
In Patent Document 3, the area ratio of non-pearlite structure is 10% or less in the portion of depth from the surface layer to 50 μm, the area ratio of non-pearlite structure is 5% or less in the entire cross section, and the plating adhesion amount is on the surface A galvanized steel wire plated with zinc of 300 to 500 g / m 2 has been proposed.
 特許文献4では、伸線加工後、鋼線に張力を付与しつつ複数個のロール間を曲げ角度をつけて通過させる鋼線の製造方法が提案されている。
 特許文献5では、伸線後、亜鉛めっき前に430℃以上の温度でT(20+log t)≧12700(T:絶対温度で表示されるブルーイング温度、t:時間で表示されるブルーイング時間)なる関係を満足するようにブルーイング処理する亜鉛めっき鋼線の製造方法が提案されている。
Patent Document 4 proposes a method of manufacturing a steel wire which passes tension between steel wires and passes a plurality of rolls at a bending angle after drawing.
In Patent Document 5, after drawing, before zinc plating, T (20 + log t) 12 12700 (T: bruising temperature indicated by absolute temperature, t: bruce indicated by time) at a temperature of 430 ° C. or higher There has been proposed a method of producing a galvanized steel wire which is subjected to a bluing treatment so as to satisfy the following relationship.
特許文献1:特開2000-336459号公報
特許文献2:特許第3130445号公報
特許文献3:特許第5169839号公報
特許文献4:特許第3725576号公報
特許文献5:特許第2553612号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2000-336459 Patent Document 2: Japanese Patent No. 3130445 Patent Document 3: Japanese Patent No. 5169839 Patent Document 4: Japanese Patent No. 3725576 Patent Document No. 5: Japanese Patent No. 2553612
 しかし、従来の高強度鋼線は、引張強さを高くすると、捻回特性が不安定となるため、捻回値を向上させて、デラミネーションの発生を十分に抑制することができず、やはり、捻回特性と高強度の両立が課題となっているのが現状である。
 ここで、特許文献5では、伸線加工後の鋼線に対して、所定のブルーイング処理を実施することで、捻回特性を向上できることが記載されている。しかし、特許文献5では、通常の方法で熱間圧延、冷却して得られた線材を、通常の雰囲気(つまり、大気雰囲気)で再加熱し、溶融鉛浴浸漬、冷却および伸線加工を経て得られた鋼線に対して、所定のブルーイング処理を実施している。そのため、製造過程での表層部の脱炭によって、鋼線の表層部のパーライト組織の面積率が低くなり、捻回特性の改善の余地が大きい。
However, when the tensile strength of the conventional high strength steel wire is increased, the twisting characteristics become unstable, so that the twisting value can not be improved and the occurrence of delamination can not be sufficiently suppressed. At present, coexistence of twisting characteristics and high strength is an issue.
Here, Patent Document 5 describes that a twisting characteristic can be improved by performing a predetermined bluing treatment on a steel wire after wire drawing. However, in Patent Document 5, a wire rod obtained by hot rolling and cooling by a usual method is reheated in a usual atmosphere (that is, an atmospheric atmosphere), immersed in a molten lead bath, cooled and drawn. A predetermined bluing treatment is performed on the obtained steel wire. Therefore, by decarburization of the surface layer portion in the manufacturing process, the area ratio of pearlite structure of the surface layer portion of the steel wire becomes low, and there is a large room for improvement of the twisting characteristics.
 そこで、本開示の一態様は、高強度でかつ捻回特性に優れた高強度鋼線を提供することを目的とする。 Therefore, one aspect of the present disclosure is to provide a high-strength steel wire having high strength and excellent twisting characteristics.
 上記課題は、以下の手段により解決される。 The above-mentioned subject is solved by the following means.
<1>
 成分組成が、質量%で、
 C :0.85~1.20%、
 Si:0.10~2.00%、
 Mn:0.20~1.00%、
 P :0.030%以下、
 S :0.030%以下、
 N :0.0010~0.0080%、
 B :0~0.0050%、
 Al:0~0.100%、
 Ti:0~0.050%、
 Cr:0~0.60%、
 V :0~0.10%、
 Nb:0~0.050%、
 Zr:0~0.050%、および、
 Ni:0~1.00%
 を含有し、残部Fe及び不純物からなり、
 鋼線の中心軸を含み中心軸に平行な断面において、鋼線の内部のパーライト組織の面積率が90%以上であり、鋼線の表層部のパーライト組織の面積率が80%以上であり、
 前記鋼線の全体における組織のうち、セメンタイトの平均長さが1.0μm以上であるラメラ状パーライト組織の面積率が30%以上65%以下であり、かつ、セメンタイトの平均長さが0.30μm以下である分断パーライト組織の面積率が20%以上50%以下であり、
 かつ、引張強さが1960MPa以上である高強度鋼線。
<2>
 鋼線の成分組成が、質量%で、更に、B:0.0001~0.0050%、Al:0.001~0.100%、およびTi:0.001~0.050%の1種または2種以上を含有する<1>に記載の高強度鋼線。
<3>
 鋼線の成分組成が、質量%で、更に、Cr:0.01~0.60%、V:0.01~0.10%、Nb:0.001~0.050%、Zr:0.001~0.050%、およびNi:0.01~1.00%の1種または2種以上を含有する<1>又は<2>に記載の高強度鋼線。
<4>
 前記鋼線の直径が、1.5~8.0mmである<1>~<3>のいずれか1項に記載の高強度鋼線。
<5>
 前記鋼線の表面に、Zn層、およびZn合金層のいずれか1層を有するめっき層が被覆されている<1>~<4>のいずれか1項に記載の高強度鋼線。
<1>
The component composition is in mass%,
C: 0.85 to 1.20%,
Si: 0.10 to 2.00%,
Mn: 0.20 to 1.00%,
P: 0.030% or less,
S: 0.030% or less,
N: 0.0010 to 0.0080%,
B: 0 to 0.0050%,
Al: 0 to 0.100%,
Ti: 0 to 0.050%,
Cr: 0 to 0.60%,
V: 0 to 0.10%,
Nb: 0 to 0.050%,
Zr: 0 to 0.050%, and
Ni: 0 to 1.00%
Containing the balance Fe and impurities,
In a cross section including the central axis of the steel wire and parallel to the central axis, the area ratio of pearlite structure in the steel wire is 90% or more, and the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more,
Among the structures in the entire steel wire, the area ratio of lamellar pearlite structure having an average length of cementite of 1.0 μm or more is 30% to 65%, and the average length of cementite is 0.30 μm The area ratio of the divided perlite structure which is less than or equal to 20% and less than or equal to 50%,
And, a high strength steel wire having a tensile strength of 1960 MPa or more.
<2>
The composition of the steel wire is, in mass%, one or more of B: 0.0001 to 0.0050%, Al: 0.001 to 0.100%, and Ti: 0.001 to 0.050%. The high strength steel wire as described in <1> containing 2 or more types.
<3>
The composition of the steel wire is, in mass%, Cr: 0.01 to 0.60%, V: 0.01 to 0.10%, Nb: 0.001 to 0.050%, Zr: 0. The high strength steel wire according to <1> or <2>, containing one or more of 001 to 0.050% and Ni: 0.01 to 1.00%.
<4>
The high-strength steel wire according to any one of <1> to <3>, wherein the diameter of the steel wire is 1.5 to 8.0 mm.
<5>
The high strength steel wire according to any one of <1> to <4>, wherein a plated layer having any one of a Zn layer and a Zn alloy layer is coated on the surface of the steel wire.
 本開示の一態様によれば、高強度でかつ捻回特性に優れた高強度鋼線が提供される。 According to one aspect of the present disclosure, a high strength steel wire having high strength and excellent twisting characteristics is provided.
図1は、鋼線の内部および表層部のパーライト組織の面積率を測定するための観察領域を説明するための模式図である。FIG. 1 is a schematic view for explaining an observation area for measuring an area ratio of pearlite structure in an inner portion and a surface portion of a steel wire. 図2は、ラメラ状パーライト組織の面積率および分断パーライト組織の面積率を測定するための観察領域を説明するための模式図である。FIG. 2 is a schematic view for explaining an observation area for measuring the area ratio of the lamellar pearlite structure and the area ratio of the divided pearlite structure.
 本開示の一例である実施形態について説明する。
 なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 また、成分組成の元素の含有量は、元素量(例えば、C量、Si量等)と表記する。
 また、成分組成の元素の含有量について、「%」は「質量%」を意味する。
 また、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
An embodiment which is an example of the present disclosure will be described.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
Further, a numerical range in which “super” or “less than” is added to the numerical values described before and after “to” means a range that does not include these numerical values as the lower limit value or the upper limit value.
Further, the content of the element of the component composition is expressed as an element amount (for example, an amount of C, an amount of Si, etc.).
Moreover, "%" means "mass%" about content of the element of a component composition.
Also, the term "step" is included in the term if the intended purpose of the step is achieved, even if it can not be distinguished clearly from the other steps, not only an independent step.
 また、「鋼線の中心軸を含み中心軸に平行な断面」とは、鋼線の中心軸を含み、鋼線の長手方向(つまり伸線方向)に沿って切断した、中心軸と平行な断面を示す。
 また、「中心軸」とは、鋼線の軸方向(長手方向)と直交する断面の中心点を通り、軸方向に延びる仮想線を示す。
 また、「セメンタイトの長さ」とは、鋼線の中心軸を含み中心軸に平行な断面を観察した場合の、パーライト組織内におけるセメンタイトの長軸の長さを示す。
 また、「鋼線の内部」とは、鋼線の表面から、中心軸に向かって(径方向に向かって)、100μmを超えた深さの領域を示す。
 また、「鋼線の表層部」とは、鋼線の表面から、中心軸に向かって(径方向に向かって)、100μmまでの深さの領域を示す。
 また、「XD」(X=数値)との表記は、鋼線の直径をDとしたとき、鋼線の表面から、中心軸に向かって(径方向に向かって)、直径DのX倍の深さの位置を示す。例えば、「0.25D」は、直径Dの0.25倍の深さの位置を示す。
Also, "a cross section including the central axis of the steel wire and parallel to the central axis" includes the central axis of the steel wire and is cut along the longitudinal direction of the steel wire (that is, the drawing direction) parallel to the central axis It shows a cross section.
The "central axis" indicates an imaginary line extending in the axial direction, passing through the center point of the cross section orthogonal to the axial direction (longitudinal direction) of the steel wire.
Moreover, "the length of cementite" indicates the length of the long axis of cementite in pearlite structure when a cross section including the central axis of the steel wire and parallel to the central axis is observed.
Moreover, "the inside of a steel wire" shows the area | region of the depth which exceeded 100 micrometers toward the central axis (toward the radial direction) from the surface of a steel wire.
Moreover, "the surface layer part of a steel wire" shows the area | region of the depth to 100 micrometers toward the central axis (in the radial direction) from the surface of a steel wire.
In addition, the notation “XD” (X = numerical value) indicates that when the diameter of the steel wire is D, from the surface of the steel wire toward the central axis (in the radial direction), X times the diameter D Indicates the location of depth. For example, “0.25 D” indicates a position at a depth of 0.25 times the diameter D.
 本実施形態に係る高強度鋼線は、所定の成分組成を有し、かつ下記(1)及び(2)を満たす金属組織を有し、引張強さが1960MPa以上である高強度鋼線である。
 (1)鋼線の中心軸を含み中心軸に平行な断面において、鋼線の内部のパーライト組織の面積率が90%以上であり、鋼線の表層部のパーライト組織の面積率が80%以上である。
 (2)鋼線の全体における組織のうち、セメンタイトの平均長さが1.0μm以上であるラメラ状パーライト組織の面積率が30%以上65%以下であり、かつ、セメンタイトの平均長さが0.30μm以下である分断パーライト組織の面積率が20%以上50%以下である。
The high strength steel wire according to the present embodiment is a high strength steel wire having a predetermined component composition and having a metal structure satisfying the following (1) and (2) and having a tensile strength of 1960 MPa or more. .
(1) In a cross section including the central axis of the steel wire and parallel to the central axis, the area ratio of pearlite structure in the steel wire is 90% or more, and the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more It is.
(2) The area ratio of the lamellar pearlite structure having an average length of cementite of 1.0 μm or more among the structures in the entire steel wire is 30% or more and 65% or less, and the average length of cementite is 0 The area ratio of the divided perlite structure which is 30 μm or less is 20% or more and 50% or less.
 本実施形態に係る高強度鋼線は、上記構成により、高強度でかつ捻回特性に優れた鋼線となる。本実施形態に係る高強度鋼線は、次の知見により見出された。 The high-strength steel wire according to the present embodiment is a steel wire having high strength and excellent twisting characteristics by the above configuration. The high strength steel wire according to the present embodiment was found by the following findings.
 まず、引張強さが1960MPa以上の高強度鋼線の捻回特性を向上させるためには、鋼線の金属組織をパーライト組織とし、かつセメンタイトの長さが長いラメラ状パーライト組織と、セメンタイトの長さが短い分断した分断パーライト組織の混合組織にすることが有効である。パーライト組織はセメンタイト相とフェライト相の層状構造を有する。
 パーライト組織の線材を伸線加工すると、伸線後の鋼線の金属組織は、層間隔が微細なパーライト組織、層が不規則に曲がったパーライト組織、局部的に層がせん断変形したパーライト組織などが混在した不均一で複雑な組織となる。この状態の鋼線に、440~460℃の溶融亜鉛浴に30s程度浸漬する通常の溶融亜鉛めっき処理を行うと、微視的な機械的特性が不均一となる。このような不均一な鋼線は、捻じり変形を受けると局部的に変形し、捻回値が小さくなる。
 一方、鋼線の微視的な機械的特性を均一にすると、捻じり変形の際の変形が均一になり、捻回値が向上する。
First, in order to improve the twisting characteristics of high strength steel wire with a tensile strength of 1960 MPa or more, the metallographic structure of the steel wire is pearlite, and the lamellar pearlite structure with a long cementite length and the cementite length It is effective to make a mixed structure of short and divided perlite tissue. The pearlite structure has a layered structure of cementite phase and ferrite phase.
When wire drawing of pearlite wire, the metallographic structure of the drawn steel wire is pearlite structure with fine layer spacing, pearlite structure with irregularly bent layers, pearlite structure with locally sheared layers, etc. Is a heterogeneous and complex organization. When ordinary hot-dip galvanizing treatment is performed by immersing the steel wire in this state in a hot-dip zinc bath at 440 to 460 ° C. for about 30 seconds, microscopic mechanical properties become uneven. Such non-uniform steel wires locally deform when subjected to torsional deformation, and the torsion value decreases.
On the other hand, when the microscopic mechanical properties of the steel wire are made uniform, the deformation at the time of torsional deformation becomes uniform, and the torsion value improves.
 そこで、本発明者らは、鋼線の成分組成および金属組織が、捻回特性に及ぼす影響を詳細に調査した。その結果、本発明者らは次の知見を得た。鋼線の成分組成を調整した上で、鋼線の非パーライト組織の面積率を低減し(つまり、鋼線のパーライト組織の面積率を増加し)、セメンタイトの長さが長いラメラ状パーライト組織と、セメンタイトの長さが短い分断したパーライト組織と、が混在したパーライト組織にすると、引張強さが1960MPa以上の高強度鋼線でも捻回特性が改善される。 Therefore, the inventors investigated in detail the effects of the component composition and the metal structure of the steel wire on the torsion characteristics. As a result, the present inventors obtained the following findings. By adjusting the composition of the steel wire, the area ratio of the non-pearlite structure of the steel wire is reduced (that is, the area ratio of the pearlite structure of the steel wire is increased) and the cementite has a long lamellar pearlite structure and a long length. If the pearlite structure is a mixture of a divided pearlite structure having a short cementite length, the twisting characteristics are improved even with a high strength steel wire having a tensile strength of 1960 MPa or more.
 即ち、鋼線の金属組織が上記(1)および(2)を満足することで、鋼線の強度を1960MPa以上にしても高い捻回特性を得ることが可能である。このように、鋼線の組織を改良することにより、高強度鋼線の捻回特性を向上させることが可能となった。 That is, when the metallographic structure of the steel wire satisfies the above (1) and (2), it is possible to obtain high torsion characteristics even if the strength of the steel wire is 1960 MPa or more. Thus, it has become possible to improve the twisting characteristics of high strength steel wires by improving the structure of the steel wires.
 以上により、本実施形態に係る高強度鋼線は、高強度でかつ捻回特性に優れた鋼線となることが見出された。
 そして、本実施形態に係る高強度鋼線は、捻回特性に優れた引張強さ1960MPa以上の鋼線であり、例えば、ロープ用鋼線、橋梁ケーブル用鋼線、PC鋼線などに利用できる。そのため、本実施形態に係る高強度鋼線は、例えば、土木・建築物の軽量化や施工コストの低減に寄与し、産業上極めて有用である。
From the above, it has been found that the high-strength steel wire according to the present embodiment is a steel wire having high strength and excellent twisting characteristics.
The high-strength steel wire according to the present embodiment is a steel wire having a tensile strength of 1960 MPa or more and excellent in torsion characteristics, and can be used, for example, as a steel wire for ropes, steel wire for bridge cables, PC steel wire, etc. . Therefore, the high-strength steel wire according to the present embodiment contributes, for example, to weight reduction of civil engineering and buildings and reduction of construction costs, and is extremely useful in industry.
(成分組成)
 高強度鋼線の成分組成は、質量%で、C:0.85~1.20%、Si:0.10~2.00%、Mn:0.20~1.00%、P:0.030%以下、S :0.030%以下、N :0.0010~0.0080%、B:0~0.0050%、Al:0~0.100%、Ti:0~0.050%、Cr:0~0.60%、V:0~0.10%、Nb:0~0.050%、Zr:0~0.050%、および、Ni:0~1.00%を含有し、残部Fe及び不純物からなる。
 ただし、B、Al、Ti、Cr、V、Nb、Zr、およびNiは、任意元素である。つまり、これら元素は、高強度鋼線に含有しなくてもよい。
(Component composition)
The composition of the high strength steel wire is, in mass%, C: 0.85 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.20 to 1.00%, P: 0. 030% or less, S: 0.030% or less, N: 0.0010 to 0.0080%, B: 0 to 0.0050%, Al: 0 to 0.100%, Ti: 0 to 0.050%, Cr: 0 to 0.60%, V: 0 to 0.10%, Nb: 0 to 0.050%, Zr: 0 to 0.050%, and Ni: 0 to 1.00% It consists of the balance Fe and impurities.
However, B, Al, Ti, Cr, V, Nb, Zr, and Ni are optional elements. That is, these elements may not be contained in the high strength steel wire.
 以下、高強度鋼線に含まれる各元素量の範囲の限定した理由を説明する。 Hereinafter, the reason for limiting the range of the amount of each element contained in the high strength steel wire will be described.
 Cは、鋼線の引張強さを確保するため添加する。C量が0.85%未満では初析フェライトが生成し、所定の引張強さを確保することが困難である。一方、C量が1.20%を越えると初析セメンタイト量が増加し伸線加工性が劣化する。そのため、C量は、0.85~1.20%とした。高強度と伸線加工性を両立する好ましいC量の下限は0.90%である。また、高強度と伸線加工性を両立する好ましいC量の上限は1.10%である。 C is added to secure the tensile strength of the steel wire. If the amount of C is less than 0.85%, pro-eutectoid ferrite is formed, and it is difficult to secure a predetermined tensile strength. On the other hand, when the amount of C exceeds 1.20%, the amount of proeutectoid cementite increases and the wire drawability deteriorates. Therefore, the amount of C is set to 0.85 to 1.20%. The lower limit of the preferable C amount to achieve both high strength and wire drawability is 0.90%. Moreover, the upper limit of the preferable C amount which makes high strength and wire-drawing workability compatible is 1.10%.
 Siは、リラクセーション特性を高めるとともに、固溶強化により引張強さを高める効果がある。Si量が0.10%未満ではこれらの効果が不十分である。Si量が2.00%を越えると、これらの効果が飽和するとともに熱間延性が劣化して、製造性が低下する。そのため、Si量は、0.10~2.00%とした。好ましいSi量の下限は0.50%である。また、より好ましくは、Si量の下限は1.00%であってもよい。一方、好ましいSi量の上限は1.80%である。より好ましいSi量の上限は1.50%である。 Si has the effect of enhancing tensile strength by solid solution strengthening, as well as enhancing the relaxation characteristics. If the amount of Si is less than 0.10%, these effects are insufficient. When the amount of Si exceeds 2.00%, these effects are saturated and the hot ductility is deteriorated to lower the manufacturability. Therefore, the amount of Si is set to 0.10 to 2.00%. The lower limit of the preferred amount of Si is 0.50%. More preferably, the lower limit of the amount of Si may be 1.00%. On the other hand, the upper limit of the preferable amount of Si is 1.80%. The upper limit of the amount of Si is more preferably 1.50%.
 Mnは、パーライト変態後の鋼の引張強さを高める効果がある。Mn量が0.20%未満では効果が不十分である。Mn量が1.00%を越えると効果が飽和する。そのため、Mn量は、0.20~1.00%とした。好ましいMn量の下限は0.30%である。好ましいMn量の上限は0.90%である。 Mn has the effect of increasing the tensile strength of the steel after pearlite transformation. If the amount of Mn is less than 0.20%, the effect is insufficient. When the amount of Mn exceeds 1.00%, the effect is saturated. Therefore, the amount of Mn is set to 0.20 to 1.00%. The lower limit of the preferable amount of Mn is 0.30%. The upper limit of the preferable amount of Mn is 0.90%.
 PとSは、不純物として鋼線に含有される。PとSは延性を劣化させるため抑制したほうがよい。そのため、P量とS量の上限は、共に、0.030%とした。好ましいP量とS量の上限は、0.020%である。より好ましいP量とS量の上限は0.015%以下である。なお、P量およびS量の下限は、0%がよいが(つまり含まないことがよいが)、脱Pコスト及び脱硫コストを低減する観点から、0%超え(又は0.0001%以上)であることがよい。 P and S are contained in the steel wire as impurities. P and S should be suppressed because they deteriorate ductility. Therefore, the upper limit of both P amount and S amount was made into 0.030%. The upper limit of preferable P amount and S amount is 0.020%. The upper limit of more preferable P amount and S amount is 0.015% or less. In addition, although the lower limit of P amount and S amount is preferably 0% (that is, although it is good not to include), it is more than 0% (or 0.0001% or more) from the viewpoint of reducing de-P cost and desulfurization cost. Good to have.
 Nは、Al、Ti、Nb、V等と窒化物を形成し、結晶粒径を細粒化し延性を向上させる効果がある。N量が0.0010%未満ではこれらの効果がない。N量が0.0080%を超えると伸線加工性と延性を劣化させる。そのため、N量は、0.0010~0.0080%とした。好ましいN量の下限は0.0020%である。好ましいN量の上限は0.0060%である。より好ましいN量の上限は0.0050%である。 N forms nitrides with Al, Ti, Nb, V, etc., and has the effect of refining the grain size and improving the ductility. If the amount of N is less than 0.0010%, these effects are not obtained. If the amount of N exceeds 0.0080%, wire drawability and ductility are deteriorated. Therefore, the N content is set to 0.0010 to 0.0080%. The lower limit of the preferable N amount is 0.0020%. The upper limit of the preferable N amount is 0.0060%. The upper limit of the more preferable N amount is 0.0050%.
 本実施形態に係る鋼線は、鋼線の表層部の非パーライト組織の面積率を低減する目的で、質量%で、更に、B:0.0001~0.0050%、Al:0.001~0.100%、およびTi:0.001~0.050%の1種または2種以上を含有してもよい。 In the steel wire according to the present embodiment, in order to reduce the area ratio of the non-pearlite structure in the surface layer portion of the steel wire, B: 0.0001 to 0.0050%, Al: 0.001 to 100% by mass. It may contain one or more of 0.100% and Ti: 0.001 to 0.050%.
 Bは、固溶Bとして粒界に偏析して非パーライト組織の生成を抑制し、捻回特性および伸線加工性を改善する効果がある。B量が0.0050%を超えると粒界に炭化物を生成して伸線加工性を劣化させることがある。そのため、B量は0.0001~0.0050%とすることがよい。好ましいB量の下限は0.0005%である。一方、好ましいB量の上限は0.0030%である。より好ましいB量の上限は0.0020%である。 B is segregated at grain boundaries as solid solution B to suppress the formation of non-pearlite structure, and has an effect of improving twisting characteristics and wire drawability. If the B content exceeds 0.0050%, carbides may be formed at grain boundaries to deteriorate drawability. Therefore, the B content is preferably 0.0001 to 0.0050%. The lower limit of the preferable B amount is 0.0005%. On the other hand, the upper limit of the preferable B amount is 0.0030%. The upper limit of the amount of B is more preferably 0.0020%.
 Alは、脱酸元素として機能する。また、Alは、AlNを形成し結晶粒を細粒化し延性を向上させる効果、固溶Nを低減して延性を向上させる効果、固溶Bの生成を促進して、非パーライト組織の生成を抑制し、捻回特性および伸線加工性を改善する効果等がある。Al量が0.100%を超えると効果が飽和するとともに製造性を低下させることがある。そのため、Al量は0.001~0.100%とすることがよい。好ましいAl量の下限は0.010%である。より好ましいAl量の下限は0.020%である。一方、好ましいAl量の上限は0.080%である。より好ましいAl量の上限は0.070%である。 Al functions as a deoxidizing element. In addition, Al has the effect of forming AlN to refine crystal grains and improving ductility, the effect of reducing solid solution N and improving ductility, and promoting the formation of solid solution B to form a non-pearlite structure. There are effects such as suppressing and improving twisting characteristics and wire drawability. If the Al content exceeds 0.100%, the effect may be saturated and the productivity may be reduced. Therefore, the Al content is preferably 0.001 to 0.100%. The lower limit of the preferred amount of Al is 0.010%. The lower limit of the amount of Al is more preferably 0.020%. On the other hand, the upper limit of the preferable amount of Al is 0.080%. The upper limit of the amount of Al is more preferably 0.070%.
 Tiは、脱酸元素として機能する。また、Tiは、炭化物および窒化物を析出させて引張強さを高める効果、結晶粒を細粒化して延性を向上させる効果、固溶Nを低減して伸線加工性を向上させる効果、固溶Bの生成を促進して、非パーライト組織の生成を抑制し、捻回特性および伸線加工性を改善する効果等がある。Ti量が0.050%を超えるとこれらの効果が飽和するとともに粗大な酸化物又は窒化物を生成して伸線加工性を劣化させることがある。そのため、Ti量は0.001~0.050%とすることがよい。好ましいTi量の下限は0.010%である。一方、好ましいTi量の上限は0.030%である。より好ましいTi量の上限は0.025%である。 Ti functions as a deoxidizing element. In addition, Ti precipitates carbides and nitrides to increase tensile strength, reduces grain size to improve ductility, reduces solid solution N, and improves wire drawability, solid There is an effect of promoting the formation of melt B, suppressing the formation of non-pearlite structure, and improving the twist characteristics and wire drawability. When the amount of Ti exceeds 0.050%, these effects may be saturated and coarse oxides or nitrides may be formed to deteriorate wire drawability. Therefore, the amount of Ti is preferably 0.001 to 0.050%. The lower limit of the preferred amount of Ti is 0.010%. On the other hand, the upper limit of the preferable Ti amount is 0.030%. The upper limit of the amount of Ti is more preferably 0.025%.
 本実施形態に係る高強度鋼線は、以下に記載する特性の向上を目的に、Cr:0.01~0.60%、V:0.01~0.10%、Nb:0.001~0.050%、Zr:0.001~0.050%、およびNi:0.01~1.00%の1種または2種以上を含有してもよい。 The high strength steel wire according to the present embodiment has Cr: 0.01 to 0.60%, V: 0.01 to 0.10%, Nb: 0.001 to 200 for the purpose of improving the characteristics described below. It may contain one or more of 0.050%, Zr: 0.001 to 0.050%, and Ni: 0.01 to 1.00%.
 Crは、パーライト変態後の鋼の引張強さを高める効果がある。Cr量が0.60%を超えると、マルテンサイト組織が生じ易くなって伸線加工性および捻回特性を劣化させることがある。Cr量は0.01~0.60%とすることがよい。好ましいCr量の上限は0.50%である。より好ましいCr量の上限は0.40%である。 Cr has the effect of increasing the tensile strength of the steel after pearlite transformation. When the amount of Cr exceeds 0.60%, a martensitic structure tends to be formed, which may deteriorate wire drawability and twisting characteristics. The amount of Cr is preferably 0.01 to 0.60%. The upper limit of the preferable amount of Cr is 0.50%. The upper limit of the amount of Cr is more preferably 0.40%.
 Vは、炭化物VCを析出して、引張強さを高める効果がある。V量が0.10%を超えると合金コストが増加するとともに捻回特性が劣化することがある。そのため、V量は0.01~0.10%とすることがよい。好ましいV量の上限は0.08%である。より好ましいV量の上限は0.07%である。 V has the effect of precipitating carbide VC and enhancing the tensile strength. If the V content exceeds 0.10%, the alloy cost may increase and the twisting characteristics may be degraded. Therefore, the V content is preferably 0.01 to 0.10%. The upper limit of the preferable V amount is 0.08%. The upper limit of the more preferable V amount is 0.07%.
 Nbは、炭化物および窒化物を析出させて引張強さを高める効果、結晶粒を細粒化して延性を向上させる効果、固溶Nを低減して伸線加工性を向上させる効果等がある。Nb量が0.050%を超えると、これらの効果が飽和するとともに捻回特性を劣化させることがある。そのため、Nb量は0.001~0.050%とすることがよい。好ましいNb量の上限は0.030%である。より好ましいNb量の上限は0.020%である。 Nb has an effect of precipitating carbides and nitrides to enhance tensile strength, an effect of refining crystal grains to improve ductility, and an effect of reducing solid solution N to improve wire drawability. When the Nb content exceeds 0.050%, these effects may be saturated and the twisting characteristics may be degraded. Therefore, the Nb content is preferably 0.001 to 0.050%. The upper limit of the preferable Nb amount is 0.030%. The upper limit of the more preferable Nb amount is 0.020%.
 Zrは、脱酸元素として機能する。また、Zrは、硫化物を形成することで固溶Sを低減し、延性を向上させる効果がある。Zr量が0.050%を超えると、これらの効果が飽和するとともに粗大な酸化物を生成し、伸線加工性を劣化させることがある。そのため、Zr量は0.001~0.050%とすることがよい。好ましいZr量の上限は0.030%である。より好ましいZr量の上限は0.020%である。 Zr functions as a deoxidizing element. Further, Zr has the effect of reducing the solid solution S by forming a sulfide and improving the ductility. If the Zr content exceeds 0.050%, these effects saturate and coarse oxides may be formed, which may deteriorate wire drawability. Therefore, the amount of Zr is preferably 0.001 to 0.050%. The upper limit of the preferable amount of Zr is 0.030%. The upper limit of the more preferable amount of Zr is 0.020%.
 Niは、水素の侵入を抑制して耐水素脆化特性を向上させる効果がある。Ni量が1.00%を超えると、合金コストが上がるとともに、マルテンサイト組織が生じ易くなって伸線加工性を劣化させることがある。そのため、Ni量は0.01~1.00%とすることがよい。好ましいNi量の上限は0.50%である。より好ましいNi量の上限は0.30%である。 Ni has the effect of suppressing the penetration of hydrogen and improving the resistance to hydrogen embrittlement. When the amount of Ni exceeds 1.00%, the alloy cost is increased, and a martensitic structure is easily formed, which may deteriorate wire drawability. Therefore, the amount of Ni is preferably 0.01 to 1.00%. The upper limit of the preferable amount of Ni is 0.50%. The upper limit of the amount of Ni is more preferably 0.30%.
 本実施形態に係る高強度鋼線の成分組成において、残部は、Fe及び不純物である。
 ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。さらに、不純物は、意図的に含有させた成分であっても、鋼線の性能に影響を与えない範囲の量で含有する成分も含む。
 不純物としては、例えば、O等が挙げられる。Oは鋼線中に不可避的に含有し、Al、Tiなどの酸化物として存在する。O量が高いと粗大な酸化物が形成し、伸線加工時に断線の原因となる。そのため、O量は0.010%以下に抑制することが好ましい。
In the component composition of the high strength steel wire according to the present embodiment, the balance is Fe and impurities.
Here, the term "impurity" refers to a component contained in the raw material or a component which is mixed in the process of production and is not intentionally contained. Furthermore, the impurities also include components that are intentionally contained, but in an amount that does not affect the performance of the steel wire.
As an impurity, O etc. are mentioned, for example. O is unavoidably contained in the steel wire and exists as an oxide such as Al or Ti. When the amount of O is high, coarse oxides are formed, which causes breakage during wire drawing. Therefore, it is preferable to suppress the amount of O to 0.010% or less.
(金属組織)
 次に、本実施形態に係る高強度鋼線の金属組織の限定理由について述べる。
(Metal structure)
Next, the reason for limitation of the metal structure of the high strength steel wire according to the present embodiment will be described.
 金属組織は、鋼線の内部のパーライト組織の面積率が90%以上であり、かつ、鋼線の表層部のパーライト組織の面積率が80%以上である。
 なお、パーライト組織の面積率は、線の中心軸を含み中心軸に平行な断面における面積率である。
In the metallographic structure, the area ratio of pearlite structure in the steel wire is 90% or more, and the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more.
The area ratio of the pearlite structure is an area ratio in a cross section including the central axis of the line and parallel to the central axis.
 鋼線の内部の金属組織において、パーライト組織の面積率が90%未満では強度の低下、又は捻回特性が劣化する。このため、パーライト組織の面積率の下限を90%とした。好ましいパーライト組織の面積率の下限は、95%である。より好ましいパーライト組織の面積率の下限は97%である。なお、パーライト組織の面積率の上限は、100%であってもよく、99%であってもよい。 In the metallographic structure inside the steel wire, if the area ratio of pearlite structure is less than 90%, the strength is reduced or the twisting property is deteriorated. For this reason, the lower limit of the area ratio of pearlite structure is set to 90%. The lower limit of the area ratio of the preferred perlite structure is 95%. The lower limit of the area ratio of the more preferable pearlite structure is 97%. The upper limit of the area ratio of the pearlite structure may be 100% or 99%.
 鋼線の内部において、パーライト組織以外の残部組織(つまり、非パーライト組織)としては、フェライト、ベイナイト、焼き戻しベイナイト、マルテンサイト、焼き戻しマルテンサイト、初析セメンタイト等である。 Inside the steel wire, the remaining structure (i.e., non-pearlite structure) other than pearlite structure is ferrite, bainite, tempered bainite, martensite, tempered martensite, proeutectoid cementite or the like.
 鋼線の表層部のパーライト組織の面積率が80%未満であると、捻回特性又は伸線加工性が劣化する。このため表層部のパーライト組織の面積率の下限を80%とした。好ましいパーライト組織の面積率の下限は85%である。より好ましいパーライト組織の面積率の下限は90%である。なお、パーライト組織の面積率の上限は、95%であってもよく、99%であってもよい。また、パーライト組織の面積率は100%であってもよい。
 鋼線の表層部のパーライト組織の面積率を80%以上とする方法としては、例えば、Bを含有して、更にAl及びTiの少なくとも1種を含有した成分組成とする方法、または、熱間圧延後の線材の冷却速度を制御する方法がある。これらの方法のいずれか、または両方を実施することで、鋼線の表層部のパーライト組織の面積率を増加できる。
When the area ratio of the pearlite structure in the surface layer portion of the steel wire is less than 80%, the twisting characteristic or the wire drawability deteriorates. Therefore, the lower limit of the area ratio of pearlite structure in the surface layer portion is set to 80%. The lower limit of the area ratio of the preferred pearlite structure is 85%. The lower limit of the area ratio of the more preferable pearlite structure is 90%. The upper limit of the area ratio of the pearlite structure may be 95% or 99%. In addition, the area ratio of the perlite structure may be 100%.
As a method of setting the area ratio of the pearlite structure of the surface layer portion of the steel wire to 80% or more, for example, a method of containing B and further containing at least one of Al and Ti, or hot There is a method of controlling the cooling rate of the wire after rolling. By performing either or both of these methods, it is possible to increase the area ratio of pearlite structure in the surface layer of the steel wire.
 なお、鋼線の表層部において、パーライト組織以外の残部組織(つまり、非パーライト組織)としては、フェライト、ベイナイト、焼き戻しベイナイト、マルテンサイト、焼き戻しマルテンサイト、初析セメンタイト等である。 In the surface layer portion of the steel wire, the remaining structure (i.e. non-pearlite structure) other than pearlite structure is ferrite, bainite, tempered bainite, martensite, tempered martensite, proeutectoid cementite or the like.
 ここで、引張強さが1960MPa以上の高強度鋼線に、高い捻回特性を付与するためには、セメンタイトの長さが長いラメラ状パーライト組織と、セメンタイトの長さが短い分断したパーライト組織が適切な割合で混在するパーライト組織にすることが有効である。本実施形態における鋼線は、伸線加工後かつ時効処理前には、伸線加工によって導入された転位を含む、不均一で複雑な組織となっている。不均一なパーライト組織の鋼線に通常の溶融亜鉛めっき処理(あるいは、同等の熱処理での時効処理)を行うと、めっき処理後(あるいは、時効処理後)の微視的な機械的特性が不均一となる。このような鋼線は、捻じり変形を受けると局部的に変形するため、捻回値が小さい。しかしながら、この状態の鋼線に適切な時効処理(もしくは、適切な条件でのめっき処理)を施すことにより、微視的な機械的特性の不均一性を低減し、捻回特性を改善できる。 Here, in order to impart high twisting characteristics to a high strength steel wire having a tensile strength of 1960 MPa or more, a lamellar pearlite structure having a long cementite length and a divided pearlite structure having a short cementite length are used. It is effective to make the pearlite tissue mixed in an appropriate ratio. The steel wire in this embodiment has a non-uniform and complicated structure including the dislocation introduced by wire drawing after wire drawing and before the aging treatment. When ordinary hot dip galvanizing treatment (or equivalent aging treatment with heat treatment) is applied to steel wire with non-uniform pearlite structure, the microscopic mechanical properties after plating treatment (or after aging treatment) are not good. It becomes uniform. Such a steel wire has a small twist value because it locally deforms when subjected to torsional deformation. However, by applying appropriate aging treatment (or plating treatment under appropriate conditions) to the steel wire in this state, it is possible to reduce non-uniformity of microscopic mechanical properties and improve twisting characteristics.
 ここでいう「ラメラ状パーライト組織」とは、セメンタイトの長さが長く、平均長さが1.0μm以上であるパーライト組織を指す。時効処理までに存在していたパーライトのうち、時効処理による影響が比較的小さい部分がラメラ状パーライト組織である。そして、ラメラ状パーライト組織の面積率が30%未満では強度が低下し(つまり1960MPa以上の強度を得ることが困難となり)、65%を超えると捻回特性が劣化する。
 そのため、ラメラ状パーライト組織の面積率は、30%以上65%以下とした。好ましいラメラ状パーライト組織の面積率の下限は40%であり、より好ましくは50%である。好ましいラメラ状パーライト組織の面積率の上限は60%である。
The "lamellar pearlite structure" as used herein refers to a pearlite structure in which cementite has a long length and an average length of 1.0 μm or more. Of the perlite that had been present before the aging treatment, the part having a relatively small influence by the aging treatment is a lamellar pearlite structure. If the area ratio of the lamellar pearlite structure is less than 30%, the strength is reduced (that is, it is difficult to obtain a strength of 1960 MPa or more), and if it exceeds 65%, the twisting property is degraded.
Therefore, the area ratio of the lamellar pearlite structure is 30% or more and 65% or less. The lower limit of the area ratio of the preferred lamellar perlite structure is 40%, more preferably 50%. The upper limit of the area ratio of the preferred lamellar pearlite structure is 60%.
 一方、ここでいう「分断パーライト組織」とは、セメンタイトの長さが短く、平均長さが0.30μm以下であるパーライト組織を指す。時効処理までに存在していたパーライトのうち、伸線加工により導入された歪と、時効処理の影響によってパーライト中のセメンタイトが分断された結果できた組織が分断パーライト組織である。そして、分断パーライト組織の面積率が20%未満では捻回特性が劣化し、50%を超えると強度が低下する。
 そのため、分断パーライト組織の面積率は、20%以上50%以下とした。好ましい分断パーライト組織の面積率の下限は25%であり、より好ましい下限は30%である。一方、好ましい分断パーライト組織の面積率の上限は45%であり、より好ましくは40%である。
 鋼線の分断パーライト組織の面積率を20%以上50%以下とする方法は、例えば、総減面率65~95%で伸線加工後の、表層部のパーライト組織の面積率が80%以上である鋼線を、500~600℃で1s以上20s以下保持する方法、または、420~480℃で60s以上600s以下保持する方法がある。
 組織の測定方法は、以下とした。
On the other hand, the "divided perlite structure" as used herein refers to a pearlite structure having a short cementite length and an average length of 0.30 μm or less. Among the pearlite that had been present until the aging treatment, the strain formed by wire drawing and the structure formed as a result of the cementite in the pearlite being divided by the influence of the aging treatment is a divided pearlite structure. And, if the area ratio of the divided pearlite structure is less than 20%, the twisting characteristics deteriorate, and if it exceeds 50%, the strength decreases.
Therefore, the area ratio of the divided perlite structure is set to 20% or more and 50% or less. The lower limit of the area ratio of the preferable split pearlite structure is 25%, and the more preferable lower limit is 30%. On the other hand, the upper limit of the area ratio of a preferable divided pearlite structure is 45%, more preferably 40%.
The method of setting the area ratio of split pearlite structure of steel wire to 20% or more and 50% or less is, for example, 80% or more of area ratio of pearlite structure of surface layer portion after wire drawing at a total reduction ratio of 65 to 95%. There is a method of holding the steel wire which is at 500 to 600 ° C. for 1 s or more and 20 s or less, or a method for holding the steel wire at 420 to 480 ° C. for 60 s or more and 600 s or less.
The measurement method of the organization was as follows.
 ここで、鋼線の内部のパーライト組織の面積率は、以下の手順により求める。
 まず、鋼線の中心軸を含み、中心軸に平行な断面(以下、「L断面」とも称する)をピクラールでエッチングし、金属組織を現出させる。次に、SEM(走査型電子顕微鏡)により2000倍の倍率で、鋼線の径方向50μm×鋼線の長手方向60μmの領域の金属組織を写真撮影する。金属組織のSEM写真の撮影の箇所は、鋼線の直径をDとしたとき、鋼線の表面(つまり外周面)から鋼線の径方向に0.25Dの深さの位置、および鋼線の表面から鋼線の径方向に0.5Dの深さの位置において、各々、鋼線の長手方向に5mm間隔で3箇所、計6箇所とする(図1参照)。なお、図1中、OA1は、鋼線の内部における金属組織のSEM写真の撮影の領域を示す。
 撮影した金属組織のSEM写真中の非パーライト組織(フェライト、ベイナイト、焼き戻しベイナイト、マルテンサイト、焼き戻しマルテンサイト、初析セメンタイトの各組織)を目視でマーキングし、面積率を画像解析により求める。パーライト組織の面積率は、観察視野全体から非パーライト組織の面積を減じることにより求められる。そして、これを2個のサンプルについて測定し、測定した計12箇所の平均値を鋼線の内部のパーライト組織の面積率とする。
Here, the area ratio of the pearlite structure inside the steel wire is determined by the following procedure.
First, a cross section including the central axis of the steel wire and parallel to the central axis (hereinafter also referred to as “L cross section”) is etched with picral to reveal a metal structure. Next, a metallographic structure in a region of 50 μm in the radial direction of the steel wire × 60 μm in the longitudinal direction of the steel wire is photographed at a magnification of 2000 times by a SEM (scanning electron microscope). Where the diameter of the steel wire is D, the location of the SEM photograph of the metallographic structure is a position of a depth of 0.25 D in the radial direction of the steel wire from the surface (that is, the outer peripheral surface) of the steel wire and At a depth of 0.5 D from the surface in the radial direction of the steel wire, three points are provided at intervals of 5 mm in the longitudinal direction of the steel wire, for a total of six places (see FIG. 1). In addition, OA1 shows the area | region of photography of the SEM photograph of the metallographic structure in the inside of a steel wire in FIG.
Non-perlite structures (structures of ferrite, bainite, tempered bainite, martensite, tempered martensite, and proeutectoid cementite) in the SEM photograph of the metallographic structure taken are visually marked, and the area ratio is determined by image analysis. The percent area of pearlite tissue is determined by subtracting the area of non-perlite tissue from the entire field of view. And this is measured about two samples, and let the average value of a total of 12 measured be the area ratio of the pearlite structure | tissue inside a steel wire.
 次に、鋼線の表層部のパーライト組織は、以下の手順により求める。
 まず、上記同様に、鋼線のL断面をピクラールでエッチングし、金属組織を現出させる。鋼線の表面を含み、表面から深さ方向(鋼線の径方向)に50μm、鋼線の長手方向に60μmの領域の金属組織を、SEMにより2000倍の倍率で写真撮影する。金属組織のSEM写真の撮影の箇所は、鋼線の長手方向に5mm間隔で6箇所とする(図1参照)。なお、図1中、OA2は、鋼線の表層部における金属組織のSEM写真の撮影の領域を示す。
 撮影した金属組織のSEM写真中の非パーライト組織(フェライト、ベイナイト、焼き戻しベイナイト、マルテンサイト、焼き戻しマルテンサイト、初析セメンタイトの各組織)を目視でマーキングし、面積率を画像解析により求める。パーライト組織の面積率は、観察視野全体から非パーライト組織の面積を減じることにより求められる。そして、これを2個のサンプルについて測定し、測定した計12箇所の平均値を鋼線の表層部のパーライト組織の面積率とした。
Next, the pearlite structure of the surface layer portion of the steel wire is determined according to the following procedure.
First, in the same manner as described above, the L cross section of the steel wire is etched with picral to reveal a metallographic structure. The metallographic structure in the region of 50 μm from the surface in the depth direction (radial direction of the steel wire) and 60 μm in the longitudinal direction of the steel wire, including the surface of the steel wire, is photographed by SEM at 2000 × magnification. The places where the SEM photograph of the metal structure is taken are six places at intervals of 5 mm in the longitudinal direction of the steel wire (see FIG. 1). In addition, OA2 shows the area | region of photography of the SEM photograph of the metallographic structure in the surface layer part of a steel wire in FIG.
Non-perlite structures (structures of ferrite, bainite, tempered bainite, martensite, tempered martensite, and proeutectoid cementite) in the SEM photograph of the metallographic structure taken are visually marked, and the area ratio is determined by image analysis. The percent area of pearlite tissue is determined by subtracting the area of non-perlite tissue from the entire field of view. And this was measured about two samples, and the average value of a total of 12 measured was made into the area ratio of the pearlite structure of the surface layer part of a steel wire.
 次に、ラメラ状パーライト組織の面積率および分断パーライト組織の面積率は、以下の手順により求める。
 まず、上記同様に、鋼線のL断面をピクラールでエッチングし、金属組織を現出させる。次に、SEMにより10000倍の倍率で、鋼線の径方向8μm×鋼線の長手方向12μmの領域の金属組織を写真撮影する。金属組織のSEM写真の撮影の箇所は、鋼線の直径をDとしたとき、鋼線の表面から鋼線の径方向に50μmの深さの位置、鋼線の表面から鋼線の径方向に0.25Dの深さの位置、および鋼線の表面から鋼線の径方向に0.5Dの深さの位置において、各々、鋼線の長手方向に平行な方向に5mm間隔で3箇所、計9箇所とする(図2参照)。なお、図2中、OAは、SEM写真の撮影の領域を示す。
 撮影した金属組織のSEM写真画像上に、鋼線の長手方向に平行な2μm間隔の直線群を描く。さらに、これらの直線群と直角に交差する2μm間隔の直線群を描く。次に、2つの直線群のそれぞれの交点における組織を以下の方法で観察する。パーライト組織が存在する各交点に近接するセメンタイト3個において、セメンタイトの長軸の長さを画像解析により測定し、それらの平均値をセメンタイトの長軸の長さの平均値(つまり、平均長さ)とする。なお、セメンタイトが小さく、10000倍のSEM写真で判別できない場合には、SEM写真の倍率を拡大してもよい。交点に近接する3個のセメンタイトの長軸の長さの平均値が1.0μm以上である交点の数を求め、パーライト組織が存在しない交点も含めた全交点の数(つまり、描いた2つの直線群の全ての交点の数)で除した値の百分率、すなわち、(セメンタイトの長軸の長さの平均値が1.0μm以上である交点の数)/(全交点の数)×100を、ラメラ状パーライト組織の面積率とする。
Next, the area ratio of the lamellar pearlite structure and the area ratio of the divided perlite structure are determined according to the following procedure.
First, in the same manner as described above, the L cross section of the steel wire is etched with picral to reveal a metallographic structure. Next, a metallographic structure in a region of 8 μm in the radial direction of the steel wire × 12 μm in the longitudinal direction of the steel wire is photographed at a magnification of 10000 by SEM. When the diameter of the steel wire is D, the location of the SEM photograph of the metallographic structure is 50 μm deep from the surface of the steel wire to the radial direction of the steel wire, and from the surface of the steel wire to the radial direction of the steel wire Three points at a distance of 5 mm in the direction parallel to the longitudinal direction of the steel wire, at a position of depth of 0.25 D and at a position of depth of 0.5 D in the radial direction of the steel wire from the surface of the steel wire There are nine places (see Figure 2). Note that, in FIG. 2, OA indicates an area for taking a SEM photograph.
On the SEM photograph image of the metallographic structure taken, a straight line group of 2 μm intervals parallel to the longitudinal direction of the steel wire is drawn. Furthermore, draw straight lines at intervals of 2 μm crossing these straight lines at right angles. Next, the tissue at each intersection of the two straight line groups is observed by the following method. The length of the cementite long axis is measured by image analysis in three cementite close to each intersection where the pearlite structure exists, and their average value is an average value of the cementite long axis (that is, the average length And). In addition, when cementite is small and it can not discriminate | determine by a 10000 times SEM photograph, you may expand the magnification of a SEM photograph. Determine the number of intersections where the average length of the major axes of three cementite in the vicinity of the intersection is 1.0 μm or more, and the number of all intersections including the intersection where there is no pearlite structure (that is, the two drawn The percentage of the value divided by the number of all intersections of the straight line group, that is, (the number of intersections in which the average length of the major axis of cementite is 1.0 μm or more) / (the number of all intersections) × 100 , And the area ratio of lamellar pearlite tissue.
 分断パーライト組織の面積率も、上記同様の手順で、金属組織のSEM写真を撮影し、パーライト組織が存在する各交点に近接するセメンタイト3個において、セメンタイトの長軸の長さを画像解析により測定し、セメンタイトの長軸の長さの平均値(つまり、平均長さ)を求める。交点に近接する3個のセメンタイトの長軸の長さの平均値が0.30μm以下である交点の数を求め、パーライト組織が存在しない交点も含めた全交点の数で除した値の百分率を、分断パーライト組織の面積率とする。 The area ratio of the divided perlite structure is also the same procedure as described above, and the SEM photograph of the metal structure is taken, and the length of the long axis of cementite is measured by image analysis in three cementite close to each intersection where the perlite structure exists. Then, the average value of the long axis lengths of cementite (that is, the average length) is determined. Determine the number of intersections where the average value of the major axis lengths of three cementite in the vicinity of the intersection is 0.30 μm or less, and calculate the percentage of the value divided by the number of all intersections including the intersection where there is no pearlite structure , And the area ratio of the divided perlite structure.
(高強度鋼線の特性)
 次に、本実施形態に係る高強度鋼線の引張強さについて説明する。
 鋼線の引張強さが1960MPa未満では、例えば、鋼線を土木・建築構造物の用途に適用した場合、施工コストの低減及び軽量化の効果が小さくなる。そのため、鋼線の引張強さの下限は1960MPaとした。
 鋼線の引張強さの上限は、特に限定されるものではないが、引張強さが高すぎると、延性が低下し、伸線加工を施すときに割れが生じる場合がある。この点で、鋼線の引張強さの上限は、引張強さは3000MPa(好ましくは2800MPa、より好ましくは2500MPa)がよい。
(Characteristics of high strength steel wire)
Next, the tensile strength of the high strength steel wire according to the present embodiment will be described.
If the tensile strength of the steel wire is less than 1960 MPa, for example, when the steel wire is applied to a civil engineering / building structure application, the effects of reduction in construction cost and weight reduction become small. Therefore, the lower limit of the tensile strength of the steel wire is set to 1960 MPa.
The upper limit of the tensile strength of the steel wire is not particularly limited, but if the tensile strength is too high, the ductility may be reduced and cracking may occur when wire drawing is performed. In this respect, the upper limit of the tensile strength of the steel wire is preferably 3000 MPa (preferably 2800 MPa, more preferably 2500 MPa).
 次に、本実施形態に係る高強度鋼線の線径について説明する。
 本実施形態に係る高強度鋼線は、ロープ用鋼線、橋梁ケーブル用鋼線、PC鋼線などに使用される高強度鋼線を対象とすることがよい。そのため、鋼線の線径(直径)が、1.5mm未満では、これらの商品を製造する際のコストが上昇し、8.0mmを超えると強度や捻回特性が劣化しやすくなる。そのため、鋼線の線径(直径)は、1.5mm~8.0mmがよい。より好ましい鋼線の線径(直径)の範囲は、3.0mm~7.5mmである。
Next, the wire diameter of the high strength steel wire according to the present embodiment will be described.
The high-strength steel wire according to the present embodiment may be a high-strength steel wire used for a rope steel wire, a bridge cable steel wire, a PC steel wire, and the like. Therefore, if the wire diameter (diameter) of the steel wire is less than 1.5 mm, the cost at the time of manufacturing these products increases, and if it exceeds 8.0 mm, the strength and twisting characteristics are easily deteriorated. Therefore, the wire diameter (diameter) of the steel wire is preferably 1.5 mm to 8.0 mm. A more preferable range of the wire diameter (diameter) of the steel wire is 3.0 mm to 7.5 mm.
 ここで、本実施形態に係る高強度鋼線は、鋼線の表面に、Zn層、およびZn合金層のいずれか1層を有するめっき層が被覆されていてもよい。Zn合金層としては、ZnAl層、ZnAlMg合金層等が挙げられる。
 ロープ用鋼線、橋梁ケーブル用鋼線などに使用される高強度鋼線には、表面にめっきが施された鋼線が使用されることがある。そして、表面にめっきが施されていても、本実施形態に係る高強度鋼線は、高強度でかつ捻回特性に優れた鋼線となる。
 なお、本実施形態に係る高強度鋼線は、鋼線の表面またはめっきが施された鋼線の表面に、樹脂被覆層(例えばエポキシ樹脂層)が被覆されていてもよい。
Here, in the high-strength steel wire according to the present embodiment, a plating layer having any one of a Zn layer and a Zn alloy layer may be coated on the surface of the steel wire. Examples of the Zn alloy layer include a ZnAl layer, a ZnAlMg alloy layer, and the like.
The high strength steel wire used for the steel wire for ropes, the steel wire for bridge cables, etc. may use the steel wire by which the surface was plated. And, even if the surface is plated, the high strength steel wire according to this embodiment is a steel wire which is high in strength and excellent in twisting characteristics.
In the high-strength steel wire according to the present embodiment, the surface of the steel wire or the surface of the plated steel wire may be coated with a resin coating layer (for example, an epoxy resin layer).
(高強度鋼線の製造方法)
 本実施形態に係る高強度鋼線の製造方法の一例について説明する。
 本実施形態に係る高強度鋼線の製造方法は、上記本実施形態に係る高強度鋼線の成分組成を有する鋼片を、1000~1150℃に加熱し、仕上げ圧延温度850~1000℃で熱間圧延することにより、線材を得る工程を有する。
(Method of manufacturing high strength steel wire)
An example of the manufacturing method of the high strength steel wire concerning this embodiment is explained.
In the method of manufacturing a high strength steel wire according to the present embodiment, a steel piece having the component composition of the high strength steel wire according to the present embodiment is heated to 1000 to 1150 ° C., and thermal rolling is performed at a finish rolling temperature of 850 to 1000 ° C. It has a process of obtaining a wire rod by rolling.
 そして、本実施形態に係る高強度鋼線の製造方法は、線材を得る工程の後工程として、次の工程を有する態様(1)~(6)が挙げられる。 In the method of manufacturing a high-strength steel wire according to the present embodiment, modes (1) to (6) having the following steps can be mentioned as steps after the step of obtaining a wire rod.
-態様(1)-
 熱間圧延後、850~1000℃である線材を、800℃から600℃までの平均冷却速度30~80℃/sで、500~600℃まで冷却する工程と、
 500~600℃まで冷却後の線材を、500~600℃で50s以上保持することによりパーライト変態処理する工程と、
 パーライト変態処理後、室温に冷却した線材を、総減面率65~95%で伸線加工し、500~600℃で1s以上20s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (1)-
Cooling the wire, which is at 850 to 1000 ° C., to 500 to 600 ° C. at an average cooling rate of 30 to 80 ° C./s from 800 ° C. to 600 ° C. after hot rolling;
A pearlite transformation process by holding the wire after cooling to 500 to 600 ° C. for 50 s or more at 500 to 600 ° C .;
After the pearlite transformation treatment, the wire cooled to room temperature is drawn at a total reduction of area of 65 to 95%, held at 500 to 600 ° C. for 1 second to 20 seconds, and obtaining a steel wire;
A method of manufacturing a high strength steel wire having the
-態様(2)-
 熱間圧延後、850~1000℃である線材を、800℃から600℃までの平均冷却速度を30~80℃/sで、500~600℃まで冷却する工程と、
 500~600℃まで冷却後の線材を、500~600℃で50秒以上保持することによりパーライト変態処理する工程と、
 パーライト変態処理後、室温に冷却した線材を、総減面率65~95%で伸線加工し、420~480℃で60s以上600s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (2)-
Cooling the wire, which is at 850 to 1000 ° C., to 500 to 600 ° C. at an average cooling rate of 800 to 600 ° C. at 30 to 80 ° C./s after hot rolling;
A pearlite transformation process by holding the wire after cooling to 500 to 600 ° C. for 50 seconds or more at 500 to 600 ° C .;
After the pearlite transformation treatment, the wire cooled to room temperature is drawn with a total reduction of area of 65 to 95%, held at 420 to 480 ° C. for 60 s or more and 600 s or less, to obtain a steel wire;
A method of manufacturing a high strength steel wire having the
-態様(3)-
 熱間圧延後、850~1000℃である線材を、700℃から550℃までの平均冷却速度を1.0~5.0℃/sで冷却する工程と、
 室温に冷却後の線材を、総減面率65~95%で伸線加工し、500~600℃で1s以上20s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (3)-
Cooling the wire, which is at 850 to 1000 ° C., at an average cooling rate from 700 ° C. to 550 ° C. at 1.0 to 5.0 ° C./s after hot rolling;
Wire drawing after cooling to room temperature with a total reduction in area of 65 to 95% and holding at 500 to 600 ° C. for 1 s or more and 20 s or less to obtain a steel wire;
A method of manufacturing a high strength steel wire having the
-態様(4)-
 熱間圧延後、850~1000℃である線材を、700℃から550℃までの平均冷却速度を1.0~5.0℃/sで冷却する工程と、
 室温に冷却後の線材を、総減面率65~95%で伸線加工し、420~480℃で60s以上600s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (4)-
Cooling the wire, which is at 850 to 1000 ° C., at an average cooling rate from 700 ° C. to 550 ° C. at 1.0 to 5.0 ° C./s after hot rolling;
Wire drawing after cooling to room temperature with a total reduction in area of 65 to 95% and holding at 420 to 480 ° C. for 60 seconds or more and 600 seconds or less to obtain a steel wire;
A method of manufacturing a high strength steel wire having the
-態様(5)-
 熱間圧延後、冷却した線材を、800~1050℃に再加熱し、480~600℃で20s以上保持後、冷却する工程と、
 室温に冷却後の線材を、総減面率65~95%で伸線加工し、500~600℃で1s以上20s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (5)-
Re-heating the cooled wire rod to 800 to 1050 ° C. after hot rolling and holding it at 480 to 600 ° C. for 20 seconds or more, and then cooling it;
Wire drawing after cooling to room temperature with a total reduction in area of 65 to 95% and holding at 500 to 600 ° C. for 1 s or more and 20 s or less to obtain a steel wire;
A method of manufacturing a high strength steel wire having the
-態様(6)-
 熱間圧延後、冷却した線材を、800~1050℃に再加熱し、480~600℃で20s以上保持後、冷却する工程と、
 室温に冷却後の線材を、総減面率65~95%で伸線加工し、420~480℃で60s以上600s以下保持し、鋼線を得る工程と、
 を有する高強度鋼線の製造方法。
-Aspect (6)-
Re-heating the cooled wire rod to 800 to 1050 ° C. after hot rolling and holding it at 480 to 600 ° C. for 20 seconds or more, and then cooling it;
Wire drawing after cooling to room temperature with a total reduction in area of 65 to 95% and holding at 420 to 480 ° C. for 60 seconds or more and 600 seconds or less to obtain a steel wire;
A method of manufacturing a high strength steel wire having the
 以下、本実施形態に係る高強度鋼線の製造方法の詳細について説明する。 Hereinafter, the detail of the manufacturing method of the high strength steel wire which concerns on this embodiment is demonstrated.
 本実施形態に係る高強度鋼線の製造方法では、まず、上記本実施形態に係る高強度鋼線の成分組成を有する鋼片を、1000~1150℃に加熱する。
 加熱温度が1000℃未満では、熱間圧延の際の変形抵抗が増大し圧延コストが嵩む。加熱温度が1150℃を超えると表層部の非パーライト組織の面積率が増大し、伸線加工性および捻回特性が劣化する。好ましい加熱温度の範囲の下限は、1050℃である。好ましい加熱温度の範囲の上限は、1100℃である。
In the method for manufacturing a high strength steel wire according to the present embodiment, first, a steel piece having the component composition of the high strength steel wire according to the present embodiment is heated to 1000 to 1150 ° C.
When the heating temperature is less than 1000 ° C., deformation resistance in hot rolling increases and rolling cost increases. When the heating temperature exceeds 1150 ° C., the area ratio of the non-pearlite structure in the surface layer increases, and the wire drawability and twisting characteristics deteriorate. The lower limit of the preferred heating temperature range is 1050.degree. The upper limit of the preferred heating temperature range is 1100 ° C.
 次に、加熱した鋼片を、仕上げ圧延温度850~1000℃で熱間圧延することにより、線材を得る。
 仕上げ圧延温度が850℃未満では、熱間圧延の際の変形抵抗が増大し圧延コストが嵩む。仕上げ圧延温度が1000℃を超えると、金属組織が粗大になり、伸線加工性が劣化する。好ましい仕上げ圧延温度の範囲の下限は、870℃である。好ましい仕上げ圧延温度の範囲の上限は、980℃である。
 なお、仕上げ圧延温度とは、仕上げ圧延直後の線材の表面温度を指す。
Next, the heated billet is hot-rolled at a finish rolling temperature of 850 to 1000 ° C. to obtain a wire rod.
When the finish rolling temperature is less than 850 ° C., deformation resistance in hot rolling increases and rolling cost increases. When the finish rolling temperature exceeds 1000 ° C., the metal structure becomes coarse and wire drawability deteriorates. The lower limit of the preferred finish rolling temperature range is 870 ° C. The upper limit of the preferred finish rolling temperature range is 980 ° C.
The finish rolling temperature refers to the surface temperature of the wire immediately after finish rolling.
 次に、熱間圧延後(具体的には仕上げ圧延後)、850~1000℃である線材を、800℃から600℃までの平均冷却速度30~80℃/sで、500~600℃まで冷却する。
 平均冷却速度が30℃/s未満では、表層部の非パーライト組織の面積率が増大し、伸線加工性と捻回特性が劣化する。平均冷却速度が80℃/s以上とするには製造コストが嵩む。好ましい平均冷却速度の範囲の下限は、40℃/sである。好ましい平均冷却速度の範囲の上限は、75℃/sである。なお、平均冷却速度とは、線材の表面冷却速度を指す。
 冷却温度が500℃未満では、パーライト面積率が小さくなり、捻回特性が劣化する。冷却温度が600℃を超えると、強度が低下する。好ましい冷却温度の範囲の下限は、530℃である。好ましい冷却温度の範囲の上限は、580℃である。
Next, after hot rolling (specifically, after finish rolling), the wire rod at 850 to 1000 ° C. is cooled to 500 to 600 ° C. at an average cooling rate of 30 to 80 ° C./s from 800 ° C. to 600 ° C. Do.
When the average cooling rate is less than 30 ° C./s, the area ratio of the non-pearlite structure in the surface layer increases, and the wire drawability and the twisting property deteriorate. In order to make the average cooling rate 80 ° C./s or more, the manufacturing cost increases. The lower limit of the preferred average cooling rate range is 40 ° C./s. The upper limit of the preferable average cooling rate range is 75 ° C./s. In addition, an average cooling rate refers to the surface cooling rate of a wire.
When the cooling temperature is less than 500 ° C., the pearlite area ratio becomes small, and the twisting characteristics deteriorate. When the cooling temperature exceeds 600 ° C., the strength decreases. The lower limit of the preferred cooling temperature range is 530.degree. The upper limit of the preferred cooling temperature range is 580 ° C.
 次に、500~600℃まで冷却後の線材を、500~600℃で50秒以上保持することによりパーライト変態処理する。
 保持温度が500℃未満では、パーライト面積率が小さくなり、捻回特性が劣化する。保持温度が600℃を超えると強度が低下する。好ましい保持温度の範囲の下限は、530℃である。好ましい保持温度の範囲の上限は、580℃である。
 保持時間が50s未満では、パーライト変態が未完となり、マルテンサイトが生成し、伸線加工性と捻回特性が劣化する。ただし、製造コストの観点から、保持時間の上限は、150sがよい。好ましい保持時間の範囲の下限は、60sである。好ましい保持時間の範囲の上限は、120sである。500~600℃の保持は、例えば、溶融塩浴槽により実施する。
Next, the wire after cooling to 500 to 600 ° C. is subjected to pearlite transformation treatment by holding the wire at 500 to 600 ° C. for 50 seconds or more.
When the holding temperature is less than 500 ° C., the pearlite area ratio becomes small, and the twisting characteristics deteriorate. When the holding temperature exceeds 600 ° C., the strength decreases. The lower limit of the preferred holding temperature range is 530 ° C. The upper limit of the preferred holding temperature range is 580 ° C.
If the holding time is less than 50 s, pearlite transformation is incomplete, martensite is formed, and wire drawability and twisting characteristics deteriorate. However, from the viewpoint of manufacturing cost, the upper limit of the holding time is preferably 150 s. The lower limit of the preferred holding time range is 60 s. The upper limit of the preferred holding time range is 120 s. The holding at 500 to 600 ° C. is performed, for example, by a molten salt bath.
 ここで、上記冷却およびパーライト変態処理に代えて、熱間圧延後、850~1000℃である線材を、700℃から550℃までの平均冷却速度を1.0~5.0℃/sで冷却してもよい。冷却は、例えば、ステルモア等の衝風冷却設備により実施する。
 平均冷却速度が1.0℃/s未満では強度が低下する。平均冷却速度が5.0℃/sを超えると、微視的な強度および金属組織のばらつきが大きくなり捻回特性が劣化する。好ましい平均冷却速度の範囲の下限は、1.2℃/sである。好ましい平均冷却速度の範囲の上限は、3.0℃/sである。
Here, in place of the above cooling and pearlite transformation treatment, after hot rolling, the wire rod at 850 to 1000 ° C. is cooled at an average cooling rate of 700 to 550 ° C. at 1.0 to 5.0 ° C./s You may The cooling is performed by, for example, a blast cooling facility such as Stelmore.
If the average cooling rate is less than 1.0 ° C./s, the strength decreases. When the average cooling rate exceeds 5.0 ° C./s, microscopic variations in strength and metallographic structure become large, and the torsion characteristics deteriorate. The lower limit of the preferred average cooling rate range is 1.2 ° C./s. The upper limit of the preferred average cooling rate range is 3.0 ° C./s.
 また、上記冷却処理およびパーライト変態処理に代えて、熱間圧延後、室温(例えば25℃)まで冷却した線材を、800~1050℃に再加熱し、480~600℃で20s以上保持後、冷却してもよい。
 再加熱温度が800℃未満では、オーステナイト化が不十分で均一なパーライト組織が得られず、強度が低下するとともに、伸線加工性が劣化する。再加熱温度が1050℃を超えると表層部の非パーライト組織の面積率が増大し、伸線加工性と捻回特性が劣化する。好ましい再加熱温度の範囲の下限は、940℃である。好ましい再加熱温度の範囲の上限は、1020℃である。
 保持温度が480℃未満では、パーライト組織の面積率が低下し、捻回特性が劣化する。保持温度が600℃を超えるとパーライト組織のラメラ間隔が大きくなり強度が低下する。好ましい保持温度の範囲の下限は、520℃である。好ましい保持温度の範囲の上限は、590℃である。
 保持時間が20s未満では、パーライト変態が未完となり、マルテンサイトが生成し、伸線加工性と捻回特性が劣化する。ただし、製造コストの観点から、保持時間の上限は、120sがよい。好ましい保持時間の範囲の下限は、30sである。好ましい保持時間の範囲の上限は、80sである。
 再加熱処理を酸化性雰囲気で行うと、鋼線の表層部のパーライト組織の面積率が低下し、伸線加工性と捻回特性が劣化する場合がある。そのため、再加熱熱処理の雰囲気は、例えば、不活性ガス(Arガス等)、中性ガス(窒素ガス等)、又は吸熱型変性ガスとする。また、再加熱処理は、誘導加熱などの短時間加熱でもよい。
 なお、480~600℃の保持は、例えば、溶融鉛浴で実施する。溶融鉛浴に代えて、溶融塩浴、流動層等を用いてもよい。
Also, instead of the above cooling treatment and pearlite transformation treatment, after hot rolling, the wire rod cooled to room temperature (for example 25 ° C.) is reheated to 800 to 1050 ° C. and held for 20 s or more at 480 to 600 ° C. cooling You may
When the reheating temperature is less than 800 ° C., the austenitizing is insufficient and a uniform pearlite structure can not be obtained, and the strength is lowered and the wire drawability is deteriorated. When the reheating temperature exceeds 1050 ° C., the area ratio of the non-pearlite structure in the surface layer increases, and the wire drawability and the twisting property deteriorate. The lower limit of the preferred reheating temperature range is 940 ° C. The upper limit of the preferred reheating temperature range is 1020 ° C.
When the holding temperature is less than 480 ° C., the area ratio of pearlite structure decreases and the twisting characteristics deteriorate. When the holding temperature exceeds 600 ° C., the lamellar spacing of the perlite structure increases and the strength decreases. The lower limit of the preferred holding temperature range is 520 ° C. The upper limit of the preferred holding temperature range is 590.degree.
If the holding time is less than 20 s, pearlite transformation becomes incomplete, martensite is formed, and wire drawability and twisting characteristics deteriorate. However, from the viewpoint of manufacturing cost, the upper limit of the holding time is preferably 120 s. The lower limit of the preferred retention time range is 30 s. The upper limit of the preferred retention time range is 80 s.
When the reheating treatment is performed in an oxidizing atmosphere, the area ratio of pearlite structure in the surface layer portion of the steel wire may be reduced, and the wire drawability and the twisting property may be deteriorated. Therefore, the atmosphere for the reheat heat treatment is, for example, an inert gas (such as Ar gas), a neutral gas (such as nitrogen gas), or an endothermic modified gas. Further, the reheating treatment may be heating for a short time such as induction heating.
The holding at 480 to 600 ° C. is performed, for example, in a molten lead bath. Instead of the molten lead bath, a molten salt bath, a fluidized bed or the like may be used.
 そして、上記パーライト変態処理後又は冷却後の線材(具体的には、室温(例えば25℃)まで冷却後の線材)を、総減面率65~95%で伸線加工し、500~600℃で1s以上20s以下保持し、鋼線を得る。500~600℃で1s以上20s以下保持することで捻回特性が向上する。なお、伸線加工後の熱処理を「時効処理」とも称する。
 総減面率が65%未満では強度が低下する。総減面率が95%を超えると、鋼線の延性が低下し、伸線加工性や捻回特性が劣化する。好ましい総減面率の範囲は、70~90%である。なお、総減面率とは、式:(伸線加工前の線材の断面積(線材の長手方向に垂直な面の面積)と伸線加工後の鋼線の断面積との差分/伸線加工前の線材の断面積)×100で算出される値である。
 保持温度が500℃未満では、捻回特性の向上効果がない。保持温度が600℃を超えると強度が低下する。好ましい保持温度の範囲は、510~550℃である。
 保持時間が1s未満では、捻回特性の向上効果がない。保持時間が20sを超えると強度が低下する。好ましい保持温度の範囲は、2~15sである。
Then, the wire rod after the above pearlite transformation treatment or after cooling (specifically, the wire rod after cooling to room temperature (for example, 25 ° C.) is drawn at a total reduction of 65 to 95%, and 500 to 600 ° C. Hold for 1 s or more and 20 s or less to obtain a steel wire. By holding at 500 to 600 ° C. for 1 s or more and 20 s or less, the twisting characteristic is improved. The heat treatment after wire drawing is also referred to as "aging treatment".
If the total reduction rate is less than 65%, the strength decreases. If the total area reduction rate exceeds 95%, the ductility of the steel wire is reduced, and the wire drawability and twisting characteristics are degraded. The preferred total reduction rate is 70 to 90%. The total area reduction rate is the difference between the cross-sectional area of the wire before drawing (the area of the surface perpendicular to the longitudinal direction of the wire) and the cross-sectional area of the steel wire after drawing / wire drawing It is a value calculated by cross section area of wire before processing × 100.
When the holding temperature is less than 500 ° C., there is no effect of improving the twisting characteristics. When the holding temperature exceeds 600 ° C., the strength decreases. The preferred holding temperature range is 510-550.degree.
If the holding time is less than 1 s, there is no effect of improving the twisting characteristics. If the holding time exceeds 20 s, the strength decreases. The preferred holding temperature range is 2 to 15 s.
 ここで、伸線加工後、500~600℃で1s以上20s以下の保持に代えて、420~480℃で60s以上600s以下保持してもよい。
 保持温度が420℃未満では捻回特性が低下する。保持温度が480℃を超えると強度が低下する。好ましい保持温度の範囲は、430~470℃である。
 保持時間が60s未満では捻回特性が低下する。保持時間600sを超えると製造コストが嵩む。好ましい保持温度の範囲は、100~500sである。
Here, after wire drawing, instead of holding at 500 to 600 ° C. for 1 s or more and 20 s or less, it may be held at 420 to 480 ° C. for 60 s or more and 600 s or less.
If the holding temperature is less than 420 ° C., the twisting characteristic is degraded. When the holding temperature exceeds 480 ° C., the strength decreases. The preferred holding temperature range is 430-470.degree.
If the holding time is less than 60 s, the twisting characteristics deteriorate. If the holding time exceeds 600 s, the manufacturing cost increases. The preferred holding temperature range is 100 to 500 s.
 以上の工程を経て、本実施形態に係る高強度鋼線が得られる。 Through the above steps, the high strength steel wire according to the present embodiment is obtained.
 本実施形態に係る高強度鋼線の製造方法は、上記の時効処理の後に、Zn層、およびZn合金層のいずれか1層を有するめっき層を被覆するめっき処理を420~480℃で行う工程を有してもよい。 The manufacturing method of the high strength steel wire according to the present embodiment is a step of performing plating treatment at 420 to 480 ° C. for covering the plating layer having any one of Zn layer and Zn alloy layer after the above-mentioned aging treatment May be included.
 なお、本実施形態に係る高強度鋼線の製造方法は、上記の時効処理に代えて、
鋼線の表面に、Zn層、およびZn合金層のいずれか1層を有するめっき層を被覆するめっき処理を、420~480℃で60s以上600s以下の条件、もしくは500~600℃で1s以上20s以下の条件で行う工程を有してもよい。この場合も、めっき処理に伴う鋼線の温度変化によって、鋼線に同様の組織が形成される。
 つまり、鋼線の表面に、上記時効処理に対応する温度および時間の条件でめっき処理を施すことにより、本実施形態に係る鋼線の組織状態を備え、かつZn層、およびZn合金層のいずれか1層を有するめっき層が被覆されている高強度鋼線が得られる。
In addition, the manufacturing method of the high strength steel wire which concerns on this embodiment is replaced with said aging treatment,
Plating treatment for coating a plating layer having a Zn layer and any one layer of Zn alloy layer on the surface of a steel wire is performed under the conditions of 60s to 600s at 420 to 480 ° C, or 1s to 20s at 500 to 600 ° C. You may have the process performed on condition of the following. Also in this case, a similar structure is formed on the steel wire due to the temperature change of the steel wire accompanying the plating process.
That is, the surface of the steel wire is plated under the conditions of temperature and time corresponding to the above-mentioned aging treatment to provide the structural state of the steel wire according to the present embodiment, and any of the Zn layer and the Zn alloy layer A high strength steel wire coated with a plating layer having one layer is obtained.
 また、本実施形態に係る高強度鋼線の製造方法は、更に、鋼線の表面またはめっきが施された鋼線の表面に、樹脂被覆層(例えばエポキシ樹脂層)を被覆する工程を有してもよい。樹脂被覆層が存在したとしても、当該樹脂被覆層の内部に存在する鋼線が本実施形態に係る鋼線の組織状態を備えるものであれば、優れた強度および捻回特性を実現できる。 In addition, the method for manufacturing a high strength steel wire according to the present embodiment further includes the step of covering the surface of the steel wire or the surface of the plated steel wire with a resin coating layer (for example, an epoxy resin layer). May be Even if the resin coating layer is present, excellent strength and twisting characteristics can be realized as long as the steel wire present inside the resin coating layer has the structure state of the steel wire according to the present embodiment.
 以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in more detail by way of examples. However, these examples do not limit the present invention.
 表1に示す成分組成を有する鋼種A~Sの鋼片を用いて、表2~表6に示す条件で、次の通り、鋼線を製造した。 A steel wire was manufactured as follows using the steel pieces of steel types A to S having the component compositions shown in Table 1 under the conditions shown in Tables 2 to 6.
 具体的には、表2に示す試験番号1~30の鋼線は、次の通り製造した。
 まず、鋼片を加熱した後、熱間圧延して、得られた線材をリング状に巻取り、500~600℃まで冷却した。次に、得られた線材を熱間圧延ライン後方の溶融塩浴に浸漬してパテンティング処理(パーライト変態処理)した。その後、室温(25℃)まで冷却した線材を表2に示す線径(伸線後の線径と表記)まで伸線加工し、伸線後に加熱して時効処理した。これらの工程を経て、試験番号1~30に示す鋼線を製造した。
Specifically, steel wires of test numbers 1 to 30 shown in Table 2 were manufactured as follows.
First, after heating a steel piece, it was hot-rolled, and the obtained wire was wound into a ring and cooled to 500 to 600.degree. Next, the obtained wire was immersed in a molten salt bath at the rear of a hot rolling line to perform patenting (perlite transformation). Thereafter, the wire rod cooled to room temperature (25 ° C.) was drawn to the wire diameter shown in Table 2 (denoted as the wire diameter after wire drawing), and after heating, it was heated and aged. Through these steps, steel wires shown in Test Nos. 1 to 30 were produced.
 また、表3に示す試験番号31~34の鋼線は、次の通り製造した。
 まず、鋼片を加熱した後、熱間圧延して、得られた線材をリング状に巻き取り、衝風冷却した。その後、室温(25℃)まで冷却した線材を表3に示す線径まで伸線加工し、伸線後に加熱して時効処理した。これらの工程を経て、試験番号31~34に示す鋼線を製造した。
The steel wires of test numbers 31 to 34 shown in Table 3 were manufactured as follows.
First, after heating a steel piece, it hot-rolled, wound the obtained wire rod like ring shape, and carried out blast cooling. Thereafter, the wire rod cooled to room temperature (25 ° C.) was drawn to the wire diameter shown in Table 3, and after the drawing, it was heated and aged. Through these steps, steel wires shown in Test Nos. 31 to 34 were manufactured.
 また、表4に示す試験番号35~40の鋼線は、次の通り製造した。
 鋼片を加熱した後、熱間圧延して、得られた線材をリング状に巻取り、平均冷却速度2.0℃/sで冷却した。次に、室温(25℃)まで冷却した線材を、所定の雰囲気下で再加熱し、溶融鉛浴に浸漬した。その後、室温(25℃)まで冷却した線材を表4に示す線径まで伸線加工し、伸線後に加熱して時効処理した。これらの工程を経て、試験番号35~40に示す鋼線を製造した。
In addition, steel wires of test numbers 35 to 40 shown in Table 4 were manufactured as follows.
After heating the billet, it was hot-rolled, and the obtained wire was wound into a ring, and cooled at an average cooling rate of 2.0 ° C./s. Next, the wire rod cooled to room temperature (25 ° C.) was reheated in a predetermined atmosphere and immersed in a molten lead bath. Thereafter, the wire rod cooled to room temperature (25 ° C.) was subjected to wire drawing to the wire diameter shown in Table 4, and after the wire drawing was heated for aging treatment. Through these steps, steel wires shown in Test Nos. 35 to 40 were manufactured.
 また、表5に示す試験番号41の鋼線は、次の通り製造した。
 まず、鋼片を加熱した後、熱間圧延して、得られた線材をリング状に巻取り、500~600℃まで冷却した。次に、得られた線材を熱間圧延ライン後方の溶融塩浴に浸漬してパテンティング処理した。その後、室温(25℃)まで冷却した線材を表5に示す線径まで伸線加工し、伸線後に加熱して時効処理した。その後、溶融亜鉛めっき処理した。これらの工程を経て、試験番号41に示す鋼線を製造した。
Moreover, the steel wire of the test number 41 shown in Table 5 was manufactured as follows.
First, after heating a steel piece, it was hot-rolled, and the obtained wire was wound into a ring and cooled to 500 to 600.degree. Next, the obtained wire rod was dipped in a molten salt bath after the hot rolling line for patenting treatment. Thereafter, the wire rod cooled to room temperature (25 ° C.) was subjected to wire drawing to the wire diameter shown in Table 5, and after the wire drawing was heated for aging treatment. Thereafter, it was subjected to hot dip galvanization treatment. Through these steps, a steel wire shown in Test No. 41 was manufactured.
 また、表6に示す試験番号42の鋼線は、伸線加工と時効処理の順を入れ替えた以外は、試験番号22の鋼線と同様にして製造した。 Moreover, the steel wire of the test number 42 shown in Table 6 was manufactured like the steel wire of the test number 22 except having changed the order of wiredrawing and aging treatment.
 そして、これらの鋼線に対して、金属組織の観察を行い、引張試験と捻回試験を行った。 And metal structure was observed with respect to these steel wires, and a tension test and a torsion test were performed.
 鋼線の内部のパーライト組織の面積率、鋼線の表層部のパーライト組織の面積率、ラメラ状パーライト組織(セメンタイトの平均長さが1.0μm以上であるラメラ状パーライト組織)の面積率、分断パーライト組織(セメンタイトの平均長さが0.30μm以下である分断パーライト組織)の面積率は、既述した方法に従って測定した。結果を表2~表5に示す。 Area ratio of pearlite structure in steel wire, area ratio of pearlite structure in surface layer of steel wire, area ratio of lamellar pearlite structure (lamellar pearlite structure having an average length of cementite of 1.0 μm or more), division The area ratio of pearlite structure (divided pearlite structure having an average length of cementite of 0.30 μm or less) was measured according to the method described above. The results are shown in Tables 2 to 5.
 引張試験は、JIS Z 2241(2011年)に準拠し、9A号試験片を用いて、鋼線につき3本ずつ評価し、その平均値を求めた。結果を表2~表5に示す。 In the tensile test, in accordance with JIS Z 2241 (2011), using a 9A test piece, three steel wires were evaluated at a time, and the average value was determined. The results are shown in Tables 2 to 5.
 捻回試験は、JIS G 3521(1991年)のねじり試験方法に準拠して、鋼線につき10本ずつ評価し、デラミネーション有無と捻回値を評価した。10本中1本でもデラミネーションが発生した場合、デラミネーションありと判定した。捻回値が12回未満のとき、不良と判定した。デラミネーションの発生がなく、かつ捻回値が12回以上のとき、捻回特性が良好と判定した。結果を表2~表6に示す。 In the torsion test, 10 pieces of steel wire were evaluated in accordance with the torsion test method of JIS G 3521 (1991), and the presence or absence of delamination and the torsion value were evaluated. When delamination occurred even in 1 out of 10, it was determined that delamination was present. When the twist value was less than 12 times, it was determined to be defective. When no delamination occurred and the twist value was 12 or more, it was judged that the twist characteristics were good. The results are shown in Tables 2 to 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記結果から、本開示で規定する要件をすべて満たす試験番号1~11、21~25、30~32、35~38、41の鋼線は、引張強さが1960MPa以上となり、かつ捻回特性が良好であることがわかる。 From the above results, the steel wires of test numbers 1 to 11, 21 to 25, 30 to 32, 35 to 38, and 41 that satisfy all the requirements specified in the present disclosure have a tensile strength of 1960 MPa or more and a twisting characteristic of It turns out that it is good.
 一方、試験番号12の鋼線は、パーライト組織の面積率が本開示の下限未満である。
 試験番号13、17、27、39、42の鋼線は、分断パーライト組織の面積率が本開示の範囲を外れる。
 試験番号18と40の鋼線は、表層部のパーライト組織の面積率が本開示の下限を下回る。なお、試験番号40の鋼線は、特許文献5の鋼線に相当する例である。
On the other hand, in the steel wire of test No. 12, the area ratio of pearlite structure is less than the lower limit of the present disclosure.
In the steel wires of test numbers 13, 17, 27, 39, 42, the area ratio of the divided perlite structure is out of the range of the present disclosure.
In the steel wires of test numbers 18 and 40, the area ratio of pearlite structure in the surface layer portion is lower than the lower limit of the present disclosure. In addition, the steel wire of test number 40 is an example corresponded to the steel wire of patent document 5. FIG.
 試験番号28、33の鋼線は、ラメラ状パーライト組織の面積率が本開示の上限を超える。
 試験番号14、16、26、29の鋼線は、ラメラ状パーライト組織の面積率と分断パーライト組織の面積率が本開示の範囲を外れる。
In the steel wires of test numbers 28 and 33, the area ratio of the lamellar pearlite structure exceeds the upper limit of the present disclosure.
In the steel wires of test numbers 14, 16, 26, and 29, the area ratio of the lamellar pearlite structure and the area ratio of the divided perlite structure are out of the scope of the present disclosure.
 試験番号15、34の鋼線は、鋼線の内部のパーライト組織の面積率、鋼線の表層部のパーライト組織の面積率、ラメラ状パーライト組織の面積率、及び分断パーライト組織の面積率のいずれもが本開示の範囲を外れる。
 試験番号19、20は、C量が本開示の範囲を外れる。
The steel wires of test numbers 15 and 34 are any of the area ratio of pearlite structure inside the steel wire, the area ratio of pearlite structure of the surface layer of the steel wire, the area ratio of lamellar pearlite structure, and the area ratio of divided pearlite structure The thigh is out of the scope of the present disclosure.
The test numbers 19, 20 have a C amount outside the scope of the present disclosure.
 これらの本開示の範囲を外れる鋼線は、いずれも捻回特性が不良、もしくは鋼線の引張強度が不十分である。 Any of the steel wires outside the scope of the present disclosure has poor twisting characteristics or insufficient tensile strength of the steel wire.
 なお、日本国特許出願第2017-128871号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-128871 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as specific and individually as individual documents, patent applications, and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (5)

  1.  成分組成が、質量%で、
     C :0.85~1.20%、
     Si:0.10~2.00%、
     Mn:0.20~1.00%、
     P :0.030%以下、
     S :0.030%以下、
     N :0.0010~0.0080%、
     B :0~0.0050%、
     Al:0~0.100%、
     Ti:0~0.050%、
     Cr:0~0.60%、
     V :0~0.10%、
     Nb:0~0.050%、
     Zr:0~0.050%、および、
     Ni:0~1.00%
     を含有し、残部Fe及び不純物からなり、
     鋼線の中心軸を含み中心軸に平行な断面において、鋼線の内部のパーライト組織の面積率が90%以上であり、鋼線の表層部のパーライト組織の面積率が80%以上であり、
     前記鋼線の全体における組織のうち、セメンタイトの平均長さが1.0μm以上であるラメラ状パーライト組織の面積率が30%以上65%以下であり、かつ、セメンタイトの平均長さが0.30μm以下である分断パーライト組織の面積率が20%以上50%以下であり、
     かつ、引張強さが1960MPa以上である高強度鋼線。
    The component composition is in mass%,
    C: 0.85 to 1.20%,
    Si: 0.10 to 2.00%,
    Mn: 0.20 to 1.00%,
    P: 0.030% or less,
    S: 0.030% or less,
    N: 0.0010 to 0.0080%,
    B: 0 to 0.0050%,
    Al: 0 to 0.100%,
    Ti: 0 to 0.050%,
    Cr: 0 to 0.60%,
    V: 0 to 0.10%,
    Nb: 0 to 0.050%,
    Zr: 0 to 0.050%, and
    Ni: 0 to 1.00%
    Containing the balance Fe and impurities,
    In a cross section including the central axis of the steel wire and parallel to the central axis, the area ratio of pearlite structure in the steel wire is 90% or more, and the area ratio of pearlite structure in the surface layer of the steel wire is 80% or more,
    Among the structures in the entire steel wire, the area ratio of lamellar pearlite structure having an average length of cementite of 1.0 μm or more is 30% to 65%, and the average length of cementite is 0.30 μm The area ratio of the divided perlite structure which is less than or equal to 20% and less than or equal to 50%,
    And, a high strength steel wire having a tensile strength of 1960 MPa or more.
  2.  鋼線の成分組成が、質量%で、更に、B:0.0001~0.0050%、Al:0.001~0.100%、およびTi:0.001~0.050%の1種または2種以上を含有する請求項1に記載の高強度鋼線。 The composition of the steel wire is, in mass%, one or more of B: 0.0001 to 0.0050%, Al: 0.001 to 0.100%, and Ti: 0.001 to 0.050%. The high strength steel wire according to claim 1 containing two or more kinds.
  3.  鋼線の成分組成が、質量%で、更に、Cr:0.01~0.60%、V:0.01~0.10%、Nb:0.001~0.050%、Zr:0.001~0.050%、およびNi:0.01~1.00%の1種または2種以上を含有する請求項1又は請求項2に記載の高強度鋼線。 The composition of the steel wire is, in mass%, Cr: 0.01 to 0.60%, V: 0.01 to 0.10%, Nb: 0.001 to 0.050%, Zr: 0. The high strength steel wire according to claim 1 or 2, containing one or more of 001 to 0.050% and Ni: 0.01 to 1.00%.
  4.  前記鋼線の直径が、1.5~8.0mmである請求項1~請求項3のいずれか1項に記載の高強度鋼線。 The high strength steel wire according to any one of claims 1 to 3, wherein a diameter of the steel wire is 1.5 to 8.0 mm.
  5.  前記鋼線の表面に、Zn層、およびZn合金層のいずれか1層を有するめっき層が被覆されている請求項1~請求項4のいずれか1項に記載の高強度鋼線。 The high strength steel wire according to any one of claims 1 to 4, wherein a plating layer having any one of a Zn layer and a Zn alloy layer is coated on the surface of the steel wire.
PCT/JP2018/024904 2017-06-30 2018-06-29 High-strength steel wire WO2019004454A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18824446.1A EP3647446A4 (en) 2017-06-30 2018-06-29 High-strength steel wire
KR1020197038563A KR20200016289A (en) 2017-06-30 2018-06-29 High strength liner
CN201880042600.0A CN110832096A (en) 2017-06-30 2018-06-29 High-strength steel wire
JP2018565078A JP6485612B1 (en) 2017-06-30 2018-06-29 High strength steel wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128871 2017-06-30
JP2017128871 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004454A1 true WO2019004454A1 (en) 2019-01-03

Family

ID=64741602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024904 WO2019004454A1 (en) 2017-06-30 2018-06-29 High-strength steel wire

Country Status (5)

Country Link
EP (1) EP3647446A4 (en)
JP (1) JP6485612B1 (en)
KR (1) KR20200016289A (en)
CN (1) CN110832096A (en)
WO (1) WO2019004454A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458356A (en) * 2020-10-15 2021-03-09 中天钢铁集团有限公司 Phi 14mm wire rod for 1860MPa bridge cable galvanized steel wire and preparation method
JP2021161451A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material for wire drawing
JP2021161445A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material
JP2021161444A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material for wire drawing
JP2021161443A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Wire and steel wire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553612B2 (en) 1988-02-25 1996-11-13 新日本製鐵株式会社 Manufacturing method of high strength and high toughness galvanized steel wire
JP2000297323A (en) * 1999-04-13 2000-10-24 Sumitomo Electric Ind Ltd Manufacture of high toughness steel wire
JP2000336459A (en) 1999-05-27 2000-12-05 Nippon Steel Corp High tensile strength steel wire without de-lamination and its manufacture
JP3130445B2 (en) 1995-04-26 2001-01-31 新日本製鐵株式会社 High strength galvanized steel wire and method of manufacturing the same
JP3725576B2 (en) 1995-04-26 2005-12-14 新日本製鐵株式会社 Manufacturing method of high strength galvanized steel wire
JP5169839B2 (en) 2007-01-31 2013-03-27 新日鐵住金株式会社 PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
WO2016024635A1 (en) * 2014-08-15 2016-02-18 新日鐵住金株式会社 Steel wire for wire drawing
WO2017069207A1 (en) * 2015-10-23 2017-04-27 新日鐵住金株式会社 Steel wire for wire drawing
JP2017128871A (en) 2016-01-19 2017-07-27 大成建設株式会社 Anchorage structure for column main reinforcement, and building comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169839A (en) 1974-12-12 1976-06-16 Giken Sangyo Kk JIDOSHANOHI JOKEIHOSOCHI
JP2553612Y2 (en) 1992-08-26 1997-11-12 藤倉ゴム工業株式会社 Golf club shaft
JP3130445U (en) 2006-12-25 2007-03-29 孝志 雄川 Transparent adhesive label
JP4782246B2 (en) * 2009-06-25 2011-09-28 新日本製鐵株式会社 High-strength Zn-Al plated steel wire for bridges with excellent corrosion resistance and fatigue characteristics and method for producing the same
KR101318009B1 (en) * 2010-02-01 2013-10-14 신닛테츠스미킨 카부시키카이샤 Wire rod, steel wire, and manufacturing method thereof
WO2014208492A1 (en) * 2013-06-24 2014-12-31 新日鐵住金株式会社 High-carbon steel wire rod and method for manufacturing same
WO2015186801A1 (en) * 2014-06-04 2015-12-10 新日鐵住金株式会社 Steel wire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553612B2 (en) 1988-02-25 1996-11-13 新日本製鐵株式会社 Manufacturing method of high strength and high toughness galvanized steel wire
JP3130445B2 (en) 1995-04-26 2001-01-31 新日本製鐵株式会社 High strength galvanized steel wire and method of manufacturing the same
JP3725576B2 (en) 1995-04-26 2005-12-14 新日本製鐵株式会社 Manufacturing method of high strength galvanized steel wire
JP2000297323A (en) * 1999-04-13 2000-10-24 Sumitomo Electric Ind Ltd Manufacture of high toughness steel wire
JP2000336459A (en) 1999-05-27 2000-12-05 Nippon Steel Corp High tensile strength steel wire without de-lamination and its manufacture
JP5169839B2 (en) 2007-01-31 2013-03-27 新日鐵住金株式会社 PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
WO2016024635A1 (en) * 2014-08-15 2016-02-18 新日鐵住金株式会社 Steel wire for wire drawing
WO2017069207A1 (en) * 2015-10-23 2017-04-27 新日鐵住金株式会社 Steel wire for wire drawing
JP2017128871A (en) 2016-01-19 2017-07-27 大成建設株式会社 Anchorage structure for column main reinforcement, and building comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161451A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material for wire drawing
JP2021161445A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material
JP2021161444A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Steel wire material for wire drawing
JP2021161443A (en) * 2020-03-30 2021-10-11 日本製鉄株式会社 Wire and steel wire
JP7440758B2 (en) 2020-03-30 2024-02-29 日本製鉄株式会社 wire rod and steel wire
CN112458356A (en) * 2020-10-15 2021-03-09 中天钢铁集团有限公司 Phi 14mm wire rod for 1860MPa bridge cable galvanized steel wire and preparation method

Also Published As

Publication number Publication date
EP3647446A1 (en) 2020-05-06
EP3647446A4 (en) 2021-02-17
KR20200016289A (en) 2020-02-14
JP6485612B1 (en) 2019-03-20
JPWO2019004454A1 (en) 2019-06-27
CN110832096A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
JP6485612B1 (en) High strength steel wire
JP4943564B2 (en) Saw wire and manufacturing method thereof
JP4842408B2 (en) Wire, steel wire, and method for manufacturing wire
JP6180351B2 (en) High strength steel wire and high strength steel wire with excellent stretchability
JP5098444B2 (en) Method for producing high ductility direct patenting wire
CN108138285B (en) Steel wire for wire drawing
CA2980886C (en) High-carbon steel wire material with excellent wire drawability, and steel wire
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP6687112B2 (en) Steel wire
JP7226548B2 (en) wire
JP6288265B2 (en) Steel wire
JP5945196B2 (en) High strength steel wire
KR102534998B1 (en) hot rolled wire rod
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
WO2016002414A1 (en) Wire material for steel wire, and steel wire
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
WO2017170515A1 (en) Steel wire
JP7469642B2 (en) High-strength steel wire
JP2000080442A (en) Steel wire rod, extra fine steel wire and stranded steel wire
JP3439106B2 (en) Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance
JPS63111128A (en) Manufacture of high tension high carbon steel wire rod having superior drawability
JPH0949054A (en) High carbon steel wire rod excellent in wire drawability

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565078

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018824446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018824446

Country of ref document: EP

Effective date: 20200130