JP4527913B2 - High-strength high-carbon steel wire and method for producing the same - Google Patents

High-strength high-carbon steel wire and method for producing the same Download PDF

Info

Publication number
JP4527913B2
JP4527913B2 JP2001286185A JP2001286185A JP4527913B2 JP 4527913 B2 JP4527913 B2 JP 4527913B2 JP 2001286185 A JP2001286185 A JP 2001286185A JP 2001286185 A JP2001286185 A JP 2001286185A JP 4527913 B2 JP4527913 B2 JP 4527913B2
Authority
JP
Japan
Prior art keywords
wire
strength
carbon steel
patenting
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001286185A
Other languages
Japanese (ja)
Other versions
JP2003096544A (en
Inventor
敏三 樽井
大輔 平上
正春 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001286185A priority Critical patent/JP4527913B2/en
Publication of JP2003096544A publication Critical patent/JP2003096544A/en
Application granted granted Critical
Publication of JP4527913B2 publication Critical patent/JP4527913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁用鋼線、PC鋼線、送電線の補強用鋼線(ACSR)、ばね用鋼線、各種ワイヤロープ、スチールタイヤコード等に広く使われている高強度の高炭素鋼線用線材及びその製造方法に関するものである。
【0002】
【従来の技術】
パーライト組織を有する高炭素鋼線材を伸線加工によって強化した高炭素鋼線は、軽量化あるいは工事期間の短縮のために高強度化のニーズが強まっている。通常、橋梁用鋼線、PC鋼線等の高炭素鋼線は、熱間圧延された高炭素鋼線材を再加熱するパテンティング処理を行った後、冷間で伸線加工を行い、最終的に耐食性を確保するために溶融Znめっき、溶融Zn−Alめっき等を行うか、あるいはブルーイング処理を施す行程で製造されている。また、スチールコードは、パテンティング処理後にブラスめっきを行い、湿式伸線を行う工程で製造されている。
【0003】
これらの高炭素鋼線の高強度化を達成する上での最大の課題は、鋼線の延性、特に延性の評価方法の一つであるねじり試験において鋼線の長手方向に生じる縦割れの発生(以下、デラミネーションと言う)を抑制する技術にある。
【0004】
高炭素鋼線におけるデラミネーションの抑制技術あるいは延性低下を防止する技術として、特開平7−179994号公報にはパテンティング処理後のパーライトノジュールサイズを規制する技術が、特開平7−292443号公報にはSiとAl添加量を規制する技術が、特開平8−53737号公報には溶融めっき鋼線の表層硬度を制御する技術が、特開平8−120407号公報にはセメンタイトの平均粒径を規制する技術が、特開平9−87803号公報には固溶N量を規制する技術がそれぞれ提案されている。また、特開昭60−204865号、特開昭63−24046号、特公平3−23674号の各公報にはそれぞれC、Si、Mn、Cr等の化学成分を規制した高強度で高延性の極細鋼線用高炭素線材が提案されている。更に、特開平6−145895号公報では化学成分と非金属介在物組成及び初析セメンタイトの面積分率を制御した高強度高靭性鋼線材が、特開平7−113119号公報では鋼の化学成分と最終ダイスでの減面率を制御する高強度高靭延性極細鋼線の製造方法がそれぞれ開示されている。
【0005】
しかしながら、上記の技術では、高炭素鋼線の高強度化に関して限界があり、また製造コストも高くなる欠点があった。
【0006】
【発明が解決しようとする課題】
本発明は上記の如き実状に鑑みなされたものであって、橋梁用鋼線、PC鋼線、送電線の補強用鋼線(ACSR)、ばね用鋼線、各種ワイヤロープ、スチールタイヤコード等に広く使われている高炭素鋼線において、ねじり試験時に発生するデラミネーションを抑制し、延性が優れた高炭素鋼線及びその製造方法を低コストで実現する技術を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、高炭素鋼線の高強度化の阻害要因であるデラミネーションの支配要因について種々解析した。この結果、パテンティング処理した線材における固溶Cが、デラミネーションの発生に対して著しく影響することを見出した。即ち、パテンティング処理後の組織は、フェライトとセメンタイトの層状組織からなる微細パーライトとなるが、フェライト中の固溶C量が大きい場合には、デラミネーションの発生頻度が著しく増加することを見出した。更に、フェライト中の固溶C量を低コストで制御する手段について検討を進めた。この結果、鋼材面からの解決手段としてMg、Zrを含む微細酸化物や硫化物あるいはこれらの複合物は、固溶C量を低減させる効果があることを見出した。また、パテンティング処理後の最適な冷却速度、あるいはパテンティング処理後の低温焼鈍で、固溶C量を制御できる技術を確立した。
【0008】
以上の新知見に基づき、パテンティング処理した線材におけるフェライト中の固溶C量を制御できれば、高強度の高炭素鋼線において、デラミネーションの発生を防止することができるとの結論に達し本発明をなしたものである。
【0009】
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、下記の通りである。
【0010】
(1) 質量%で、
C :0.8〜1.1%、
Si:0.05〜2%、
Mn:0.2〜2%
を含有し、残部はFe及び不可避的不純物からなる熱間圧延された線材であって、前記線材に1〜2%の引張ひずみを付与し、引続き、150〜300℃で60〜300秒の時効処理を施した際に、時効処理前後の耐力の増加量が200MPa以下であることを特徴とする高強度高炭素鋼線用線材。
【0011】
(2) 質量%で、Mg:0.0001〜0.002%、Zr:0.0001〜0.002%、の1種又は2種を含有することを特徴とする前記(1)記載の高強度鋼線用線材。
【0012】
(3) 質量%で、Cr:0.05〜1%、Mo:0.05〜0.5%、Ni:0.05〜1%、V:0.01〜0.5%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)記載の高強度高炭素鋼線用線材。
【0013】
(4) 質量%で、Al:0.005〜0.1%、Ti:0.002〜0.1%、Nb:0.002〜0.1%の1種又は2種以上を含有することを特徴とする前記(1)、(2)又は(3)記載の高強度高炭素鋼線用線材。
【0014】
(5) フェライト中の固溶C量が25ppm以下であることを特徴とする前記(1)〜(4)の何れか1項に記載の高強度高炭素鋼線用線材。
【0015】
(6) 前記(1)〜(5)の何れか1項に記載の線材を製造する方法であって、前記(1)〜(4)の何れか1項に記載の成分からなる鋼を熱間圧延した後に、再加熱せずに450〜650℃でパテンティングを行い、引続き、1〜8℃/秒で冷却することを特徴とする高強度高炭素鋼線用線材の製造方法。
【0016】
(7) 前記(1)〜(5)の何れか1項に記載の線材を製造する方法であって、前記(1)〜(4)の何れか1項に記載の成分からなる鋼を熱間圧延した後に、再加熱せずに450〜650℃でパテンティングを行い、引続き、150〜300℃の温度範囲で保定することを特徴とする高強度高炭素鋼線用線材の製造方法。
【0017】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0018】
はじめに、本発明の成分限定理由について述べる。
【0019】
C:Cはパテンティング処理後の引張強さの増加及び伸線加工硬化率を高める効果があり、より少ない伸線加工歪で高炭素鋼線の引張強さを高めることができる。Cが0.8%未満では本発明で目的とする高強度の高炭素鋼線を実現することが困難となり、一方、1.1%を超えるとパテンティング処理時に初析セメンタイトがオーステナイト粒界に析出して伸線加工性が劣化し伸線加工中に断線が頻発するため、Cを0.8〜1.1%の範囲に限定した。
【0020】
Si:Siはパーライト中のフェライトを強化させるためと鋼の脱酸のために有効な元素である。0.05%未満では上記の効果が期待できず、一方2%を超えると伸線加工性に対して有害な硬質のSiO系介在物が発生しやすくなるため、0.05〜2%の範囲に制限した。
【0021】
Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張強さを高めるために有効な元素であるが、0.2%未満では上記の効果が得られず、一方2%を越えると上記の効果が飽和し、更にパテンティング処理時のパーライト変態を完了させるための処理時間が長くなりすぎて生産性が低下するため、0.2〜2%の範囲に限定した。
【0022】
Mg:Mgを添加すると、Mgの微細な酸化物や硫化物あるいはこれらの複合物が生成する。Mg系の酸化物・硫化物がフェライト中に存在すると、パテンティング処理後の固溶C量を低下させる作用があり、デラミネーションの防止に対して極めて有効な元素であることを見出した。Mgが0.0001%未満では上記の効果が発揮できず、また0.002%を超えて添加しても効果が飽和し製造コストも高くなるため、0.0001〜0.002%に限定した。
【0023】
Zr:ZrもMgと同様に、Zrの微細な酸化物や硫化物あるいはこれらの複合物を生成する。Zr系の酸化物・硫化物がフェライト中に存在すると、パテンティング処理後の固溶C量を低下させる作用があり、デラミネーションの防止に対して極めて有効な元素であるであることが明確になった。Zrが0.0001%未満では上記の効果が発揮できず、また0.002%を超えて添加しても効果が飽和し製造コストも高くなるため、0.0001〜0.002%に限定した。なお、MgとZrの両者を添加する場合、MgとZrの複合酸化物や硫化物が生成するが、複合酸化物や硫化物であっても固溶C量を低下させる効果がある。
【0024】
Cr:Crはパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高めるとともに特に伸線加工硬化率を向上させる有効な元素であるが、0.05%未満では前記作用の効果が少なく、一方1%を超えるとパテンティング処理時のパーライト変態終了時間が長くなり生産性が低下するため、0.05〜1%の範囲に限定した。
【0025】
Mo:Moは、パテンティング処理時の焼入性を増加させ、パテンティング処理後の引張強さを高める効果がある。0.05%未満では上記の効果が発揮できず、一方0.5%を超えて添加しても効果が飽和するために、0.05〜0.5%の範囲に限定した。
【0026】
Ni:Niはパテンティング処理時に変態生成するパーライトを伸線加工性の良好なものにする作用を有するが、0.05%未満では上記の効果が得られず、1%を超えても添加量に見合うだけの効果が少ないためこれを上限とした。
【0027】
V:Vはパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高める効果があるが、この効果は0.01%未満では不十分であり、一方0.5%を超えると効果が飽和するため0.01〜0.5%の範囲に制限した。
【0028】
Al:Alは脱酸のためと窒化物を形成することにより、オーステナイト結晶粒の粗大化を防止させるのに有効である。Alの添加量が0.005%未満では上記作用が十分でないため下限を0.005%に限定した。一方、0.1%を超えて添加しても効果が飽和するため、上限を0.1%に制限した。
【0029】
Ti:Tiは脱酸及び炭窒化物を形成することにより、オーステナイト結晶粒の粗大化を防止する効果を有しているが、0.002%未満ではこれらの効果が発揮されず、0.1%を超えて添加しても効果が飽和するため0.002〜0.1%の範囲に限定した。
【0030】
Nb:NbはTiと同様に炭窒化物を生成することにより結晶粒を微細化させるために有効な元素であるが、0.002%未満ではその効果が不十分であり、一方0.1%を超えるとこの効果が飽和するため0.002〜0.1%に制限した。
【0031】
他の元素は特に限定しないが、不純物として含有される成分としてP:0.02%以下、S:0.02%以下、N;0.007%以下が望ましい範囲である。
【0032】
次に、本発明で目的とする高強度の高炭素鋼線において、デラミネーション発生の防止を図るために極めて重要となるフェライト中の固溶C量について述べる。
【0033】
本発明では高炭素鋼線の延性をねじり試験を用いて、デラミネーション発生の有無で評価している。ここで、デラミネーションが発生する鋼線は延性が低いことを意味している。また、線材のフェライト中の固溶C量は、アトムプローブ電界イオン顕微鏡を用いると正確に測定できる。しかし、分析用の試料作成と分析に長時間を要するため、本発明では、フェライト中の固溶C量の大小を簡易的に評価できる方法を採用した。即ち、パテンティング処理後の線材を矯正加工によって直線にし、その後、引張試験機で1〜2%の引張ひずみを線材に付与する。1〜2%の引張ひずみを線材に付与した際の荷重を線材の断面積で除した値を時効前耐力とする。ひずみを付与した後に荷重を除去し、150〜300℃の油浴中において60〜300秒の時効処理を行い、再度、引張試験を行う。この過程を図1に示す。同図において、ひずみを付与した後に、時効処理を行うと耐力が増加する。時効後の耐力を時効後耐力とする。時効後耐力から時効前耐力を引いた値が、本発明で限定している時効前後の耐力の増加量である。ここで、線材中の固溶C量が多いほど、時効前後の耐力の増加量は大きくなる。これは、ひずみを付与するとフェライト中に転位が導入され、その後、時効処理を行うと固溶Cが転位を固着するために起きる現象である。図2にパテンティング処理した線材の時効前後の耐力の増加量、即ち固溶C量と高炭素鋼線のデラミネーション発生の関係について解析した一例を示す。高炭素鋼線は、線径が0.4mmで引張強さが3850MPa前後のものである。同図から明らかなように、時効前後の耐力の増加量が200MPaを超えるとデラミネーションが発生することが分かる。時効前後の耐力の増加量ΔYが200MPaを超えるときの線材の固溶C量は25ppmであった。更に、図3は線径が7mmで引張強さが1950MPa前後の高炭素鋼線の例である。図2の結果と同様に、時効前後の耐力の増加量が200MPa以下では、デラミネーションが発生しないことが分かる。時効前後の耐力の増加量ΔYが200MPaを超えるときの線材の固溶C量は25ppmであった。以上のことから、時効処理前後の耐力の増加量を200MPa以下に限定した。高強度で且つ耐デラミネーション特性を得るための、より好ましい条件は、180MPa以下である。また、引張ひずみを1〜2%に限定した理由は、1%未満では正確にひずみを制御することが困難であり、一方、2%を超えてひずみを線材に付与すると破断の可能性があるため、1〜2%の範囲に限定した。ひずみ付与後の時効処理温度は、150℃未満であるとCの拡散速度が遅くなり、処理時間に長時間を要し、300℃を超えるとパーライト組織自体が変化する可能性があるため、150〜300℃に限定した。
【0034】
また、線材の固溶C量は、以上のことから25ppm以下とした。
【0035】
次に、高強度高炭素鋼線用線材の製造方法の限定理由について、述べる。
【0036】
本発明では、通常の熱間圧延を行った後に、再加熱せずに450〜650℃で直接パテンティングを行うものである。直接パテンティングは、従来の熱間圧延材を冷却し、再加熱した後に行うパテンティングよりも、パテンティング処理後の引張強さが高く高強度化に対して有利であるばかりでなく、低コストで高強度の高炭素鋼線が製造できるからである。直接パテンティング温度が450℃未満では、伸線加工性に有害なベイナイトが発生しやすくなるために、下限を450℃に制限した。一方、650℃を超えると伸線加工性が悪い粗大なパーライト組織になり、更にC含有量の高い鋼では初析セメンタイトが発生しやすいために、パテンティング処理温度の上限を650℃に制限した。
【0037】
パテンティング処理後の冷却速度が、8℃/秒を超えると、ひずみ時効前後の耐力の増加量が200MPaを超え、デラミネーションが発生しやすくなるために、8℃/秒以下に限定した。より好ましい冷却速度は、5℃/秒以下である。一方、冷却速度が1℃/秒より遅いと生産性が低下するため、冷却速度の下限を1℃/秒とする。
【0038】
パテンティング処理後の冷却終了温度は、150℃未満が好ましい条件である。また、本発明の製造方法においては、パテンティング処理後、引続き、150〜300℃の温度範囲に保定しても差し支えがない。ここで、150℃未満では、時効処理前後の耐力の増加量を200MPaに制御することが困難であり、300℃を超えて保定するとパーライト組織が変化し、伸線加工性が劣化しやすくなるために、150〜300℃の温度範囲に限定した。保定時間は、特に限定しないものの、2〜60分が好ましい条件である。
【0039】
【実施例】
以下、実施例により本発明の効果を更に具体的に説明する。
【0040】
表1に供試材の化学組成を示す。これらの供試材を用いて、種々の線径に熱間圧延した後、直接パテンティングを行った。パテンティング浴は、溶融鉛、溶融塩、空気の3条件で行った。エアパテンティングは、熱間圧延線材に吹きかける空気の風量を調整することで、パテンティング温度を制御した。直接パテンティング処理後に引続き保定する場合、保定時間を30分にした。これらのパテンティング線材の固溶C量はアトムプローブ電界イオン顕微鏡を用いて測定した。また、パテンティング処理線材の時効処理前後の耐力の増加量は、引張ひずみが1.5%、時効温度が250℃、時効時間が90秒の条件で調査した。その後、これらのパテンティング線材を用いて、所定の線径まで伸線加工を行い、用途に応じて、ブルーイング処理あるいは溶融めっきを施した。ブルーイング処理温度は300〜500℃の条件で、溶融亜鉛めっきは450℃の条件で行った。また、最終用途に応じて、パテンティング処理後、銅めっき、もしくはブラスめっきを施した後に、伸線加工を行った。これらの高炭素鋼線について、引張試験とねじり試験を行った。デラミネーション発生の有無は、ねじり試験で判定した。
【0041】
【表1】

Figure 0004527913
【0042】
表2に供試材の種類、製造条件、引張強さ、デラミネーションの発生の有無等について示す。同表において、試験No.1、3、5、8、10、12、15、17、19、22、24、26、28、30、32、34、36、38が本発明例であり、その他は比較例である。同表に見られるように、本発明例の高炭素鋼線材は、いずれも時効処理前後の耐力の増加量が200MPa以下に制御され、線材の固溶C量は25ppm以下に制御されている。この結果、伸線加工を行った高炭素鋼線において、高強度であるにもかかわらず、ねじり試験においてデラミネーションの発生がなく、高延性化が実現できている。
【0043】
これに対して比較例であるNo.7、21は、いずれも鋼の化学成分が不適切な例である。即ち、No.7はC量が0.72%と低いために高強度化が達成できていない例である。No.21はC含有量が高すぎるためにパテンティング処理時に初析セメンタイトが析出した例である。この結果、伸線加工性が劣化し、伸線加工時に断線が頻発したものである。
【0044】
比較例である試験No.14と40は、いずれも直接パテンティング処理温度が不適切な例である。No.14は、パテンティング処理温度が高すぎたために、粗大なパーライト組織になるとともに初析セメンタイトが析出し、伸線加工中に断線が頻発した例である。また、No.40は、パテンティング処理温度が低すぎたために、伸線加工性を劣化させるベイナイトが生成し、この結果、伸線加工中に断線した例である。
【0045】
比較例である試験No.2、4、6、9、11、13、16、18、25,29、31、33、35、37、39は、いずれもパテンティング処理後の冷却速度が速すぎるために、時効処理前後の耐力の増加量が200MPaを超えた例である。この結果、伸線加工後のねじり試験において、デラミネーションが発生したものである。
【0046】
更に、比較例である試験No.20、23、27は、いずれもパテンティング処理後の保定温度が不適切な例である。即ち、いずれも保定温度が150℃未満であったために、時効処理前後の耐力の増加量が200MPaを超え、この結果、デラミネーションが発生した例である。
【0047】
【表2】
Figure 0004527913
【0048】
【表3】
Figure 0004527913
【0049】
【発明の効果】
以上の実施例からも明かなように、本発明は高強度の高炭素鋼線おけるデラミネーションの防止に対して、高炭素鋼線材中の固溶C量の低減が極めて有効であることを見出し、更に時効処理前後の耐力の増加量が200MPa以下であればデラミネーションを防止することができることを明確にし、高強度の高炭素鋼線用線材を実現したものであり、産業上の効果は極めて顕著なものがある。
【図面の簡単な説明】
【図1】高炭素鋼線材における時効処理前後の耐力の増加量を求める方法を示す図である。
【図2】高炭素鋼線材における時効処理前後の耐力の増加量と線径が0.4mmの高炭素鋼線におけるデラミネーション発生の有無の関係について解析した一例を示す図である。
【図3】高炭素鋼線材における時効処理前後の耐力の増加量と線径が7mmの高炭素鋼線におけるデラミネーション発生の有無の関係について解析した一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-strength, high-carbon steel wire widely used in bridge steel wires, PC steel wires, steel wires for reinforcing power transmission lines (ACSR), spring steel wires, various wire ropes, steel tire cords, etc. The present invention relates to a wire rod and a manufacturing method thereof.
[0002]
[Prior art]
There is a growing need for high-carbon steel wires in which high-carbon steel wires having a pearlite structure are reinforced by wire drawing in order to reduce the weight or shorten the construction period. Usually, high-carbon steel wires such as steel wires for bridges and PC steel wires are subjected to a patenting process for reheating hot-rolled high-carbon steel wires, and then cold-drawn, and finally In order to ensure corrosion resistance, hot-dip Zn plating, hot-dip Zn-Al plating or the like is performed, or a process of performing a blueing treatment is performed. Further, the steel cord is manufactured in a process of performing brass plating after the patenting process and performing wet wire drawing.
[0003]
The biggest challenge in achieving high strength of these high carbon steel wires is the occurrence of longitudinal cracks that occur in the longitudinal direction of the steel wire in the torsion test, which is one of the methods for evaluating the ductility of the steel wire, especially the ductility. (Hereinafter referred to as delamination).
[0004]
As a technique for suppressing delamination or preventing a decrease in ductility in a high carbon steel wire, Japanese Patent Laid-Open No. 7-179994 discloses a technique for regulating the size of pearlite nodules after patenting treatment. Is a technology that regulates the amount of Si and Al added, Japanese Patent Application Laid-Open No. 8-53737 discloses a technology that controls the surface hardness of a hot-dip galvanized steel wire, and Japanese Patent Application Laid-Open No. 8-120407 restricts the average particle size of cementite. Japanese Patent Laid-Open No. 9-87803 has proposed a technique for regulating the amount of dissolved N, respectively. Further, JP-A-60-204865, JP-A-63-24046 and JP-B-3-23674 disclose high strength and high ductility in which chemical components such as C, Si, Mn, and Cr are regulated. High carbon wire for ultra fine steel wire has been proposed. Further, JP-A-6-145895 discloses a high-strength and high-toughness steel wire material in which the chemical composition, non-metallic inclusion composition, and area fraction of proeutectoid cementite are controlled, and JP-A-7-113119 discloses a chemical component of steel. A method for producing a high-strength, high-toughness, ultrafine steel wire that controls the reduction in area at the final die is disclosed.
[0005]
However, the above-described technique has a limitation in increasing the strength of the high carbon steel wire and has a drawback of increasing the manufacturing cost.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the actual situation as described above, and is applicable to steel wires for bridges, PC steel wires, steel wires for reinforcing power transmission lines (ACSR), steel wires for springs, various wire ropes, steel tire cords and the like. The purpose of this technology is to provide high-carbon steel wire with excellent ductility and its manufacturing method at low cost by suppressing delamination that occurs during torsion test in widely used high-carbon steel wire. It is.
[0007]
[Means for Solving the Problems]
The present inventors have made various analyzes on the controlling factors of delamination, which are the inhibiting factors for increasing the strength of high carbon steel wires. As a result, it has been found that the solid solution C in the patented wire significantly affects the occurrence of delamination. That is, the structure after the patenting treatment is a fine pearlite composed of a layered structure of ferrite and cementite, but when the amount of dissolved C in the ferrite is large, the occurrence frequency of delamination is significantly increased. . Furthermore, investigations were made on means for controlling the amount of solute C in ferrite at a low cost. As a result, it has been found that fine oxides and sulfides containing Mg and Zr, or a composite thereof, as a solution from the steel surface, has an effect of reducing the amount of dissolved C. We have also established a technology that can control the amount of dissolved C by the optimum cooling rate after the patenting treatment or the low temperature annealing after the patenting treatment.
[0008]
Based on the above new findings, the present inventors have reached the conclusion that delamination can be prevented from occurring in high-strength, high-carbon steel wires if the amount of solute C in ferrite in the patented wire can be controlled. It was made.
[0009]
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0010]
(1) In mass%,
C: 0.8-1.1%
Si: 0.05-2%
Mn: 0.2-2%
The balance is a hot-rolled wire consisting of Fe and unavoidable impurities, applying 1-2% tensile strain to the wire, and subsequently aging at 150-300 ° C. for 60-300 seconds A high-strength, high-carbon steel wire, characterized in that when the treatment is performed, the increase in the yield strength before and after the aging treatment is 200 MPa or less.
[0011]
(2) The high content according to (1), characterized by containing one or two of Mg: 0.0001 to 0.002% and Zr: 0.0001 to 0.002% by mass%. High strength steel wire.
[0012]
(3) 1% by mass, Cr: 0.05-1%, Mo: 0.05-0.5%, Ni: 0.05-1%, V: 0.01-0.5% The wire material for high-strength, high-carbon steel wires according to (1) or (2) above, comprising two or more types.
[0013]
(4) By mass%, Al: 0.005 to 0.1%, Ti: 0.002 to 0.1%, Nb: 0.002 to 0.1%, or one or more types The wire material for high-strength, high-carbon steel wires according to the above (1), (2) or (3).
[0014]
(5) The high-strength, high-carbon steel wire wire according to any one of (1) to (4), wherein a solid solution C amount in the ferrite is 25 ppm or less.
[0015]
(6) A method for producing the wire according to any one of (1) to (5), wherein the steel comprising the component according to any one of (1) to (4) is heated. A method for producing a wire material for high-strength, high-carbon steel wire, which is subjected to patenting at 450 to 650 ° C. without reheating after continuous rolling, and subsequently cooled at 1 to 8 ° C./second.
[0016]
(7) A method for producing the wire according to any one of (1) to (5), wherein the steel comprising the component according to any one of (1) to (4) is heated. A method for producing a wire material for high-strength, high-carbon steel wire, characterized in that after hot rolling, patenting is performed at 450 to 650 ° C. without reheating, and subsequently maintained in a temperature range of 150 to 300 ° C.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0018]
First, the reasons for limiting the components of the present invention will be described.
[0019]
C: C has the effect of increasing the tensile strength after the patenting treatment and increasing the drawing work hardening rate, and can increase the tensile strength of the high carbon steel wire with less drawing work strain. If C is less than 0.8%, it will be difficult to achieve the high strength high carbon steel wire intended in the present invention. On the other hand, if it exceeds 1.1%, the proeutectoid cementite will not enter the austenite grain boundaries during patenting. C was limited to a range of 0.8 to 1.1% because precipitation and wire drawing workability deteriorated and wire breakage occurred frequently during wire drawing.
[0020]
Si: Si is an effective element for strengthening ferrite in pearlite and for deoxidizing steel. If it is less than 0.05%, the above effect cannot be expected. On the other hand, if it exceeds 2%, hard SiO 2 inclusions that are harmful to wire drawing workability tend to occur. Limited to range.
[0021]
Mn: Mn is not only necessary for deoxidation and desulfurization, but also an element effective for improving the hardenability of steel and increasing the tensile strength after patenting treatment, but less than 0.2% However, the above effect cannot be obtained. On the other hand, if it exceeds 2%, the above effect is saturated, and further, the processing time for completing the pearlite transformation during the patenting process becomes too long and the productivity is lowered. Limited to a range of 2-2%.
[0022]
When Mg: Mg is added, a fine oxide or sulfide of Mg or a composite thereof is formed. It has been found that the presence of Mg-based oxides and sulfides in ferrite has the effect of reducing the amount of dissolved C after the patenting treatment, and is an extremely effective element for preventing delamination. If Mg is less than 0.0001%, the above effect cannot be exhibited, and even if added over 0.002%, the effect is saturated and the manufacturing cost increases, so the content is limited to 0.0001 to 0.002%. .
[0023]
Zr: Zr, like Mg, produces fine oxides or sulfides of Zr or composites thereof. If Zr-based oxides and sulfides are present in ferrite, it has the effect of reducing the amount of dissolved C after patenting, and it is clearly an extremely effective element for preventing delamination. became. If Zr is less than 0.0001%, the above effect cannot be exhibited, and even if added over 0.002%, the effect is saturated and the manufacturing cost is increased, so the content is limited to 0.0001 to 0.002%. . Note that when both Mg and Zr are added, composite oxides and sulfides of Mg and Zr are produced, but even if they are composite oxides and sulfides, there is an effect of reducing the amount of solid solution C.
[0024]
Cr: Cr is an effective element that refines the cementite spacing of pearlite and increases the tensile strength after patenting treatment, and particularly improves the wire drawing work hardening rate. On the other hand, if it exceeds 1%, the pearlite transformation end time during the patenting process becomes long and the productivity is lowered, so the content is limited to the range of 0.05 to 1%.
[0025]
Mo: Mo has the effect of increasing the hardenability during the patenting process and increasing the tensile strength after the patenting process. If it is less than 0.05%, the above effect cannot be exhibited. On the other hand, even if added over 0.5%, the effect is saturated, so the content is limited to the range of 0.05 to 0.5%.
[0026]
Ni: Ni has the effect of making the pearlite produced during transformation during the patenting process have good wire drawing workability. However, if it is less than 0.05%, the above effect cannot be obtained. This is the upper limit because there is little effect to meet the requirements.
[0027]
V: V has the effect of increasing the pearlite cementite spacing and increasing the tensile strength after patenting, but this effect is insufficient if it is less than 0.01%, while it is effective if it exceeds 0.5%. In order to saturate, it limited to 0.01 to 0.5% of range.
[0028]
Al: Al is effective for preventing coarsening of austenite crystal grains by denitration and forming nitrides. If the added amount of Al is less than 0.005%, the above effect is not sufficient, so the lower limit was limited to 0.005%. On the other hand, since the effect is saturated even if added over 0.1%, the upper limit was limited to 0.1%.
[0029]
Ti: Ti has an effect of preventing coarsening of austenite crystal grains by forming deoxidation and carbonitride, but if less than 0.002%, these effects are not exhibited, and 0.1% Even if added in excess of%, the effect is saturated, so it was limited to the range of 0.002 to 0.1%.
[0030]
Nb: Nb is an element effective for refining crystal grains by producing carbonitrides as with Ti, but if it is less than 0.002%, its effect is insufficient, while 0.1% If this value exceeds 1, the effect is saturated, so the content is limited to 0.002 to 0.1%.
[0031]
Other elements are not particularly limited, but P: 0.02% or less, S: 0.02% or less, and N; 0.007% or less are desirable ranges as components contained as impurities.
[0032]
Next, the amount of solute C in the ferrite, which is extremely important for preventing the occurrence of delamination in the high-strength, high-carbon steel wire intended in the present invention, will be described.
[0033]
In the present invention, the ductility of a high carbon steel wire is evaluated by the presence or absence of delamination using a torsion test. Here, the steel wire in which delamination occurs means that the ductility is low. Further, the amount of solute C in the ferrite of the wire can be accurately measured using an atom probe field ion microscope. However, since it takes a long time to prepare and analyze the sample for analysis, the present invention employs a method that can easily evaluate the amount of the solid solution C in the ferrite. That is, the wire after the patenting process is straightened by straightening, and then a tensile strain of 1 to 2% is applied to the wire with a tensile tester. The value obtained by dividing the load when a tensile strain of 1 to 2% is applied to the wire by the cross-sectional area of the wire is defined as the pre-aging yield strength. After the strain is applied, the load is removed, an aging treatment is performed for 60 to 300 seconds in an oil bath at 150 to 300 ° C., and a tensile test is performed again. This process is shown in FIG. In the figure, the proof stress increases when an aging treatment is performed after the strain is applied. The proof strength after aging is the proof strength after aging. The value obtained by subtracting the pre-aging proof strength from the post-aging proof strength is the increase in the proof strength before and after aging, which is limited in the present invention. Here, the greater the amount of dissolved C in the wire, the greater the increase in yield strength before and after aging. This is a phenomenon that occurs because dislocation is introduced into the ferrite when strain is applied, and then solute C fixes the dislocation when aging treatment is performed. FIG. 2 shows an example in which the increase in the yield strength before and after aging of the patented wire rod, that is, the relationship between the amount of solute C and the occurrence of delamination of the high carbon steel wire is shown. The high carbon steel wire has a wire diameter of 0.4 mm and a tensile strength of around 3850 MPa. As can be seen from the figure, delamination occurs when the increase in yield strength before and after aging exceeds 200 MPa. The amount of solute C in the wire when the increase in yield strength ΔY before and after aging exceeded 200 MPa was 25 ppm. Furthermore, FIG. 3 is an example of a high carbon steel wire having a wire diameter of 7 mm and a tensile strength of around 1950 MPa. Similar to the result of FIG. 2, it can be seen that delamination does not occur when the increase in yield strength before and after aging is 200 MPa or less. The amount of solute C in the wire when the increase in yield strength ΔY before and after aging exceeded 200 MPa was 25 ppm. From the above, the increase in yield strength before and after the aging treatment was limited to 200 MPa or less. A more preferable condition for obtaining high strength and delamination resistance is 180 MPa or less. Moreover, the reason for limiting the tensile strain to 1 to 2% is that if it is less than 1%, it is difficult to control the strain accurately. On the other hand, if the strain is applied to the wire more than 2%, there is a possibility of breakage. Therefore, it was limited to the range of 1-2%. If the aging treatment temperature after straining is less than 150 ° C., the diffusion rate of C becomes slow, and it takes a long time for treatment, and if it exceeds 300 ° C., the pearlite structure itself may change. Limited to ~ 300 ° C.
[0034]
Moreover, the amount of solid solution C of a wire was 25 ppm or less from the above thing.
[0035]
Next, the reason for limiting the manufacturing method of the wire material for high-strength high-carbon steel wire will be described.
[0036]
In the present invention, after performing normal hot rolling, patenting is performed directly at 450 to 650 ° C. without reheating. Direct patenting is not only advantageous for high tensile strength after patenting, but also lower cost than patenting performed after cooling and reheating conventional hot-rolled material. This is because a high-strength, high-carbon steel wire can be produced. When the direct patenting temperature is less than 450 ° C., bainite that is harmful to the wire drawing workability is likely to occur, so the lower limit is limited to 450 ° C. On the other hand, when the temperature exceeds 650 ° C., a coarse pearlite structure with poor wire drawing workability is obtained, and in the steel having a high C content, proeutectoid cementite is likely to be generated. Therefore, the upper limit of the patenting temperature is limited to 650 ° C. .
[0037]
When the cooling rate after the patenting treatment exceeds 8 ° C./second, the increase in yield strength before and after strain aging exceeds 200 MPa, and delamination tends to occur. Therefore, the cooling rate is limited to 8 ° C./second or less. A more preferable cooling rate is 5 ° C./second or less. On the other hand, if the cooling rate is slower than 1 ° C./second, the productivity decreases, so the lower limit of the cooling rate is set to 1 ° C./second.
[0038]
The cooling end temperature after the patenting process is preferably less than 150 ° C. Moreover, in the manufacturing method of this invention, even if it keeps in the temperature range of 150-300 degreeC after a patenting process, it does not interfere. Here, if the temperature is lower than 150 ° C., it is difficult to control the increase in yield strength before and after the aging treatment to 200 MPa. If the temperature exceeds 300 ° C., the pearlite structure changes and the wire drawing workability is likely to deteriorate. The temperature was limited to 150 to 300 ° C. The holding time is not particularly limited, but 2 to 60 minutes is a preferable condition.
[0039]
【Example】
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
[0040]
Table 1 shows the chemical composition of the test materials. These sample materials were hot-rolled to various wire diameters and then directly patented. The patenting bath was performed under three conditions of molten lead, molten salt, and air. In the air patenting, the patenting temperature was controlled by adjusting the amount of air blown to the hot rolled wire rod. In the case of continuing the holding after the direct patenting treatment, the holding time was set to 30 minutes. The amount of dissolved C in these patenting wires was measured using an atom probe field ion microscope. Further, the increase in the yield strength before and after the aging treatment of the patented wire was investigated under the conditions that the tensile strain was 1.5%, the aging temperature was 250 ° C., and the aging time was 90 seconds. Then, using these patenting wires, wire drawing was performed to a predetermined wire diameter, and blueing treatment or hot dip plating was performed depending on the application. The blueing treatment temperature was 300 to 500 ° C, and the hot dip galvanizing was performed at 450 ° C. Depending on the final application, after the patenting treatment, after copper plating or brass plating, wire drawing was performed. These high carbon steel wires were subjected to tensile tests and torsion tests. The presence or absence of delamination was determined by a torsion test.
[0041]
[Table 1]
Figure 0004527913
[0042]
Table 2 shows the types of test materials, manufacturing conditions, tensile strength, occurrence of delamination, and the like. In the table, Test Nos. 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 28, 30, 32, 34, 36, 38 are examples of the present invention, and others Is a comparative example. As can be seen from the table, in all the high carbon steel wires of the examples of the present invention, the increase in yield strength before and after the aging treatment is controlled to 200 MPa or less, and the solid solution C content of the wires is controlled to 25 ppm or less. As a result, in the high carbon steel wire that has been subjected to wire drawing, despite the high strength, delamination does not occur in the torsion test, and high ductility can be realized.
[0043]
On the other hand, Nos. 7 and 21, which are comparative examples, are examples in which the chemical composition of steel is inappropriate. That is, No. 7 is an example in which high strength cannot be achieved because the C content is as low as 0.72%. No. 21 is an example in which pro-eutectoid cementite precipitated during the patenting process because the C content was too high. As a result, wire drawing workability deteriorates, and disconnection frequently occurs during wire drawing.
[0044]
Test Nos. 14 and 40, which are comparative examples, are examples in which the patenting process temperature is inappropriate. No. 14 is an example in which, since the patenting treatment temperature was too high, a coarse pearlite structure was formed and pro-eutectoid cementite was precipitated, resulting in frequent breaks during wire drawing. No. 40 is an example in which bainite that deteriorates wire drawing workability was generated because the patenting temperature was too low, and as a result, wire breakage occurred during wire drawing work.
[0045]
Test Nos. 2, 4, 6, 9, 11, 13, 16, 18, 25, 29, 31, 33, 35, 37, and 39, which are comparative examples, all have too high a cooling rate after the patenting process. Therefore, this is an example in which the increase in yield strength before and after aging treatment exceeded 200 MPa. As a result, delamination occurred in the torsion test after wire drawing.
[0046]
Furthermore, Test Nos. 20, 23, and 27, which are comparative examples, are all examples in which the retention temperature after the patenting process is inappropriate. That is, since the retention temperature was less than 150 ° C., the increase in the yield strength before and after the aging treatment exceeded 200 MPa, and as a result, delamination occurred.
[0047]
[Table 2]
Figure 0004527913
[0048]
[Table 3]
Figure 0004527913
[0049]
【The invention's effect】
As is clear from the above examples, the present invention has found that reducing the amount of dissolved C in a high carbon steel wire is extremely effective for preventing delamination in a high strength high carbon steel wire. Furthermore, it is clarified that delamination can be prevented if the increase in yield strength before and after aging treatment is 200 MPa or less, realizing a high-strength, high-carbon steel wire, and the industrial effect is extremely There is something prominent.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for obtaining an increase in yield strength before and after aging treatment in a high carbon steel wire rod.
FIG. 2 is a diagram showing an example of analyzing the relationship between the increase in yield strength before and after aging treatment in a high carbon steel wire and the presence or absence of delamination in a high carbon steel wire having a wire diameter of 0.4 mm.
FIG. 3 is a diagram showing an example of analyzing the relationship between the increase in yield strength before and after aging treatment in a high carbon steel wire and the presence or absence of delamination in a high carbon steel wire having a wire diameter of 7 mm.

Claims (7)

質量%で、
C :0.8〜1.1%、
Si:0.05〜2%、
Mn:0.2〜2%
を含有し、残部はFe及び不可避的不純物からなる熱間圧延された線材であって、前記線材に1〜2%の引張ひずみを付与し、引続き、150〜300℃で60〜300秒の時効処理を施した際に、時効処理前後の耐力の増加量が200MPa以下であることを特徴とする高強度高炭素鋼線用線材。
% By mass
C: 0.8-1.1%
Si: 0.05-2%
Mn: 0.2-2%
The balance is a hot-rolled wire consisting of Fe and unavoidable impurities, applying 1-2% tensile strain to the wire, and subsequently aging at 150-300 ° C. for 60-300 seconds A high-strength, high-carbon steel wire, characterized in that when the treatment is performed, the increase in the yield strength before and after the aging treatment is 200 MPa or less.
質量%で、
Mg:0.0001〜0.002%、
Zr:0.0001〜0.002%
の1種又は2種を含有することを特徴とする請求項1記載の高強度鋼線用線材。
% By mass
Mg: 0.0001 to 0.002%,
Zr: 0.0001 to 0.002%
The wire material for high-strength steel wires according to claim 1, comprising one or two of the following.
質量%で、
Cr:0.05〜1%、
Mo:0.05〜0.5%、
Ni:0.05〜1%、
V :0.01〜0.5%
の1種又は2種以上を含有することを特徴とする請求項1又は2記載の高強度高炭素鋼線用線材。
% By mass
Cr: 0.05 to 1%,
Mo: 0.05-0.5%
Ni: 0.05 to 1%,
V: 0.01 to 0.5%
1 type or 2 types or more of these are contained, The wire material for high-strength high carbon steel wires of Claim 1 or 2 characterized by the above-mentioned.
質量%で、
Al:0.005〜0.1%、
Ti:0.002〜0.1%、
Nb:0.002〜0.1%
の1種又は2種以上を含有することを特徴とする請求項1、2又は3記載の高強度高炭素鋼線用線材。
% By mass
Al: 0.005 to 0.1%,
Ti: 0.002 to 0.1%,
Nb: 0.002 to 0.1%
The wire material for high-strength, high-carbon steel wires according to claim 1, 2 or 3, comprising one or more of the following.
フェライト中の固溶C量が25ppm以下であることを特徴とする請求項1〜4の何れか1項に記載の高強度高炭素鋼線用線材。5. The high-strength, high-carbon steel wire wire according to claim 1, wherein a solid solution C amount in the ferrite is 25 ppm or less. 請求項1〜5の何れか1項に記載の線材を製造する方法であって、請求項1〜4の何れか1項に記載の成分からなる鋼を熱間圧延した後に、再加熱せずに450〜650℃でパテンティングを行い、引続き、1〜8℃/秒で冷却することを特徴とする高強度高炭素鋼線用線材の製造方法。A method for producing the wire according to any one of claims 1 to 5, wherein the steel comprising the component according to any one of claims 1 to 4 is hot-rolled and is not reheated. A method for producing a wire material for high-strength, high-carbon steel wire, which is patented at 450 to 650 ° C. and subsequently cooled at 1 to 8 ° C./second. 請求項1〜5の何れか1項に記載の線材を製造する方法であって、請求項1〜4の何れか1項に記載の成分からなる鋼を熱間圧延した後に、再加熱せずに450〜650℃でパテンティングを行い、引続き、150〜300℃で保定することを特徴とする高強度高炭素鋼線用線材の製造方法。A method for producing the wire according to any one of claims 1 to 5, wherein the steel comprising the component according to any one of claims 1 to 4 is hot-rolled and is not reheated. A method for producing a wire material for high-strength, high-carbon steel wire, characterized in that patenting is performed at 450 to 650 ° C. and subsequently maintained at 150 to 300 ° C.
JP2001286185A 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same Expired - Fee Related JP4527913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286185A JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286185A JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003096544A JP2003096544A (en) 2003-04-03
JP4527913B2 true JP4527913B2 (en) 2010-08-18

Family

ID=19109216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286185A Expired - Fee Related JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP4527913B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093466A1 (en) * 2007-01-31 2008-08-07 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JP5315790B2 (en) * 2008-05-19 2013-10-16 新日鐵住金株式会社 High strength PC steel wire with excellent delayed fracture resistance
JP5977699B2 (en) * 2013-03-27 2016-08-24 株式会社神戸製鋼所 High-strength wire for high-strength steel wire, high-strength steel wire, high-strength galvanized steel wire, and manufacturing method thereof
JP6825720B2 (en) * 2017-11-30 2021-02-03 日本製鉄株式会社 Aluminum covered steel wire and its manufacturing method
CN114262784A (en) * 2021-12-31 2022-04-01 嘉兴市新大金属有限公司 Low-temperature artificial aging treatment technology for high-carbon steel sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140822A (en) * 1981-02-23 1982-08-31 Nippon Steel Corp Production of high-strength steel bar and wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPH03271322A (en) * 1990-03-20 1991-12-03 Nippon Steel Corp Production of wire rod having high strength and high ductility
JPH0617144A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Production of high carbon excellent in fracture toughness steel wire
JPH07268487A (en) * 1994-04-01 1995-10-17 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wiredrawability
JPH0987803A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Wire for hot dipped steel wire, excellent in longitudinal crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140822A (en) * 1981-02-23 1982-08-31 Nippon Steel Corp Production of high-strength steel bar and wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPH03271322A (en) * 1990-03-20 1991-12-03 Nippon Steel Corp Production of wire rod having high strength and high ductility
JPH0617144A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Production of high carbon excellent in fracture toughness steel wire
JPH07268487A (en) * 1994-04-01 1995-10-17 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wiredrawability
JPH0987803A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Wire for hot dipped steel wire, excellent in longitudinal crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire

Also Published As

Publication number Publication date
JP2003096544A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
WO2014157129A1 (en) High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
CN107406950B (en) High-carbon steel wire rod and steel wire having excellent drawability
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JP5977699B2 (en) High-strength wire for high-strength steel wire, high-strength steel wire, high-strength galvanized steel wire, and manufacturing method thereof
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JP3176226B2 (en) Manufacturing method of high strength and high toughness hot-dip coated steel wire
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP2001271138A (en) High strength and high carbon steel wire excellent in ductility
JPH11199980A (en) High strength extra fine steel wire
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JPH075992B2 (en) High-strength steel wire manufacturing method
JPH05195455A (en) Production of steel cord excellent in fatigue properties
JP2000080442A (en) Steel wire rod, extra fine steel wire and stranded steel wire
JP3125645B2 (en) Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance
JP3439106B2 (en) Wire rod for hot-dip galvanized steel wire with excellent vertical cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4527913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees