JP2003096544A - Wire for high strength high carbon steel wire, and production method therefor - Google Patents

Wire for high strength high carbon steel wire, and production method therefor

Info

Publication number
JP2003096544A
JP2003096544A JP2001286185A JP2001286185A JP2003096544A JP 2003096544 A JP2003096544 A JP 2003096544A JP 2001286185 A JP2001286185 A JP 2001286185A JP 2001286185 A JP2001286185 A JP 2001286185A JP 2003096544 A JP2003096544 A JP 2003096544A
Authority
JP
Japan
Prior art keywords
wire
carbon steel
steel wire
strength
patenting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001286185A
Other languages
Japanese (ja)
Other versions
JP4527913B2 (en
Inventor
Toshizo Tarui
敏三 樽井
Daisuke Hiragami
大輔 平上
Masaharu Oka
正春 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001286185A priority Critical patent/JP4527913B2/en
Publication of JP2003096544A publication Critical patent/JP2003096544A/en
Application granted granted Critical
Publication of JP4527913B2 publication Critical patent/JP4527913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire for a high strength high carbon steel wire which has suppressed delamination, and has excellent ductility, and to provide a technique of realizing the production method therefor at a low cost. SOLUTION: In the wire for a high strength high carbon steel wire, when tensile strain of 1 to 2% is applied to a hot-rolled wire rod having a composition containing, by mass, 0.8 to 1.1% C, 0.05 to 2% Si, and 0.2 to 2% Mn or further, containing one or more metals selected from 0.0001 to 0.002% Mg and 0.0001 to 0.002% Zr, and the balance Fe with inevitable impurities, and, successively, aging treatment is performed thereto at 150 to 300 deg.C, the amount of proof stress to be increased before and after the aging treatment is <=200 MPa, and, the content solid solution C is <=25 ppm. In the method of producing the high strength high carbon steel wire, after hot rolling, without performing reheating, patenting is directly performed under the condition of 450 to 650 deg.C, and, successively, cooling is performed at a rate of 1 to 8 deg.C/sec, or, after the patenting treatment, successively, the temperature is held at 150 to 300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁用鋼線、PC
鋼線、送電線の補強用鋼線(ACSR)、ばね用鋼線、
各種ワイヤロープ、スチールタイヤコード等に広く使わ
れている高強度の高炭素鋼線用線材及びその製造方法に
関するものである。
TECHNICAL FIELD The present invention relates to a steel wire for a bridge, a PC.
Steel wire, steel wire for reinforcement of transmission line (ACSR), steel wire for springs,
The present invention relates to a high-strength wire material for high-carbon steel wire, which is widely used in various wire ropes, steel tire cords, and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】パーライト組織を有する高炭素鋼線材を
伸線加工によって強化した高炭素鋼線は、軽量化あるい
は工事期間の短縮のために高強度化のニーズが強まって
いる。通常、橋梁用鋼線、PC鋼線等の高炭素鋼線は、
熱間圧延された高炭素鋼線材を再加熱するパテンティン
グ処理を行った後、冷間で伸線加工を行い、最終的に耐
食性を確保するために溶融Znめっき、溶融Zn−Al
めっき等を行うか、あるいはブルーイング処理を施す行
程で製造されている。また、スチールコードは、パテン
ティング処理後にブラスめっきを行い、湿式伸線を行う
工程で製造されている。
2. Description of the Related Art A high carbon steel wire obtained by strengthening a high carbon steel wire having a pearlite structure by wire drawing has been required to have higher strength in order to reduce the weight or shorten the construction period. Normally, high carbon steel wires such as bridge steel wires and PC steel wires are
After performing a patenting treatment to reheat the hot-rolled high-carbon steel wire rod, cold wire drawing is performed, and finally hot-dip Zn plating, hot-dip Zn-Al for ensuring corrosion resistance.
It is manufactured in the process of plating or bluing. The steel cord is manufactured in a process of performing brass plating after patenting treatment and performing wet drawing.

【0003】これらの高炭素鋼線の高強度化を達成する
上での最大の課題は、鋼線の延性、特に延性の評価方法
の一つであるねじり試験において鋼線の長手方向に生じ
る縦割れの発生(以下、デラミネーションと言う)を抑
制する技術にある。
The greatest problem in achieving high strength of these high-carbon steel wires is the ductility of the steel wire, and in particular, the longitudinal direction that occurs in the longitudinal direction of the steel wire in the torsion test, which is one of the evaluation methods of the ductility. This is a technique for suppressing the occurrence of cracks (hereinafter referred to as delamination).

【0004】高炭素鋼線におけるデラミネーションの抑
制技術あるいは延性低下を防止する技術として、特開平
7−179994号公報にはパテンティング処理後のパ
ーライトノジュールサイズを規制する技術が、特開平7
−292443号公報にはSiとAl添加量を規制する
技術が、特開平8−53737号公報には溶融めっき鋼
線の表層硬度を制御する技術が、特開平8−12040
7号公報にはセメンタイトの平均粒径を規制する技術
が、特開平9−87803号公報には固溶N量を規制す
る技術がそれぞれ提案されている。また、特開昭60−
204865号、特開昭63−24046号、特公平3
−23674号の各公報にはそれぞれC、Si、Mn、
Cr等の化学成分を規制した高強度で高延性の極細鋼線
用高炭素線材が提案されている。更に、特開平6−14
5895号公報では化学成分と非金属介在物組成及び初
析セメンタイトの面積分率を制御した高強度高靭性鋼線
材が、特開平7−113119号公報では鋼の化学成分
と最終ダイスでの減面率を制御する高強度高靭延性極細
鋼線の製造方法がそれぞれ開示されている。
As a technique for suppressing delamination in a high carbon steel wire or a technique for preventing deterioration of ductility, Japanese Patent Application Laid-Open No. 7-179994 discloses a technique for controlling the pearlite nodule size after patenting treatment.
-292443 discloses a technique for controlling the amount of Si and Al added, and JP-A-8-53737 discloses a technique for controlling the surface hardness of a hot-dip steel wire.
Japanese Patent Laid-Open No. 7-87803 proposes a technique for controlling the average particle size of cementite, and Japanese Patent Laid-Open No. 9-87803 proposes a technique for controlling the amount of solute N. In addition, JP-A-60-
204865, JP-A-63-24046, Japanese Patent Publication No. 3
No. 23674, C, Si, Mn,
A high-strength, high-ductility, high-carbon steel wire for ultrafine steel wire in which chemical components such as Cr have been regulated has been proposed. Furthermore, JP-A-6-14
Japanese Patent No. 5895 discloses a high strength and high toughness steel wire rod in which the chemical composition, the composition of non-metallic inclusions and the area fraction of proeutectoid cementite are controlled. A method for producing a high-strength, high-toughness ductile extra-fine steel wire with controlled rate is disclosed.

【0005】しかしながら、上記の技術では、高炭素鋼
線の高強度化に関して限界があり、また製造コストも高
くなる欠点があった。
However, the above-mentioned technique has a drawback in that the strength of the high carbon steel wire is limited, and the manufacturing cost is high.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の如き実
状に鑑みなされたものであって、橋梁用鋼線、PC鋼
線、送電線の補強用鋼線(ACSR)、ばね用鋼線、各
種ワイヤロープ、スチールタイヤコード等に広く使われ
ている高炭素鋼線において、ねじり試験時に発生するデ
ラミネーションを抑制し、延性が優れた高炭素鋼線及び
その製造方法を低コストで実現する技術を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and includes steel wire for bridge, PC steel wire, steel wire for reinforcement of transmission line (ACSR), steel wire for spring, A technology that suppresses delamination that occurs during a torsion test in high carbon steel wires that are widely used for various wire ropes, steel tire cords, etc., and realizes a high carbon steel wire with excellent ductility and a manufacturing method thereof at low cost. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高炭素鋼
線の高強度化の阻害要因であるデラミネーションの支配
要因について種々解析した。この結果、パテンティング
処理した線材における固溶Cが、デラミネーションの発
生に対して著しく影響することを見出した。即ち、パテ
ンティング処理後の組織は、フェライトとセメンタイト
の層状組織からなる微細パーライトとなるが、フェライ
ト中の固溶C量が大きい場合には、デラミネーションの
発生頻度が著しく増加することを見出した。更に、フェ
ライト中の固溶C量を低コストで制御する手段について
検討を進めた。この結果、鋼材面からの解決手段として
Mg、Zrを含む微細酸化物や硫化物あるいはこれらの
複合物は、固溶C量を低減させる効果があることを見出
した。また、パテンティング処理後の最適な冷却速度、
あるいはパテンティング処理後の低温焼鈍で、固溶C量
を制御できる技術を確立した。
[Means for Solving the Problems] The present inventors have conducted various analyzes on the controlling factors of delamination, which is a factor inhibiting the strengthening of high carbon steel wires. As a result, it has been found that the solid solution C in the patented wire material significantly affects the occurrence of delamination. That is, it was found that the structure after patenting treatment is fine pearlite composed of a layered structure of ferrite and cementite, but the occurrence frequency of delamination remarkably increases when the amount of solute C in ferrite is large. . Furthermore, investigations have been advanced on means for controlling the amount of solid solution C in ferrite at low cost. As a result, it has been found that fine oxides and sulfides containing Mg and Zr or their composites have the effect of reducing the amount of solid solution C as a means for solving the problems from the steel material side. Also, the optimum cooling rate after patenting treatment,
Alternatively, a technology has been established that can control the amount of solute C by low temperature annealing after the patenting treatment.

【0008】以上の新知見に基づき、パテンティング処
理した線材におけるフェライト中の固溶C量を制御でき
れば、高強度の高炭素鋼線において、デラミネーション
の発生を防止することができるとの結論に達し本発明を
なしたものである。
Based on the above new findings, it was concluded that if the amount of solid solution C in ferrite in the patented wire can be controlled, the occurrence of delamination can be prevented in a high strength high carbon steel wire. It has reached the present invention.

【0009】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、下記の通りであ
る。
The present invention has been made based on the above findings, and the gist thereof is as follows.

【0010】(1) 質量%で、C:0.8〜1.1
%、Si:0.05〜2%、Mn:0.2〜2%を含有
し、残部はFe及び不可避的不純物からなる熱間圧延さ
れた線材であって、前記線材に1〜2%の引張ひずみを
付与し、引続き、150〜300℃で時効処理を施した
際に、時効処理前後の耐力の増加量が200MPa以下
であることを特徴とする高強度高炭素鋼線用線材。
(1) C: 0.8 to 1.1 by mass%
%, Si: 0.05 to 2%, Mn: 0.2 to 2%, the balance being a hot-rolled wire consisting of Fe and unavoidable impurities. A wire rod for a high-strength high-carbon steel wire, which is characterized in that an increase in proof stress before and after aging treatment is 200 MPa or less when a tensile strain is applied and subsequently subjected to aging treatment at 150 to 300 ° C.

【0011】(2) 質量%で、Mg:0.0001〜
0.002%、Zr:0.0001〜0.002%、の
1種又は2種を含有することを特徴とする前記(1)記
載の高強度鋼線用線材。
(2) In mass%, Mg: 0.0001 to
The wire rod for high-strength steel wire according to (1) above, which contains one or two of 0.002% and Zr: 0.0001 to 0.002%.

【0012】(3) 質量%で、Cr:0.05〜1
%、Mo:0.05〜0.5%、Ni:0.05〜1
%、V:0.01〜0.5%の1種又は2種以上を含有
することを特徴とする前記(1)又は(2)記載の高強
度高炭素鋼線用線材。
(3) Cr: 0.05 to 1 in mass%
%, Mo: 0.05 to 0.5%, Ni: 0.05 to 1
%, V: 0.01 to 0.5% of one kind or two or more kinds contained therein, the wire material for high strength and high carbon steel wire according to the above (1) or (2).

【0013】(4) 質量%で、Al:0.005〜
0.1%、Ti:0.002〜0.1%、Nb:0.0
02〜0.1%の1種又は2種以上を含有することを特
徴とする前記(1)、(2)又は(3)記載の高強度高
炭素鋼線用線材。
(4) Al: 0.005% by mass
0.1%, Ti: 0.002-0.1%, Nb: 0.0
02-0.1% 1 type (s) or 2 or more types are contained, The high-strength high carbon steel wire rod wire of said (1), (2) or (3) characterized by the above-mentioned.

【0014】(5) フェライト中の固溶C量が25p
pm以下であることを特徴とする前記(1)〜(4)の
何れか1項に記載の高強度高炭素鋼線用線材。
(5) The amount of solute C in ferrite is 25 p
The wire rod for high-strength and high-carbon steel wire according to any one of (1) to (4) above, which is pm or less.

【0015】(6) 前記(1)〜(5)の何れか1項
に記載の線材を製造する方法であって、前記(1)〜
(4)の何れか1項に記載の成分からなる鋼を熱間圧延
した後に、再加熱せずに450〜650℃でパテンティ
ングを行い、引続き、1〜8℃/秒で冷却することを特
徴とする高強度高炭素鋼線用線材の製造方法。
(6) A method for manufacturing the wire rod according to any one of (1) to (5), which comprises:
After hot-rolling the steel consisting of the component described in any one of (4), patenting is performed at 450 to 650 ° C. without reheating, and subsequently cooling is performed at 1 to 8 ° C./second. A method for producing a wire rod for a high-strength high-carbon steel wire, which is characterized.

【0016】(7) 前記(1)〜(5)の何れか1項
に記載の線材を製造する方法であって、前記(1)〜
(4)の何れか1項に記載の成分からなる鋼を熱間圧延
した後に、再加熱せずに450〜650℃でパテンティ
ングを行い、引続き、150〜300℃の温度範囲で保
定することを特徴とする高強度高炭素鋼線用線材の製造
方法。
(7) A method for manufacturing the wire rod according to any one of (1) to (5) above, which comprises:
After hot-rolling the steel composed of the component according to any one of (4), patenting is performed at 450 to 650 ° C. without reheating, and then retained in a temperature range of 150 to 300 ° C. A method for manufacturing a wire rod for high-strength and high-carbon steel wire.

【0017】[0017]

【発明の実施の形態】以下に本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0018】はじめに、本発明の成分限定理由について
述べる。
First, the reasons for limiting the components of the present invention will be described.

【0019】C:Cはパテンティング処理後の引張強さ
の増加及び伸線加工硬化率を高める効果があり、より少
ない伸線加工歪で高炭素鋼線の引張強さを高めることが
できる。Cが0.8%未満では本発明で目的とする高強
度の高炭素鋼線を実現することが困難となり、一方、
1.1%を超えるとパテンティング処理時に初析セメン
タイトがオーステナイト粒界に析出して伸線加工性が劣
化し伸線加工中に断線が頻発するため、Cを0.8〜
1.1%の範囲に限定した。
C: C has the effect of increasing the tensile strength after patenting and increasing the wire drawing work hardening rate, and can increase the tensile strength of a high carbon steel wire with less wire drawing strain. When C is less than 0.8%, it is difficult to realize the high-strength high-carbon steel wire targeted by the present invention, while
If it exceeds 1.1%, pro-eutectoid cementite precipitates at the austenite grain boundaries during patenting, wire drawability deteriorates, and wire breakage frequently occurs during wire drawing, so C is 0.8 to 0.8.
It was limited to the range of 1.1%.

【0020】Si:Siはパーライト中のフェライトを
強化させるためと鋼の脱酸のために有効な元素である。
0.05%未満では上記の効果が期待できず、一方2%
を超えると伸線加工性に対して有害な硬質のSiO
介在物が発生しやすくなるため、0.05〜2%の範囲
に制限した。
Si: Si is an effective element for strengthening ferrite in pearlite and for deoxidizing steel.
If less than 0.05%, the above effect cannot be expected, while 2%
If it exceeds 1.0, hard SiO 2 inclusions harmful to wire drawing workability are likely to be generated, so the range is limited to 0.05 to 2%.

【0021】Mn:Mnは脱酸、脱硫のために必要であ
るばかりでなく、鋼の焼入性を向上させパテンティング
処理後の引張強さを高めるために有効な元素であるが、
0.2%未満では上記の効果が得られず、一方2%を越
えると上記の効果が飽和し、更にパテンティング処理時
のパーライト変態を完了させるための処理時間が長くな
りすぎて生産性が低下するため、0.2〜2%の範囲に
限定した。
Mn: Mn is an element effective not only for deoxidation and desulfurization but also for improving the hardenability of steel and the tensile strength after patenting treatment.
If it is less than 0.2%, the above effect cannot be obtained. On the other hand, if it exceeds 2%, the above effect is saturated, and further, the processing time for completing the pearlite transformation during the patenting process is too long and the productivity is increased. Since it decreases, it was limited to the range of 0.2 to 2%.

【0022】Mg:Mgを添加すると、Mgの微細な酸
化物や硫化物あるいはこれらの複合物が生成する。Mg
系の酸化物・硫化物がフェライト中に存在すると、パテ
ンティング処理後の固溶C量を低下させる作用があり、
デラミネーションの防止に対して極めて有効な元素であ
ることを見出した。Mgが0.0001%未満では上記
の効果が発揮できず、また0.002%を超えて添加し
ても効果が飽和し製造コストも高くなるため、0.00
01〜0.002%に限定した。
Mg: When Mg is added, fine Mg oxides and sulfides or their composites are formed. Mg
The presence of system oxides and sulfides in ferrite has the effect of reducing the amount of solid solution C after patenting treatment.
It was found that it is an extremely effective element for preventing delamination. If Mg is less than 0.0001%, the above effect cannot be exhibited, and if added in excess of 0.002%, the effect is saturated and the manufacturing cost becomes high.
It was limited to 01 to 0.002%.

【0023】Zr:ZrもMgと同様に、Zrの微細な
酸化物や硫化物あるいはこれらの複合物を生成する。Z
r系の酸化物・硫化物がフェライト中に存在すると、パ
テンティング処理後の固溶C量を低下させる作用があ
り、デラミネーションの防止に対して極めて有効な元素
であるであることが明確になった。Zrが0.0001
%未満では上記の効果が発揮できず、また0.002%
を超えて添加しても効果が飽和し製造コストも高くなる
ため、0.0001〜0.002%に限定した。なお、
MgとZrの両者を添加する場合、MgとZrの複合酸
化物や硫化物が生成するが、複合酸化物や硫化物であっ
ても固溶C量を低下させる効果がある。
Zr: Zr, like Mg, also produces fine oxides and sulfides of Zr or their composites. Z
The presence of r-based oxides and sulfides in ferrite has the effect of reducing the amount of solid solution C after patenting treatment, and is clearly an extremely effective element for preventing delamination. became. Zr is 0.0001
If less than%, the above effect cannot be exhibited, and 0.002%
If added in excess, the effect will be saturated and the manufacturing cost will increase, so the content was limited to 0.0001 to 0.002%. In addition,
When both Mg and Zr are added, composite oxides and sulfides of Mg and Zr are produced, but even composite oxides and sulfides have the effect of reducing the amount of solid solution C.

【0024】Cr:Crはパーライトのセメンタイト間
隔を微細化しパテンティング処理後の引張強さを高める
とともに特に伸線加工硬化率を向上させる有効な元素で
あるが、0.05%未満では前記作用の効果が少なく、
一方1%を超えるとパテンティング処理時のパーライト
変態終了時間が長くなり生産性が低下するため、0.0
5〜1%の範囲に限定した。
Cr: Cr is an effective element that refines the cementite spacing of pearlite to increase the tensile strength after patenting treatment and especially to improve the wire work hardening rate. Less effective,
On the other hand, if it exceeds 1%, the pearlite transformation end time at the time of patenting treatment becomes long and the productivity is lowered.
The range is limited to 5 to 1%.

【0025】Mo:Moは、パテンティング処理時の焼
入性を増加させ、パテンティング処理後の引張強さを高
める効果がある。0.05%未満では上記の効果が発揮
できず、一方0.5%を超えて添加しても効果が飽和す
るために、0.05〜0.5%の範囲に限定した。
Mo: Mo has the effect of increasing the hardenability during the patenting treatment and increasing the tensile strength after the patenting treatment. If it is less than 0.05%, the above effect cannot be exhibited, while if it is added over 0.5%, the effect is saturated, so the range is limited to 0.05 to 0.5%.

【0026】Ni:Niはパテンティング処理時に変態
生成するパーライトを伸線加工性の良好なものにする作
用を有するが、0.05%未満では上記の効果が得られ
ず、1%を超えても添加量に見合うだけの効果が少ない
ためこれを上限とした。
Ni: Ni has the effect of making pearlite, which is transformed during the patenting treatment, have good wire drawability, but if it is less than 0.05%, the above effect cannot be obtained, and if it exceeds 1%. However, since the effect corresponding to the addition amount is small, this is the upper limit.

【0027】V:Vはパーライトのセメンタイト間隔を
微細化しパテンティング処理後の引張強さを高める効果
があるが、この効果は0.01%未満では不十分であ
り、一方0.5%を超えると効果が飽和するため0.0
1〜0.5%の範囲に制限した。
V: V has the effect of refining the cementite spacing of pearlite and increasing the tensile strength after patenting treatment, but this effect is insufficient at less than 0.01%, while exceeding 0.5%. Since the effect is saturated with 0.0
The range was limited to 1 to 0.5%.

【0028】Al:Alは脱酸のためと窒化物を形成す
ることにより、オーステナイト結晶粒の粗大化を防止さ
せるのに有効である。Alの添加量が0.005%未満
では上記作用が十分でないため下限を0.005%に限
定した。一方、0.1%を超えて添加しても効果が飽和
するため、上限を0.1%に制限した。
Al: Al is effective for preventing coarsening of austenite crystal grains by denitrification and by forming a nitride. If the added amount of Al is less than 0.005%, the above effect is not sufficient, so the lower limit is limited to 0.005%. On the other hand, the effect is saturated even if added over 0.1%, so the upper limit was limited to 0.1%.

【0029】Ti:Tiは脱酸及び炭窒化物を形成する
ことにより、オーステナイト結晶粒の粗大化を防止する
効果を有しているが、0.002%未満ではこれらの効
果が発揮されず、0.1%を超えて添加しても効果が飽
和するため0.002〜0.1%の範囲に限定した。
Ti: Ti has the effect of preventing coarsening of austenite crystal grains by deoxidizing and forming carbonitrides, but if it is less than 0.002%, these effects are not exhibited. The effect is saturated even if added in excess of 0.1%, so the range was limited to 0.002 to 0.1%.

【0030】Nb:NbはTiと同様に炭窒化物を生成
することにより結晶粒を微細化させるために有効な元素
であるが、0.002%未満ではその効果が不十分であ
り、一方0.1%を超えるとこの効果が飽和するため
0.002〜0.1%に制限した。
Nb: Nb is an element effective for refining crystal grains by forming carbonitrides like Ti, but if it is less than 0.002%, its effect is insufficient, while 0 If the content exceeds 0.1%, this effect is saturated, so the content is limited to 0.002 to 0.1%.

【0031】他の元素は特に限定しないが、不純物とし
て含有される成分としてP:0.02%以下、S:0.
02%以下、N;0.007%以下が望ましい範囲であ
る。
Other elements are not particularly limited, but P: 0.02% or less, S: 0.
A desirable range is 02% or less and N; 0.007% or less.

【0032】次に、本発明で目的とする高強度の高炭素
鋼線において、デラミネーション発生の防止を図るため
に極めて重要となるフェライト中の固溶C量について述
べる。
Next, the amount of solute C in ferrite, which is extremely important for preventing the occurrence of delamination in the high-strength, high-carbon steel wire of the present invention, will be described.

【0033】本発明では高炭素鋼線の延性をねじり試験
を用いて、デラミネーション発生の有無で評価してい
る。ここで、デラミネーションが発生する鋼線は延性が
低いことを意味している。また、線材のフェライト中の
固溶C量は、アトムプローブ電界イオン顕微鏡を用いる
と正確に測定できる。しかし、分析用の試料作成と分析
に長時間を要するため、本発明では、フェライト中の固
溶C量の大小を簡易的に評価できる方法を採用した。即
ち、パテンティング処理後の線材を矯正加工によって直
線にし、その後、引張試験機で1〜2%の引張ひずみを
線材に付与する。1〜2%の引張ひずみを線材に付与し
た際の荷重を線材の断面積で除した値を時効前耐力とす
る。ひずみを付与した後に荷重を除去し、150〜30
0℃の油浴中において60〜300秒の時効処理を行
い、再度、引張試験を行う。この過程を図1に示す。同
図において、ひずみを付与した後に、時効処理を行うと
耐力が増加する。時効後の耐力を時効後耐力とする。時
効後耐力から時効前耐力を引いた値が、本発明で限定し
ている時効前後の耐力の増加量である。ここで、線材中
の固溶C量が多いほど、時効前後の耐力の増加量は大き
くなる。これは、ひずみを付与するとフェライト中に転
位が導入され、その後、時効処理を行うと固溶Cが転位
を固着するために起きる現象である。図2にパテンティ
ング処理した線材の時効前後の耐力の増加量、即ち固溶
C量と高炭素鋼線のデラミネーション発生の関係につい
て解析した一例を示す。高炭素鋼線は、線径が0.4m
mで引張強さが3850MPa前後のものである。同図
から明らかなように、時効前後の耐力の増加量が200
MPaを超えるとデラミネーションが発生することが分
かる。時効前後の耐力の増加量ΔYが200MPaを超
えるときの線材の固溶C量は25ppmであった。更
に、図3は線径が7mmで引張強さが1950MPa前
後の高炭素鋼線の例である。図2の結果と同様に、時効
前後の耐力の増加量が200MPa以下では、デラミネ
ーションが発生しないことが分かる。時効前後の耐力の
増加量ΔYが200MPaを超えるときの線材の固溶C
量は25ppmであった。以上のことから、時効処理前
後の耐力の増加量を200MPa以下に限定した。高強
度で且つ耐デラミネーション特性を得るための、より好
ましい条件は、180MPa以下である。また、引張ひ
ずみを1〜2%に限定した理由は、1%未満では正確に
ひずみを制御することが困難であり、一方、2%を超え
てひずみを線材に付与すると破断の可能性があるため、
1〜2%の範囲に限定した。ひずみ付与後の時効処理温
度は、150℃未満であるとCの拡散速度が遅くなり、
処理時間に長時間を要し、300℃を超えるとパーライ
ト組織自体が変化する可能性があるため、150〜30
0℃に限定した。
In the present invention, the ductility of the high carbon steel wire is evaluated by the torsion test by the presence or absence of delamination. Here, it means that the steel wire in which delamination occurs has low ductility. Further, the amount of solute C in ferrite of the wire rod can be accurately measured by using an atom probe field ion microscope. However, since it takes a long time to prepare and analyze the sample for analysis, the present invention employs a method capable of simply evaluating the magnitude of the amount of solute C in ferrite. That is, the wire rod after patenting treatment is straightened by straightening, and then a tensile strain of 1 to 2% is applied to the wire rod by a tensile tester. The value obtained by dividing the load when a tensile strain of 1 to 2% is applied to the wire rod by the cross-sectional area of the wire rod is the yield strength before aging. After applying strain, the load is removed, 150-30
Aging treatment is performed for 60 to 300 seconds in an oil bath at 0 ° C., and a tensile test is performed again. This process is shown in FIG. In the figure, proof stress increases when aging treatment is performed after applying strain. The proof stress after aging is defined as the proof stress after aging. The value obtained by subtracting the proof stress before aging from the proof stress after aging is the amount of increase in proof stress before and after aging limited in the present invention. Here, the larger the amount of solute C in the wire, the larger the increase in yield strength before and after aging. This is a phenomenon that occurs when dislocation is introduced into ferrite when strain is applied and then solid solution C fixes the dislocation when aging treatment is performed. FIG. 2 shows an example of analysis of the relationship between the increase in proof stress before and after aging of a patented wire, that is, the amount of solid solution C and the occurrence of delamination in a high carbon steel wire. High carbon steel wire has a wire diameter of 0.4 m
The tensile strength at m is around 3850 MPa. As is clear from the figure, the increase in proof stress before and after aging is 200
It can be seen that delamination occurs when the pressure exceeds MPa. When the amount of increase in proof stress before and after aging ΔY exceeded 200 MPa, the amount of solid solution C in the wire rod was 25 ppm. Further, FIG. 3 is an example of a high carbon steel wire having a wire diameter of 7 mm and a tensile strength of about 1950 MPa. Similar to the results shown in FIG. 2, it can be seen that delamination does not occur when the amount of increase in proof stress before and after aging is 200 MPa or less. Solid solution C of wire when the increase ΔY in proof stress before and after aging exceeds 200 MPa
The amount was 25 ppm. From the above, the increase in yield strength before and after the aging treatment was limited to 200 MPa or less. A more preferable condition for obtaining high strength and delamination resistance is 180 MPa or less. Further, the reason why the tensile strain is limited to 1 to 2% is that it is difficult to control the strain accurately if it is less than 1%, and if the strain is applied to the wire rod in excess of 2%, there is a possibility of breakage. For,
It was limited to the range of 1-2%. If the aging temperature after straining is less than 150 ° C, the diffusion rate of C becomes slow,
It takes a long time for the treatment, and if the temperature exceeds 300 ° C., the pearlite structure itself may change.
Limited to 0 ° C.

【0034】また、線材の固溶C量は、以上のことから
25ppm以下とした。
From the above, the amount of solid solution C of the wire is set to 25 ppm or less.

【0035】次に、高強度高炭素鋼線用線材の製造方法
の限定理由について、述べる。
Next, the reasons for limiting the manufacturing method of the wire for high strength and high carbon steel wire will be described.

【0036】本発明では、通常の熱間圧延を行った後
に、再加熱せずに450〜650℃で直接パテンティン
グを行うものである。直接パテンティングは、従来の熱
間圧延材を冷却し、再加熱した後に行うパテンティング
よりも、パテンティング処理後の引張強さが高く高強度
化に対して有利であるばかりでなく、低コストで高強度
の高炭素鋼線が製造できるからである。直接パテンティ
ング温度が450℃未満では、伸線加工性に有害なベイ
ナイトが発生しやすくなるために、下限を450℃に制
限した。一方、650℃を超えると伸線加工性が悪い粗
大なパーライト組織になり、更にC含有量の高い鋼では
初析セメンタイトが発生しやすいために、パテンティン
グ処理温度の上限を650℃に制限した。
In the present invention, after carrying out ordinary hot rolling, patenting is directly carried out at 450 to 650 ° C. without reheating. Direct patenting has higher tensile strength after patenting treatment than conventional patenting performed after cooling and reheating the hot-rolled material, which is advantageous for high strength and low cost. This is because high-strength, high-carbon steel wire can be manufactured. If the direct patenting temperature is lower than 450 ° C., bainite, which is harmful to the wire drawing workability, is likely to occur, so the lower limit was limited to 450 ° C. On the other hand, when the temperature exceeds 650 ° C, a coarse pearlite structure having poor wire drawability is formed, and proeutectoid cementite is easily generated in a steel having a high C content. Therefore, the upper limit of the patenting treatment temperature is limited to 650 ° C. .

【0037】パテンティング処理後の冷却速度が、8℃
/秒を超えると、ひずみ時効前後の耐力の増加量が20
0MPaを超え、デラミネーションが発生しやすくなる
ために、8℃/秒以下に限定した。より好ましい冷却速
度は、5℃/秒以下である。一方、冷却速度が1℃/秒
より遅いと生産性が低下するため、冷却速度の下限を1
℃/秒とする。
The cooling rate after the patenting treatment is 8 ° C.
If it exceeds / sec, the increase in proof stress before and after strain aging is 20
Since it exceeds 0 MPa and delamination easily occurs, it is limited to 8 ° C./second or less. A more preferable cooling rate is 5 ° C./second or less. On the other hand, if the cooling rate is slower than 1 ° C / sec, the productivity decreases, so the lower limit of the cooling rate is 1
C / sec.

【0038】パテンティング処理後の冷却終了温度は、
150℃未満が好ましい条件である。また、本発明の製
造方法においては、パテンティング処理後、引続き、1
50〜300℃の温度範囲に保定しても差し支えがな
い。ここで、150℃未満では、時効処理前後の耐力の
増加量を200MPaに制御することが困難であり、3
00℃を超えて保定するとパーライト組織が変化し、伸
線加工性が劣化しやすくなるために、150〜300℃
の温度範囲に限定した。保定時間は、特に限定しないも
のの、2〜60分が好ましい条件である。
The cooling end temperature after the patenting treatment is
Less than 150 ° C is a preferred condition. In addition, in the manufacturing method of the present invention, after the patenting treatment, 1
There is no problem even if it is held in the temperature range of 50 to 300 ° C. Here, if the temperature is lower than 150 ° C., it is difficult to control the increase amount of the proof stress before and after the aging treatment to 200 MPa.
If the temperature is maintained above 00 ° C, the pearlite structure changes and the wire drawing workability tends to deteriorate.
Limited to the temperature range. The holding time is not particularly limited, but 2 to 60 minutes is a preferable condition.

【0039】[0039]

【実施例】以下、実施例により本発明の効果を更に具体
的に説明する。
EXAMPLES The effects of the present invention will be described more specifically below with reference to examples.

【0040】表1に供試材の化学組成を示す。これらの
供試材を用いて、種々の線径に熱間圧延した後、直接パ
テンティングを行った。パテンティング浴は、溶融鉛、
溶融塩、空気の3条件で行った。エアパテンティング
は、熱間圧延線材に吹きかける空気の風量を調整するこ
とで、パテンティング温度を制御した。直接パテンティ
ング処理後に引続き保定する場合、保定時間を30分に
した。これらのパテンティング線材の固溶C量はアトム
プローブ電界イオン顕微鏡を用いて測定した。また、パ
テンティング処理線材の時効処理前後の耐力の増加量
は、引張ひずみが1.5%、時効温度が250℃、時効
時間が90秒の条件で調査した。その後、これらのパテ
ンティング線材を用いて、所定の線径まで伸線加工を行
い、用途に応じて、ブルーイング処理あるいは溶融めっ
きを施した。ブルーイング処理温度は300〜500℃
の条件で、溶融亜鉛めっきは450℃の条件で行った。
また、最終用途に応じて、パテンティング処理後、銅め
っき、もしくはブラスめっきを施した後に、伸線加工を
行った。これらの高炭素鋼線について、引張試験とねじ
り試験を行った。デラミネーション発生の有無は、ねじ
り試験で判定した。
Table 1 shows the chemical composition of the test materials. These test materials were hot-rolled into various wire diameters and then directly patented. The patenting bath is molten lead,
It carried out on 3 conditions, a molten salt and air. In air patenting, the patenting temperature was controlled by adjusting the amount of air blown onto the hot-rolled wire. In the case of continuous retention after the direct patenting treatment, the retention time was set to 30 minutes. The solute C content of these patenting wire rods was measured using an atom probe field ion microscope. The amount of increase in proof stress of the patented wire before and after aging was examined under conditions of a tensile strain of 1.5%, an aging temperature of 250 ° C and an aging time of 90 seconds. Then, using these patenting wire rods, wire drawing was performed to a predetermined wire diameter, and bluing treatment or hot dip plating was performed depending on the application. The bluing temperature is 300-500 ℃
Under the conditions, hot dip galvanizing was performed at 450 ° C.
Further, according to the end use, after the patenting treatment, copper plating or brass plating was applied, and then wire drawing was performed. Tensile tests and twist tests were performed on these high carbon steel wires. The presence or absence of delamination was judged by a torsion test.

【0041】[0041]

【表1】 [Table 1]

【0042】表2に供試材の種類、製造条件、引張強
さ、デラミネーションの発生の有無等について示す。同
表において、試験No.1、3、5、8、10、12、
15、17、19、22、24、26、28、30、3
2、34、36、38が本発明例であり、その他は比較
例である。同表に見られるように、本発明例の高炭素鋼
線材は、いずれも時効処理前後の耐力の増加量が200
MPa以下に制御され、線材の固溶C量は25ppm以
下に制御されている。この結果、伸線加工を行った高炭
素鋼線において、高強度であるにもかかわらず、ねじり
試験においてデラミネーションの発生がなく、高延性化
が実現できている。
Table 2 shows the types of test materials, manufacturing conditions, tensile strength, presence / absence of delamination, etc. In the table, test Nos. 1, 3, 5, 8, 10, 12,
15, 17, 19, 22, 24, 26, 28, 30, 3
2, 34, 36 and 38 are examples of the present invention, and others are comparative examples. As can be seen from the table, the high-carbon steel wire rods of the examples of the present invention each had an increase in yield strength before and after the aging treatment of 200.
The amount of solid solution C in the wire is controlled to 25 ppm or less. As a result, in the high-carbon steel wire that has been subjected to the wire drawing work, despite its high strength, delamination does not occur in the torsion test, and high ductility can be realized.

【0043】これに対して比較例であるNo.7、21
は、いずれも鋼の化学成分が不適切な例である。即ち、
No.7はC量が0.72%と低いために高強度化が達
成できていない例である。No.21はC含有量が高す
ぎるためにパテンティング処理時に初析セメンタイトが
析出した例である。この結果、伸線加工性が劣化し、伸
線加工時に断線が頻発したものである。
On the other hand, comparative examples No. 7 and 21
Are examples where the chemical composition of steel is inappropriate. That is,
No. 7 is an example in which high strength cannot be achieved because the C content is as low as 0.72%. No. 21 is an example in which proeutectoid cementite was precipitated during the patenting treatment because the C content was too high. As a result, the wire drawability deteriorates, and wire breakage frequently occurs during wire drawing.

【0044】比較例である試験No.14と40は、い
ずれも直接パテンティング処理温度が不適切な例であ
る。No.14は、パテンティング処理温度が高すぎた
ために、粗大なパーライト組織になるとともに初析セメ
ンタイトが析出し、伸線加工中に断線が頻発した例であ
る。また、No.40は、パテンティング処理温度が低
すぎたために、伸線加工性を劣化させるベイナイトが生
成し、この結果、伸線加工中に断線した例である。
Test Nos. 14 and 40, which are comparative examples, are examples in which the direct patenting treatment temperature is inappropriate. No. 14 is an example in which, because the patenting treatment temperature was too high, a coarse pearlite structure was formed, proeutectoid cementite was precipitated, and wire breakage frequently occurred during wire drawing. No. 40 is an example in which bainite, which deteriorates the wire drawing workability, was generated because the patenting treatment temperature was too low, and as a result, wire breakage occurred during wire drawing.

【0045】比較例である試験No.2、4、6、9、
11、13、16、18、25,29、31、33、3
5、37、39は、いずれもパテンティング処理後の冷
却速度が速すぎるために、時効処理前後の耐力の増加量
が200MPaを超えた例である。この結果、伸線加工
後のねじり試験において、デラミネーションが発生した
ものである。
Test Nos. 2, 4, 6, 9, which are comparative examples
11, 13, 16, 18, 25, 29, 31, 33, 3
Nos. 5, 37, and 39 are examples in which the cooling rate after the patenting treatment was too fast, and thus the increase in yield strength before and after the aging treatment exceeded 200 MPa. As a result, delamination occurred in the twist test after wire drawing.

【0046】更に、比較例である試験No.20、2
3、27は、いずれもパテンティング処理後の保定温度
が不適切な例である。即ち、いずれも保定温度が150
℃未満であったために、時効処理前後の耐力の増加量が
200MPaを超え、この結果、デラミネーションが発
生した例である。
Further, test Nos. 20 and 2 which are comparative examples.
Nos. 3 and 27 are examples in which the holding temperature after the patenting process is inappropriate. That is, the retention temperature is 150 in both cases.
This is an example in which the increase in yield strength before and after the aging treatment exceeded 200 MPa because the temperature was less than 0 ° C, resulting in delamination.

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】以上の実施例からも明かなように、本発
明は高強度の高炭素鋼線おけるデラミネーションの防止
に対して、高炭素鋼線材中の固溶C量の低減が極めて有
効であることを見出し、更に時効処理前後の耐力の増加
量が200MPa以下であればデラミネーションを防止
することができることを明確にし、高強度の高炭素鋼線
用線材を実現したものであり、産業上の効果は極めて顕
著なものがある。
As is clear from the above examples, the present invention is extremely effective in reducing the amount of solid solution C in high carbon steel wire rods for preventing delamination in high strength high carbon steel wire rods. In addition, it was clarified that delamination can be prevented if the increase amount of proof stress before and after aging treatment is 200 MPa or less, and a wire rod for high carbon steel wire with high strength was realized. The above effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】高炭素鋼線材における時効処理前後の耐力の増
加量を求める方法を示す図である。
FIG. 1 is a diagram showing a method of obtaining an increase amount of proof stress before and after aging treatment in a high carbon steel wire rod.

【図2】高炭素鋼線材における時効処理前後の耐力の増
加量と線径が0.4mmの高炭素鋼線におけるデラミネ
ーション発生の有無の関係について解析した一例を示す
図である。
FIG. 2 is a diagram showing an example of an analysis of the relationship between the increase amount of proof stress before and after aging treatment in a high carbon steel wire and the presence or absence of delamination in a high carbon steel wire having a wire diameter of 0.4 mm.

【図3】高炭素鋼線材における時効処理前後の耐力の増
加量と線径が7mmの高炭素鋼線におけるデラミネーシ
ョン発生の有無の関係について解析した一例を示す図で
ある。
FIG. 3 is a diagram showing an example of an analysis of the relationship between the increase amount of proof stress before and after aging treatment in a high carbon steel wire and the presence or absence of delamination in a high carbon steel wire having a wire diameter of 7 mm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 正春 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4K032 AA01 AA06 AA07 AA11 AA19 AA22 AA23 AA31 AA32 AA35 AA36 AA39 BA02 4K043 AA02 AB01 AB05 AB06 AB10 AB15 AB18 AB21 AB22 AB27 AB28 AB29 AB30 AB32    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaharu Oka             20-1 Shintomi, Futtsu City Nippon Steel Co., Ltd.             Inside the surgical development headquarters F-term (reference) 4K032 AA01 AA06 AA07 AA11 AA19                       AA22 AA23 AA31 AA32 AA35                       AA36 AA39 BA02                 4K043 AA02 AB01 AB05 AB06 AB10                       AB15 AB18 AB21 AB22 AB27                       AB28 AB29 AB30 AB32

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C :0.8〜1.1%、S
i:0.05〜2%、Mn:0.2〜2%を含有し、残
部はFe及び不可避的不純物からなる熱間圧延された線
材であって、前記線材に1〜2%の引張ひずみを付与
し、引続き、150〜300℃で時効処理を施した際
に、時効処理前後の耐力の増加量が200MPa以下で
あることを特徴とする高強度高炭素鋼線用線材。
1. In mass%, C: 0.8 to 1.1%, S
i: 0.05 to 2%, Mn: 0.2 to 2%, the balance being a hot-rolled wire consisting of Fe and unavoidable impurities, wherein the wire has a tensile strain of 1 to 2%. And a continuous aging treatment at 150 to 300 ° C., the increase in yield strength before and after the aging treatment is 200 MPa or less.
【請求項2】 質量%で、Mg:0.0001〜0.0
02%、Zr:0.0001〜0.002%の1種又は
2種を含有することを特徴とする請求項1記載の高強度
鋼線用線材。
2. In mass%, Mg: 0.0001 to 0.0
02%, Zr: 0.0001-0.002% 1 type or 2 types are contained, The high-strength steel wire wire rod of Claim 1 characterized by the above-mentioned.
【請求項3】 質量%で、Cr:0.05〜1%、M
o:0.05〜0.5%、Ni:0.05〜1%、V
:0.01〜0.5%の1種又は2種以上を含有する
ことを特徴とする請求項1又は2記載の高強度高炭素鋼
線用線材。
3. In mass%, Cr: 0.05-1%, M
o: 0.05 to 0.5%, Ni: 0.05 to 1%, V
: 0.01-0.5% of 1 type (s) or 2 or more types, The high-strength high carbon steel wire rod wire of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 質量%で、Al:0.005〜0.1
%、Ti:0.002〜0.1%、Nb:0.002〜
0.1%の1種又は2種以上を含有することを特徴とす
る請求項1、2又は3記載の高強度高炭素鋼線用線材。
4. In mass%, Al: 0.005 to 0.1
%, Ti: 0.002-0.1%, Nb: 0.002-
The high-strength, high-carbon steel wire rod according to claim 1, 2 or 3, containing 0.1% of one or more kinds.
【請求項5】 フェライト中の固溶C量が25ppm以
下であることを特徴とする請求項1〜4の何れか1項に
記載の高強度高炭素鋼線用線材。
5. The wire rod for high-strength and high-carbon steel wire according to claim 1, wherein the amount of solute C in the ferrite is 25 ppm or less.
【請求項6】 請求項1〜5の何れか1項に記載の線材
を製造する方法であって、請求項1〜4の何れか1項に
記載の成分からなる鋼を熱間圧延した後に、再加熱せず
に450〜650℃でパテンティングを行い、引続き、
1〜8℃/秒で冷却することを特徴とする高強度高炭素
鋼線用線材の製造方法。
6. A method for producing the wire rod according to any one of claims 1 to 5, which is obtained by hot rolling steel made of the component according to any one of claims 1 to 4. , Patenting at 450-650 ° C without reheating,
A method for producing a wire rod for high-strength high-carbon steel wire, which comprises cooling at 1 to 8 ° C./second.
【請求項7】 請求項1〜5の何れか1項に記載の線材
を製造する方法であって、請求項1〜4の何れか1項に
記載の成分からなる鋼を熱間圧延した後に、再加熱せず
に450〜650℃でパテンティングを行い、引続き、
150〜300℃で保定することを特徴とする高強度高
炭素鋼線用線材の製造方法。
7. A method for producing the wire rod according to any one of claims 1 to 5, which is obtained by hot rolling a steel comprising the component according to any one of claims 1 to 4. , Patenting at 450-650 ° C without reheating,
A method for producing a wire rod for a high-strength high-carbon steel wire, which comprises holding at 150 to 300 ° C.
JP2001286185A 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same Expired - Fee Related JP4527913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286185A JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286185A JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003096544A true JP2003096544A (en) 2003-04-03
JP4527913B2 JP4527913B2 (en) 2010-08-18

Family

ID=19109216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286185A Expired - Fee Related JP4527913B2 (en) 2001-09-20 2001-09-20 High-strength high-carbon steel wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP4527913B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093466A1 (en) * 2007-01-31 2008-08-07 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JP2009280836A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor
WO2014156573A1 (en) * 2013-03-27 2014-10-02 株式会社神戸製鋼所 High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
WO2019106815A1 (en) * 2017-11-30 2019-06-06 日本製鉄株式会社 Aluminum-clad steel wire and method of producing same
CN114262784A (en) * 2021-12-31 2022-04-01 嘉兴市新大金属有限公司 Low-temperature artificial aging treatment technology for high-carbon steel sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140822A (en) * 1981-02-23 1982-08-31 Nippon Steel Corp Production of high-strength steel bar and wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPH03271322A (en) * 1990-03-20 1991-12-03 Nippon Steel Corp Production of wire rod having high strength and high ductility
JPH0617144A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Production of high carbon excellent in fracture toughness steel wire
JPH07268487A (en) * 1994-04-01 1995-10-17 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wiredrawability
JPH0987803A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Wire for hot dipped steel wire, excellent in longitudinal crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140822A (en) * 1981-02-23 1982-08-31 Nippon Steel Corp Production of high-strength steel bar and wire
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
JPH03271322A (en) * 1990-03-20 1991-12-03 Nippon Steel Corp Production of wire rod having high strength and high ductility
JPH0617144A (en) * 1992-07-01 1994-01-25 Nippon Steel Corp Production of high carbon excellent in fracture toughness steel wire
JPH07268487A (en) * 1994-04-01 1995-10-17 Nippon Steel Corp Production of high carbon steel wire rod or steel wire excellent in wiredrawability
JPH0987803A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Wire for hot dipped steel wire, excellent in longitudinal crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062991A4 (en) * 2007-01-31 2013-01-16 Nippon Steel Corp Plated steel wire for pws excelling in torsion property and process for producing the same
EP2062991A1 (en) * 2007-01-31 2009-05-27 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JPWO2008093466A1 (en) * 2007-01-31 2010-05-20 新日本製鐵株式会社 PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
US8105698B2 (en) 2007-01-31 2012-01-31 Nippon Steel Corporation Plated steel wire for parallel wire strand (PWS) with excellent twist properties
KR101124052B1 (en) * 2007-01-31 2012-03-23 신닛뽄세이테쯔 카부시키카이샤 Plated steel wire for pws excelling in torsion property and process for producing the same
WO2008093466A1 (en) * 2007-01-31 2008-08-07 Nippon Steel Corporation Plated steel wire for pws excelling in torsion property and process for producing the same
JP5169839B2 (en) * 2007-01-31 2013-03-27 新日鐵住金株式会社 PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof
JP2009280836A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor
WO2014156573A1 (en) * 2013-03-27 2014-10-02 株式会社神戸製鋼所 High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
JP2014189855A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Wire rod for high-strength steel wire excellent in cold-drawability and high- strength steel wire
WO2019106815A1 (en) * 2017-11-30 2019-06-06 日本製鉄株式会社 Aluminum-clad steel wire and method of producing same
JPWO2019106815A1 (en) * 2017-11-30 2020-04-23 日本製鉄株式会社 Aluminum covered steel wire and method for manufacturing the same
CN114262784A (en) * 2021-12-31 2022-04-01 嘉兴市新大金属有限公司 Low-temperature artificial aging treatment technology for high-carbon steel sample

Also Published As

Publication number Publication date
JP4527913B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
EP2083094B1 (en) High-strength steel wire excelling in ductility and process for producing the same
JP5000367B2 (en) High strength galvanized bolt with excellent hydrogen embrittlement resistance
JP7226548B2 (en) wire
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
CN110832096A (en) High-strength steel wire
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3964246B2 (en) Steel belt steel plate with excellent resistance to crack propagation and manufacturing method thereof
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
JP4267375B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JP2003096544A (en) Wire for high strength high carbon steel wire, and production method therefor
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JP2001181790A (en) High strength directly patenting rod and its manufacturing method
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP2001271138A (en) High strength and high carbon steel wire excellent in ductility
JP3548419B2 (en) High strength steel wire
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
JPH11199980A (en) High strength extra fine steel wire
JP3130445B2 (en) High strength galvanized steel wire and method of manufacturing the same
JP6682863B2 (en) High carbon steel wire rod and high carbon steel wire
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4527913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees