WO2019106815A1 - Aluminum-clad steel wire and method of producing same - Google Patents
Aluminum-clad steel wire and method of producing same Download PDFInfo
- Publication number
- WO2019106815A1 WO2019106815A1 PCT/JP2017/043197 JP2017043197W WO2019106815A1 WO 2019106815 A1 WO2019106815 A1 WO 2019106815A1 JP 2017043197 W JP2017043197 W JP 2017043197W WO 2019106815 A1 WO2019106815 A1 WO 2019106815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel wire
- wire
- less
- aluminum
- annealing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
Definitions
- the present disclosure relates to an aluminum clad steel wire used as a core material of a steel core aluminum stranded wire and a method of manufacturing the same.
- a steel core aluminum stranded wire (aluminum conductor steel-reinforced cable, hereinafter sometimes referred to as "ACSR") used for a transmission line or the like is a cable using an aluminum wire or an aluminum alloy wire as a conductor.
- ACSR an ACSR having a structure in which an aluminum wire or an aluminum alloy wire is twisted on the outside with a single wire or a stranded wire made of a galvanized steel wire as a core material is used.
- various studies have been made on galvanized steel wire as a core material of ACSR.
- Patent Document 1 relates to a method of manufacturing a stranded steel wire (ACSSR steel wire) used to mechanically reinforce an Al wire of a power transmission cable, and more specifically, in a corrosive environment.
- C 0.75 to 1%
- Si 0.15 to 1.3%
- Mn for the purpose of providing a manufacturing method of high strength Zn plated steel wire for ACSR with a tensile strength of 240 kgf / mm 2 or more.
- Patent Document 2 can perform cold forging with good dimensional accuracy, and as a steel material for electrical parts that can ensure excellent electrical conductivity, C: 0.02% or less (0% or less) %, Si: 0.1% or less (not 0%), Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02 % Or less (including 0%), Al: 0.01% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%) And a steel material for electrical parts excellent in cold forgeability and electrical conductivity, in which the metal structure is a ferrite single phase structure.
- Patent Document 1 Japanese Patent Application Laid-Open No. 4-236742
- Patent Document 2 Japanese Patent Application Laid-Open No. 2003-226938
- ACSR using zinc-plated steel wire (for example, Zn-plated steel wire described in Patent Document 1) as core material
- zinc is used in the contact portion between aluminum and zinc with different electrode potentials by using rainwater etc. as electrolyte. It may corrode, and furthermore, aluminum may corrode due to the contact between the exposed iron and the aluminum. These tendencies are particularly noticeable when ACSR is used in high humidity areas such as coastal areas. Therefore, instead of galvanized steel wire as an ACSR core material, an aluminum-clad steel wire (aluminum-clad steel wire) comprising a steel wire and an Al-containing layer covering at least a part of the steel wire. Sometimes referred to as "AC line" may be used.
- ductility is required for the steel wire in the AC wire from the viewpoint of suppressing the delamination of the steel wire in the AC wire.
- an object of the present disclosure is to provide an aluminum coated steel wire provided with a steel wire excellent in tensile strength and ductility and having a reduced electrical resistivity, and a manufacturing method suitable for manufacturing the above-mentioned aluminum coated steel wire. It is to be.
- Means for solving the above problems include the following aspects.
- the chemical composition of the steel wire is in mass%, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0.005 to 0.050%, N: 0 to 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.20%, V: 0 to 0.15%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and Remainder: consists of Fe and impurities,
- the average aspect ratio of cementite in a region within D / 10 from the straight line where the distance from the central axis of the steel wire is D
- the steel wire is, by mass%, The aluminum-coated steel wire according to ⁇ 1>, containing at least one of Cr: 0% and 1.00% or less and Mo: 0% and 0.20% or less.
- the steel wire is, by mass%, It is described in ⁇ 1> or ⁇ 2> containing at least one of V: more than 0% and 0.15% or less, Ti: more than 0% and 0.050% or less, and Nb: more than 0% and 0.050% or less Aluminum coated steel wire.
- B The steel wire according to any one of ⁇ 1> to ⁇ 3>, containing 0% or more and 0.0030% or less.
- ⁇ 5> The aluminum-coated steel wire according to any one of ⁇ 1> to ⁇ 4>, wherein the tensile strength of the steel wire is 1900 MPa or more.
- ⁇ 6> A method of manufacturing the aluminum-coated steel wire according to any one of ⁇ 1> to ⁇ 5>, The chemical composition is in mass%, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0.005 to 0.050%, N: 0 to 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.20%, V: 0 to 0.15%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and Remainder: consists of Fe and impurities, In the cross section, when the diameter of the wire is d, prepare a wire having a pearlite fraction of 90% or more in the region
- an aluminum-coated steel wire provided with a steel wire excellent in tensile strength and ductility and having a reduced electrical resistivity, and a manufacturing method suitable for manufacturing the above-mentioned aluminum-coated steel wire are provided. .
- a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
- “%” indicating the content of the component (element) means “mass%”.
- the content of C (carbon) may be referred to as "C content”.
- the term “step” is not limited to an independent step but may be included in the term if the intended purpose of the step is achieved even if it can not be clearly distinguished from other steps.
- the upper limit or the lower limit of a certain stepwise numerical range may be replaced with the upper limit or the lower limit of the numerical range described in another stepwise. Also, they may be replaced with the values shown in the embodiments.
- the aluminum clad steel wire of the present disclosure is used as a core material of a steel core aluminum stranded wire, and comprises a steel wire and an Al-containing layer covering at least a part of the steel wire, and the chemical composition of the steel wire is a mass %, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0.005 to 0.050%, N: 0 0.00 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.20%, V: 0 to 0.15% , Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the rest: Fe and impurities, and the diameter of the steel wire in the longitudinal cross section of the steel wire A cementer in a region within D / 10 (hereinafter also referred to as “region X”) from
- the steel wire in the aluminum clad steel wire of the present disclosure is excellent in tensile strength and ductility, and has a reduced electrical resistivity.
- the electrical resistivity of a steel wire means the electrical resistivity in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
- the tensile strength of a steel wire means the tensile strength in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
- the aforementioned effects of the steel wire in the aluminum clad steel wire of the present disclosure can be achieved by the above chemical composition and cementite in the region X in the longitudinal section.
- the half value width of the (211) plane in the longitudinal section can be achieved by the above chemical composition and cementite in the region X in the longitudinal section.
- the content of Si, Mn, Cr, etc. is the upper limit value of the content of each element
- the average aspect ratio of cementite is limited to 25 or less in the region X which is reduced below and in the longitudinal section of the steel wire.
- the half value width of the (211) plane having a positive correlation with the dislocation density in the steel wire is 0.14 ° or more, and the C content is 0.60%.
- the ductility of the steel wire may be reduced.
- the dislocation density in the steel wire is reduced to some extent, and as a result, the steel wire is excellent Ductility is secured.
- the chemical composition of the steel wire in the present disclosure is, in mass%, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0 .005 to 0.050%, N: 0 to 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.. 20%, V: 0 to 0.15%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the balance: Fe and impurities.
- the chemical composition of the steel wire raw material (for example, melted steel, ingot, wire rod, etc. described later) in the present disclosure is also similar to the chemical composition of the steel wire in the present disclosure.
- the manufacturing process from molten steel, through ingots and wires to steel wires does not affect the chemical composition.
- the chemical composition of the steel wire in the present disclosure may be referred to as "the chemical composition in the present disclosure”.
- the content of each element in the chemical composition in the present disclosure will be described.
- C 0.60 to 1.10% C is an element effective to increase the tensile strength of the steel wire. If the C content is less than 0.60%, the tensile strength of the steel wire may be insufficient. For this reason, the C content is 0.60% or more.
- the C content is preferably 0.70% or more.
- the C content is 1.10% or less.
- the C content is preferably 1.05% or less, more preferably 1.00% or less.
- Si 0.01 to 0.10% Si is an element effective for enhancing the tensile strength of a steel wire by solid solution strengthening, and is also an element necessary as a deoxidizer. However, if the Si content is less than 0.01%, the effect of adding these Si may not be sufficient. For this reason, the Si content is 0.01% or more.
- the Si content is preferably 0.05% or more from the viewpoint of achieving the effects of the addition of Si more stably.
- Si is an element that increases the electrical resistance of the steel wire. If the Si content exceeds 0.10%, the electrical resistivity of the steel wire may become excessively high. Therefore, the Si content is 0.10% or less.
- the Si content is preferably 0.09% or less, more preferably 0.08% or less.
- Mn 0.10 to 0.30%
- Mn is an element having an effect of enhancing the tensile strength of the steel wire.
- Mn is also an element having the function of preventing hot embrittlement of the steel wire by fixing S in the steel as MnS.
- the Mn content is 0.10% or more.
- the Mn content is preferably 0.15% or more, more preferably 0.20% or more. is there.
- Mn has an effect of increasing the electrical resistivity of the steel wire. For this reason, when the Mn content exceeds 0.30%, the electrical resistivity of the steel wire may become excessively large. Therefore, the Mn content is 0.30% or less.
- the Mn content is preferably 0.26% or less.
- Al 0.005 to 0.050%
- Al is an element having a deoxidizing action, and is an element necessary for reducing the amount of oxygen in the steel wire.
- the Al content is less than 0.005%, it may not be possible to sufficiently obtain the effect (reduction of the amount of oxygen in the steel wire) by containing Al. For this reason, the Al content is 0.005% or more.
- the Al content is preferably 0.010% or more, more preferably 0.020% or more.
- the Al content exceeds 0.050%, the electrical resistivity of the steel wire may become excessively large.
- the Al content is 0.050% or less.
- the Al content is preferably 0.040% or less, more preferably 0.035% or less.
- N 0 to 0.0070%
- N is an element that raises the electrical resistivity of the steel wire. For this reason, when the N content exceeds 0.0070%, the electrical resistivity of the steel wire may become excessively high. For this reason, the N content is 0.0070% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the N content is preferably 0.0050% or less.
- the N content may be 0%.
- N is also an element that raises the tensile strength of the steel wire by fixing the dislocation during cold drawing. From the viewpoint of this effect, the N content may be more than 0%, may be 0.0010% or more, and may be 0.0020% or more.
- P 0 to 0.030%
- P is an element which segregates in the grain boundaries of steel to increase the electrical resistance. If the P content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the P content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the P content is preferably 0.025% or less, more preferably 0.020% or less. The P content may be 0%. However, from the viewpoint of reducing the manufacturing cost (dephosphorization cost), the P content may be more than 0%, may be 0.0005% or more, and may be 0.0010% or more. .
- S is an element that raises the electrical resistivity of the steel wire. If the S content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the S content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the S content is preferably 0.015% or less, more preferably 0.010% or less. The S content may be 0%. However, from the viewpoint of reducing the manufacturing cost (desulfurization cost), the S content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
- Cr 0 to 1.00% Cr is an arbitrary element. That is, the Cr content may be 0%. If the Cr content exceeds 1.00%, the electrical resistivity of the steel wire may become excessively high. The reason is considered that when the Cr content exceeds 1.00%, spheroidization of cementite by annealing is inhibited, and as a result, the average aspect ratio of cementite exceeds 25. Therefore, the Cr content is 1.00% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Cr content is preferably 0.95% or less. On the other hand, Cr has the effect of increasing the tensile strength of the steel wire by reducing the lamella spacing of the pearlite. From the viewpoint of this action, the Cr content may be more than 0%, may be 0.10% or more, and may be 0.20% or more.
- spheroidizing of cementite by annealing means that the average aspect ratio of cementite in region X of the longitudinal section of the steel wire is reduced by annealing (specifically, the average aspect ratio is 25 or less). It means that. In the present specification, spheroidization of cementite by annealing does not mean that cementite has a perfect spherical shape.
- Mo 0 to 0.20%
- Mo is an arbitrary element. That is, the Mo content may be 0%. If the Mo content exceeds 0.20%, the electrical resistivity of the steel wire may become excessively high. For this reason, the Mo content is 0.20% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Mo content is preferably 0.10% or less. On the other hand, Mo has the effect of increasing the tensile strength of the steel wire. From the viewpoint of this action, the Mo content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
- V 0 to 0.15%
- V is any element. That is, the V content may be 0%. When the V content exceeds 0.15%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the V content is 0.15% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the V content is preferably 0.08% or less.
- V is an element which forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the V content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
- Ti is an optional element. That is, the Ti content may be 0%. When the Ti content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Ti content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Ti content is preferably 0.030% or less. On the other hand, Ti is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the Ti content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
- Nb 0 to 0.050%
- Nb is an arbitrary element. That is, the Nb content may be 0%. If the Nb content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Nb content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Nb content is preferably 0.020% or less.
- Nb is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of the action, the Nb content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
- B 0 to 0.0030%
- B is any element. That is, the B content may be 0%. If the B content exceeds 0.0030%, coarse carbides or carbonitrides are likely to be formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the B content is 0.0030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the B content is preferably 0.0025% or less.
- B is an element which reduces the electrical resistivity of a steel wire by forming BN in a steel wire and reducing solid solution N. From the viewpoint of this action, the B content may be more than 0%, may be 0.0003% or more, and may be 0.0010% or more.
- Remainder Fe and impurities
- the remainder excluding the above-described elements is Fe and impurities.
- impurity refers to a component contained in the raw material or a component mixed in the production process and not a component intentionally contained in steel.
- impurity all elements other than the elements mentioned above are mentioned.
- the element as an impurity may be only one or two or more.
- the chemical composition of the steel wire in the present disclosure can contain at least one of Cr: more than 0% and 1.00% or less and Mo: 0% and less than 0.20% or less by mass%.
- Cr more than 0% and 1.00% or less
- Mo 0% and less than 0.20% or less by mass%.
- the action of each of Cr and Mo in this case and the preferable content of each are as described above.
- the chemical composition of the steel wire in the present disclosure is, by mass%, at least one of V: more than 0% and 0.15% or less; It can contain seeds.
- V the actions of V, Ti and Nb and the preferable contents of each are as described above.
- the chemical composition of the steel wire in the present disclosure can contain, in mass%, B: more than 0% and 0.0030% or less.
- B more than 0% and 0.0030% or less.
- the action and the preferable content of B in this case are as described above.
- the region X in the longitudinal section of the steel wire, the region X (that is, when the diameter of the steel wire is D, the distance from the central axis of the steel wire is D / 10 within a straight line
- the average aspect ratio of cementite in the region b) is 10 or more and 25 or less
- the half-value width of the (211) plane measured using an X-ray diffractometer using a Mo tube is 0. 14 degrees or more and less than 0.30 degrees.
- the longitudinal cross section of the steel wire means a cross section parallel to the longitudinal direction of the steel wire and including the central axis of the steel wire.
- the cross section of the steel wire means a cross section perpendicular to the longitudinal direction of the steel wire.
- the cross section of a wire is the same meaning.
- the steel wire in the present disclosure is a region X in the longitudinal cross section (that is, a region within D / 10 of a straight line in which the distance from the central axis of the steel wire is D / 4, where D is the diameter of the steel wire)
- the average aspect ratio of cementite in is 10 or more and 25 or less.
- FIG. 1 is a figure which shows notionally the longitudinal cross-section in the example of the steel wire of this indication, and the area
- the region X is a straight line (in FIG. 1) having a distance of D / 4 from the central axis of the steel wire (one-dot chain line in FIG. 1).
- Region X is, in other words, a band-shaped region of width D / 5 centered on a straight line whose distance from the central axis of the steel wire is D / 4.
- the reason for specifying the average aspect ratio of cementite in the region X is because the average aspect ratio of cementite in the region X is considered to be appropriate as a representative value of the aspect ratios of the longitudinal sections of the steel wire.
- the aspect ratio of cementite in the vicinity of the outer peripheral surface of the steel wire tends to be smaller than the aspect ratio of cementite in region X, and the steel wire
- the aspect ratio of cementite near the central axis of H tends to be larger than the aspect ratio in the region X.
- the steel wire in the present disclosure is excellent in tensile strength as compared with the case where the average aspect ratio of cementite in the region X in the longitudinal cross-section is less than 10.
- this point will be described in detail.
- the steel wire in the present disclosure is a wire mainly composed of a lamellar pearlite structure (i.e. steel before being drawn). It is indicated that the same is a steel wire formed by drawing and annealing. Specifically, when a wire mainly composed of a lamellar perlite structure is subjected to wire drawing and annealing, the lamellar cementite in the lamellar perlite structure is divided by the wire drawing, and the divided lamellar cementite is spheroidized by annealing.
- cementite having an average aspect ratio of 10 to 25 in the region X in the longitudinal cross section is formed.
- work hardening can be promoted, and as a result, a steel wire having excellent tensile strength can be manufactured.
- wire drawing and annealing are performed on a wire mainly composed of a martensitic structure and / or a bainite structure, the tensile strength of the obtained steel wire is insufficient because work hardening is insufficient in the wire drawing. Run out.
- the average aspect ratio of cementite in the region X in the longitudinal cross section of the obtained steel wire is less than 10.
- the steel wire in the present disclosure has the average aspect ratio of cementite in the region X in the longitudinal cross-section of 10 or more and 25 or less (in particular, the average aspect ratio of 10 or more). Compared with the case where an aspect ratio is less than 10, it is excellent in tensile strength.
- the average aspect ratio of cementite in the region X in the longitudinal cross section is preferably 12 or more.
- the steel wire in the present disclosure has an electrical resistivity that is greater than 25 when the average aspect ratio of cementite in the region X in the longitudinal cross-section is 25 or less. Reduced. From the viewpoint of further reducing the electrical resistivity of the steel wire, the average aspect ratio of cementite in the region X in the longitudinal cross section is preferably less than 25, more preferably 24 or less, and still more preferably 23 or less.
- the average aspect ratio of cementite in the region X in the longitudinal section is not only the wire drawing strain but also the wire drawing strain (for example, the wire drawing strain represented by the formula (1) described later), and the annealing time in annealing There is also a correlation with the annealing temperature in annealing. As the drawing strain is larger, the average aspect ratio of cementite tends to be smaller. The reason for this is considered to be that lamellar cementite in the lamellar perlite structure of the wire is more likely to be divided by the wire drawing as the wire drawing strain is larger. Also, the larger the annealing time and the annealing temperature, the smaller the average aspect ratio of cementite tends to be.
- the reason for this is considered to be that the effect of spheroidizing cementite by annealing (that is, the effect of reducing the average aspect ratio of cementite by annealing) is more easily exhibited as the annealing time and the annealing temperature are larger.
- the average aspect ratio of cementite in the region X in the longitudinal cross section of the steel wire means a value measured as follows.
- the longitudinal section of the steel wire is mirror-polished, and the mirror-polished longitudinal section is corroded with picric acid alcohol (picral), and the corroded longitudinal section is observed using a field emission scanning electron microscope (FE-SEM)
- FE-SEM field emission scanning electron microscope
- the length and width of cementite on the intersection of straight lines (the cementite closest to the intersection if there is no cementite on the intersection) and then measure the ratio of the length to the width (ie, the length / Width ratio) is calculated as the aspect ratio of the cementite.
- the length of cementite is the length from one end to the other end along the shape of cementite.
- cementite which is out of the visual field is excluded from the calculation target of the aspect ratio.
- the width of cementite is the width of cementite at a position bisecting the length from one end to the other end along the shape of cementite.
- cementite is selected at 60 locations (ie, 120 locations in a total of two fields of view), and the aspect ratio is calculated by the method described above for each of the 120 selected cementites.
- the aspect ratio of cementite of 60 places can not be calculated per one photo, a photo of another view is substituted.
- the obtained 120 values (aspect ratio) are arithmetically averaged, and the obtained arithmetic average value is taken as an average aspect ratio.
- the half value width of (211) plane measured using an X-ray diffractometer using a Mo tube (hereinafter, also simply referred to as “half value width of (211) plane”) Is correlated with the dislocation density in the steel wire. As the dislocation density in the steel wire is higher, the half value width of the (211) plane tends to be larger.
- the half value width of the (211) plane is 0.14 ° or more. This improves the tensile strength of the steel wire. From the viewpoint of further improving the tensile strength of the steel wire, the half value width of the (211) plane is preferably 0.15 ° or more.
- the half value width of a (211) plane is 0.30 degrees or less. This improves the ductility of the steel wire.
- the half width of the (211) plane exceeds 0.30 °, the ductility of the steel wire is reduced, and as a result, delamination may occur.
- the half value width of the (211) plane is preferably 0.29 ° or less.
- the half value width of the (211) plane in the longitudinal cross section of the steel wire (that is, the half value width of the (211) plane measured using an X-ray diffractometer using a Mo tube) is It means the value measured in this way.
- the vertical cross section of the steel wire is mirror-polished, and the X-ray diffraction profile is measured on the mirror-polished vertical cross-section under the following conditions using an X-ray diffractometer (for example, "RINT 2200" manufactured by Rigaku Corporation).
- the half value width of the diffraction peak of the (211) plane is determined, and the obtained value is taken as the half value width of the (211) plane.
- the dislocation density in the steel wire and the half value width of the (211) plane are the amount of wire drawing strain, the annealing time in annealing, and the annealing when the wire is subjected to wire drawing and annealing to produce a steel wire.
- the half width of the face is reduced). The reason for these is considered to be that the dislocations introduced into the steel wire by drawing strain are recovered by annealing.
- the steel wire in the present disclosure has a pro-eutectoid ferrite component in a region in which a region within D / 7 from the center and a region within D / 7 from the outer peripheral surface in a cross section when the diameter of the steel wire is D.
- the rate is preferably 10% or less. This further improves the tensile strength of the steel wire.
- the pro-eutectoid ferrite fraction referred to herein means the area ratio of the pro-eutectoid ferrite structure to the whole metal structure in the area combining the area within D / 7 from the center and the area within D / 7 from the outer peripheral surface. .
- a steel wire having a pro-eutectoid ferrite fraction of 10% or less can be manufactured by drawing a wire mainly having a lamellar perlite structure.
- the pro-eutectoid ferrite fraction may be 0%.
- the remainder except a pro-eutectoid ferrite from metal structure is a lamellar perlite structure.
- the pro-eutectoid ferrite fraction in the cross section of the steel wire can be measured by the same method as the measurement of the pearlite fraction in the cross section of the wire described later.
- the steel wire in the present disclosure is excellent in tensile strength.
- the tensile strength of the steel wire is preferably 1900 MPa or more, more preferably 2100 MPa or more, and particularly preferably 2300 MPa or more.
- the upper limit of the tensile strength of the steel wire is not particularly limited.
- the tensile strength of the steel wire may be 2800 MPa or less or 2600 MPa or less from the viewpoint of production suitability of the steel wire.
- the steel wire in the present disclosure has a reduced electrical resistivity.
- the electrical resistivity of the steel wire is preferably 0.175 ⁇ m or less.
- the lower limit of the electrical resistivity of the steel wire is not particularly limited.
- the electrical resistivity of the steel wire may be 0.140 ⁇ m or more from the viewpoint of production suitability of the steel wire.
- the diameter of the steel wire is preferably 1.0 mm or more and 3.5 mm or less.
- the diameter of the steel wire is 1.0 mm or more, wire drawing in the case of obtaining an aluminum coated steel wire by wire drawing can be performed more stably.
- the diameter of the steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
- the aluminum clad steel wire of the present disclosure includes an Al-containing layer covering at least a part of the above-described steel wire.
- the Al-containing layer is preferably a layer containing Al as a main component.
- the layer containing Al as a main component means a layer containing Al as a component having the largest content (% by mass). 50 mass% or more is preferable, as for content of Al in an Al containing layer, 80 mass% or more is still more preferable, and 90 mass% or more is especially preferable.
- an Al layer composed of Al (that is, pure Al) or an Al alloy layer composed of an Al alloy is preferable.
- Al alloy an Al alloy containing Al and at least one selected from the group consisting of Mg, Si, Zn, and Mn is preferable. 50 mass% or more is preferable, 80 mass% or more is still more preferable, and, as for content of Al in Al alloy, 90 mass% or more is especially preferable.
- preferred examples of the Al alloy include the 3000 series to 7000 series Al alloys in the international aluminum alloy name.
- the Al layer made of Al may contain impurities in addition to Al.
- the Al alloy layer made of an Al alloy as referred to herein may contain impurities in addition to the Al alloy.
- the area ratio of the Al-containing layer to the entire cross section of the aluminum-coated steel wire of the present disclosure is preferably 10% to 64%.
- the area ratio of the Al-containing layer is 10% or more, the electrical resistance (in detail, the electrical resistance in the longitudinal direction) of the entire aluminum clad steel wire is further reduced.
- the area ratio of the Al-containing layer is 64% or less, the tensile strength of the entire aluminum clad steel wire is further improved.
- the area ratio of the Al-containing layer is more preferably 10% to 50%, still more preferably 10% to 40%, and still more preferably 15% to 35%.
- the aluminum clad steel wire of the present disclosure described above is used as a core material of a steel core aluminum stranded wire.
- a steel core aluminum stranded wire referred to herein a general steel core aluminum stranded wire having a structure in which the aluminum clad steel wire of the present disclosure is used as a core material and an aluminum wire or an aluminum alloy wire is twisted on the outside of this core material.
- an aluminum wire or an aluminum alloy wire is twisted on the outside of this core material.
- Production method A [Example of production method of aluminum coated steel wire (production method A)]
- the following manufacturing method A is mentioned as an example of the method of manufacturing the aluminum clad steel wire of this indication.
- Production method A is The chemical composition is the chemical composition in the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center and a region within d / 7 from the outer peripheral surface are combined.
- Preparing a wire having a pearlite fraction of 90% or more in the region (hereinafter, also referred to as “wire preparation step”); A step of obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process (hereinafter, also referred to as a “first wire drawing step”); Forming an Al-containing layer covering at least a part of the unannealed steel wire to obtain an Al-containing layer-containing unannealed steel wire (hereinafter, also referred to as an “Al-containing layer forming step”); A step of subjecting the aluminum-containing unannealed steel wire to a second wire drawing process (hereinafter, also referred to as a “second wire drawing step”); A step of obtaining an aluminum-coated steel wire (hereinafter, also referred to as an “annealing step”) by annealing the second wire-drawn non-annealed steel wire with an Al-containing layer; Including The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than
- Wire drawing strain 2 ⁇ ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm))
- the production method A may include other steps as necessary.
- the wire preparing step has the chemical composition according to the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center (hereinafter also referred to as “region Y1”) and the outer periphery
- region Y1 a region within d / 7 from the center
- region Y2 a region within d / 7 from the surface
- FIG. 2 is a figure which shows notionally the cross section of a wire, and area
- the region Y1 is a region within d / 7 from the center P of the wire (a region indicated by hatching and “Y1” in FIG. 2)
- the region Y2 is a region within d / 7 from the outer peripheral surface (a region indicated by oblique lines and a symbol "Y2" in FIG. 2).
- the reason for specifying the pearlite fraction in the area obtained by combining the area Y1 and the area Y2 in the cross section of the wire in the manufacturing method A is that the pearlite fraction in the area obtained by combining the area Y1 and the area Y2 is the cross section of the wire Because it is considered to be appropriate as a representative value of the perlite fraction in
- a wire having a pearlite fraction of 90% or more in a region obtained by combining the region Y1 and the region Y2 is used as a wire which is a steel material before wire drawing, and the first wire drawing is performed on this wire Work hardening can be promoted by applying the second wire drawing process. Therefore, the tensile strength of the wire can be efficiently improved. That is, the steel wire excellent in tensile strength can be manufactured.
- the pearlite fraction of the wire means the area ratio of the lamellar perlite structure in the entire metallographic structure in the combined area of the area Y1 and the area Y2.
- the pearlite fraction of the wire is preferably 95% or more.
- the pearlite fraction of the wire may be 100%, less than 100%, or 99% or less.
- the remainder namely, non-perlite structure which remove
- the pearlite fraction in the combined area of the area Y1 and the area Y2 means a value measured as follows.
- the cross section of the wire is mirror-polished, the mirror-polished cross-section is corroded with picral, and the corroded cross-section is observed using an FE-SEM.
- the observation view is 10 Select each place (ie, a total of 20 views).
- metallographic photographs are taken at a magnification of 2000 ⁇ .
- the area per view is 2.7 ⁇ 10 -3 mm 2 (0.045 mm in length, 0.060 mm in width).
- a transparent sheet for example, an OHP (Over Head Projector) sheet
- OHP Over Head Projector
- color is applied to the non-perlite structure (that is, a structure other than the lamellar perlite structure) in each transparent sheet. Paint.
- the area ratio of the “colored area” is determined by image analysis software. The obtained area ratio (20 values) is arithmetically averaged, and the obtained value is taken as the area ratio of non-perlite structure. Let the value which deducted the area rate of non-pearlite structure from 100% be the pearlite fraction in the field which combined field Y1 and field Y2 in the cross section of a wire.
- the diameter of the wire is preferably 6 mm or more and 12 mm or less. When the diameter of the wire is 6 mm or more, it is easier to make the drawing strain more than 2.6. When the diameter of the wire is 12 mm or less, the first wire drawing is easier.
- the wire preparation step may be a step of merely preparing a pre-manufactured wire, or may be a step of manufacturing the wire.
- the preferred method of producing the wire is A step of melting an steel having the chemical composition in the present disclosure described above and then casting to obtain an ingot (hereinafter also referred to as a “casting step”); A step of heating the ingot and then hot rolling to obtain a wire rod (hereinafter also referred to as a “hot rolling step”); including.
- Melting of steel in the casting step can be performed by a usual method using a melting furnace such as a vacuum melting furnace.
- the hot rolling step prior to hot rolling, it is preferable to heat the ingot at a temperature of 1150 ° C. or more and 1350 ° C. or less for 30 minutes or more and 90 minutes or less.
- the heating temperature of the ingot is 1150 ° C. or more and the heating time of the ingot is 30 minutes or more, the ingot center can be sufficiently heated, and segregation of the center can be suppressed.
- the ingot heating temperature to 1350 ° C. or less and the ingot heating time to be 90 minutes or less, the progress of decarburization in the steel can be suppressed, and as a result, the steel wire resulting from decarburization It is possible to suppress the decrease in tensile strength of
- the finishing temperature of the hot rolling is preferably 800 ° C. or more and 1000 ° C. or less.
- the resistance reaction force during hot rolling can be reduced as the finishing temperature of hot rolling is 800 ° C. or higher, and the shape can be easily formed.
- the fall of the ductility of a wire can be controlled as the finish temperature of hot rolling is 1100 ° C or less, and the fracture during wire drawing can be controlled.
- the cooling method after hot rolling is preferably air cooling (including blast cooling) or water cooling. Thereby, a wire rod having a pearlite fraction of 90% or more is easily obtained.
- the preferred range of the diameter of the wire obtained by hot rolling is as described above.
- the first wire drawing step is a step of obtaining a non-annealed steel wire by subjecting the above-described wire to a first wire drawing process.
- the first wire drawing step is provided before the later-described second wire drawing step (that is, the step of performing a second wire drawing process after the formation of the Al-containing layer), whereby the roundness of the steel wire is obtained.
- An effect is obtained that it is easy to manufacture an aluminum coated steel wire which is excellent in the thickness of the Al-containing layer and reduced in thickness.
- the first wire drawing process can be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
- the diameter of the unannealed steel wire obtained by the first wire drawing is preferably 3 mm or more and 10 mm or less.
- the diameter of the unannealed steel wire is 3 mm or more, the amount of processing in wire drawing after forming the Al-containing layer (that is, second wire drawing described later) can be increased, so The adhesion between the steel wire and the Al-containing layer in the steel wire can be further improved.
- wire drawing after forming the Al-containing layer that is, second wire drawing described later becomes easier.
- the Al-containing layer forming step is a step of obtaining an Al-containing layer-containing non-annealed steel wire by forming an Al-containing layer covering at least a part of the unannealed steel wire.
- a method of forming an Al-containing layer for example, a method of forming an Al-containing layer by extruding an unannealed steel wire in a tube containing Al; applying a powder containing Al to an unannealed steel wire And a method of forming an Al-containing layer by subsequent sintering; and the like.
- the Al-containing layer forming step the Al-containing layer is applied to at least a part of the unannealed steel wire, preferably to the entire outer peripheral surface of the unannealed steel wire, It is preferable to form so that the area ratio of 10% to 64%.
- the second wire drawing step is a step of subjecting the Al-containing layer-containing unannealed steel wire to a second wire drawing process.
- the second wire drawing process can also be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
- the diameter of the second non-annealed steel wire after wire drawing is preferably 1.0 mm or more and 3.5 mm or less.
- the second wire drawing can be performed more stably, so the tensile strength of the steel wire is more than that. improves.
- the diameter of the unannealed steel wire after the second wire drawing is 3.5 mm or less, decomposition of cementite during the second wire drawing and an increase in electrical resistance due to the decomposition can be further suppressed.
- the annealing step is a step of obtaining an aluminum-coated steel wire by performing annealing on the second wire-drawing uncoated steel wire with Al-containing layer.
- Annealing can be performed using the annealing machine normally used in this field
- limiting in particular in the cooling method in annealing namely, the cooling method after heat treatment in the following annealing temperature and the following annealing time), Any of air cooling, water cooling, and furnace cooling can be applied.
- the annealing temperature in annealing is more than 370 ° C. and less than or equal to 520 ° C.
- solid solution carbon can be reprecipitated as cementite, and since spheroidization of cementite can be promoted, the average aspect ratio of cementite of the obtained steel wire is 25 or less Easy to adjust. For this reason, the electrical resistivity of the steel wire can be reduced.
- the annealing temperature in the annealing is over 370 ° C., it is easy to recover the dislocations introduced by the strain in the first wire drawing process and / or the second wire drawing process by annealing (ie, it is easy to reduce the dislocation density) Because of this, it is easy to adjust the half value width of the (211) plane of the obtained steel wire to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
- the annealing temperature in the annealing is preferably 380 ° C. or more, more preferably 400 ° C. or more.
- the annealing temperature in the annealing is 520 ° C. or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more. For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
- the annealing temperature in the annealing is preferably 500 ° C. or less, more preferably 480 ° C. or less.
- the annealing time in annealing is 10 seconds or more and 180 seconds or less. Since the dislocation introduced by the strain in the first wire drawing step and / or the second wire drawing step is easily recovered by annealing if the annealing time in the annealing is 10 seconds or more (that is, the dislocation density is easily reduced). The half width of the (211) plane of the obtained steel wire can be easily adjusted to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
- the annealing time is preferably 20 seconds or more, more preferably 25 seconds or more.
- the annealing time in the annealing is 180 seconds or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more . For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
- the annealing time in annealing is preferably 120 seconds or less.
- the drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm .
- Wire drawing strain 2 ⁇ ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm))
- the wire drawing strain represented by the formula (1) is a numerical value of the amount of strain introduced by the first wire drawing process and the second wire drawing process.
- “ln” means a natural logarithm (namely, "log e ").
- the wire drawing strain represented by the formula (1) is preferably 2.7 or more, more preferably more than 2.7.
- the wire drawing process strain represented by the formula (1) is 3.6 or less, the diameter of the wire to be subjected to the first wire drawing process can be reduced to some extent. For this reason, it is easy to perform the first wire drawing process because the wire drawing process strain represented by the formula (1) is 3.6 or less. From the viewpoint of facilitating the first wire drawing process, the wire drawing process strain represented by the formula (1) is preferably 3.4 or less, more preferably 3.2 or less.
- the diameter of the steel wire in the finally obtained aluminum clad steel wire is 1.0 mm or more and 3.5 mm or less.
- the diameter of the steel wire is 1.0 mm or more
- the first wire drawing and / or the second wire drawing can be performed more stably.
- the diameter of the steel wire is 3.5 mm or less, the decomposition of cementite can be suppressed during the first wire drawing and / or the second wire drawing, thereby increasing the electrical resistivity of the steel wire. It can suppress more.
- Process B is Preparing a wire having a chemical composition according to the present disclosure as described above, and having a pearlite fraction of 90% or more in a region obtained by combining the region Y1 and the region Y2 in the cross section; Obtaining an Al-containing layered wire by forming an Al-containing layer covering at least a part of the wire; Drawing a wire with an Al-containing layer; A process of obtaining an aluminum coated steel wire by annealing the wire rod with Al containing layer subjected to wire drawing; Including The wire drawing strain represented by the above-mentioned formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum clad steel wire is not less than 1.0 mm and not more than 3.5 mm, The annealing temperature in the
- Example 1 to 23 and Comparative Examples 1 to 16 and 18 the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then cooled by blast to obtain lamellae. A wire having a diameter of 10 mm mainly composed of pearlite was obtained.
- Comparative Example 17 the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then immersed in a salt bath at 480 ° C. to obtain a bainite structure as a main component. A wire of 10 mm in diameter was obtained.
- each steel in Table 1 the numerical values shown in the column of each element mean mass% of the corresponding element.
- "-" means that the corresponding element is not contained.
- the balance excluding the element group described in Table 1 is Fe and impurities.
- the underline in Table 1 indicates that it is outside the scope of the present disclosure (the same applies to Table 2 described later).
- the first wire drawing was performed on the obtained wire rod to obtain an unannealed steel wire having a diameter of 3.8 mm or more and 8.8 mm or less.
- Al-containing layer forming step An unannealed steel wire is coated with an Al layer (ie, pure aluminum layer) as an Al-containing layer by extruding the unannealed steel wire obtained above through an Al tube (ie, a pure aluminum tube) did. Thus, an unannealed steel wire with an Al-containing layer was obtained.
- Al layer ie, pure aluminum layer
- An aluminum coated steel wire is subjected to the annealing shown in Table 2 (that is, the annealing temperature, the annealing time, and the cooling method) on the second wire-drawn unalloyed steel wire with Al-containing layer. I got The area ratio of the Al-containing layer to the entire cross section of the obtained aluminum coated steel wire was 23%.
- a steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
- the diameter (mm) of the obtained steel wire was measured, and the obtained result was made the diameter (mm) of the steel wire in the aluminum coated steel wire.
- the wire drawing strain was calculated by the following formula (1) based on the diameter (mm) of the steel wire in the aluminum-coated steel wire and the diameter (i.e. 10 mm) of the wire rod. The results are shown in Table 2.
- Wire drawing strain 2 ⁇ ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm))
- a steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
- the half value width of the (211) plane in the longitudinal section was measured by the method described above using the obtained steel wire and an X-ray diffractometer ("RINT 2200" manufactured by RIGAKU Co., Ltd.). The results are shown in Table 2.
- the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface (D is the diameter of the steel wire)
- D is the diameter of the steel wire
- the area ratio of the pro-eutectoid ferrite structure was 10% or less, and the balance was the lamellar perlite structure.
- a steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. Two tensile test pieces having a length of 200 mm were taken from the obtained steel wire. Each of the two tensile test specimens collected was subjected to a tensile test under a temperature condition of 20 ° C. according to the method according to JIS Z 2241 (2011), and the tensile strength (in detail, the length of the tensile test specimen) Tensile strength in the direction was measured. The average value of the tensile strengths of the two tensile test pieces was taken as the tensile strength of the steel wire in the aluminum clad steel wire. The results are shown in Table 2.
- a steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. From the center of the obtained steel wire, a cylindrical test piece 1.0 mm in diameter ⁇ 60 mm in length was collected. The electrical resistance value in the longitudinal direction of the collected test pieces was measured by a four-terminal method at a temperature of 20 ° C. By multiplying the obtained electrical resistance value by the area of the cross section of the test piece (that is, the cross section orthogonal to the longitudinal direction of the test piece) and dividing the obtained value by the length of the test piece in the longitudinal direction The electrical resistivity ( ⁇ m) in the longitudinal direction of the test piece was calculated.
- a steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. From the obtained steel wire, ten steel wires having a length of 100 times the diameter (hereinafter referred to as "sample") were cut out.
- the ductility of the steel wire in the aluminum clad steel wire was evaluated by performing a torsion test according to JIS Z 3541 (1991) for each of the ten samples. In detail, the sample was twisted at 15 rpm (round per minute) until broken, and a torque (resistance to twist) curve was created. In the torque curve, it was determined that delamination occurred when the torque decreased sharply before the disconnection.
- ductility was judged to be good (in Table 2, ductility "A") in the case where none of the 10 samples had delamination occurred. It was judged that the ductility was insufficient when one or more of the samples in which delamination occurred was present among ten samples (in Table 2, ductility "B”). The results are shown in Table 2.
- the chemical composition of the steel wire is the chemical composition in the present disclosure, and in the region X in the longitudinal cross section of the steel wire, the average aspect ratio of cementite is 10 to 25 and the longitudinal cross section of the steel wire In Examples 1 to 23, in which the half value width of the (211) plane is 0.14 ° or more and less than 0.30 °, the tensile strength and ductility of the steel wire are excellent, and the electrical resistivity of the steel wire is reduced. It was
- the results of each comparative example were as follows.
- Comparative Example 1 in which the C content is too small, the half value width of the (211) plane is less than 0.14 °, and the tensile strength of the steel wire is insufficient. The reason is considered to be that the accumulation of dislocations due to the first wire drawing and the second wire drawing was insufficient due to the C content being too low.
- Comparative Example 2 in which the C content is too large, the electrical resistivity of the steel wire was too high.
- Comparative Example 3 in which the Si content is too large, the electrical resistivity of the steel wire was too high.
- Comparative Example 4 in which the Mn content is too high, the electrical resistivity of the steel wire was too high.
- Comparative Example 5 In Comparative Example 5 in which the Cr content was too high, the average aspect ratio of cementite was over 25 and the electrical resistivity of the steel wire was too high. The reason for this is considered to be that the progress of spheroidization due to annealing was impeded due to the Cr content being too high.
- Comparative Example 6 In Comparative Example 6 in which the Mo content is too high, the electrical resistivity of the steel wire was too high.
- Comparative Example 7 in which the Nb content is too large the electrical resistivity of the steel wire was too high.
- Comparative Example 8 In Comparative Example 8 in which the Ti content is too high, the electrical resistivity of the steel wire was too high.
- Comparative Example 9 In which the V content was too high, the electrical resistivity of the steel wire was too high.
- the tensile strength of the steel wire was insufficient in Comparative Example 10 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
- the reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 10 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, It is considered that the accumulation of dislocations was insufficient.
- Comparative Example 11 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is 0.30 ° or more, the electrical resistivity of the steel wire is too high, although it has the chemical composition in the present disclosure. And the ductility of the steel wire was insufficient.
- the reason why the average aspect ratio of cementite is more than 25 is that the annealing temperature is too low, so the effect of spheroidizing cementite by annealing (ie, the effect of reducing the average aspect ratio) is insufficient. It is thought that there was.
- the reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 11 is considered to be that the effect of recovery of dislocations by annealing is insufficient because the annealing temperature is too low. .
- the tensile strength of the steel wire was insufficient in Comparative Example 12 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
- the reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 12 is that the annealing temperature was too high, so the recovery of dislocations due to annealing became excessive and the dislocation density of the steel wire decreased. It is believed that
- Comparative Example 13 which has the chemical composition in the present disclosure but the half value width of the (211) plane is 0.30 ° or more.
- the reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 13 is considered to be that the effect of recovery of dislocations by annealing was insufficient because the annealing time was too short. .
- the tensile strength of the steel wire was insufficient in Comparative Example 14 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
- the reason why the half width of the (211) plane is less than 0.14 ° in Comparative Example 14 is considered to be that the recovery of dislocation was excessive and the dislocation density of the steel wire was lowered because the annealing time was too long.
- Comparative Example 15 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is less than 0.14 ° while having the chemical composition in the present disclosure, the electrical resistivity of the steel wire is too high. And the tensile strength of the steel wire was insufficient.
- the reason why the average aspect ratio of cementite is more than 25 is that the wire drawing strain by the first wire drawing and the second wire drawing was too small. It is considered that the effect of dividing cementite was insufficient.
- the reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 15 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, so the dislocation was It is considered that the accumulation of
- the tensile strength of the steel wire was insufficient in Comparative Example 16 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
- the reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 16 is that the annealing temperature was too high, so the recovery of dislocations by annealing became excessive and the dislocation density of the steel wire was lowered It is believed that
- Comparative Example 17 having the chemical composition in the present disclosure but having an average aspect ratio of cementite of less than 10, the tensile strength of the steel wire was insufficient.
- work hardening by the first wire drawing and the second wire drawing is due to the average aspect ratio of cementite being less than 10 (that is, the structure of the wire rod is bainite-based structure). It is thought that it is because it ran short.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Provided is an aluminum-clad steel wire which is used as a core material of an aluminum conductor steel-reinforced cable, and comprises a steel wire and an Al-containing layer that covers at least a portion of the steel wire. A chemical composition of the steel wire is, in mass%, C : 0.60 to 1.10%, Si : 0.01 to 0.10%, Mn : 0.10 to 0.30%, and Al : 0.005 to 0.050% with the remainder comprising Fe and impurities. In a longitudinal section of the steel wire, and when D is used for the diameter of the steel wire, an average aspect ratio of a cementite, in the regions within D/10 from the straight lines residing at a distance of D/4 from the central axis of the steel wire, is 10 to 25. A half width of the (211) plane in a longitudinal section of the steel wire, as measured using an x-ray diffraction instrument that uses a Mo tube, is at least 0.14° and less than 0.30°.
Description
本開示は、鋼心アルミニウム撚線の芯材として用いられるアルミ覆鋼線及びその製造方法に関する。
The present disclosure relates to an aluminum clad steel wire used as a core material of a steel core aluminum stranded wire and a method of manufacturing the same.
送電線などに使用される鋼心アルミニウム撚線(aluminum conductor steel-reinforced cable、以下「ACSR」と称する場合がある)は、導電体としてアルミニウム線又はアルミニウム合金線を用いたケーブルである。
従来より、ACSRとしては、亜鉛めっき鋼線からなる単線或いは撚線を芯材として、外側にアルミニウム線又はアルミニウム合金線を撚り合わせた構造を有するACSRが用いられている。
従来より、ACSRの芯材としての亜鉛めっき鋼線について、様々な検討がなされている。
例えば、特許文献1には、送電用ケーブルのAl導線を機械的に補強するために使用される鋼撚線の素線(ACSR鋼線)の製造方法に関し、更に詳しくは、腐食環境で使用される引張強さ240kgf/mm2以上のACSR用高強度Znめっき鋼線の製造方法を提供することを目的とし、C:0.75~1%、Si:0.15~1.3%、Mn:0.3~1%、必要に応じてCr:0.1~1%、V:0.02~0.3%の1種ないし2種を含有する鋼線をAl:2~12%含有するZn浴を用いて溶融めっき後、層減面率20~80%で伸線し、その後、300~370℃でブルーイングする、耐食性に優れたACSR用高強度Znめっき鋼線の製造方法が開示されている。 A steel core aluminum stranded wire (aluminum conductor steel-reinforced cable, hereinafter sometimes referred to as "ACSR") used for a transmission line or the like is a cable using an aluminum wire or an aluminum alloy wire as a conductor.
Heretofore, as the ACSR, an ACSR having a structure in which an aluminum wire or an aluminum alloy wire is twisted on the outside with a single wire or a stranded wire made of a galvanized steel wire as a core material is used.
Conventionally, various studies have been made on galvanized steel wire as a core material of ACSR.
For example, Patent Document 1 relates to a method of manufacturing a stranded steel wire (ACSSR steel wire) used to mechanically reinforce an Al wire of a power transmission cable, and more specifically, in a corrosive environment. C: 0.75 to 1%, Si: 0.15 to 1.3%, Mn for the purpose of providing a manufacturing method of high strength Zn plated steel wire for ACSR with a tensile strength of 240 kgf / mm 2 or more. Al: 2 to 12% containing steel wire containing 0.3 to 1%, optionally Cr: 0.1 to 1%, V: 0.02 to 0.3% of 1 to 2 types Method of producing high strength Zn-plated steel wire for ACSR with excellent corrosion resistance, which is drawn at a layer reduction ratio of 20 to 80% after hot-dip plating using a Zn bath, and then blued at 300 to 370 ° C. It is disclosed.
従来より、ACSRとしては、亜鉛めっき鋼線からなる単線或いは撚線を芯材として、外側にアルミニウム線又はアルミニウム合金線を撚り合わせた構造を有するACSRが用いられている。
従来より、ACSRの芯材としての亜鉛めっき鋼線について、様々な検討がなされている。
例えば、特許文献1には、送電用ケーブルのAl導線を機械的に補強するために使用される鋼撚線の素線(ACSR鋼線)の製造方法に関し、更に詳しくは、腐食環境で使用される引張強さ240kgf/mm2以上のACSR用高強度Znめっき鋼線の製造方法を提供することを目的とし、C:0.75~1%、Si:0.15~1.3%、Mn:0.3~1%、必要に応じてCr:0.1~1%、V:0.02~0.3%の1種ないし2種を含有する鋼線をAl:2~12%含有するZn浴を用いて溶融めっき後、層減面率20~80%で伸線し、その後、300~370℃でブルーイングする、耐食性に優れたACSR用高強度Znめっき鋼線の製造方法が開示されている。 A steel core aluminum stranded wire (aluminum conductor steel-reinforced cable, hereinafter sometimes referred to as "ACSR") used for a transmission line or the like is a cable using an aluminum wire or an aluminum alloy wire as a conductor.
Heretofore, as the ACSR, an ACSR having a structure in which an aluminum wire or an aluminum alloy wire is twisted on the outside with a single wire or a stranded wire made of a galvanized steel wire as a core material is used.
Conventionally, various studies have been made on galvanized steel wire as a core material of ACSR.
For example, Patent Document 1 relates to a method of manufacturing a stranded steel wire (ACSSR steel wire) used to mechanically reinforce an Al wire of a power transmission cable, and more specifically, in a corrosive environment. C: 0.75 to 1%, Si: 0.15 to 1.3%, Mn for the purpose of providing a manufacturing method of high strength Zn plated steel wire for ACSR with a tensile strength of 240 kgf / mm 2 or more. Al: 2 to 12% containing steel wire containing 0.3 to 1%, optionally Cr: 0.1 to 1%, V: 0.02 to 0.3% of 1 to 2 types Method of producing high strength Zn-plated steel wire for ACSR with excellent corrosion resistance, which is drawn at a layer reduction ratio of 20 to 80% after hot-dip plating using a Zn bath, and then blued at 300 to 370 ° C. It is disclosed.
一方、鋼材に関し、電気伝導性の向上が求められる場合がある。
例えば、特許文献2には、寸法精度の良好な冷間鍛造が行えるとともに、優れた電気伝導性を確保することのできる電気部品用鋼材として、質量%で、C:0.02%以下(0%を含む)、Si:0.1%以下(0%を含まない)、Mn:0.1~0.5%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)、Al:0.01%以下(0%を含む)、N:0.005%以下(0%を含む)、O:0.02%以下(0%を含む)を満たし、金属組織がフェライト単相組織である、冷間鍛造性及び電気伝導性に優れた電気部品用鋼材が開示されている。 On the other hand, regarding steel materials, improvement in electrical conductivity may be required.
For example, Patent Document 2 can perform cold forging with good dimensional accuracy, and as a steel material for electrical parts that can ensure excellent electrical conductivity, C: 0.02% or less (0% or less) %, Si: 0.1% or less (not 0%), Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02 % Or less (including 0%), Al: 0.01% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%) And a steel material for electrical parts excellent in cold forgeability and electrical conductivity, in which the metal structure is a ferrite single phase structure.
例えば、特許文献2には、寸法精度の良好な冷間鍛造が行えるとともに、優れた電気伝導性を確保することのできる電気部品用鋼材として、質量%で、C:0.02%以下(0%を含む)、Si:0.1%以下(0%を含まない)、Mn:0.1~0.5%、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)、Al:0.01%以下(0%を含む)、N:0.005%以下(0%を含む)、O:0.02%以下(0%を含む)を満たし、金属組織がフェライト単相組織である、冷間鍛造性及び電気伝導性に優れた電気部品用鋼材が開示されている。 On the other hand, regarding steel materials, improvement in electrical conductivity may be required.
For example, Patent Document 2 can perform cold forging with good dimensional accuracy, and as a steel material for electrical parts that can ensure excellent electrical conductivity, C: 0.02% or less (0% or less) %, Si: 0.1% or less (not 0%), Mn: 0.1 to 0.5%, P: 0.02% or less (including 0%), S: 0.02 % Or less (including 0%), Al: 0.01% or less (including 0%), N: 0.005% or less (including 0%), O: 0.02% or less (including 0%) And a steel material for electrical parts excellent in cold forgeability and electrical conductivity, in which the metal structure is a ferrite single phase structure.
特許文献1:特開平4-236742号公報
特許文献2:特開2003-226938号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 4-236742 Patent Document 2: Japanese Patent Application Laid-Open No. 2003-226938
特許文献2:特開2003-226938号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 4-236742 Patent Document 2: Japanese Patent Application Laid-Open No. 2003-226938
ところで、亜鉛めっき鋼線(例えば、特許文献1に記載のZnめっき鋼線)を芯材として用いたACSRでは、雨水などを電解液として、電極電位の異なる亜鉛とアルミニウムとの接触部分で亜鉛が腐食する場合があり、さらに、暴露した鉄とアルミニウムとが接触してアルミニウムが腐食する場合がある。これらの傾向は、ACSRを、海岸地帯等の湿度の高い地域で使用した場合において特に顕著である。
そこで、ACSRの芯材として、亜鉛めっき鋼線に代えて、鋼線と、この鋼線の少なくとも一部を被覆するAl含有層と、を備えるアルミ覆鋼線(aluminum-clad steel wire;以下、「AC線」と称する場合がある)が用いられる場合がある。 By the way, in ACSR using zinc-plated steel wire (for example, Zn-plated steel wire described in Patent Document 1) as core material, zinc is used in the contact portion between aluminum and zinc with different electrode potentials by using rainwater etc. as electrolyte. It may corrode, and furthermore, aluminum may corrode due to the contact between the exposed iron and the aluminum. These tendencies are particularly noticeable when ACSR is used in high humidity areas such as coastal areas.
Therefore, instead of galvanized steel wire as an ACSR core material, an aluminum-clad steel wire (aluminum-clad steel wire) comprising a steel wire and an Al-containing layer covering at least a part of the steel wire. Sometimes referred to as "AC line" may be used.
そこで、ACSRの芯材として、亜鉛めっき鋼線に代えて、鋼線と、この鋼線の少なくとも一部を被覆するAl含有層と、を備えるアルミ覆鋼線(aluminum-clad steel wire;以下、「AC線」と称する場合がある)が用いられる場合がある。 By the way, in ACSR using zinc-plated steel wire (for example, Zn-plated steel wire described in Patent Document 1) as core material, zinc is used in the contact portion between aluminum and zinc with different electrode potentials by using rainwater etc. as electrolyte. It may corrode, and furthermore, aluminum may corrode due to the contact between the exposed iron and the aluminum. These tendencies are particularly noticeable when ACSR is used in high humidity areas such as coastal areas.
Therefore, instead of galvanized steel wire as an ACSR core material, an aluminum-clad steel wire (aluminum-clad steel wire) comprising a steel wire and an Al-containing layer covering at least a part of the steel wire. Sometimes referred to as "AC line" may be used.
AC線を芯材として用いたACSRにおいて、電流は、芯材の外側に撚り合わせられたアルミニウム線の部分だけでなく、芯材としてのAC線の部分にも流れる。よって、AC線の電気抵抗が大きい場合には、ACSR全体の電気抵抗も大きくなり、送電効率が低下するおそれがある。
また、AC線を芯材とするACSRにおいて、AC線の引張強さが低い場合には、AC線中に占める鋼線の割合を増やしてAC線の引張強さを向上させることが考えられる。しかし、AC線中に占める鋼線の割合を増やした場合には、AC線の電気抵抗、ひいてはACSRの電気抵抗が大きくなるおそれがある。 In ACSR using an AC wire as a core, current flows not only to the portion of the aluminum wire twisted around the outside of the core but also to the portion of the AC wire as the core. Therefore, when the electrical resistance of the AC line is large, the electrical resistance of the entire ACSR is also increased, and the power transmission efficiency may be reduced.
In the case of low tensile strength of AC wire in ACSR having AC wire as a core material, it is conceivable to improve the tensile strength of AC wire by increasing the proportion of steel wire in AC wire. However, when the proportion of steel wire in the AC wire is increased, the electrical resistance of the AC wire and thus the electrical resistance of the ACSR may increase.
また、AC線を芯材とするACSRにおいて、AC線の引張強さが低い場合には、AC線中に占める鋼線の割合を増やしてAC線の引張強さを向上させることが考えられる。しかし、AC線中に占める鋼線の割合を増やした場合には、AC線の電気抵抗、ひいてはACSRの電気抵抗が大きくなるおそれがある。 In ACSR using an AC wire as a core, current flows not only to the portion of the aluminum wire twisted around the outside of the core but also to the portion of the AC wire as the core. Therefore, when the electrical resistance of the AC line is large, the electrical resistance of the entire ACSR is also increased, and the power transmission efficiency may be reduced.
In the case of low tensile strength of AC wire in ACSR having AC wire as a core material, it is conceivable to improve the tensile strength of AC wire by increasing the proportion of steel wire in AC wire. However, when the proportion of steel wire in the AC wire is increased, the electrical resistance of the AC wire and thus the electrical resistance of the ACSR may increase.
以上の理由により、AC線中の鋼線に対し、引張強さを向上させ、かつ、電気抵抗率を低減させることが求められる。
この点に関し、特許文献1に記載のZnめっき鋼線では、強度及び耐食性を向上させるために、Si含有量が0.15%以上、Mn含有量が0.3%以上となっている。このため、特許文献1に記載のZnめっき鋼線における鋼線を、AC線中の鋼線として用いた場合には、電気抵抗率が過度に大きくなる場合がある。
一方、特許文献2に記載の鋼材では、冷間鍛造性を向上させるために、C含有量が0.02%以下となっている。このため、特許文献2に記載の鋼材を、AC線中の鋼線として用いた場合には、引張強さが不十分となる場合がある。 From the above reasons, it is required to improve the tensile strength and reduce the electrical resistivity of the steel wire in the AC wire.
In this regard, in the Zn-plated steel wire described in Patent Document 1, in order to improve the strength and corrosion resistance, the Si content is 0.15% or more and the Mn content is 0.3% or more. For this reason, when the steel wire in the Zn plated steel wire described in Patent Document 1 is used as a steel wire in an AC wire, the electrical resistivity may be excessively large.
On the other hand, in the steel material of patent document 2, in order to improve cold forgeability, C content is 0.02% or less. For this reason, when the steel material of patent document 2 is used as a steel wire in AC wire, tensile strength may become inadequate.
この点に関し、特許文献1に記載のZnめっき鋼線では、強度及び耐食性を向上させるために、Si含有量が0.15%以上、Mn含有量が0.3%以上となっている。このため、特許文献1に記載のZnめっき鋼線における鋼線を、AC線中の鋼線として用いた場合には、電気抵抗率が過度に大きくなる場合がある。
一方、特許文献2に記載の鋼材では、冷間鍛造性を向上させるために、C含有量が0.02%以下となっている。このため、特許文献2に記載の鋼材を、AC線中の鋼線として用いた場合には、引張強さが不十分となる場合がある。 From the above reasons, it is required to improve the tensile strength and reduce the electrical resistivity of the steel wire in the AC wire.
In this regard, in the Zn-plated steel wire described in Patent Document 1, in order to improve the strength and corrosion resistance, the Si content is 0.15% or more and the Mn content is 0.3% or more. For this reason, when the steel wire in the Zn plated steel wire described in Patent Document 1 is used as a steel wire in an AC wire, the electrical resistivity may be excessively large.
On the other hand, in the steel material of patent document 2, in order to improve cold forgeability, C content is 0.02% or less. For this reason, when the steel material of patent document 2 is used as a steel wire in AC wire, tensile strength may become inadequate.
一方、AC線中の鋼線のデラミネーションを抑制する観点から、AC線中の鋼線に対し、延性が求められる。
On the other hand, ductility is required for the steel wire in the AC wire from the viewpoint of suppressing the delamination of the steel wire in the AC wire.
従って、本開示の課題は、引張強さ及び延性に優れ、かつ、電気抵抗率が低減された鋼線を備えるアルミ覆鋼線、並びに、上記アルミ覆鋼線の製造に好適な製造方法を提供することである。
Therefore, an object of the present disclosure is to provide an aluminum coated steel wire provided with a steel wire excellent in tensile strength and ductility and having a reduced electrical resistivity, and a manufacturing method suitable for manufacturing the above-mentioned aluminum coated steel wire. It is to be.
上記課題を解決するための手段には、以下の態様が含まれる。
<1> 鋼心アルミニウム撚線の芯材として用いられ、
鋼線と、前記鋼線の少なくとも一部を被覆するAl含有層と、を備え、
前記鋼線の化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
前記鋼線の縦断面において、前記鋼線の直径をDとした場合に、前記鋼線の中心軸からの距離がD/4である直線からD/10以内の領域におけるセメンタイトの平均アスペクト比が10以上25以下であり、
前記鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満であるアルミ覆鋼線。
<2> 前記鋼線が、質量%で、
Cr:0%超1.00%以下及びMo:0%超0.20%以下の少なくとも1種を含有する<1>に記載のアルミ覆鋼線。
<3> 前記鋼線が、質量%で、
V:0%超0.15%以下、Ti:0%超0.050%以下、及びNb:0%超0.050%以下の少なくとも1種を含有する<1>又は<2>に記載のアルミ覆鋼線。
<4> 前記鋼線が、質量%で、
B:0%超0.0030%以下を含有する<1>~<3>のいずれか1つに記載のアルミ覆鋼線。
<5> 前記鋼線の引張強さが、1900MPa以上である<1>~<4>のいずれか1つに記載のアルミ覆鋼線。
<6> <1>~<5>のいずれか1つに記載のアルミ覆鋼線を製造する方法であって、
化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
横断面において、線材の直径をdとした場合に、中心からd/7以内の領域と外周面からd/7以内の領域とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程と、
前記線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程と、
前記未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程と、
前記Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程と、
前記第2の伸線加工が施された前記Al含有層付き未焼鈍鋼線に焼鈍を施すことにより、前記アルミ覆鋼線を得る工程と、
を含み、
下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、前記アルミ覆鋼線中の前記鋼線の直径が1.0mm以上3.5mm以下であり、
前記焼鈍における焼鈍温度が370℃超520℃以下であり、前記焼鈍における焼鈍時間が10秒間以上180秒間以下である
アルミ覆鋼線の製造方法。
伸線加工ひずみ=2×ln(前記線材の直径(mm)/前記アルミ覆鋼線中の前記鋼線の直径(mm)) … 式(1) Means for solving the above problems include the following aspects.
<1> Used as core material of steel core aluminum stranded wire,
A steel wire, and an Al-containing layer covering at least a part of the steel wire,
The chemical composition of the steel wire is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities,
In the longitudinal section of the steel wire, when the diameter of the steel wire is D, the average aspect ratio of cementite in a region within D / 10 from the straight line where the distance from the central axis of the steel wire is D / 4 is 10 or more and 25 or less,
The aluminum coated steel wire whose half value width of (211) plane measured using the X-ray-diffraction apparatus which used Mo tube in the longitudinal cross-section of the said steel wire is 0.14 degrees or more and less than 0.30 degrees.
<2> The steel wire is, by mass%,
The aluminum-coated steel wire according to <1>, containing at least one of Cr: 0% and 1.00% or less and Mo: 0% and 0.20% or less.
<3> The steel wire is, by mass%,
It is described in <1> or <2> containing at least one of V: more than 0% and 0.15% or less, Ti: more than 0% and 0.050% or less, and Nb: more than 0% and 0.050% or less Aluminum coated steel wire.
<4> The steel wire is, by mass%,
B: The aluminum-coated steel wire according to any one of <1> to <3>, containing 0% or more and 0.0030% or less.
<5> The aluminum-coated steel wire according to any one of <1> to <4>, wherein the tensile strength of the steel wire is 1900 MPa or more.
<6> A method of manufacturing the aluminum-coated steel wire according to any one of <1> to <5>,
The chemical composition is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities,
In the cross section, when the diameter of the wire is d, prepare a wire having a pearlite fraction of 90% or more in the region combining the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface The process to
Obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process;
Obtaining an unannealed steel wire with an Al-containing layer by forming an Al-containing layer covering at least a part of the unannealed steel wire;
Performing a second wire drawing process on the unannealed steel wire with the Al-containing layer;
Obtaining the aluminum-coated steel wire by annealing the non-annealed steel wire with the Al-containing layer subjected to the second wire drawing;
Including
The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm,
The manufacturing method of the aluminum coated steel wire whose annealing temperature in the said annealing is 370 degreeC-520 degrees C or less, and the annealing time in the said annealing is 10 to 180 second.
Wire drawing strain = 2 × ln (diameter of the wire (mm) / diameter of the steel wire in the aluminum-coated steel wire (mm)) Formula (1)
<1> 鋼心アルミニウム撚線の芯材として用いられ、
鋼線と、前記鋼線の少なくとも一部を被覆するAl含有層と、を備え、
前記鋼線の化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
前記鋼線の縦断面において、前記鋼線の直径をDとした場合に、前記鋼線の中心軸からの距離がD/4である直線からD/10以内の領域におけるセメンタイトの平均アスペクト比が10以上25以下であり、
前記鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満であるアルミ覆鋼線。
<2> 前記鋼線が、質量%で、
Cr:0%超1.00%以下及びMo:0%超0.20%以下の少なくとも1種を含有する<1>に記載のアルミ覆鋼線。
<3> 前記鋼線が、質量%で、
V:0%超0.15%以下、Ti:0%超0.050%以下、及びNb:0%超0.050%以下の少なくとも1種を含有する<1>又は<2>に記載のアルミ覆鋼線。
<4> 前記鋼線が、質量%で、
B:0%超0.0030%以下を含有する<1>~<3>のいずれか1つに記載のアルミ覆鋼線。
<5> 前記鋼線の引張強さが、1900MPa以上である<1>~<4>のいずれか1つに記載のアルミ覆鋼線。
<6> <1>~<5>のいずれか1つに記載のアルミ覆鋼線を製造する方法であって、
化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
横断面において、線材の直径をdとした場合に、中心からd/7以内の領域と外周面からd/7以内の領域とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程と、
前記線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程と、
前記未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程と、
前記Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程と、
前記第2の伸線加工が施された前記Al含有層付き未焼鈍鋼線に焼鈍を施すことにより、前記アルミ覆鋼線を得る工程と、
を含み、
下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、前記アルミ覆鋼線中の前記鋼線の直径が1.0mm以上3.5mm以下であり、
前記焼鈍における焼鈍温度が370℃超520℃以下であり、前記焼鈍における焼鈍時間が10秒間以上180秒間以下である
アルミ覆鋼線の製造方法。
伸線加工ひずみ=2×ln(前記線材の直径(mm)/前記アルミ覆鋼線中の前記鋼線の直径(mm)) … 式(1) Means for solving the above problems include the following aspects.
<1> Used as core material of steel core aluminum stranded wire,
A steel wire, and an Al-containing layer covering at least a part of the steel wire,
The chemical composition of the steel wire is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities,
In the longitudinal section of the steel wire, when the diameter of the steel wire is D, the average aspect ratio of cementite in a region within D / 10 from the straight line where the distance from the central axis of the steel wire is D / 4 is 10 or more and 25 or less,
The aluminum coated steel wire whose half value width of (211) plane measured using the X-ray-diffraction apparatus which used Mo tube in the longitudinal cross-section of the said steel wire is 0.14 degrees or more and less than 0.30 degrees.
<2> The steel wire is, by mass%,
The aluminum-coated steel wire according to <1>, containing at least one of Cr: 0% and 1.00% or less and Mo: 0% and 0.20% or less.
<3> The steel wire is, by mass%,
It is described in <1> or <2> containing at least one of V: more than 0% and 0.15% or less, Ti: more than 0% and 0.050% or less, and Nb: more than 0% and 0.050% or less Aluminum coated steel wire.
<4> The steel wire is, by mass%,
B: The aluminum-coated steel wire according to any one of <1> to <3>, containing 0% or more and 0.0030% or less.
<5> The aluminum-coated steel wire according to any one of <1> to <4>, wherein the tensile strength of the steel wire is 1900 MPa or more.
<6> A method of manufacturing the aluminum-coated steel wire according to any one of <1> to <5>,
The chemical composition is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities,
In the cross section, when the diameter of the wire is d, prepare a wire having a pearlite fraction of 90% or more in the region combining the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface The process to
Obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process;
Obtaining an unannealed steel wire with an Al-containing layer by forming an Al-containing layer covering at least a part of the unannealed steel wire;
Performing a second wire drawing process on the unannealed steel wire with the Al-containing layer;
Obtaining the aluminum-coated steel wire by annealing the non-annealed steel wire with the Al-containing layer subjected to the second wire drawing;
Including
The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm,
The manufacturing method of the aluminum coated steel wire whose annealing temperature in the said annealing is 370 degreeC-520 degrees C or less, and the annealing time in the said annealing is 10 to 180 second.
Wire drawing strain = 2 × ln (diameter of the wire (mm) / diameter of the steel wire in the aluminum-coated steel wire (mm)) Formula (1)
本開示によれば、引張強さ及び延性に優れ、かつ、電気抵抗率が低減された鋼線を備えるアルミ覆鋼線、並びに、上記アルミ覆鋼線の製造に好適な製造方法が提供される。
According to the present disclosure, an aluminum-coated steel wire provided with a steel wire excellent in tensile strength and ductility and having a reduced electrical resistivity, and a manufacturing method suitable for manufacturing the above-mentioned aluminum-coated steel wire are provided. .
本明細書中、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書中、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本明細書中、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本明細書中、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。 In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
In the present specification, “%” indicating the content of the component (element) means “mass%”.
In the present specification, the content of C (carbon) may be referred to as "C content". The contents of other elements may be similarly described.
In the present specification, the term "step" is not limited to an independent step but may be included in the term if the intended purpose of the step is achieved even if it can not be clearly distinguished from other steps. Be
In the numerical range described step by step in the present specification, the upper limit or the lower limit of a certain stepwise numerical range may be replaced with the upper limit or the lower limit of the numerical range described in another stepwise. Also, they may be replaced with the values shown in the embodiments.
本明細書中、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本明細書中、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本明細書中、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。 In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
In the present specification, “%” indicating the content of the component (element) means “mass%”.
In the present specification, the content of C (carbon) may be referred to as "C content". The contents of other elements may be similarly described.
In the present specification, the term "step" is not limited to an independent step but may be included in the term if the intended purpose of the step is achieved even if it can not be clearly distinguished from other steps. Be
In the numerical range described step by step in the present specification, the upper limit or the lower limit of a certain stepwise numerical range may be replaced with the upper limit or the lower limit of the numerical range described in another stepwise. Also, they may be replaced with the values shown in the embodiments.
〔アルミ覆鋼線〕
本開示のアルミ覆鋼線は、鋼心アルミニウム撚線の芯材として用いられ、鋼線と、鋼線の少なくとも一部を被覆するAl含有層と、を備え、鋼線の化学組成が、質量%で、C:0.60~1.10%、Si:0.01~0.10%、Mn:0.10~0.30%、Al:0.005~0.050%、N:0~0.0070%、P:0~0.030%、S:0~0.030%、Cr:0~1.00%、Mo:0~0.20%、V:0~0.15%、Ti:0~0.050%、Nb:0~0.050%、B:0~0.0030%、並びに、残部:Fe及び不純物からなり、鋼線の縦断面において、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域(以下、「領域X」ともいう)におけるセメンタイトの平均アスペクト比が10以上25以下であり、鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満である。 [Aluminum coated steel wire]
The aluminum clad steel wire of the present disclosure is used as a core material of a steel core aluminum stranded wire, and comprises a steel wire and an Al-containing layer covering at least a part of the steel wire, and the chemical composition of the steel wire is a mass %, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0.005 to 0.050%, N: 0 0.00 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.20%, V: 0 to 0.15% , Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the rest: Fe and impurities, and the diameter of the steel wire in the longitudinal cross section of the steel wire A cementer in a region within D / 10 (hereinafter also referred to as “region X”) from a straight line in which the distance from the central axis of the steel wire is D / 4, where D is And the half value width of the (211) plane measured with an X-ray diffractometer using a Mo tube in the longitudinal section of the steel wire is 0.14 ° or more and 0. Less than 30 °.
本開示のアルミ覆鋼線は、鋼心アルミニウム撚線の芯材として用いられ、鋼線と、鋼線の少なくとも一部を被覆するAl含有層と、を備え、鋼線の化学組成が、質量%で、C:0.60~1.10%、Si:0.01~0.10%、Mn:0.10~0.30%、Al:0.005~0.050%、N:0~0.0070%、P:0~0.030%、S:0~0.030%、Cr:0~1.00%、Mo:0~0.20%、V:0~0.15%、Ti:0~0.050%、Nb:0~0.050%、B:0~0.0030%、並びに、残部:Fe及び不純物からなり、鋼線の縦断面において、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域(以下、「領域X」ともいう)におけるセメンタイトの平均アスペクト比が10以上25以下であり、鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満である。 [Aluminum coated steel wire]
The aluminum clad steel wire of the present disclosure is used as a core material of a steel core aluminum stranded wire, and comprises a steel wire and an Al-containing layer covering at least a part of the steel wire, and the chemical composition of the steel wire is a mass %, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0.005 to 0.050%, N: 0 0.00 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.20%, V: 0 to 0.15% , Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the rest: Fe and impurities, and the diameter of the steel wire in the longitudinal cross section of the steel wire A cementer in a region within D / 10 (hereinafter also referred to as “region X”) from a straight line in which the distance from the central axis of the steel wire is D / 4, where D is And the half value width of the (211) plane measured with an X-ray diffractometer using a Mo tube in the longitudinal section of the steel wire is 0.14 ° or more and 0. Less than 30 °.
本開示のアルミ覆鋼線中の鋼線は、引張強さ及び延性に優れ、電気抵抗率が低減されている。
本明細書において、鋼線の電気抵抗率は、室温(例えば20℃)における、鋼線の長手方向の電気抵抗率を意味する。
本明細書において、鋼線の引張強さは、室温(例えば20℃)における、鋼線の長手方向の引張強さを意味する。 The steel wire in the aluminum clad steel wire of the present disclosure is excellent in tensile strength and ductility, and has a reduced electrical resistivity.
In the present specification, the electrical resistivity of a steel wire means the electrical resistivity in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
In the present specification, the tensile strength of a steel wire means the tensile strength in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
本明細書において、鋼線の電気抵抗率は、室温(例えば20℃)における、鋼線の長手方向の電気抵抗率を意味する。
本明細書において、鋼線の引張強さは、室温(例えば20℃)における、鋼線の長手方向の引張強さを意味する。 The steel wire in the aluminum clad steel wire of the present disclosure is excellent in tensile strength and ductility, and has a reduced electrical resistivity.
In the present specification, the electrical resistivity of a steel wire means the electrical resistivity in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
In the present specification, the tensile strength of a steel wire means the tensile strength in the longitudinal direction of the steel wire at room temperature (for example, 20 ° C.).
本開示のアルミ覆鋼線中の鋼線の前述した効果(即ち、引張強さ及び延性の向上、並びに、電気抵抗率の低減)は、上記化学組成と、上記縦断面中の領域Xにおけるセメンタイトの平均アスペクト比及び上記縦断面における(211)面の半価幅と、の組み合わせによって達成される。
例えば、本開示における鋼線(即ち、本開示のアルミ覆鋼線中の鋼線。以下同じ。)の化学組成では、Si、Mn、Cr等の含有量が、各元素の含有量の上限値以下に低減され、かつ、鋼線の縦断面中の領域Xにおいて、セメンタイトの平均アスペクト比が25以下に限定されている。これらの構成により、鋼線の電気抵抗率が低減される。
しかし、Si、Mn、Cr等の含有量を低減した場合、鋼線の引張強さの低下が懸念される。
この点に関し、本開示における鋼線では、鋼線中の転位密度と正の相関を有する上記(211)面の半価幅が0.14°以上であること、C含有量が0.60%以上であること、上記セメンタイトの平均アスペクト比が10以上であること、等により、鋼線の優れた引張強さが確保されている。 The aforementioned effects of the steel wire in the aluminum clad steel wire of the present disclosure (i.e., improvement in tensile strength and ductility, and reduction in electrical resistivity) can be achieved by the above chemical composition and cementite in the region X in the longitudinal section. And the half value width of the (211) plane in the longitudinal section.
For example, in the chemical composition of the steel wire in the present disclosure (that is, the steel wire in the aluminum-coated steel wire of the present disclosure; the same applies hereinafter), the content of Si, Mn, Cr, etc. is the upper limit value of the content of each element The average aspect ratio of cementite is limited to 25 or less in the region X which is reduced below and in the longitudinal section of the steel wire. These configurations reduce the electrical resistivity of the steel wire.
However, when the content of Si, Mn, Cr, etc. is reduced, there is a concern that the tensile strength of the steel wire may be reduced.
In this regard, in the steel wire in the present disclosure, the half value width of the (211) plane having a positive correlation with the dislocation density in the steel wire is 0.14 ° or more, and the C content is 0.60% The above-mentioned, the average aspect ratio of cementite being 10 or more, and the like ensure the excellent tensile strength of the steel wire.
例えば、本開示における鋼線(即ち、本開示のアルミ覆鋼線中の鋼線。以下同じ。)の化学組成では、Si、Mn、Cr等の含有量が、各元素の含有量の上限値以下に低減され、かつ、鋼線の縦断面中の領域Xにおいて、セメンタイトの平均アスペクト比が25以下に限定されている。これらの構成により、鋼線の電気抵抗率が低減される。
しかし、Si、Mn、Cr等の含有量を低減した場合、鋼線の引張強さの低下が懸念される。
この点に関し、本開示における鋼線では、鋼線中の転位密度と正の相関を有する上記(211)面の半価幅が0.14°以上であること、C含有量が0.60%以上であること、上記セメンタイトの平均アスペクト比が10以上であること、等により、鋼線の優れた引張強さが確保されている。 The aforementioned effects of the steel wire in the aluminum clad steel wire of the present disclosure (i.e., improvement in tensile strength and ductility, and reduction in electrical resistivity) can be achieved by the above chemical composition and cementite in the region X in the longitudinal section. And the half value width of the (211) plane in the longitudinal section.
For example, in the chemical composition of the steel wire in the present disclosure (that is, the steel wire in the aluminum-coated steel wire of the present disclosure; the same applies hereinafter), the content of Si, Mn, Cr, etc. is the upper limit value of the content of each element The average aspect ratio of cementite is limited to 25 or less in the region X which is reduced below and in the longitudinal section of the steel wire. These configurations reduce the electrical resistivity of the steel wire.
However, when the content of Si, Mn, Cr, etc. is reduced, there is a concern that the tensile strength of the steel wire may be reduced.
In this regard, in the steel wire in the present disclosure, the half value width of the (211) plane having a positive correlation with the dislocation density in the steel wire is 0.14 ° or more, and the C content is 0.60% The above-mentioned, the average aspect ratio of cementite being 10 or more, and the like ensure the excellent tensile strength of the steel wire.
一方、鋼線中の転位密度が高すぎた場合、鋼線の延性の低下が懸念される。
この点に関し、本開示における鋼線では、上記(211)面の半価幅が0.30°未満であることにより、鋼線中の転位密度がある程度低減され、その結果、鋼線の優れた延性が確保されている。 On the other hand, if the dislocation density in the steel wire is too high, the ductility of the steel wire may be reduced.
In this regard, in the steel wire in the present disclosure, when the half width of the (211) plane is less than 0.30 °, the dislocation density in the steel wire is reduced to some extent, and as a result, the steel wire is excellent Ductility is secured.
この点に関し、本開示における鋼線では、上記(211)面の半価幅が0.30°未満であることにより、鋼線中の転位密度がある程度低減され、その結果、鋼線の優れた延性が確保されている。 On the other hand, if the dislocation density in the steel wire is too high, the ductility of the steel wire may be reduced.
In this regard, in the steel wire in the present disclosure, when the half width of the (211) plane is less than 0.30 °, the dislocation density in the steel wire is reduced to some extent, and as a result, the steel wire is excellent Ductility is secured.
<鋼線の化学組成>
以下、本開示における鋼線の化学組成について説明する。
本開示における鋼線の化学組成は、質量%で、C:0.60~1.10%、Si:0.01~0.10%、Mn:0.10~0.30%、Al:0.005~0.050%、N:0~0.0070%、P:0~0.030%、S:0~0.030%、Cr:0~1.00%、Mo:0~0.20%、V:0~0.15%、Ti:0~0.050%、Nb:0~0.050%、B:0~0.0030%、並びに、残部:Fe及び不純物からなる。 <Chemical composition of steel wire>
Hereinafter, the chemical composition of the steel wire in the present disclosure will be described.
The chemical composition of the steel wire in the present disclosure is, in mass%, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0 .005 to 0.050%, N: 0 to 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.. 20%, V: 0 to 0.15%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the balance: Fe and impurities.
以下、本開示における鋼線の化学組成について説明する。
本開示における鋼線の化学組成は、質量%で、C:0.60~1.10%、Si:0.01~0.10%、Mn:0.10~0.30%、Al:0.005~0.050%、N:0~0.0070%、P:0~0.030%、S:0~0.030%、Cr:0~1.00%、Mo:0~0.20%、V:0~0.15%、Ti:0~0.050%、Nb:0~0.050%、B:0~0.0030%、並びに、残部:Fe及び不純物からなる。 <Chemical composition of steel wire>
Hereinafter, the chemical composition of the steel wire in the present disclosure will be described.
The chemical composition of the steel wire in the present disclosure is, in mass%, C: 0.60 to 1.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 0.30%, Al: 0 .005 to 0.050%, N: 0 to 0.0070%, P: 0 to 0.030%, S: 0 to 0.030%, Cr: 0 to 1.00%, Mo: 0 to 0.. 20%, V: 0 to 0.15%, Ti: 0 to 0.050%, Nb: 0 to 0.050%, B: 0 to 0.0030%, and the balance: Fe and impurities.
本開示における鋼線の原料(例えば、後述する溶製された鋼、インゴット、線材、等)の化学組成も、本開示における鋼線の化学組成と同様である。溶製された鋼から、インゴット及び線材を経て鋼線に至るまでの製造過程は、化学組成に影響を与えないためである。
以下、本開示における鋼線の化学組成を、「本開示における化学組成」ということがある。
以下、本開示における化学組成における各元素の含有量について説明する。 The chemical composition of the steel wire raw material (for example, melted steel, ingot, wire rod, etc. described later) in the present disclosure is also similar to the chemical composition of the steel wire in the present disclosure. The manufacturing process from molten steel, through ingots and wires to steel wires does not affect the chemical composition.
Hereinafter, the chemical composition of the steel wire in the present disclosure may be referred to as "the chemical composition in the present disclosure".
Hereinafter, the content of each element in the chemical composition in the present disclosure will be described.
以下、本開示における鋼線の化学組成を、「本開示における化学組成」ということがある。
以下、本開示における化学組成における各元素の含有量について説明する。 The chemical composition of the steel wire raw material (for example, melted steel, ingot, wire rod, etc. described later) in the present disclosure is also similar to the chemical composition of the steel wire in the present disclosure. The manufacturing process from molten steel, through ingots and wires to steel wires does not affect the chemical composition.
Hereinafter, the chemical composition of the steel wire in the present disclosure may be referred to as "the chemical composition in the present disclosure".
Hereinafter, the content of each element in the chemical composition in the present disclosure will be described.
C:0.60~1.10%
Cは、鋼線の引張強さを高めるために有効な元素である。C含有量が0.60%未満であると、鋼線の引張強さが不足する場合がある。このため、C含有量は0.60%以上である。C含有量は、好ましくは0.70%以上である。 C: 0.60 to 1.10%
C is an element effective to increase the tensile strength of the steel wire. If the C content is less than 0.60%, the tensile strength of the steel wire may be insufficient. For this reason, the C content is 0.60% or more. The C content is preferably 0.70% or more.
Cは、鋼線の引張強さを高めるために有効な元素である。C含有量が0.60%未満であると、鋼線の引張強さが不足する場合がある。このため、C含有量は0.60%以上である。C含有量は、好ましくは0.70%以上である。 C: 0.60 to 1.10%
C is an element effective to increase the tensile strength of the steel wire. If the C content is less than 0.60%, the tensile strength of the steel wire may be insufficient. For this reason, the C content is 0.60% or more. The C content is preferably 0.70% or more.
一方、C含有量が1.10%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。この理由は、C含有量が1.10%を超えると、初析セメンタイト(旧オ-ステナイト粒界に沿って析出するセメンタイト)の生成を抑制することが工業的に困難となるためと考えられる。従って、C含有量は、1.10%以下である。C含有量は、好ましくは1.05%以下であり、より好ましくは1.00%以下である。
On the other hand, when the C content exceeds 1.10%, the electrical resistivity of the steel wire may become excessively large. This reason is considered to be industrially difficult to suppress the formation of proeutectoid cementite (cementite precipitated along old austenite grain boundaries) when the C content exceeds 1.10%. . Therefore, the C content is 1.10% or less. The C content is preferably 1.05% or less, more preferably 1.00% or less.
Si:0.01~0.10%
Siは、固溶強化によって鋼線の引張強さを高めるのに有効な元素であり、また脱酸剤としても必要な元素である。しかしながら、Si含有量が0.01%未満では、これらのSiの添加効果が十分でない場合がある。このため、Si含有量は、0.01%以上である。これらのSiの添加効果をより安定して享受する観点からは、Si含有量は、好ましくは0.05%以上である。 Si: 0.01 to 0.10%
Si is an element effective for enhancing the tensile strength of a steel wire by solid solution strengthening, and is also an element necessary as a deoxidizer. However, if the Si content is less than 0.01%, the effect of adding these Si may not be sufficient. For this reason, the Si content is 0.01% or more. The Si content is preferably 0.05% or more from the viewpoint of achieving the effects of the addition of Si more stably.
Siは、固溶強化によって鋼線の引張強さを高めるのに有効な元素であり、また脱酸剤としても必要な元素である。しかしながら、Si含有量が0.01%未満では、これらのSiの添加効果が十分でない場合がある。このため、Si含有量は、0.01%以上である。これらのSiの添加効果をより安定して享受する観点からは、Si含有量は、好ましくは0.05%以上である。 Si: 0.01 to 0.10%
Si is an element effective for enhancing the tensile strength of a steel wire by solid solution strengthening, and is also an element necessary as a deoxidizer. However, if the Si content is less than 0.01%, the effect of adding these Si may not be sufficient. For this reason, the Si content is 0.01% or more. The Si content is preferably 0.05% or more from the viewpoint of achieving the effects of the addition of Si more stably.
一方、Siは鋼線の電気抵抗を増大させる元素である。Si含有量が0.10%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。従って、Si含有量は、0.10%以下である。Si含有量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
On the other hand, Si is an element that increases the electrical resistance of the steel wire. If the Si content exceeds 0.10%, the electrical resistivity of the steel wire may become excessively high. Therefore, the Si content is 0.10% or less. The Si content is preferably 0.09% or less, more preferably 0.08% or less.
Mn:0.10~0.30%
Mnは、鋼線の引張強さを高める作用を有する元素である。Mnは、鋼中のSをMnSとして固定することにより、鋼線の熱間脆性を防止する作用を有する元素でもある。しかしながら、Mn含有量が0.10%未満ではこれらの作用が十分でない場合がある。このため、Mn含有量は0.10%以上である。さらに、鋼線の引張強さ確保及び熱間脆性の防止をより高いレベルで実現するためには、Mn含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。 Mn: 0.10 to 0.30%
Mn is an element having an effect of enhancing the tensile strength of the steel wire. Mn is also an element having the function of preventing hot embrittlement of the steel wire by fixing S in the steel as MnS. However, if the Mn content is less than 0.10%, these effects may not be sufficient. For this reason, the Mn content is 0.10% or more. Furthermore, in order to realize the securing of the tensile strength of the steel wire and the prevention of hot embrittlement at a higher level, the Mn content is preferably 0.15% or more, more preferably 0.20% or more. is there.
Mnは、鋼線の引張強さを高める作用を有する元素である。Mnは、鋼中のSをMnSとして固定することにより、鋼線の熱間脆性を防止する作用を有する元素でもある。しかしながら、Mn含有量が0.10%未満ではこれらの作用が十分でない場合がある。このため、Mn含有量は0.10%以上である。さらに、鋼線の引張強さ確保及び熱間脆性の防止をより高いレベルで実現するためには、Mn含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。 Mn: 0.10 to 0.30%
Mn is an element having an effect of enhancing the tensile strength of the steel wire. Mn is also an element having the function of preventing hot embrittlement of the steel wire by fixing S in the steel as MnS. However, if the Mn content is less than 0.10%, these effects may not be sufficient. For this reason, the Mn content is 0.10% or more. Furthermore, in order to realize the securing of the tensile strength of the steel wire and the prevention of hot embrittlement at a higher level, the Mn content is preferably 0.15% or more, more preferably 0.20% or more. is there.
一方、Mnには、鋼線の電気抵抗率を大きくする作用がある。このため、Mn含有量が0.30%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。従って、Mn含有量は、0.30%以下である。Mn含有量は、好ましくは0.26%以下である。
On the other hand, Mn has an effect of increasing the electrical resistivity of the steel wire. For this reason, when the Mn content exceeds 0.30%, the electrical resistivity of the steel wire may become excessively large. Therefore, the Mn content is 0.30% or less. The Mn content is preferably 0.26% or less.
Al:0.005~0.050%
Alは、脱酸作用を有する元素であり、鋼線中の酸素量低減のために必要な元素である。しかしながら、Al含有量が0.005%未満では、Alを含有することによる効果(鋼線中の酸素量低減)を十分に得ることができない場合がある。このため、Al含有量は、0.005%以上である。さらに、この効果をより高いレベルで得る観点から、Al含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。 Al: 0.005 to 0.050%
Al is an element having a deoxidizing action, and is an element necessary for reducing the amount of oxygen in the steel wire. However, if the Al content is less than 0.005%, it may not be possible to sufficiently obtain the effect (reduction of the amount of oxygen in the steel wire) by containing Al. For this reason, the Al content is 0.005% or more. Furthermore, from the viewpoint of obtaining this effect at a higher level, the Al content is preferably 0.010% or more, more preferably 0.020% or more.
Alは、脱酸作用を有する元素であり、鋼線中の酸素量低減のために必要な元素である。しかしながら、Al含有量が0.005%未満では、Alを含有することによる効果(鋼線中の酸素量低減)を十分に得ることができない場合がある。このため、Al含有量は、0.005%以上である。さらに、この効果をより高いレベルで得る観点から、Al含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。 Al: 0.005 to 0.050%
Al is an element having a deoxidizing action, and is an element necessary for reducing the amount of oxygen in the steel wire. However, if the Al content is less than 0.005%, it may not be possible to sufficiently obtain the effect (reduction of the amount of oxygen in the steel wire) by containing Al. For this reason, the Al content is 0.005% or more. Furthermore, from the viewpoint of obtaining this effect at a higher level, the Al content is preferably 0.010% or more, more preferably 0.020% or more.
一方、Al含有量が0.050%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。この理由は、Al含有量が0.050%を超えると、鋼線中に粗大な酸化物系介在物が過度に形成され易くなるためと考えられる。このため、Al含有量は、0.050%以下である。鋼線の電気抵抗率をより抑制する観点から、Al含有量は、好ましくは0.040%以下であり、より好ましくは0.035%以下である。
On the other hand, when the Al content exceeds 0.050%, the electrical resistivity of the steel wire may become excessively large. The reason is considered to be that if the Al content exceeds 0.050%, coarse oxide inclusions are easily formed in the steel wire. For this reason, the Al content is 0.050% or less. From the viewpoint of further suppressing the electric resistivity of the steel wire, the Al content is preferably 0.040% or less, more preferably 0.035% or less.
N:0~0.0070%
Nは、鋼線の電気抵抗率を上昇させる元素である。このため、N含有量が0.0070%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、N含有量は、0.0070%以下である。鋼線の電気抵抗をより低減する観点から、N含有量は、好ましくは0.0050%以下である。
N含有量は、0%であってもよい。
但し、Nは、冷間での伸線加工中に転位を固着させることにより、鋼線の引張強さを上昇させる元素でもある。かかる効果の観点から、N含有量は、0%超であってもよく、0.0010%以上であってもよく、0.0020%以上であってもよい。 N: 0 to 0.0070%
N is an element that raises the electrical resistivity of the steel wire. For this reason, when the N content exceeds 0.0070%, the electrical resistivity of the steel wire may become excessively high. For this reason, the N content is 0.0070% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the N content is preferably 0.0050% or less.
The N content may be 0%.
However, N is also an element that raises the tensile strength of the steel wire by fixing the dislocation during cold drawing. From the viewpoint of this effect, the N content may be more than 0%, may be 0.0010% or more, and may be 0.0020% or more.
Nは、鋼線の電気抵抗率を上昇させる元素である。このため、N含有量が0.0070%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、N含有量は、0.0070%以下である。鋼線の電気抵抗をより低減する観点から、N含有量は、好ましくは0.0050%以下である。
N含有量は、0%であってもよい。
但し、Nは、冷間での伸線加工中に転位を固着させることにより、鋼線の引張強さを上昇させる元素でもある。かかる効果の観点から、N含有量は、0%超であってもよく、0.0010%以上であってもよく、0.0020%以上であってもよい。 N: 0 to 0.0070%
N is an element that raises the electrical resistivity of the steel wire. For this reason, when the N content exceeds 0.0070%, the electrical resistivity of the steel wire may become excessively high. For this reason, the N content is 0.0070% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the N content is preferably 0.0050% or less.
The N content may be 0%.
However, N is also an element that raises the tensile strength of the steel wire by fixing the dislocation during cold drawing. From the viewpoint of this effect, the N content may be more than 0%, may be 0.0010% or more, and may be 0.0020% or more.
P:0~0.030%
Pは、鋼の結晶粒界に偏析して電気抵抗を上昇させる元素である。P含有量が0.030%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、P含有量は0.030%以下である。鋼線の電気抵抗をより低減する観点から、P含有量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。
P含有量は、0%であってもよい。但し、製造コスト(脱燐コスト)の低減の観点から、P含有量は、0%超であってもよく、0.0005%以上であってもよく、0.0010%以上であってもよい。 P: 0 to 0.030%
P is an element which segregates in the grain boundaries of steel to increase the electrical resistance. If the P content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the P content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the P content is preferably 0.025% or less, more preferably 0.020% or less.
The P content may be 0%. However, from the viewpoint of reducing the manufacturing cost (dephosphorization cost), the P content may be more than 0%, may be 0.0005% or more, and may be 0.0010% or more. .
Pは、鋼の結晶粒界に偏析して電気抵抗を上昇させる元素である。P含有量が0.030%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、P含有量は0.030%以下である。鋼線の電気抵抗をより低減する観点から、P含有量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。
P含有量は、0%であってもよい。但し、製造コスト(脱燐コスト)の低減の観点から、P含有量は、0%超であってもよく、0.0005%以上であってもよく、0.0010%以上であってもよい。 P: 0 to 0.030%
P is an element which segregates in the grain boundaries of steel to increase the electrical resistance. If the P content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the P content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the P content is preferably 0.025% or less, more preferably 0.020% or less.
The P content may be 0%. However, from the viewpoint of reducing the manufacturing cost (dephosphorization cost), the P content may be more than 0%, may be 0.0005% or more, and may be 0.0010% or more. .
S:0~0.030%
Sは、鋼線の電気抵抗率を上昇させる元素である。S含有量が0.030%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、S含有量は、0.030%以下である。鋼線の電気抵抗をより低減する観点から、S含有量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
S含有量は、0%であってもよい。但し、製造コスト(脱硫コスト)の低減の観点から、S含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 S: 0 to 0.030%
S is an element that raises the electrical resistivity of the steel wire. If the S content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the S content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the S content is preferably 0.015% or less, more preferably 0.010% or less.
The S content may be 0%. However, from the viewpoint of reducing the manufacturing cost (desulfurization cost), the S content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
Sは、鋼線の電気抵抗率を上昇させる元素である。S含有量が0.030%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、S含有量は、0.030%以下である。鋼線の電気抵抗をより低減する観点から、S含有量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
S含有量は、0%であってもよい。但し、製造コスト(脱硫コスト)の低減の観点から、S含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 S: 0 to 0.030%
S is an element that raises the electrical resistivity of the steel wire. If the S content exceeds 0.030%, the electrical resistivity of the steel wire may become excessively high. For this reason, the S content is 0.030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the S content is preferably 0.015% or less, more preferably 0.010% or less.
The S content may be 0%. However, from the viewpoint of reducing the manufacturing cost (desulfurization cost), the S content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
Cr:0~1.00%
Crは、任意の元素である。即ち、Cr含有量は、0%であってもよい。
Cr含有量が1.00%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。この理由は、Cr含有量が1.00%を超えると、焼鈍によるセメンタイトの球状化が阻害され、その結果、セメンタイトの平均アスペクト比が25を超えるためと考えられる。従って、Cr含有量は、1.00%以下である。鋼線の電気抵抗をより低減する観点から、Cr含有量は、好ましくは0.95%以下である。
一方、Crは、パ-ライトのラメラ間隔を小さくすることにより鋼線の引張強さを高める作用を有する。かかる作用の観点から、Cr含有量は、0%超であってもよく、0.10%以上であってもよく、0.20%以上であってもよい。 Cr: 0 to 1.00%
Cr is an arbitrary element. That is, the Cr content may be 0%.
If the Cr content exceeds 1.00%, the electrical resistivity of the steel wire may become excessively high. The reason is considered that when the Cr content exceeds 1.00%, spheroidization of cementite by annealing is inhibited, and as a result, the average aspect ratio of cementite exceeds 25. Therefore, the Cr content is 1.00% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Cr content is preferably 0.95% or less.
On the other hand, Cr has the effect of increasing the tensile strength of the steel wire by reducing the lamella spacing of the pearlite. From the viewpoint of this action, the Cr content may be more than 0%, may be 0.10% or more, and may be 0.20% or more.
Crは、任意の元素である。即ち、Cr含有量は、0%であってもよい。
Cr含有量が1.00%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。この理由は、Cr含有量が1.00%を超えると、焼鈍によるセメンタイトの球状化が阻害され、その結果、セメンタイトの平均アスペクト比が25を超えるためと考えられる。従って、Cr含有量は、1.00%以下である。鋼線の電気抵抗をより低減する観点から、Cr含有量は、好ましくは0.95%以下である。
一方、Crは、パ-ライトのラメラ間隔を小さくすることにより鋼線の引張強さを高める作用を有する。かかる作用の観点から、Cr含有量は、0%超であってもよく、0.10%以上であってもよく、0.20%以上であってもよい。 Cr: 0 to 1.00%
Cr is an arbitrary element. That is, the Cr content may be 0%.
If the Cr content exceeds 1.00%, the electrical resistivity of the steel wire may become excessively high. The reason is considered that when the Cr content exceeds 1.00%, spheroidization of cementite by annealing is inhibited, and as a result, the average aspect ratio of cementite exceeds 25. Therefore, the Cr content is 1.00% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Cr content is preferably 0.95% or less.
On the other hand, Cr has the effect of increasing the tensile strength of the steel wire by reducing the lamella spacing of the pearlite. From the viewpoint of this action, the Cr content may be more than 0%, may be 0.10% or more, and may be 0.20% or more.
本明細書において、焼鈍によるセメンタイトの球状化とは、焼鈍により、鋼線の縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が小さくなる(具体的には、平均アスペクト比が25以下となる)ことを意味する。本明細書において、焼鈍によるセメンタイトの球状化は、セメンタイトが完全な球形状になることを意味しない。
In the present specification, spheroidizing of cementite by annealing means that the average aspect ratio of cementite in region X of the longitudinal section of the steel wire is reduced by annealing (specifically, the average aspect ratio is 25 or less). It means that. In the present specification, spheroidization of cementite by annealing does not mean that cementite has a perfect spherical shape.
Mo:0~0.20%
Moは、任意の元素である。即ち、Mo含有量は、0%であってもよい。
Mo含有量が0.20%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、Mo含有量は、0.20%以下である。鋼線の電気抵抗をより低減する観点から、Mo含有量は、好ましくは0.10%以下である。
一方、Moは、鋼線の引張強さを高める作用を有する。かかる作用の観点から、Mo含有量は、0%超であってもよく、0.02%以上であってもよく、0.05%以上であってもよい。 Mo: 0 to 0.20%
Mo is an arbitrary element. That is, the Mo content may be 0%.
If the Mo content exceeds 0.20%, the electrical resistivity of the steel wire may become excessively high. For this reason, the Mo content is 0.20% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Mo content is preferably 0.10% or less.
On the other hand, Mo has the effect of increasing the tensile strength of the steel wire. From the viewpoint of this action, the Mo content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
Moは、任意の元素である。即ち、Mo含有量は、0%であってもよい。
Mo含有量が0.20%を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。このため、Mo含有量は、0.20%以下である。鋼線の電気抵抗をより低減する観点から、Mo含有量は、好ましくは0.10%以下である。
一方、Moは、鋼線の引張強さを高める作用を有する。かかる作用の観点から、Mo含有量は、0%超であってもよく、0.02%以上であってもよく、0.05%以上であってもよい。 Mo: 0 to 0.20%
Mo is an arbitrary element. That is, the Mo content may be 0%.
If the Mo content exceeds 0.20%, the electrical resistivity of the steel wire may become excessively high. For this reason, the Mo content is 0.20% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the Mo content is preferably 0.10% or less.
On the other hand, Mo has the effect of increasing the tensile strength of the steel wire. From the viewpoint of this action, the Mo content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
V:0~0.15%
Vは、任意の元素である。即ち、V含有量は、0%であってもよい。
V含有量が0.15%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、V含有量は、0.15%以下である。鋼線の電気抵抗率をより低減する観点から、V含有量は、好ましくは0.08%以下である。
一方、Vは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、V含有量は、0%超であってもよく、0.02%以上であってもよく、0.05%以上であってもよい。 V: 0 to 0.15%
V is any element. That is, the V content may be 0%.
When the V content exceeds 0.15%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the V content is 0.15% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the V content is preferably 0.08% or less.
On the other hand, V is an element which forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the V content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
Vは、任意の元素である。即ち、V含有量は、0%であってもよい。
V含有量が0.15%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、V含有量は、0.15%以下である。鋼線の電気抵抗率をより低減する観点から、V含有量は、好ましくは0.08%以下である。
一方、Vは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、V含有量は、0%超であってもよく、0.02%以上であってもよく、0.05%以上であってもよい。 V: 0 to 0.15%
V is any element. That is, the V content may be 0%.
When the V content exceeds 0.15%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the V content is 0.15% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the V content is preferably 0.08% or less.
On the other hand, V is an element which forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the V content may be more than 0%, may be 0.02% or more, and may be 0.05% or more.
Ti:0~0.050%
Tiは、任意の元素である。即ち、Ti含有量は、0%であってもよい。
Ti含有量が0.050%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、Ti含有量は、0.050%以下である。鋼線の電気抵抗率をより低減する観点から、Ti含有量は、好ましくは0.030%以下である。
一方、Tiは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、Ti含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 Ti: 0 to 0.050%
Ti is an optional element. That is, the Ti content may be 0%.
When the Ti content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Ti content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Ti content is preferably 0.030% or less.
On the other hand, Ti is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the Ti content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
Tiは、任意の元素である。即ち、Ti含有量は、0%であってもよい。
Ti含有量が0.050%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、Ti含有量は、0.050%以下である。鋼線の電気抵抗率をより低減する観点から、Ti含有量は、好ましくは0.030%以下である。
一方、Tiは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、Ti含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 Ti: 0 to 0.050%
Ti is an optional element. That is, the Ti content may be 0%.
When the Ti content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Ti content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Ti content is preferably 0.030% or less.
On the other hand, Ti is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of this action, the Ti content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
Nb:0~0.050%
Nbは、任意の元素である。即ち、Nb含有量は、0%であってもよい。
Nb含有量が0.050%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、Nb含有量は、0.050%以下である。鋼線の電気抵抗率をより低減する観点から、Nb含有量は、好ましくは0.020%以下である。
一方、Nbは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、Nb含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 Nb: 0 to 0.050%
Nb is an arbitrary element. That is, the Nb content may be 0%.
If the Nb content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Nb content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Nb content is preferably 0.020% or less.
On the other hand, Nb is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of the action, the Nb content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
Nbは、任意の元素である。即ち、Nb含有量は、0%であってもよい。
Nb含有量が0.050%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、Nb含有量は、0.050%以下である。鋼線の電気抵抗率をより低減する観点から、Nb含有量は、好ましくは0.020%以下である。
一方、Nbは、鋼線中に炭化物又は炭窒化物を形成して、パーライトブロックサイズを小さくする元素である。これにより、セメンタイトの分解が抑制され、鋼線の引張強さの向上と電気抵抗率の低減との両立が図られる。かかる作用の観点から、Nb含有量は、0%超であってもよく、0.002%以上であってもよく、0.005%以上であってもよい。 Nb: 0 to 0.050%
Nb is an arbitrary element. That is, the Nb content may be 0%.
If the Nb content exceeds 0.050%, coarse carbides or carbonitrides are easily formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the Nb content is 0.050% or less. From the viewpoint of further reducing the electrical resistivity of the steel wire, the Nb content is preferably 0.020% or less.
On the other hand, Nb is an element that forms carbides or carbonitrides in the steel wire to reduce the pearlite block size. Thereby, the decomposition of cementite is suppressed, and it is possible to achieve both the improvement of the tensile strength of the steel wire and the reduction of the electrical resistivity. From the viewpoint of the action, the Nb content may be more than 0%, may be 0.002% or more, and may be 0.005% or more.
B:0~0.0030%
Bは、任意の元素である。即ち、B含有量は、0%であってもよい。
B含有量が0.0030%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、B含有量は、0.0030%以下である。鋼線の電気抵抗をより低減する観点から、B含有量は、好ましくは0.0025%以下である。
一方、Bは、鋼線中にBNを形成し、固溶Nを低減することで、鋼線の電気抵抗率を低減させる元素である。かかる作用の観点から、B含有量は、0%超であってもよく、0.0003%以上であってもよく、0.0010%以上であってもよい。 B: 0 to 0.0030%
B is any element. That is, the B content may be 0%.
If the B content exceeds 0.0030%, coarse carbides or carbonitrides are likely to be formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the B content is 0.0030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the B content is preferably 0.0025% or less.
On the other hand, B is an element which reduces the electrical resistivity of a steel wire by forming BN in a steel wire and reducing solid solution N. From the viewpoint of this action, the B content may be more than 0%, may be 0.0003% or more, and may be 0.0010% or more.
Bは、任意の元素である。即ち、B含有量は、0%であってもよい。
B含有量が0.0030%を超えると、鋼線中に粗大な炭化物又は炭窒化物が形成され易くなり、鋼線の電気抵抗率が上昇するおそれがある。このため、B含有量は、0.0030%以下である。鋼線の電気抵抗をより低減する観点から、B含有量は、好ましくは0.0025%以下である。
一方、Bは、鋼線中にBNを形成し、固溶Nを低減することで、鋼線の電気抵抗率を低減させる元素である。かかる作用の観点から、B含有量は、0%超であってもよく、0.0003%以上であってもよく、0.0010%以上であってもよい。 B: 0 to 0.0030%
B is any element. That is, the B content may be 0%.
If the B content exceeds 0.0030%, coarse carbides or carbonitrides are likely to be formed in the steel wire, and the electrical resistivity of the steel wire may be increased. For this reason, the B content is 0.0030% or less. From the viewpoint of further reducing the electrical resistance of the steel wire, the B content is preferably 0.0025% or less.
On the other hand, B is an element which reduces the electrical resistivity of a steel wire by forming BN in a steel wire and reducing solid solution N. From the viewpoint of this action, the B content may be more than 0%, may be 0.0003% or more, and may be 0.0010% or more.
残部:Fe及び不純物
本開示における化学組成において、前述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
不純物としては、前述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。 Remainder: Fe and impurities In the chemical composition in the present disclosure, the remainder excluding the above-described elements is Fe and impurities.
Here, the term "impurity" refers to a component contained in the raw material or a component mixed in the production process and not a component intentionally contained in steel.
As an impurity, all elements other than the elements mentioned above are mentioned. The element as an impurity may be only one or two or more.
本開示における化学組成において、前述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
不純物としては、前述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。 Remainder: Fe and impurities In the chemical composition in the present disclosure, the remainder excluding the above-described elements is Fe and impurities.
Here, the term "impurity" refers to a component contained in the raw material or a component mixed in the production process and not a component intentionally contained in steel.
As an impurity, all elements other than the elements mentioned above are mentioned. The element as an impurity may be only one or two or more.
本開示における鋼線の化学組成は、質量%で、Cr:0%超1.00%以下及びMo:0%超0.20%以下の少なくとも1種を含有することができる。この場合のCr及びMoの各々の作用及び各々の好ましい含有量については前述のとおりである。
The chemical composition of the steel wire in the present disclosure can contain at least one of Cr: more than 0% and 1.00% or less and Mo: 0% and less than 0.20% or less by mass%. The action of each of Cr and Mo in this case and the preferable content of each are as described above.
本開示における鋼線の化学組成は、質量%で、V:0%超0.15%以下、Ti:0%超0.05%以下、及びNb:0%超0.05%以下の少なくとも1種を含有することができる。この場合の、V、Ti、及びNbの各々の作用及び各々の好ましい含有量については前述のとおりである。
The chemical composition of the steel wire in the present disclosure is, by mass%, at least one of V: more than 0% and 0.15% or less; It can contain seeds. In this case, the actions of V, Ti and Nb and the preferable contents of each are as described above.
本開示における鋼線の化学組成は、質量%で、B:0%超0.0030%以下を含有することができる。この場合のBの作用及び好ましい含有量については前述のとおりである。
The chemical composition of the steel wire in the present disclosure can contain, in mass%, B: more than 0% and 0.0030% or less. The action and the preferable content of B in this case are as described above.
<鋼線の縦断面におけるセメンタイトの平均アスペクト比及び(211)面の半価幅>
次に、本開示における鋼線(即ち、本開示のアルミ覆鋼線中の鋼線)の縦断面におけるセメンタイトの平均アスペクト比及び(211)面の半価幅について説明する。
本開示における鋼線は、鋼線の縦断面において、領域X(即ち、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域)におけるセメンタイトの平均アスペクト比が10以上25以下であり、鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満である。 <Average Aspect Ratio of Cementite in the Longitudinal Section of Steel Wire and Half-Value Width of (211) Plane>
Next, the average aspect ratio of cementite and the half value width of the (211) plane in the longitudinal section of the steel wire in the present disclosure (that is, the steel wire in the aluminum-coated steel wire of the present disclosure) will be described.
In the steel wire according to the present disclosure, in the longitudinal section of the steel wire, the region X (that is, when the diameter of the steel wire is D, the distance from the central axis of the steel wire is D / 10 within a straight line The average aspect ratio of cementite in the region b) is 10 or more and 25 or less, and in the longitudinal section of the steel wire, the half-value width of the (211) plane measured using an X-ray diffractometer using a Mo tube is 0. 14 degrees or more and less than 0.30 degrees.
次に、本開示における鋼線(即ち、本開示のアルミ覆鋼線中の鋼線)の縦断面におけるセメンタイトの平均アスペクト比及び(211)面の半価幅について説明する。
本開示における鋼線は、鋼線の縦断面において、領域X(即ち、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域)におけるセメンタイトの平均アスペクト比が10以上25以下であり、鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満である。 <Average Aspect Ratio of Cementite in the Longitudinal Section of Steel Wire and Half-Value Width of (211) Plane>
Next, the average aspect ratio of cementite and the half value width of the (211) plane in the longitudinal section of the steel wire in the present disclosure (that is, the steel wire in the aluminum-coated steel wire of the present disclosure) will be described.
In the steel wire according to the present disclosure, in the longitudinal section of the steel wire, the region X (that is, when the diameter of the steel wire is D, the distance from the central axis of the steel wire is D / 10 within a straight line The average aspect ratio of cementite in the region b) is 10 or more and 25 or less, and in the longitudinal section of the steel wire, the half-value width of the (211) plane measured using an X-ray diffractometer using a Mo tube is 0. 14 degrees or more and less than 0.30 degrees.
本明細書中、鋼線の縦断面とは、鋼線の長手方向に対して平行であって、かつ、鋼線の中心軸を含む断面を意味する。
本明細書中、鋼線の横断面とは、鋼線の長手方向に対して垂直な断面を意味する。なお、線材の横断面も同様の意味である。 In the present specification, the longitudinal cross section of the steel wire means a cross section parallel to the longitudinal direction of the steel wire and including the central axis of the steel wire.
In the present specification, the cross section of the steel wire means a cross section perpendicular to the longitudinal direction of the steel wire. In addition, the cross section of a wire is the same meaning.
本明細書中、鋼線の横断面とは、鋼線の長手方向に対して垂直な断面を意味する。なお、線材の横断面も同様の意味である。 In the present specification, the longitudinal cross section of the steel wire means a cross section parallel to the longitudinal direction of the steel wire and including the central axis of the steel wire.
In the present specification, the cross section of the steel wire means a cross section perpendicular to the longitudinal direction of the steel wire. In addition, the cross section of a wire is the same meaning.
(セメンタイトの平均アスペクト比)
本開示における鋼線は、縦断面中の領域X(即ち、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域)におけるセメンタイトの平均アスペクト比が10以上25以下である。 (Average aspect ratio of cementite)
The steel wire in the present disclosure is a region X in the longitudinal cross section (that is, a region within D / 10 of a straight line in which the distance from the central axis of the steel wire is D / 4, where D is the diameter of the steel wire) The average aspect ratio of cementite in is 10 or more and 25 or less.
本開示における鋼線は、縦断面中の領域X(即ち、鋼線の直径をDとした場合に、鋼線の中心軸からの距離がD/4である直線からD/10以内の領域)におけるセメンタイトの平均アスペクト比が10以上25以下である。 (Average aspect ratio of cementite)
The steel wire in the present disclosure is a region X in the longitudinal cross section (that is, a region within D / 10 of a straight line in which the distance from the central axis of the steel wire is D / 4, where D is the diameter of the steel wire) The average aspect ratio of cementite in is 10 or more and 25 or less.
以下、鋼線の縦断面中の領域Xについて、図1を参照して説明する。
図1は、本開示の鋼線の一例における縦断面及びこの縦断面中の領域Xを概念的に示す図である。
図1に示されるように、領域Xは、鋼線の直径をDとした場合に、鋼線の中心軸(図1中の一点鎖線)からの距離がD/4である直線(図1中の2本の破線)からD/10以内の領域(図1中、斜線及び符号「X」を付した2つの領域)である。領域Xは、言い換えれば、鋼線の中心軸からの距離がD/4である直線を中心とする、幅D/5の帯状の領域である。 Hereinafter, the region X in the vertical cross section of the steel wire will be described with reference to FIG.
FIG. 1: is a figure which shows notionally the longitudinal cross-section in the example of the steel wire of this indication, and the area | region X in this longitudinal cross-section.
As shown in FIG. 1, when the diameter of the steel wire is D, the region X is a straight line (in FIG. 1) having a distance of D / 4 from the central axis of the steel wire (one-dot chain line in FIG. 1). The area within D / 10 from the two broken lines of (2 areas in FIG. 1 with diagonal lines and the sign “X”). Region X is, in other words, a band-shaped region of width D / 5 centered on a straight line whose distance from the central axis of the steel wire is D / 4.
図1は、本開示の鋼線の一例における縦断面及びこの縦断面中の領域Xを概念的に示す図である。
図1に示されるように、領域Xは、鋼線の直径をDとした場合に、鋼線の中心軸(図1中の一点鎖線)からの距離がD/4である直線(図1中の2本の破線)からD/10以内の領域(図1中、斜線及び符号「X」を付した2つの領域)である。領域Xは、言い換えれば、鋼線の中心軸からの距離がD/4である直線を中心とする、幅D/5の帯状の領域である。 Hereinafter, the region X in the vertical cross section of the steel wire will be described with reference to FIG.
FIG. 1: is a figure which shows notionally the longitudinal cross-section in the example of the steel wire of this indication, and the area | region X in this longitudinal cross-section.
As shown in FIG. 1, when the diameter of the steel wire is D, the region X is a straight line (in FIG. 1) having a distance of D / 4 from the central axis of the steel wire (one-dot chain line in FIG. 1). The area within D / 10 from the two broken lines of (2 areas in FIG. 1 with diagonal lines and the sign “X”). Region X is, in other words, a band-shaped region of width D / 5 centered on a straight line whose distance from the central axis of the steel wire is D / 4.
本開示において、領域Xにおけるセメンタイトの平均アスペクト比を特定する理由は、領域Xにおけるセメンタイトの平均アスペクト比が、鋼線の縦断面のアスペクト比の代表値として適切であると考えられるためである。一般的に、線材を伸線加工して製造される鋼線において、鋼線の外周面付近におけるセメンタイトのアスペクト比は、領域Xにおけるセメンタイトのアスペクト比と比較して小さくなる傾向があり、鋼線の中心軸付近におけるセメンタイトのアスペクト比は、領域Xにおけるアスペクト比と比較して大きくなる傾向がある。
In the present disclosure, the reason for specifying the average aspect ratio of cementite in the region X is because the average aspect ratio of cementite in the region X is considered to be appropriate as a representative value of the aspect ratios of the longitudinal sections of the steel wire. Generally, in a steel wire produced by wire drawing of a wire, the aspect ratio of cementite in the vicinity of the outer peripheral surface of the steel wire tends to be smaller than the aspect ratio of cementite in region X, and the steel wire The aspect ratio of cementite near the central axis of H tends to be larger than the aspect ratio in the region X.
本開示における鋼線は、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が10未満である場合と比較して、引張強さに優れる。以下、この点を詳述する。
The steel wire in the present disclosure is excellent in tensile strength as compared with the case where the average aspect ratio of cementite in the region X in the longitudinal cross-section is less than 10. Hereinafter, this point will be described in detail.
縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が10以上25以下であることは、本開示における鋼線が、ラメラパーライト組織を主体とする線材(即ち、伸線加工される前の鋼材。以下同じ。)に対し、伸線加工及び焼鈍を施すことによって形成された鋼線であることを示している。
詳細には、ラメラパーライト組織を主体とする線材に対し、伸線加工及び焼鈍を施した場合、伸線加工によってラメラパーライト組織中のラメラセメンタイトが分断され、分断されたラメラセメンタイトが焼鈍によって球状化することにより、縦断面中の領域Xにおける平均アスペクト比が10以上25以下であるセメンタイトが形成される。ラメラパーライト組織を主体とする線材を伸線加工することにより、加工硬化を促進させることができ、その結果、引張強さに優れた鋼線を製造できる。
これに対し、マルテンサイト組織及び/又はベイナイト組織を主体とする線材に対して伸線加工及び焼鈍を施した場合は、伸線加工における加工硬化が不足するので、得られる鋼線の引張強さが不足する。マルテンサイト組織及び/又はベイナイト組織を主体とする線材に対して伸線加工及び焼鈍を施した場合、得られる鋼線の縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、10未満となる。
以上の理由により、本開示における鋼線は、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が10以上25以下であること(特に、上記平均アスペクト比が10以上であること)により、上記平均アスペクト比が10未満である場合と比較して、引張強さに優れる。 The average aspect ratio of cementite in the region X in the longitudinal cross-section is 10 or more and 25 or less, the steel wire in the present disclosure is a wire mainly composed of a lamellar pearlite structure (i.e. steel before being drawn). It is indicated that the same is a steel wire formed by drawing and annealing.
Specifically, when a wire mainly composed of a lamellar perlite structure is subjected to wire drawing and annealing, the lamellar cementite in the lamellar perlite structure is divided by the wire drawing, and the divided lamellar cementite is spheroidized by annealing. As a result, cementite having an average aspect ratio of 10 to 25 in the region X in the longitudinal cross section is formed. By drawing a wire mainly having a lamellar perlite structure, work hardening can be promoted, and as a result, a steel wire having excellent tensile strength can be manufactured.
On the other hand, when wire drawing and annealing are performed on a wire mainly composed of a martensitic structure and / or a bainite structure, the tensile strength of the obtained steel wire is insufficient because work hardening is insufficient in the wire drawing. Run out. When wire drawing based on a martensitic structure and / or a bainite structure is carried out and annealing, the average aspect ratio of cementite in the region X in the longitudinal cross section of the obtained steel wire is less than 10.
For the above reasons, the steel wire in the present disclosure has the average aspect ratio of cementite in the region X in the longitudinal cross-section of 10 or more and 25 or less (in particular, the average aspect ratio of 10 or more). Compared with the case where an aspect ratio is less than 10, it is excellent in tensile strength.
詳細には、ラメラパーライト組織を主体とする線材に対し、伸線加工及び焼鈍を施した場合、伸線加工によってラメラパーライト組織中のラメラセメンタイトが分断され、分断されたラメラセメンタイトが焼鈍によって球状化することにより、縦断面中の領域Xにおける平均アスペクト比が10以上25以下であるセメンタイトが形成される。ラメラパーライト組織を主体とする線材を伸線加工することにより、加工硬化を促進させることができ、その結果、引張強さに優れた鋼線を製造できる。
これに対し、マルテンサイト組織及び/又はベイナイト組織を主体とする線材に対して伸線加工及び焼鈍を施した場合は、伸線加工における加工硬化が不足するので、得られる鋼線の引張強さが不足する。マルテンサイト組織及び/又はベイナイト組織を主体とする線材に対して伸線加工及び焼鈍を施した場合、得られる鋼線の縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、10未満となる。
以上の理由により、本開示における鋼線は、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が10以上25以下であること(特に、上記平均アスペクト比が10以上であること)により、上記平均アスペクト比が10未満である場合と比較して、引張強さに優れる。 The average aspect ratio of cementite in the region X in the longitudinal cross-section is 10 or more and 25 or less, the steel wire in the present disclosure is a wire mainly composed of a lamellar pearlite structure (i.e. steel before being drawn). It is indicated that the same is a steel wire formed by drawing and annealing.
Specifically, when a wire mainly composed of a lamellar perlite structure is subjected to wire drawing and annealing, the lamellar cementite in the lamellar perlite structure is divided by the wire drawing, and the divided lamellar cementite is spheroidized by annealing. As a result, cementite having an average aspect ratio of 10 to 25 in the region X in the longitudinal cross section is formed. By drawing a wire mainly having a lamellar perlite structure, work hardening can be promoted, and as a result, a steel wire having excellent tensile strength can be manufactured.
On the other hand, when wire drawing and annealing are performed on a wire mainly composed of a martensitic structure and / or a bainite structure, the tensile strength of the obtained steel wire is insufficient because work hardening is insufficient in the wire drawing. Run out. When wire drawing based on a martensitic structure and / or a bainite structure is carried out and annealing, the average aspect ratio of cementite in the region X in the longitudinal cross section of the obtained steel wire is less than 10.
For the above reasons, the steel wire in the present disclosure has the average aspect ratio of cementite in the region X in the longitudinal cross-section of 10 or more and 25 or less (in particular, the average aspect ratio of 10 or more). Compared with the case where an aspect ratio is less than 10, it is excellent in tensile strength.
鋼線の引張強さをより向上させる観点から、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、好ましくは12以上である。
From the viewpoint of further improving the tensile strength of the steel wire, the average aspect ratio of cementite in the region X in the longitudinal cross section is preferably 12 or more.
一方、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が25を超えると、鋼線の電気抵抗率が過度に大きくなる場合がある。
この点に関し、本開示における鋼線は、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が25以下であることにより、上記平均アスペクト比が25超である場合と比較して、電気抵抗率が低減される。
鋼線の電気抵抗率をより低減する観点から、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、好ましくは25未満であり、より好ましくは24以下であり、さらに好ましくは23以下である。 On the other hand, when the average aspect ratio of cementite in region X in the longitudinal cross-section exceeds 25, the electrical resistivity of the steel wire may become excessively large.
In this regard, the steel wire in the present disclosure has an electrical resistivity that is greater than 25 when the average aspect ratio of cementite in the region X in the longitudinal cross-section is 25 or less. Reduced.
From the viewpoint of further reducing the electrical resistivity of the steel wire, the average aspect ratio of cementite in the region X in the longitudinal cross section is preferably less than 25, more preferably 24 or less, and still more preferably 23 or less.
この点に関し、本開示における鋼線は、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比が25以下であることにより、上記平均アスペクト比が25超である場合と比較して、電気抵抗率が低減される。
鋼線の電気抵抗率をより低減する観点から、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、好ましくは25未満であり、より好ましくは24以下であり、さらに好ましくは23以下である。 On the other hand, when the average aspect ratio of cementite in region X in the longitudinal cross-section exceeds 25, the electrical resistivity of the steel wire may become excessively large.
In this regard, the steel wire in the present disclosure has an electrical resistivity that is greater than 25 when the average aspect ratio of cementite in the region X in the longitudinal cross-section is 25 or less. Reduced.
From the viewpoint of further reducing the electrical resistivity of the steel wire, the average aspect ratio of cementite in the region X in the longitudinal cross section is preferably less than 25, more preferably 24 or less, and still more preferably 23 or less.
縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、前述した線材の組織以外にも、伸線加工ひずみ(例えば、後述の式(1)で表される伸線加工ひずみ)、焼鈍における焼鈍時間、及び、焼鈍における焼鈍温度とも相関がある。
伸線加工ひずみが大きいほど、セメンタイトの平均アスペクト比が小さくなる傾向となる。この理由は、伸線加工ひずみが大きいほど、伸線加工により、線材のラメラパーライト組織中のラメラセメンタイトが分断され易いためと考えられる。
また、焼鈍時間及び焼鈍温度の各々が大きいほど、セメンタイトの平均アスペクト比が小さくなる傾向となる。この理由は、焼鈍時間及び焼鈍温度の各々が大きいほど、焼鈍によるセメンタイトの球状化の効果(即ち、焼鈍による、セメンタイトの平均アスペクト比を小さくする効果)が奏され易いためと考えられる。 The average aspect ratio of cementite in the region X in the longitudinal section is not only the wire drawing strain but also the wire drawing strain (for example, the wire drawing strain represented by the formula (1) described later), and the annealing time in annealing There is also a correlation with the annealing temperature in annealing.
As the drawing strain is larger, the average aspect ratio of cementite tends to be smaller. The reason for this is considered to be that lamellar cementite in the lamellar perlite structure of the wire is more likely to be divided by the wire drawing as the wire drawing strain is larger.
Also, the larger the annealing time and the annealing temperature, the smaller the average aspect ratio of cementite tends to be. The reason for this is considered to be that the effect of spheroidizing cementite by annealing (that is, the effect of reducing the average aspect ratio of cementite by annealing) is more easily exhibited as the annealing time and the annealing temperature are larger.
伸線加工ひずみが大きいほど、セメンタイトの平均アスペクト比が小さくなる傾向となる。この理由は、伸線加工ひずみが大きいほど、伸線加工により、線材のラメラパーライト組織中のラメラセメンタイトが分断され易いためと考えられる。
また、焼鈍時間及び焼鈍温度の各々が大きいほど、セメンタイトの平均アスペクト比が小さくなる傾向となる。この理由は、焼鈍時間及び焼鈍温度の各々が大きいほど、焼鈍によるセメンタイトの球状化の効果(即ち、焼鈍による、セメンタイトの平均アスペクト比を小さくする効果)が奏され易いためと考えられる。 The average aspect ratio of cementite in the region X in the longitudinal section is not only the wire drawing strain but also the wire drawing strain (for example, the wire drawing strain represented by the formula (1) described later), and the annealing time in annealing There is also a correlation with the annealing temperature in annealing.
As the drawing strain is larger, the average aspect ratio of cementite tends to be smaller. The reason for this is considered to be that lamellar cementite in the lamellar perlite structure of the wire is more likely to be divided by the wire drawing as the wire drawing strain is larger.
Also, the larger the annealing time and the annealing temperature, the smaller the average aspect ratio of cementite tends to be. The reason for this is considered to be that the effect of spheroidizing cementite by annealing (that is, the effect of reducing the average aspect ratio of cementite by annealing) is more easily exhibited as the annealing time and the annealing temperature are larger.
-セメンタイトの平均アスペクト比の測定方法-
本明細書において、鋼線の縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、以下のようにして測定された値を意味する。
鋼線の縦断面を鏡面研磨し、鏡面研磨された縦断面をピクリン酸アルコール(ピクラール)で腐食し、腐食された縦断面を、電界放射型走査型電子顕微鏡(FE-SEM)を用いて観察し、縦断面中の領域Xの中から異なる2箇所(即ち、2視野)を選定し、それぞれの箇所について、撮影倍率10000倍にて金属組織写真を撮影する。
各写真上に、直交する2方向に沿ってそれぞれ1μm毎に直線を引く。直線の交点上にあるセメンタイト(交点上にセメンタイトが無い場合には、交点に最も近接したセメンタイト)の長さ及び幅をそれぞれ測定し、次いで、上記幅に対する上記長さの比(即ち、長さ/幅比)を、そのセメンタイトのアスペクト比として算出する。ここで、セメンタイトの長さは、セメンタイトの形状に沿った一端から他端までの長さとする。この際、視野からはみ出しているセメンタイトについては、アスペクト比の算出対象から除外する。セメンタイトの幅は、セメンタイトの形状に沿った一端から他端までの長さを二等分する位置におけるセメンタイトの幅とする。
各写真について60箇所(即ち、2視野分の合計で120箇所)のセメンタイトを選定し、選定した120箇所のセメンタイトについて、それぞれ、上述した方法でアスペクト比を算出する。ここで、一枚の写真につき60箇所のセメンタイトのアスペクト比を算出できない場合には、別の視野の写真で代用する。
得られた120個の値(アスペクト比)を算術平均し、得られた算術平均値を、平均アスペクト比とする。 -Method of measuring average aspect ratio of cementite-
In the present specification, the average aspect ratio of cementite in the region X in the longitudinal cross section of the steel wire means a value measured as follows.
The longitudinal section of the steel wire is mirror-polished, and the mirror-polished longitudinal section is corroded with picric acid alcohol (picral), and the corroded longitudinal section is observed using a field emission scanning electron microscope (FE-SEM) Then, two different places (that is, two fields of view) are selected from the area X in the longitudinal cross section, and metallographic photographs are taken at a magnification of 10000 times for each part.
On each photograph, a straight line is drawn every 1 μm along two orthogonal directions. Measure the length and width of cementite on the intersection of straight lines (the cementite closest to the intersection if there is no cementite on the intersection) and then measure the ratio of the length to the width (ie, the length / Width ratio) is calculated as the aspect ratio of the cementite. Here, the length of cementite is the length from one end to the other end along the shape of cementite. At this time, cementite which is out of the visual field is excluded from the calculation target of the aspect ratio. The width of cementite is the width of cementite at a position bisecting the length from one end to the other end along the shape of cementite.
For each photograph, cementite is selected at 60 locations (ie, 120 locations in a total of two fields of view), and the aspect ratio is calculated by the method described above for each of the 120 selected cementites. Here, when the aspect ratio of cementite of 60 places can not be calculated per one photo, a photo of another view is substituted.
The obtained 120 values (aspect ratio) are arithmetically averaged, and the obtained arithmetic average value is taken as an average aspect ratio.
本明細書において、鋼線の縦断面中の領域Xにおけるセメンタイトの平均アスペクト比は、以下のようにして測定された値を意味する。
鋼線の縦断面を鏡面研磨し、鏡面研磨された縦断面をピクリン酸アルコール(ピクラール)で腐食し、腐食された縦断面を、電界放射型走査型電子顕微鏡(FE-SEM)を用いて観察し、縦断面中の領域Xの中から異なる2箇所(即ち、2視野)を選定し、それぞれの箇所について、撮影倍率10000倍にて金属組織写真を撮影する。
各写真上に、直交する2方向に沿ってそれぞれ1μm毎に直線を引く。直線の交点上にあるセメンタイト(交点上にセメンタイトが無い場合には、交点に最も近接したセメンタイト)の長さ及び幅をそれぞれ測定し、次いで、上記幅に対する上記長さの比(即ち、長さ/幅比)を、そのセメンタイトのアスペクト比として算出する。ここで、セメンタイトの長さは、セメンタイトの形状に沿った一端から他端までの長さとする。この際、視野からはみ出しているセメンタイトについては、アスペクト比の算出対象から除外する。セメンタイトの幅は、セメンタイトの形状に沿った一端から他端までの長さを二等分する位置におけるセメンタイトの幅とする。
各写真について60箇所(即ち、2視野分の合計で120箇所)のセメンタイトを選定し、選定した120箇所のセメンタイトについて、それぞれ、上述した方法でアスペクト比を算出する。ここで、一枚の写真につき60箇所のセメンタイトのアスペクト比を算出できない場合には、別の視野の写真で代用する。
得られた120個の値(アスペクト比)を算術平均し、得られた算術平均値を、平均アスペクト比とする。 -Method of measuring average aspect ratio of cementite-
In the present specification, the average aspect ratio of cementite in the region X in the longitudinal cross section of the steel wire means a value measured as follows.
The longitudinal section of the steel wire is mirror-polished, and the mirror-polished longitudinal section is corroded with picric acid alcohol (picral), and the corroded longitudinal section is observed using a field emission scanning electron microscope (FE-SEM) Then, two different places (that is, two fields of view) are selected from the area X in the longitudinal cross section, and metallographic photographs are taken at a magnification of 10000 times for each part.
On each photograph, a straight line is drawn every 1 μm along two orthogonal directions. Measure the length and width of cementite on the intersection of straight lines (the cementite closest to the intersection if there is no cementite on the intersection) and then measure the ratio of the length to the width (ie, the length / Width ratio) is calculated as the aspect ratio of the cementite. Here, the length of cementite is the length from one end to the other end along the shape of cementite. At this time, cementite which is out of the visual field is excluded from the calculation target of the aspect ratio. The width of cementite is the width of cementite at a position bisecting the length from one end to the other end along the shape of cementite.
For each photograph, cementite is selected at 60 locations (ie, 120 locations in a total of two fields of view), and the aspect ratio is calculated by the method described above for each of the 120 selected cementites. Here, when the aspect ratio of cementite of 60 places can not be calculated per one photo, a photo of another view is substituted.
The obtained 120 values (aspect ratio) are arithmetically averaged, and the obtained arithmetic average value is taken as an average aspect ratio.
((211)面の半価幅)
本開示の鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅(以下、単に「(211)面の半価幅」ともいう)は、鋼線中の転位密度と相関がある。鋼線中の転位密度が高いほど、(211)面の半価幅が大きい傾向となる。 (Half-value width of (211) plane)
In the longitudinal section of the steel wire of the present disclosure, the half value width of (211) plane measured using an X-ray diffractometer using a Mo tube (hereinafter, also simply referred to as “half value width of (211) plane”) Is correlated with the dislocation density in the steel wire. As the dislocation density in the steel wire is higher, the half value width of the (211) plane tends to be larger.
本開示の鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅(以下、単に「(211)面の半価幅」ともいう)は、鋼線中の転位密度と相関がある。鋼線中の転位密度が高いほど、(211)面の半価幅が大きい傾向となる。 (Half-value width of (211) plane)
In the longitudinal section of the steel wire of the present disclosure, the half value width of (211) plane measured using an X-ray diffractometer using a Mo tube (hereinafter, also simply referred to as “half value width of (211) plane”) Is correlated with the dislocation density in the steel wire. As the dislocation density in the steel wire is higher, the half value width of the (211) plane tends to be larger.
本開示の鋼線の縦断面において、(211)面の半価幅は、0.14°以上である。これにより、鋼線の引張強さが向上する。鋼線の引張強さをより向上させる観点から、(211)面の半価幅は、好ましくは0.15°以上である。
In the longitudinal section of the steel wire of the present disclosure, the half value width of the (211) plane is 0.14 ° or more. This improves the tensile strength of the steel wire. From the viewpoint of further improving the tensile strength of the steel wire, the half value width of the (211) plane is preferably 0.15 ° or more.
また、本開示の鋼線の縦断面において、(211)面の半価幅は、0.30°以下である。これにより、鋼線の延性が向上する。(211)面の半価幅が0.30°を超えると、鋼線の延性が低下し、その結果、デラミネーションが発生する可能性がある。鋼線の延性をより向上させる観点から、(211)面の半価幅は、好ましくは0.29°以下である。
Moreover, in the longitudinal cross-section of the steel wire of this indication, the half value width of a (211) plane is 0.30 degrees or less. This improves the ductility of the steel wire. When the half width of the (211) plane exceeds 0.30 °, the ductility of the steel wire is reduced, and as a result, delamination may occur. From the viewpoint of further improving the ductility of the steel wire, the half value width of the (211) plane is preferably 0.29 ° or less.
-(211)面の半価幅の測定方法-
本明細書において、鋼線の縦断面における(211)面の半価幅(即ち、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅)は、以下のようにして測定された値を意味する。
鋼線の縦断面を鏡面研磨し、鏡面研磨された縦断面について、X線回折装置(例えば、リガク社製「RINT2200」)を用い、下記条件にて、X線回折プロファイルを測定する。得られたX線回折プロファイルにおいて、(211)面の回折ピークの半価幅を求め、得られた値を(211)面の半価幅とする。 -Method of measuring half width of (211) plane-
In the present specification, the half value width of the (211) plane in the longitudinal cross section of the steel wire (that is, the half value width of the (211) plane measured using an X-ray diffractometer using a Mo tube) is It means the value measured in this way.
The vertical cross section of the steel wire is mirror-polished, and the X-ray diffraction profile is measured on the mirror-polished vertical cross-section under the following conditions using an X-ray diffractometer (for example, "RINT 2200" manufactured by Rigaku Corporation). In the obtained X-ray diffraction profile, the half value width of the diffraction peak of the (211) plane is determined, and the obtained value is taken as the half value width of the (211) plane.
本明細書において、鋼線の縦断面における(211)面の半価幅(即ち、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅)は、以下のようにして測定された値を意味する。
鋼線の縦断面を鏡面研磨し、鏡面研磨された縦断面について、X線回折装置(例えば、リガク社製「RINT2200」)を用い、下記条件にて、X線回折プロファイルを測定する。得られたX線回折プロファイルにおいて、(211)面の回折ピークの半価幅を求め、得られた値を(211)面の半価幅とする。 -Method of measuring half width of (211) plane-
In the present specification, the half value width of the (211) plane in the longitudinal cross section of the steel wire (that is, the half value width of the (211) plane measured using an X-ray diffractometer using a Mo tube) is It means the value measured in this way.
The vertical cross section of the steel wire is mirror-polished, and the X-ray diffraction profile is measured on the mirror-polished vertical cross-section under the following conditions using an X-ray diffractometer (for example, "RINT 2200" manufactured by Rigaku Corporation). In the obtained X-ray diffraction profile, the half value width of the diffraction peak of the (211) plane is determined, and the obtained value is taken as the half value width of the (211) plane.
-X線回折プロファイルの測定条件-
管球:Mo管球(ターゲットとしてMoを用いた管球)
ターゲット出力:50KV、40mA
スリット:発散1/2°、散乱1°、受光0.15mm
サンプリング幅:0.010°
測定範囲(2θ):34.2°~36.2°
最大カウント数:3000以上 -Measurement conditions of X-ray diffraction profile-
Tube: Mo tube (tube using Mo as target)
Target output: 50 KV, 40 mA
Slit: divergence 1/2 °, scattering 1 °, light reception 0.15 mm
Sampling width: 0.010 °
Measurement range (2θ): 34.2 ° to 36.2 °
Maximum count number: 3000 or more
管球:Mo管球(ターゲットとしてMoを用いた管球)
ターゲット出力:50KV、40mA
スリット:発散1/2°、散乱1°、受光0.15mm
サンプリング幅:0.010°
測定範囲(2θ):34.2°~36.2°
最大カウント数:3000以上 -Measurement conditions of X-ray diffraction profile-
Tube: Mo tube (tube using Mo as target)
Target output: 50 KV, 40 mA
Slit: divergence 1/2 °, scattering 1 °, light reception 0.15 mm
Sampling width: 0.010 °
Measurement range (2θ): 34.2 ° to 36.2 °
Maximum count number: 3000 or more
鋼線中の転位密度及び(211)面の半価幅は、線材に対し伸線加工及び焼鈍を施して鋼線を製造した場合における、伸線加工ひずみの量、焼鈍における焼鈍時間、及び焼鈍における焼鈍温度と相関がある。
伸線加工ひずみが大きい程、鋼線中の転位密度が高くなり、(211)面の半価幅が大きくなる。
焼鈍時間が長いほど鋼線中の転位密度が低くなり(即ち、(211)面の半価幅が小さくなり)、焼鈍温度が高いほど鋼線中の転位密度が低くなる(即ち、(211)面の半価幅が小さくなる)。これらの理由は、伸線加工ひずみによって鋼線中に導入された転位が、焼鈍によって回復するためと考えられる。 The dislocation density in the steel wire and the half value width of the (211) plane are the amount of wire drawing strain, the annealing time in annealing, and the annealing when the wire is subjected to wire drawing and annealing to produce a steel wire. There is a correlation with the annealing temperature at
The larger the drawing strain, the higher the dislocation density in the steel wire, and the larger the FWHM of the (211) plane.
The longer the annealing time, the lower the dislocation density in the steel wire (ie, the smaller the half width of the (211) plane), and the higher the annealing temperature, the lower the dislocation density in the steel wire (ie, (211) The half width of the face is reduced). The reason for these is considered to be that the dislocations introduced into the steel wire by drawing strain are recovered by annealing.
伸線加工ひずみが大きい程、鋼線中の転位密度が高くなり、(211)面の半価幅が大きくなる。
焼鈍時間が長いほど鋼線中の転位密度が低くなり(即ち、(211)面の半価幅が小さくなり)、焼鈍温度が高いほど鋼線中の転位密度が低くなる(即ち、(211)面の半価幅が小さくなる)。これらの理由は、伸線加工ひずみによって鋼線中に導入された転位が、焼鈍によって回復するためと考えられる。 The dislocation density in the steel wire and the half value width of the (211) plane are the amount of wire drawing strain, the annealing time in annealing, and the annealing when the wire is subjected to wire drawing and annealing to produce a steel wire. There is a correlation with the annealing temperature at
The larger the drawing strain, the higher the dislocation density in the steel wire, and the larger the FWHM of the (211) plane.
The longer the annealing time, the lower the dislocation density in the steel wire (ie, the smaller the half width of the (211) plane), and the higher the annealing temperature, the lower the dislocation density in the steel wire (ie, (211) The half width of the face is reduced). The reason for these is considered to be that the dislocations introduced into the steel wire by drawing strain are recovered by annealing.
(横断面の金属組織)
本開示における鋼線は、横断面において、鋼線の直径をDとした場合に、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域における初析フェライト分率が、10%以下であることが好ましい。これにより、鋼線の引張強さがより向上する。
ここでいう初析フェライト分率は、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域における、金属組織全体に占める初析フェライト組織の面積率を意味する。
初析フェライト分率が10%以下である鋼線は、ラメラパーライト組織を主体とする線材を伸線加工することにより製造できる。
初析フェライト分率の下限には特に制限はなく、初析フェライト分率は、0%であってもよい。
中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域において、金属組織から初析フェライトを除いた残部は、ラメラパーライト組織であることが好ましい。
鋼線の横断面における上記初析フェライト分率は、後述する線材の横断面におけるパーライト分率の測定と同様の手法によって測定できる。 (Metallographic structure of cross section)
The steel wire in the present disclosure has a pro-eutectoid ferrite component in a region in which a region within D / 7 from the center and a region within D / 7 from the outer peripheral surface in a cross section when the diameter of the steel wire is D. The rate is preferably 10% or less. This further improves the tensile strength of the steel wire.
The pro-eutectoid ferrite fraction referred to herein means the area ratio of the pro-eutectoid ferrite structure to the whole metal structure in the area combining the area within D / 7 from the center and the area within D / 7 from the outer peripheral surface. .
A steel wire having a pro-eutectoid ferrite fraction of 10% or less can be manufactured by drawing a wire mainly having a lamellar perlite structure.
There is no particular limitation on the lower limit of the pro-eutectoid ferrite fraction, and the pro-eutectoid ferrite fraction may be 0%.
In the area | region which united the area | region within D / 7 from a center, and the area | region within D / 7 from an outer peripheral surface, it is preferable that the remainder except a pro-eutectoid ferrite from metal structure is a lamellar perlite structure.
The pro-eutectoid ferrite fraction in the cross section of the steel wire can be measured by the same method as the measurement of the pearlite fraction in the cross section of the wire described later.
本開示における鋼線は、横断面において、鋼線の直径をDとした場合に、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域における初析フェライト分率が、10%以下であることが好ましい。これにより、鋼線の引張強さがより向上する。
ここでいう初析フェライト分率は、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域における、金属組織全体に占める初析フェライト組織の面積率を意味する。
初析フェライト分率が10%以下である鋼線は、ラメラパーライト組織を主体とする線材を伸線加工することにより製造できる。
初析フェライト分率の下限には特に制限はなく、初析フェライト分率は、0%であってもよい。
中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域において、金属組織から初析フェライトを除いた残部は、ラメラパーライト組織であることが好ましい。
鋼線の横断面における上記初析フェライト分率は、後述する線材の横断面におけるパーライト分率の測定と同様の手法によって測定できる。 (Metallographic structure of cross section)
The steel wire in the present disclosure has a pro-eutectoid ferrite component in a region in which a region within D / 7 from the center and a region within D / 7 from the outer peripheral surface in a cross section when the diameter of the steel wire is D. The rate is preferably 10% or less. This further improves the tensile strength of the steel wire.
The pro-eutectoid ferrite fraction referred to herein means the area ratio of the pro-eutectoid ferrite structure to the whole metal structure in the area combining the area within D / 7 from the center and the area within D / 7 from the outer peripheral surface. .
A steel wire having a pro-eutectoid ferrite fraction of 10% or less can be manufactured by drawing a wire mainly having a lamellar perlite structure.
There is no particular limitation on the lower limit of the pro-eutectoid ferrite fraction, and the pro-eutectoid ferrite fraction may be 0%.
In the area | region which united the area | region within D / 7 from a center, and the area | region within D / 7 from an outer peripheral surface, it is preferable that the remainder except a pro-eutectoid ferrite from metal structure is a lamellar perlite structure.
The pro-eutectoid ferrite fraction in the cross section of the steel wire can be measured by the same method as the measurement of the pearlite fraction in the cross section of the wire described later.
<鋼線の引張強さ>
前述したとおり、本開示における鋼線は、引張強さに優れる。
鋼線の引張強さは、好ましくは1900MPa以上であり、より好ましくは2100MPa以上であり、特に好ましくは2300MPa以上である。
鋼線の引張強さの上限には特に制限はない。鋼線の引張強さは、鋼線の製造適性の観点から、2800MPa以下でもよいし、2600MPa以下でもよい。 <Tensile strength of steel wire>
As described above, the steel wire in the present disclosure is excellent in tensile strength.
The tensile strength of the steel wire is preferably 1900 MPa or more, more preferably 2100 MPa or more, and particularly preferably 2300 MPa or more.
The upper limit of the tensile strength of the steel wire is not particularly limited. The tensile strength of the steel wire may be 2800 MPa or less or 2600 MPa or less from the viewpoint of production suitability of the steel wire.
前述したとおり、本開示における鋼線は、引張強さに優れる。
鋼線の引張強さは、好ましくは1900MPa以上であり、より好ましくは2100MPa以上であり、特に好ましくは2300MPa以上である。
鋼線の引張強さの上限には特に制限はない。鋼線の引張強さは、鋼線の製造適性の観点から、2800MPa以下でもよいし、2600MPa以下でもよい。 <Tensile strength of steel wire>
As described above, the steel wire in the present disclosure is excellent in tensile strength.
The tensile strength of the steel wire is preferably 1900 MPa or more, more preferably 2100 MPa or more, and particularly preferably 2300 MPa or more.
The upper limit of the tensile strength of the steel wire is not particularly limited. The tensile strength of the steel wire may be 2800 MPa or less or 2600 MPa or less from the viewpoint of production suitability of the steel wire.
<鋼線の電気抵抗率>
前述したとおり、本開示における鋼線は、電気抵抗率が低減されている。
鋼線の電気抵抗率は、好ましくは0.175μΩm以下である。
鋼線の電気抵抗率の下限には特に制限はない。鋼線の電気抵抗率は、鋼線の製造適性の観点から、0.140μΩm以上でもよい。 <Electric resistivity of steel wire>
As mentioned above, the steel wire in the present disclosure has a reduced electrical resistivity.
The electrical resistivity of the steel wire is preferably 0.175 μΩm or less.
The lower limit of the electrical resistivity of the steel wire is not particularly limited. The electrical resistivity of the steel wire may be 0.140 μΩm or more from the viewpoint of production suitability of the steel wire.
前述したとおり、本開示における鋼線は、電気抵抗率が低減されている。
鋼線の電気抵抗率は、好ましくは0.175μΩm以下である。
鋼線の電気抵抗率の下限には特に制限はない。鋼線の電気抵抗率は、鋼線の製造適性の観点から、0.140μΩm以上でもよい。 <Electric resistivity of steel wire>
As mentioned above, the steel wire in the present disclosure has a reduced electrical resistivity.
The electrical resistivity of the steel wire is preferably 0.175 μΩm or less.
The lower limit of the electrical resistivity of the steel wire is not particularly limited. The electrical resistivity of the steel wire may be 0.140 μΩm or more from the viewpoint of production suitability of the steel wire.
<鋼線の直径>
鋼線の直径は、好ましくは1.0mm以上3.5mm以下である。
鋼線の直径が1.0mm以上である場合には、伸線加工によってアルミ覆鋼線を得る場合の伸線加工をより安定的に行うことができる。
鋼線の直径が3.5mm以下である場合には、伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。 <Diameter of steel wire>
The diameter of the steel wire is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire is 1.0 mm or more, wire drawing in the case of obtaining an aluminum coated steel wire by wire drawing can be performed more stably.
When the diameter of the steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
鋼線の直径は、好ましくは1.0mm以上3.5mm以下である。
鋼線の直径が1.0mm以上である場合には、伸線加工によってアルミ覆鋼線を得る場合の伸線加工をより安定的に行うことができる。
鋼線の直径が3.5mm以下である場合には、伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。 <Diameter of steel wire>
The diameter of the steel wire is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire is 1.0 mm or more, wire drawing in the case of obtaining an aluminum coated steel wire by wire drawing can be performed more stably.
When the diameter of the steel wire is 3.5 mm or less, decomposition of cementite during wire drawing and an increase in electrical resistance due to this decomposition can be further suppressed.
<Al含有層>
本開示のアルミ覆鋼線は、前述した鋼線の少なくとも一部を被覆するAl含有層を備える。
Al含有層は、Alを主成分とする層であることが好ましい。
ここで、Alを主成分とする層とは、含有量(質量%)が最も多い成分として、Alを含有する層を意味する。
Al含有層におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。
Al含有層としては、Al(即ち、純Al)からなるAl層、又は、Al合金からなるAl合金層が好ましい。
Al合金としては、Alと、Mg、Si、Zn、及びMnからなる群から選択される少なくとも1種と、を含むAl合金が好ましい。Al合金におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。好ましいAl合金として、具体的には、国際アルミニウム合金名における3000番台~7000番台のAl合金が挙げられる。
ここでいうAlからなるAl層は、Al以外に不純物を含んでいてもよい。同様に、ここでいうAl合金からなるAl合金層は、Al合金以外に不純物を含んでいてもよい。 <Al-containing layer>
The aluminum clad steel wire of the present disclosure includes an Al-containing layer covering at least a part of the above-described steel wire.
The Al-containing layer is preferably a layer containing Al as a main component.
Here, the layer containing Al as a main component means a layer containing Al as a component having the largest content (% by mass).
50 mass% or more is preferable, as for content of Al in an Al containing layer, 80 mass% or more is still more preferable, and 90 mass% or more is especially preferable.
As the Al-containing layer, an Al layer composed of Al (that is, pure Al) or an Al alloy layer composed of an Al alloy is preferable.
As the Al alloy, an Al alloy containing Al and at least one selected from the group consisting of Mg, Si, Zn, and Mn is preferable. 50 mass% or more is preferable, 80 mass% or more is still more preferable, and, as for content of Al in Al alloy, 90 mass% or more is especially preferable. Specifically, preferred examples of the Al alloy include the 3000 series to 7000 series Al alloys in the international aluminum alloy name.
The Al layer made of Al here may contain impurities in addition to Al. Similarly, the Al alloy layer made of an Al alloy as referred to herein may contain impurities in addition to the Al alloy.
本開示のアルミ覆鋼線は、前述した鋼線の少なくとも一部を被覆するAl含有層を備える。
Al含有層は、Alを主成分とする層であることが好ましい。
ここで、Alを主成分とする層とは、含有量(質量%)が最も多い成分として、Alを含有する層を意味する。
Al含有層におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。
Al含有層としては、Al(即ち、純Al)からなるAl層、又は、Al合金からなるAl合金層が好ましい。
Al合金としては、Alと、Mg、Si、Zn、及びMnからなる群から選択される少なくとも1種と、を含むAl合金が好ましい。Al合金におけるAlの含有量は、50質量%以上が好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。好ましいAl合金として、具体的には、国際アルミニウム合金名における3000番台~7000番台のAl合金が挙げられる。
ここでいうAlからなるAl層は、Al以外に不純物を含んでいてもよい。同様に、ここでいうAl合金からなるAl合金層は、Al合金以外に不純物を含んでいてもよい。 <Al-containing layer>
The aluminum clad steel wire of the present disclosure includes an Al-containing layer covering at least a part of the above-described steel wire.
The Al-containing layer is preferably a layer containing Al as a main component.
Here, the layer containing Al as a main component means a layer containing Al as a component having the largest content (% by mass).
50 mass% or more is preferable, as for content of Al in an Al containing layer, 80 mass% or more is still more preferable, and 90 mass% or more is especially preferable.
As the Al-containing layer, an Al layer composed of Al (that is, pure Al) or an Al alloy layer composed of an Al alloy is preferable.
As the Al alloy, an Al alloy containing Al and at least one selected from the group consisting of Mg, Si, Zn, and Mn is preferable. 50 mass% or more is preferable, 80 mass% or more is still more preferable, and, as for content of Al in Al alloy, 90 mass% or more is especially preferable. Specifically, preferred examples of the Al alloy include the 3000 series to 7000 series Al alloys in the international aluminum alloy name.
The Al layer made of Al here may contain impurities in addition to Al. Similarly, the Al alloy layer made of an Al alloy as referred to herein may contain impurities in addition to the Al alloy.
本開示のアルミ覆鋼線の横断面全体に対するAl含有層の面積率は、好ましくは10%~64%である。
Al含有層の面積率が10%以上であると、アルミ覆鋼線全体の電気抵抗(詳細には、長手方向の電気抵抗)がより低減される。
Al含有層の面積率が64%以下であると、アルミ覆鋼線全体の引張強さがより向上する。
Al含有層の面積率は、より好ましくは10%~50%であり、更に好ましくは10%~40%であり、更に好ましくは15%~35%である。 The area ratio of the Al-containing layer to the entire cross section of the aluminum-coated steel wire of the present disclosure is preferably 10% to 64%.
When the area ratio of the Al-containing layer is 10% or more, the electrical resistance (in detail, the electrical resistance in the longitudinal direction) of the entire aluminum clad steel wire is further reduced.
When the area ratio of the Al-containing layer is 64% or less, the tensile strength of the entire aluminum clad steel wire is further improved.
The area ratio of the Al-containing layer is more preferably 10% to 50%, still more preferably 10% to 40%, and still more preferably 15% to 35%.
Al含有層の面積率が10%以上であると、アルミ覆鋼線全体の電気抵抗(詳細には、長手方向の電気抵抗)がより低減される。
Al含有層の面積率が64%以下であると、アルミ覆鋼線全体の引張強さがより向上する。
Al含有層の面積率は、より好ましくは10%~50%であり、更に好ましくは10%~40%であり、更に好ましくは15%~35%である。 The area ratio of the Al-containing layer to the entire cross section of the aluminum-coated steel wire of the present disclosure is preferably 10% to 64%.
When the area ratio of the Al-containing layer is 10% or more, the electrical resistance (in detail, the electrical resistance in the longitudinal direction) of the entire aluminum clad steel wire is further reduced.
When the area ratio of the Al-containing layer is 64% or less, the tensile strength of the entire aluminum clad steel wire is further improved.
The area ratio of the Al-containing layer is more preferably 10% to 50%, still more preferably 10% to 40%, and still more preferably 15% to 35%.
以上で説明した本開示のアルミ覆鋼線は、鋼心アルミニウム撚線の芯材として用いられる。
ここでいう鋼心アルミニウム撚線としては、本開示のアルミ覆鋼線を芯材とし、この芯材の外側にアルミニウム線又はアルミニウム合金線を撚り合わせた構造を有する一般的な鋼心アルミニウム撚線が挙げられ、特に制限はない。 The aluminum clad steel wire of the present disclosure described above is used as a core material of a steel core aluminum stranded wire.
As the steel core aluminum stranded wire referred to herein, a general steel core aluminum stranded wire having a structure in which the aluminum clad steel wire of the present disclosure is used as a core material and an aluminum wire or an aluminum alloy wire is twisted on the outside of this core material. There is no particular limitation.
ここでいう鋼心アルミニウム撚線としては、本開示のアルミ覆鋼線を芯材とし、この芯材の外側にアルミニウム線又はアルミニウム合金線を撚り合わせた構造を有する一般的な鋼心アルミニウム撚線が挙げられ、特に制限はない。 The aluminum clad steel wire of the present disclosure described above is used as a core material of a steel core aluminum stranded wire.
As the steel core aluminum stranded wire referred to herein, a general steel core aluminum stranded wire having a structure in which the aluminum clad steel wire of the present disclosure is used as a core material and an aluminum wire or an aluminum alloy wire is twisted on the outside of this core material. There is no particular limitation.
〔アルミ覆鋼線の製造方法の一例(製法A)〕
本開示のアルミ覆鋼線を製造する方法の一例として、以下の製法Aが挙げられる。
製法Aは、
化学組成が、前述した本開示における化学組成であり、横断面において、線材の直径をdとした場合に、中心からd/7以内の領域と外周面からd/7以内の領域とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程(以下、「線材準備工程」ともいう)と、
線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程(以下、「第1伸線工程」ともいう)と、
未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程(以下、「Al含有層形成工程」ともいう)と、
Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程(以下、「第2伸線工程」ともいう)と、
第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に焼鈍を施すことにより、アルミ覆鋼線を得る工程(以下、「焼鈍工程」ともいう)と、
を含み、
下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下であり、
焼鈍における焼鈍温度が370℃超520℃以下であり、焼鈍における焼鈍時間が10秒間以上180秒間以下である。 [Example of production method of aluminum coated steel wire (production method A)]
The following manufacturing method A is mentioned as an example of the method of manufacturing the aluminum clad steel wire of this indication.
Production method A is
The chemical composition is the chemical composition in the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center and a region within d / 7 from the outer peripheral surface are combined. Preparing a wire having a pearlite fraction of 90% or more in the region (hereinafter, also referred to as “wire preparation step”);
A step of obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process (hereinafter, also referred to as a “first wire drawing step”);
Forming an Al-containing layer covering at least a part of the unannealed steel wire to obtain an Al-containing layer-containing unannealed steel wire (hereinafter, also referred to as an “Al-containing layer forming step”);
A step of subjecting the aluminum-containing unannealed steel wire to a second wire drawing process (hereinafter, also referred to as a “second wire drawing step”);
A step of obtaining an aluminum-coated steel wire (hereinafter, also referred to as an “annealing step”) by annealing the second wire-drawn non-annealed steel wire with an Al-containing layer;
Including
The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum clad steel wire is not less than 1.0 mm and not more than 3.5 mm,
The annealing temperature in the annealing is over 370 ° C. and 520 ° C. or less, and the annealing time in the annealing is 10 seconds or more and 180 seconds or less.
本開示のアルミ覆鋼線を製造する方法の一例として、以下の製法Aが挙げられる。
製法Aは、
化学組成が、前述した本開示における化学組成であり、横断面において、線材の直径をdとした場合に、中心からd/7以内の領域と外周面からd/7以内の領域とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程(以下、「線材準備工程」ともいう)と、
線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程(以下、「第1伸線工程」ともいう)と、
未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程(以下、「Al含有層形成工程」ともいう)と、
Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程(以下、「第2伸線工程」ともいう)と、
第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に焼鈍を施すことにより、アルミ覆鋼線を得る工程(以下、「焼鈍工程」ともいう)と、
を含み、
下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下であり、
焼鈍における焼鈍温度が370℃超520℃以下であり、焼鈍における焼鈍時間が10秒間以上180秒間以下である。 [Example of production method of aluminum coated steel wire (production method A)]
The following manufacturing method A is mentioned as an example of the method of manufacturing the aluminum clad steel wire of this indication.
Production method A is
The chemical composition is the chemical composition in the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center and a region within d / 7 from the outer peripheral surface are combined. Preparing a wire having a pearlite fraction of 90% or more in the region (hereinafter, also referred to as “wire preparation step”);
A step of obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process (hereinafter, also referred to as a “first wire drawing step”);
Forming an Al-containing layer covering at least a part of the unannealed steel wire to obtain an Al-containing layer-containing unannealed steel wire (hereinafter, also referred to as an “Al-containing layer forming step”);
A step of subjecting the aluminum-containing unannealed steel wire to a second wire drawing process (hereinafter, also referred to as a “second wire drawing step”);
A step of obtaining an aluminum-coated steel wire (hereinafter, also referred to as an “annealing step”) by annealing the second wire-drawn non-annealed steel wire with an Al-containing layer;
Including
The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum clad steel wire is not less than 1.0 mm and not more than 3.5 mm,
The annealing temperature in the annealing is over 370 ° C. and 520 ° C. or less, and the annealing time in the annealing is 10 seconds or more and 180 seconds or less.
伸線加工ひずみ=2×ln(線材の直径(mm)/アルミ覆鋼線中の鋼線の直径(mm)) … 式(1)
Wire drawing strain = 2 × ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm)) Formula (1)
製法Aは、必要に応じ、その他の工程を含んでいてもよい。
The production method A may include other steps as necessary.
<線材準備工程>
線材準備工程は、前述した本開示における化学組成を有し、横断面において、線材の直径をdとした場合に、中心からd/7以内の領域(以下、「領域Y1」ともいう)と外周面からd/7以内の領域(以下、「領域Y2」ともいう)とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程である。 <Wire preparation process>
The wire preparing step has the chemical composition according to the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center (hereinafter also referred to as “region Y1”) and the outer periphery This is a step of preparing a wire having a pearlite fraction of 90% or more in a region obtained by combining a region within d / 7 from the surface (hereinafter also referred to as “region Y2”).
線材準備工程は、前述した本開示における化学組成を有し、横断面において、線材の直径をdとした場合に、中心からd/7以内の領域(以下、「領域Y1」ともいう)と外周面からd/7以内の領域(以下、「領域Y2」ともいう)とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程である。 <Wire preparation process>
The wire preparing step has the chemical composition according to the present disclosure described above, and in the cross section, when the diameter of the wire is d, a region within d / 7 from the center (hereinafter also referred to as “region Y1”) and the outer periphery This is a step of preparing a wire having a pearlite fraction of 90% or more in a region obtained by combining a region within d / 7 from the surface (hereinafter also referred to as “region Y2”).
以下、線材の横断面中の領域Y1及び領域Y2について、図2を参照して説明する。
図2は、本開示の鋼線の製造方法の一例において、線材の横断面、並びに、この横断面中の領域Y1及び領域Y2を概念的に示す図である。
図2に示されるように、線材の直径をdとした場合に、領域Y1は、線材の中心Pからd/7以内の領域(図2中、斜線及び符号「Y1」を付した領域)であり、領域Y2は、外周面からd/7以内の領域(図2中、斜線及び符号「Y2」を付した領域)である。 Hereinafter, the region Y1 and the region Y2 in the cross section of the wire will be described with reference to FIG.
FIG. 2: is a figure which shows notionally the cross section of a wire, and area | region Y1 in this cross section, and area | region Y2 in an example of the manufacturing method of the steel wire of this indication.
As shown in FIG. 2, assuming that the diameter of the wire is d, the region Y1 is a region within d / 7 from the center P of the wire (a region indicated by hatching and “Y1” in FIG. 2) The region Y2 is a region within d / 7 from the outer peripheral surface (a region indicated by oblique lines and a symbol "Y2" in FIG. 2).
図2は、本開示の鋼線の製造方法の一例において、線材の横断面、並びに、この横断面中の領域Y1及び領域Y2を概念的に示す図である。
図2に示されるように、線材の直径をdとした場合に、領域Y1は、線材の中心Pからd/7以内の領域(図2中、斜線及び符号「Y1」を付した領域)であり、領域Y2は、外周面からd/7以内の領域(図2中、斜線及び符号「Y2」を付した領域)である。 Hereinafter, the region Y1 and the region Y2 in the cross section of the wire will be described with reference to FIG.
FIG. 2: is a figure which shows notionally the cross section of a wire, and area | region Y1 in this cross section, and area | region Y2 in an example of the manufacturing method of the steel wire of this indication.
As shown in FIG. 2, assuming that the diameter of the wire is d, the region Y1 is a region within d / 7 from the center P of the wire (a region indicated by hatching and “Y1” in FIG. 2) The region Y2 is a region within d / 7 from the outer peripheral surface (a region indicated by oblique lines and a symbol "Y2" in FIG. 2).
製法Aにおける線材について、横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率を特定する理由は、領域Y1と領域Y2とを合わせた領域におけるパーライト分率が、線材の横断面におけるパーライト分率の代表値として適切であると考えられるためである。
The reason for specifying the pearlite fraction in the area obtained by combining the area Y1 and the area Y2 in the cross section of the wire in the manufacturing method A is that the pearlite fraction in the area obtained by combining the area Y1 and the area Y2 is the cross section of the wire Because it is considered to be appropriate as a representative value of the perlite fraction in
製法Aでは、伸線加工前の鋼材である線材として、領域Y1と領域Y2とを合わせた領域におけるパーライト分率が90%以上である線材を用い、この線材に対し、第1の伸線加工及び第2の伸線加工を施すことにより、加工硬化を促進させることができる。従って、線材の引張強さを効率的に向上させることができる。即ち、引張強さに優れた鋼線を製造できる。
In the manufacturing method A, a wire having a pearlite fraction of 90% or more in a region obtained by combining the region Y1 and the region Y2 is used as a wire which is a steel material before wire drawing, and the first wire drawing is performed on this wire Work hardening can be promoted by applying the second wire drawing process. Therefore, the tensile strength of the wire can be efficiently improved. That is, the steel wire excellent in tensile strength can be manufactured.
線材のパーライト分率は、領域Y1と領域Y2とを合わせた領域において、金属組織全体に占めるラメラパーライト組織の面積率を意味する。
線材のパーライト分率は、好ましくは95%以上である。
線材のパーライト分率は、100%であってもよいし、100%未満であってもよいし、99%以下であってもよい。
領域Y1と領域Y2とを合わせた領域において、金属組織からラメラパーライト組織を除いた残部(即ち、非パーライト組織)は、初析フェライト組織であることが好ましい。 The pearlite fraction of the wire means the area ratio of the lamellar perlite structure in the entire metallographic structure in the combined area of the area Y1 and the area Y2.
The pearlite fraction of the wire is preferably 95% or more.
The pearlite fraction of the wire may be 100%, less than 100%, or 99% or less.
In the area | region which united the area | region Y1 and the area | region Y2, it is preferable that the remainder (namely, non-perlite structure) which remove | eliminated the lamellar perlite structure from metal structure is a proeutectoid ferrite structure.
線材のパーライト分率は、好ましくは95%以上である。
線材のパーライト分率は、100%であってもよいし、100%未満であってもよいし、99%以下であってもよい。
領域Y1と領域Y2とを合わせた領域において、金属組織からラメラパーライト組織を除いた残部(即ち、非パーライト組織)は、初析フェライト組織であることが好ましい。 The pearlite fraction of the wire means the area ratio of the lamellar perlite structure in the entire metallographic structure in the combined area of the area Y1 and the area Y2.
The pearlite fraction of the wire is preferably 95% or more.
The pearlite fraction of the wire may be 100%, less than 100%, or 99% or less.
In the area | region which united the area | region Y1 and the area | region Y2, it is preferable that the remainder (namely, non-perlite structure) which remove | eliminated the lamellar perlite structure from metal structure is a proeutectoid ferrite structure.
本明細書において、領域Y1と領域Y2とを合わせた領域におけるパーライト分率は、以下のようにして測定された値を意味する。
線材の横断面を鏡面研磨し、鏡面研磨された横断面をピクラールで腐食し、腐食された横断面を、FE-SEMを用いて観察し、領域Y1及び領域Y2の各々から、観察視野を10箇所ずつ(即ち、計20視野)選定する。選定された20視野において、それぞれ、撮影倍率2000倍にて金属組織写真を撮影する。1視野あたりの面積は、2.7×10-3mm2(縦0.045mm、横0.060mm)とする。
次に、各金属組織写真に、それぞれ、透明シート(例えばOHP(Over Head Projector)シート)を重ね、この状態で、各透明シートにおける非パーライト組織(即ち、ラメラパーライト組織以外の組織)に色を塗る。
次に、各透明シートについて、それぞれ、「色を塗った領域」の面積率を画像解析ソフトにより求める。得られた面積率(20個の値)を算術平均し、得られた値を、非パーライト組織の面積率とする。非パーライト組織の面積率を、100%から差し引いた値を、線材の横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率とする。 In the present specification, the pearlite fraction in the combined area of the area Y1 and the area Y2 means a value measured as follows.
The cross section of the wire is mirror-polished, the mirror-polished cross-section is corroded with picral, and the corroded cross-section is observed using an FE-SEM. From each of the area Y1 and the area Y2, the observation view is 10 Select each place (ie, a total of 20 views). In each of the 20 selected fields of view, metallographic photographs are taken at a magnification of 2000 ×. The area per view is 2.7 × 10 -3 mm 2 (0.045 mm in length, 0.060 mm in width).
Next, a transparent sheet (for example, an OHP (Over Head Projector) sheet) is overlaid on each metallographic photograph, and in this state, color is applied to the non-perlite structure (that is, a structure other than the lamellar perlite structure) in each transparent sheet. Paint.
Next, for each transparent sheet, the area ratio of the “colored area” is determined by image analysis software. The obtained area ratio (20 values) is arithmetically averaged, and the obtained value is taken as the area ratio of non-perlite structure. Let the value which deducted the area rate of non-pearlite structure from 100% be the pearlite fraction in the field which combined field Y1 and field Y2 in the cross section of a wire.
線材の横断面を鏡面研磨し、鏡面研磨された横断面をピクラールで腐食し、腐食された横断面を、FE-SEMを用いて観察し、領域Y1及び領域Y2の各々から、観察視野を10箇所ずつ(即ち、計20視野)選定する。選定された20視野において、それぞれ、撮影倍率2000倍にて金属組織写真を撮影する。1視野あたりの面積は、2.7×10-3mm2(縦0.045mm、横0.060mm)とする。
次に、各金属組織写真に、それぞれ、透明シート(例えばOHP(Over Head Projector)シート)を重ね、この状態で、各透明シートにおける非パーライト組織(即ち、ラメラパーライト組織以外の組織)に色を塗る。
次に、各透明シートについて、それぞれ、「色を塗った領域」の面積率を画像解析ソフトにより求める。得られた面積率(20個の値)を算術平均し、得られた値を、非パーライト組織の面積率とする。非パーライト組織の面積率を、100%から差し引いた値を、線材の横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率とする。 In the present specification, the pearlite fraction in the combined area of the area Y1 and the area Y2 means a value measured as follows.
The cross section of the wire is mirror-polished, the mirror-polished cross-section is corroded with picral, and the corroded cross-section is observed using an FE-SEM. From each of the area Y1 and the area Y2, the observation view is 10 Select each place (ie, a total of 20 views). In each of the 20 selected fields of view, metallographic photographs are taken at a magnification of 2000 ×. The area per view is 2.7 × 10 -3 mm 2 (0.045 mm in length, 0.060 mm in width).
Next, a transparent sheet (for example, an OHP (Over Head Projector) sheet) is overlaid on each metallographic photograph, and in this state, color is applied to the non-perlite structure (that is, a structure other than the lamellar perlite structure) in each transparent sheet. Paint.
Next, for each transparent sheet, the area ratio of the “colored area” is determined by image analysis software. The obtained area ratio (20 values) is arithmetically averaged, and the obtained value is taken as the area ratio of non-perlite structure. Let the value which deducted the area rate of non-pearlite structure from 100% be the pearlite fraction in the field which combined field Y1 and field Y2 in the cross section of a wire.
線材の直径は、好ましくは6mm以上12mm以下である。
線材の直径が6mm以上である場合には、伸線ひずみを2.6超とすることがより容易である。
線材の直径が12mm以下である場合には、第1の伸線加工がより容易である。 The diameter of the wire is preferably 6 mm or more and 12 mm or less.
When the diameter of the wire is 6 mm or more, it is easier to make the drawing strain more than 2.6.
When the diameter of the wire is 12 mm or less, the first wire drawing is easier.
線材の直径が6mm以上である場合には、伸線ひずみを2.6超とすることがより容易である。
線材の直径が12mm以下である場合には、第1の伸線加工がより容易である。 The diameter of the wire is preferably 6 mm or more and 12 mm or less.
When the diameter of the wire is 6 mm or more, it is easier to make the drawing strain more than 2.6.
When the diameter of the wire is 12 mm or less, the first wire drawing is easier.
線材準備工程は、予め製造された線材を単に準備するだけの工程であってもよいし、線材を製造する工程であってもよい。
The wire preparation step may be a step of merely preparing a pre-manufactured wire, or may be a step of manufacturing the wire.
(線材の好ましい製造方法)
以下、線材準備工程が線材を製造する工程である場合における、線材の好ましい製造方法について説明する。
線材の好ましい製造方法は、
前述した本開示における化学組成を有する鋼を溶製し、次いで鋳造することによりインゴットを得る工程(以下、「鋳造工程」ともいう)と、
インゴットを加熱し、次いで熱間圧延することにより、線材を得る工程(以下、「熱間圧延工程」ともいう)と、
を含む。 (Preferred method of manufacturing wire rod)
Hereinafter, the preferable manufacturing method of a wire in the case where a wire preparation process is a process of manufacturing a wire is demonstrated.
The preferred method of producing the wire is
A step of melting an steel having the chemical composition in the present disclosure described above and then casting to obtain an ingot (hereinafter also referred to as a “casting step”);
A step of heating the ingot and then hot rolling to obtain a wire rod (hereinafter also referred to as a “hot rolling step”);
including.
以下、線材準備工程が線材を製造する工程である場合における、線材の好ましい製造方法について説明する。
線材の好ましい製造方法は、
前述した本開示における化学組成を有する鋼を溶製し、次いで鋳造することによりインゴットを得る工程(以下、「鋳造工程」ともいう)と、
インゴットを加熱し、次いで熱間圧延することにより、線材を得る工程(以下、「熱間圧延工程」ともいう)と、
を含む。 (Preferred method of manufacturing wire rod)
Hereinafter, the preferable manufacturing method of a wire in the case where a wire preparation process is a process of manufacturing a wire is demonstrated.
The preferred method of producing the wire is
A step of melting an steel having the chemical composition in the present disclosure described above and then casting to obtain an ingot (hereinafter also referred to as a “casting step”);
A step of heating the ingot and then hot rolling to obtain a wire rod (hereinafter also referred to as a “hot rolling step”);
including.
鋳造工程における鋼の溶製は、真空溶解炉等の溶解炉を用いた通常の方法で行うことができる。
Melting of steel in the casting step can be performed by a usual method using a melting furnace such as a vacuum melting furnace.
熱間圧延工程では、熱間圧延に先立ち、インゴットを、1150℃以上1350℃以下で、30分以上90分以下加熱することが好ましい。
インゴットの加熱温度が1150℃以上であること、及び、インゴットの加熱時間が30分以上であることにより、インゴット中心部を十分に加熱でき、中心部の偏析を抑制できる。その結果、熱間圧延後、伸線加工中の線材又は鋼線の破断を抑制できる。
また、インゴットの加熱温度が1350℃以下であること、及び、インゴットの加熱時間が90分以下であることにより、鋼中における脱炭の進行を抑制でき、その結果、脱炭に起因する鋼線の引張強さの低下を抑制できる。 In the hot rolling step, prior to hot rolling, it is preferable to heat the ingot at a temperature of 1150 ° C. or more and 1350 ° C. or less for 30 minutes or more and 90 minutes or less.
When the heating temperature of the ingot is 1150 ° C. or more and the heating time of the ingot is 30 minutes or more, the ingot center can be sufficiently heated, and segregation of the center can be suppressed. As a result, it is possible to suppress breakage of the wire or steel wire during wire drawing after hot rolling.
Further, by setting the ingot heating temperature to 1350 ° C. or less and the ingot heating time to be 90 minutes or less, the progress of decarburization in the steel can be suppressed, and as a result, the steel wire resulting from decarburization It is possible to suppress the decrease in tensile strength of
インゴットの加熱温度が1150℃以上であること、及び、インゴットの加熱時間が30分以上であることにより、インゴット中心部を十分に加熱でき、中心部の偏析を抑制できる。その結果、熱間圧延後、伸線加工中の線材又は鋼線の破断を抑制できる。
また、インゴットの加熱温度が1350℃以下であること、及び、インゴットの加熱時間が90分以下であることにより、鋼中における脱炭の進行を抑制でき、その結果、脱炭に起因する鋼線の引張強さの低下を抑制できる。 In the hot rolling step, prior to hot rolling, it is preferable to heat the ingot at a temperature of 1150 ° C. or more and 1350 ° C. or less for 30 minutes or more and 90 minutes or less.
When the heating temperature of the ingot is 1150 ° C. or more and the heating time of the ingot is 30 minutes or more, the ingot center can be sufficiently heated, and segregation of the center can be suppressed. As a result, it is possible to suppress breakage of the wire or steel wire during wire drawing after hot rolling.
Further, by setting the ingot heating temperature to 1350 ° C. or less and the ingot heating time to be 90 minutes or less, the progress of decarburization in the steel can be suppressed, and as a result, the steel wire resulting from decarburization It is possible to suppress the decrease in tensile strength of
熱間圧延工程において、熱間圧延の仕上げ温度は、800℃以上1000℃以下とすることが好ましい。
熱間圧延の仕上げ温度が800℃以上であると、熱間圧延中の抵抗反力を低減でき、形状の作りこみが容易となる。
熱間圧延の仕上げ温度が1100℃以下であると、線材の延性の低下を抑制でき、伸線加工中の破断を抑制できる。 In the hot rolling step, the finishing temperature of the hot rolling is preferably 800 ° C. or more and 1000 ° C. or less.
The resistance reaction force during hot rolling can be reduced as the finishing temperature of hot rolling is 800 ° C. or higher, and the shape can be easily formed.
The fall of the ductility of a wire can be controlled as the finish temperature of hot rolling is 1100 ° C or less, and the fracture during wire drawing can be controlled.
熱間圧延の仕上げ温度が800℃以上であると、熱間圧延中の抵抗反力を低減でき、形状の作りこみが容易となる。
熱間圧延の仕上げ温度が1100℃以下であると、線材の延性の低下を抑制でき、伸線加工中の破断を抑制できる。 In the hot rolling step, the finishing temperature of the hot rolling is preferably 800 ° C. or more and 1000 ° C. or less.
The resistance reaction force during hot rolling can be reduced as the finishing temperature of hot rolling is 800 ° C. or higher, and the shape can be easily formed.
The fall of the ductility of a wire can be controlled as the finish temperature of hot rolling is 1100 ° C or less, and the fracture during wire drawing can be controlled.
熱間圧延後の冷却方法は、空冷(衝風冷却を含む)又は水冷が好ましい。これにより、パーライト分率が90%以上である線材が得られやすい。
熱間圧延によって得られる線材の直径の好ましい範囲は前述のとおりである。 The cooling method after hot rolling is preferably air cooling (including blast cooling) or water cooling. Thereby, a wire rod having a pearlite fraction of 90% or more is easily obtained.
The preferred range of the diameter of the wire obtained by hot rolling is as described above.
熱間圧延によって得られる線材の直径の好ましい範囲は前述のとおりである。 The cooling method after hot rolling is preferably air cooling (including blast cooling) or water cooling. Thereby, a wire rod having a pearlite fraction of 90% or more is easily obtained.
The preferred range of the diameter of the wire obtained by hot rolling is as described above.
<第1伸線工程>
第1伸線工程は、前述した線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程である。
製法Aでは、後述の第2伸線工程(即ち、Al含有層形成の後に第2の伸線加工を行う工程)の前に第1伸線工程を設けたことにより、鋼線の真円度に優れ、かつ、Al含有層の厚さのばらつきが低減されたアルミ覆鋼線を製造し易いという効果が奏される。
第1の伸線加工は、本分野で通常用いられる伸線機(例えば、ダイス及びロールを含む伸線機)を用いて行うことができる。
第1の伸線加工によって得られる未焼鈍鋼線の直径は、好ましくは3mm以上10mm以下である。
未焼鈍鋼線の直径が3mm以上であると、Al含有層を形成した後の伸線加工(即ち、後述の第2の伸線加工)での加工量を大きくすることができるので、アルミ覆鋼線における鋼線とAl含有層との密着性をより向上させることができる。
未焼鈍鋼線の直径が10mm以下であると、Al含有層を形成した後の伸線加工(即ち、後述の第2の伸線加工)がより容易となる。 <First wire drawing process>
The first wire drawing step is a step of obtaining a non-annealed steel wire by subjecting the above-described wire to a first wire drawing process.
In the production method A, the first wire drawing step is provided before the later-described second wire drawing step (that is, the step of performing a second wire drawing process after the formation of the Al-containing layer), whereby the roundness of the steel wire is obtained. An effect is obtained that it is easy to manufacture an aluminum coated steel wire which is excellent in the thickness of the Al-containing layer and reduced in thickness.
The first wire drawing process can be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
The diameter of the unannealed steel wire obtained by the first wire drawing is preferably 3 mm or more and 10 mm or less.
As the diameter of the unannealed steel wire is 3 mm or more, the amount of processing in wire drawing after forming the Al-containing layer (that is, second wire drawing described later) can be increased, so The adhesion between the steel wire and the Al-containing layer in the steel wire can be further improved.
When the diameter of the unannealed steel wire is 10 mm or less, wire drawing after forming the Al-containing layer (that is, second wire drawing described later) becomes easier.
第1伸線工程は、前述した線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程である。
製法Aでは、後述の第2伸線工程(即ち、Al含有層形成の後に第2の伸線加工を行う工程)の前に第1伸線工程を設けたことにより、鋼線の真円度に優れ、かつ、Al含有層の厚さのばらつきが低減されたアルミ覆鋼線を製造し易いという効果が奏される。
第1の伸線加工は、本分野で通常用いられる伸線機(例えば、ダイス及びロールを含む伸線機)を用いて行うことができる。
第1の伸線加工によって得られる未焼鈍鋼線の直径は、好ましくは3mm以上10mm以下である。
未焼鈍鋼線の直径が3mm以上であると、Al含有層を形成した後の伸線加工(即ち、後述の第2の伸線加工)での加工量を大きくすることができるので、アルミ覆鋼線における鋼線とAl含有層との密着性をより向上させることができる。
未焼鈍鋼線の直径が10mm以下であると、Al含有層を形成した後の伸線加工(即ち、後述の第2の伸線加工)がより容易となる。 <First wire drawing process>
The first wire drawing step is a step of obtaining a non-annealed steel wire by subjecting the above-described wire to a first wire drawing process.
In the production method A, the first wire drawing step is provided before the later-described second wire drawing step (that is, the step of performing a second wire drawing process after the formation of the Al-containing layer), whereby the roundness of the steel wire is obtained. An effect is obtained that it is easy to manufacture an aluminum coated steel wire which is excellent in the thickness of the Al-containing layer and reduced in thickness.
The first wire drawing process can be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
The diameter of the unannealed steel wire obtained by the first wire drawing is preferably 3 mm or more and 10 mm or less.
As the diameter of the unannealed steel wire is 3 mm or more, the amount of processing in wire drawing after forming the Al-containing layer (that is, second wire drawing described later) can be increased, so The adhesion between the steel wire and the Al-containing layer in the steel wire can be further improved.
When the diameter of the unannealed steel wire is 10 mm or less, wire drawing after forming the Al-containing layer (that is, second wire drawing described later) becomes easier.
<Al含有層形成工程>
Al含有層形成工程は、未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程である。
Al含有層の形成方法としては特に制限はなく、本分野で通常用いられる方法を適用できる。
Al含有層の形成方法としては、例えば、Alを含有する管内に未焼鈍鋼線を通す押出加工を行うことによってAl含有層を形成する方法;未焼鈍鋼線にAlを含有する粉末を塗布し、次いで焼結することによってAl含有層を形成する方法;等が挙げられる。
Alを含有する管の材料及びAlを含有する粉末の材料としては、それぞれ、Al又はAl合金が好ましい。Al合金の好ましい態様については前述のとおりである。
Al含有層形成工程は、未焼鈍鋼線の少なくとも一部、好ましくは未焼鈍鋼線の外周面全体に対し、Al含有層を、Al含有層付き未焼鈍鋼線の横断面全体に対するAl含有層の面積率が10%~64%となるように形成することが好ましい。 <Al-containing layer forming step>
The Al-containing layer forming step is a step of obtaining an Al-containing layer-containing non-annealed steel wire by forming an Al-containing layer covering at least a part of the unannealed steel wire.
There is no restriction | limiting in particular as a formation method of Al containing layer, The method normally used in this field is applicable.
As a method of forming an Al-containing layer, for example, a method of forming an Al-containing layer by extruding an unannealed steel wire in a tube containing Al; applying a powder containing Al to an unannealed steel wire And a method of forming an Al-containing layer by subsequent sintering; and the like.
As a material of a tube containing Al and a material of a powder containing Al, Al or an Al alloy is preferable, respectively. About the preferable aspect of Al alloy, it is as above-mentioned.
In the Al-containing layer forming step, the Al-containing layer is applied to at least a part of the unannealed steel wire, preferably to the entire outer peripheral surface of the unannealed steel wire, It is preferable to form so that the area ratio of 10% to 64%.
Al含有層形成工程は、未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程である。
Al含有層の形成方法としては特に制限はなく、本分野で通常用いられる方法を適用できる。
Al含有層の形成方法としては、例えば、Alを含有する管内に未焼鈍鋼線を通す押出加工を行うことによってAl含有層を形成する方法;未焼鈍鋼線にAlを含有する粉末を塗布し、次いで焼結することによってAl含有層を形成する方法;等が挙げられる。
Alを含有する管の材料及びAlを含有する粉末の材料としては、それぞれ、Al又はAl合金が好ましい。Al合金の好ましい態様については前述のとおりである。
Al含有層形成工程は、未焼鈍鋼線の少なくとも一部、好ましくは未焼鈍鋼線の外周面全体に対し、Al含有層を、Al含有層付き未焼鈍鋼線の横断面全体に対するAl含有層の面積率が10%~64%となるように形成することが好ましい。 <Al-containing layer forming step>
The Al-containing layer forming step is a step of obtaining an Al-containing layer-containing non-annealed steel wire by forming an Al-containing layer covering at least a part of the unannealed steel wire.
There is no restriction | limiting in particular as a formation method of Al containing layer, The method normally used in this field is applicable.
As a method of forming an Al-containing layer, for example, a method of forming an Al-containing layer by extruding an unannealed steel wire in a tube containing Al; applying a powder containing Al to an unannealed steel wire And a method of forming an Al-containing layer by subsequent sintering; and the like.
As a material of a tube containing Al and a material of a powder containing Al, Al or an Al alloy is preferable, respectively. About the preferable aspect of Al alloy, it is as above-mentioned.
In the Al-containing layer forming step, the Al-containing layer is applied to at least a part of the unannealed steel wire, preferably to the entire outer peripheral surface of the unannealed steel wire, It is preferable to form so that the area ratio of 10% to 64%.
<第2伸線工程>
第2伸線工程は、Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程である。
製法Aでは、Al含有層形成工程の後に、第2伸線工程を設けていることにより、Al含有層と鋼線の密着性を向上させることができるという効果が奏される。
第2の伸線加工も、本分野で通常用いられる伸線機(例えば、ダイス及びロールを含む伸線機)を用いて行うことができる。
第2の伸線加工後の未焼鈍鋼線(即ち、Al含有層付き未焼鈍鋼線中の未焼鈍鋼線)の直径は、好ましくは1.0mm以上3.5mm以下である。
第2の伸線加工後の未焼鈍鋼線の直径が1.0mm以上である場合には、第2の伸線加工をより安定的に行うことができるので、鋼線の引張強さがより向上する。
第2の伸線加工後の未焼鈍鋼線の直径が3.5mm以下である場合には、第2の伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。 <2nd wire drawing process>
The second wire drawing step is a step of subjecting the Al-containing layer-containing unannealed steel wire to a second wire drawing process.
In the manufacturing method A, by providing the second wire drawing step after the Al-containing layer forming step, the effect of being able to improve the adhesion between the Al-containing layer and the steel wire is exhibited.
The second wire drawing process can also be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
The diameter of the second non-annealed steel wire after wire drawing (that is, the non-annealed steel wire in the non-annealed steel wire with an Al-containing layer) is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the unannealed steel wire after the second wire drawing is 1.0 mm or more, the second wire drawing can be performed more stably, so the tensile strength of the steel wire is more than that. improves.
When the diameter of the unannealed steel wire after the second wire drawing is 3.5 mm or less, decomposition of cementite during the second wire drawing and an increase in electrical resistance due to the decomposition can be further suppressed.
第2伸線工程は、Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程である。
製法Aでは、Al含有層形成工程の後に、第2伸線工程を設けていることにより、Al含有層と鋼線の密着性を向上させることができるという効果が奏される。
第2の伸線加工も、本分野で通常用いられる伸線機(例えば、ダイス及びロールを含む伸線機)を用いて行うことができる。
第2の伸線加工後の未焼鈍鋼線(即ち、Al含有層付き未焼鈍鋼線中の未焼鈍鋼線)の直径は、好ましくは1.0mm以上3.5mm以下である。
第2の伸線加工後の未焼鈍鋼線の直径が1.0mm以上である場合には、第2の伸線加工をより安定的に行うことができるので、鋼線の引張強さがより向上する。
第2の伸線加工後の未焼鈍鋼線の直径が3.5mm以下である場合には、第2の伸線加工中のセメンタイトの分解及びこの分解による電気抵抗の上昇をより抑制できる。 <2nd wire drawing process>
The second wire drawing step is a step of subjecting the Al-containing layer-containing unannealed steel wire to a second wire drawing process.
In the manufacturing method A, by providing the second wire drawing step after the Al-containing layer forming step, the effect of being able to improve the adhesion between the Al-containing layer and the steel wire is exhibited.
The second wire drawing process can also be performed using a wire drawing machine commonly used in the field (for example, a wire drawing machine including dies and rolls).
The diameter of the second non-annealed steel wire after wire drawing (that is, the non-annealed steel wire in the non-annealed steel wire with an Al-containing layer) is preferably 1.0 mm or more and 3.5 mm or less.
When the diameter of the unannealed steel wire after the second wire drawing is 1.0 mm or more, the second wire drawing can be performed more stably, so the tensile strength of the steel wire is more than that. improves.
When the diameter of the unannealed steel wire after the second wire drawing is 3.5 mm or less, decomposition of cementite during the second wire drawing and an increase in electrical resistance due to the decomposition can be further suppressed.
<焼鈍工程>
焼鈍工程は、第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に焼鈍を施すことにより、アルミ覆鋼線を得る工程である。
焼鈍は、本分野で通常用いられる焼鈍機を用いて行うことができる。
焼鈍における冷却方法(即ち、下記焼鈍温度及び下記焼鈍時間での熱処理後の冷却方法)には特に制限はなく、空冷、水冷、及び炉冷のいずれをも適用できる。 <Annealing process>
The annealing step is a step of obtaining an aluminum-coated steel wire by performing annealing on the second wire-drawing uncoated steel wire with Al-containing layer.
Annealing can be performed using the annealing machine normally used in this field | area.
There is no restriction | limiting in particular in the cooling method in annealing (namely, the cooling method after heat treatment in the following annealing temperature and the following annealing time), Any of air cooling, water cooling, and furnace cooling can be applied.
焼鈍工程は、第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に焼鈍を施すことにより、アルミ覆鋼線を得る工程である。
焼鈍は、本分野で通常用いられる焼鈍機を用いて行うことができる。
焼鈍における冷却方法(即ち、下記焼鈍温度及び下記焼鈍時間での熱処理後の冷却方法)には特に制限はなく、空冷、水冷、及び炉冷のいずれをも適用できる。 <Annealing process>
The annealing step is a step of obtaining an aluminum-coated steel wire by performing annealing on the second wire-drawing uncoated steel wire with Al-containing layer.
Annealing can be performed using the annealing machine normally used in this field | area.
There is no restriction | limiting in particular in the cooling method in annealing (namely, the cooling method after heat treatment in the following annealing temperature and the following annealing time), Any of air cooling, water cooling, and furnace cooling can be applied.
(焼鈍温度)
焼鈍における焼鈍温度は、370℃超520℃以下とする。
焼鈍における焼鈍温度が370℃超であると、固溶炭素をセメンタイトとして再析出させることができ、かつ、セメンタイトの球状化を促進できるので、得られる鋼線のセメンタイトの平均アスペクト比を25以下に調整し易い。このため、鋼線の電気抵抗率を低減できる。
また、焼鈍における焼鈍温度が370℃超であると、第1伸線工程及び/又は第2伸線工程でのひずみによって導入された転位を焼鈍によって回復しやすい(即ち、転位密度を低減し易い)ので、得られる鋼線の(211)面の半価幅を0.30°未満に調整し易い。このため、鋼線の延性を向上させることができる。
焼鈍における焼鈍温度は、好ましくは380℃以上であり、より好ましくは400℃以上である。 (Annealing temperature)
The annealing temperature in annealing is more than 370 ° C. and less than or equal to 520 ° C.
When the annealing temperature in the annealing is over 370 ° C., solid solution carbon can be reprecipitated as cementite, and since spheroidization of cementite can be promoted, the average aspect ratio of cementite of the obtained steel wire is 25 or less Easy to adjust. For this reason, the electrical resistivity of the steel wire can be reduced.
Also, if the annealing temperature in the annealing is over 370 ° C., it is easy to recover the dislocations introduced by the strain in the first wire drawing process and / or the second wire drawing process by annealing (ie, it is easy to reduce the dislocation density) Because of this, it is easy to adjust the half value width of the (211) plane of the obtained steel wire to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
The annealing temperature in the annealing is preferably 380 ° C. or more, more preferably 400 ° C. or more.
焼鈍における焼鈍温度は、370℃超520℃以下とする。
焼鈍における焼鈍温度が370℃超であると、固溶炭素をセメンタイトとして再析出させることができ、かつ、セメンタイトの球状化を促進できるので、得られる鋼線のセメンタイトの平均アスペクト比を25以下に調整し易い。このため、鋼線の電気抵抗率を低減できる。
また、焼鈍における焼鈍温度が370℃超であると、第1伸線工程及び/又は第2伸線工程でのひずみによって導入された転位を焼鈍によって回復しやすい(即ち、転位密度を低減し易い)ので、得られる鋼線の(211)面の半価幅を0.30°未満に調整し易い。このため、鋼線の延性を向上させることができる。
焼鈍における焼鈍温度は、好ましくは380℃以上であり、より好ましくは400℃以上である。 (Annealing temperature)
The annealing temperature in annealing is more than 370 ° C. and less than or equal to 520 ° C.
When the annealing temperature in the annealing is over 370 ° C., solid solution carbon can be reprecipitated as cementite, and since spheroidization of cementite can be promoted, the average aspect ratio of cementite of the obtained steel wire is 25 or less Easy to adjust. For this reason, the electrical resistivity of the steel wire can be reduced.
Also, if the annealing temperature in the annealing is over 370 ° C., it is easy to recover the dislocations introduced by the strain in the first wire drawing process and / or the second wire drawing process by annealing (ie, it is easy to reduce the dislocation density) Because of this, it is easy to adjust the half value width of the (211) plane of the obtained steel wire to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
The annealing temperature in the annealing is preferably 380 ° C. or more, more preferably 400 ° C. or more.
焼鈍における焼鈍温度が520℃以下であると、焼鈍による転位密度の過度の低下を抑制できるので、得られる鋼線の(211)面の半価幅を0.14°以上に調整し易い。このため、焼鈍による鋼線の引張強さの低下を抑制できる。
焼鈍における焼鈍温度は、好ましくは500℃以下であり、より好ましくは480℃以下である。 When the annealing temperature in the annealing is 520 ° C. or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more. For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
The annealing temperature in the annealing is preferably 500 ° C. or less, more preferably 480 ° C. or less.
焼鈍における焼鈍温度は、好ましくは500℃以下であり、より好ましくは480℃以下である。 When the annealing temperature in the annealing is 520 ° C. or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more. For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
The annealing temperature in the annealing is preferably 500 ° C. or less, more preferably 480 ° C. or less.
(焼鈍時間)
焼鈍における焼鈍時間は、10秒以上180秒以下とする。
焼鈍における焼鈍時間が10秒以上であると、第1伸線工程及び/又は第2伸線工程でのひずみによって導入された転位を焼鈍によって回復しやすい(即ち、転位密度を低減し易い)ので、得られる鋼線の(211)面の半価幅を0.30°未満に調整し易い。このため、鋼線の延性を向上させることができる。
焼鈍時間は、好ましくは20秒以上であり、より好ましくは25秒以上である。 (Annealing time)
The annealing time in annealing is 10 seconds or more and 180 seconds or less.
Since the dislocation introduced by the strain in the first wire drawing step and / or the second wire drawing step is easily recovered by annealing if the annealing time in the annealing is 10 seconds or more (that is, the dislocation density is easily reduced). The half width of the (211) plane of the obtained steel wire can be easily adjusted to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
The annealing time is preferably 20 seconds or more, more preferably 25 seconds or more.
焼鈍における焼鈍時間は、10秒以上180秒以下とする。
焼鈍における焼鈍時間が10秒以上であると、第1伸線工程及び/又は第2伸線工程でのひずみによって導入された転位を焼鈍によって回復しやすい(即ち、転位密度を低減し易い)ので、得られる鋼線の(211)面の半価幅を0.30°未満に調整し易い。このため、鋼線の延性を向上させることができる。
焼鈍時間は、好ましくは20秒以上であり、より好ましくは25秒以上である。 (Annealing time)
The annealing time in annealing is 10 seconds or more and 180 seconds or less.
Since the dislocation introduced by the strain in the first wire drawing step and / or the second wire drawing step is easily recovered by annealing if the annealing time in the annealing is 10 seconds or more (that is, the dislocation density is easily reduced). The half width of the (211) plane of the obtained steel wire can be easily adjusted to less than 0.30 °. Therefore, the ductility of the steel wire can be improved.
The annealing time is preferably 20 seconds or more, more preferably 25 seconds or more.
一方、焼鈍における焼鈍時間が180秒以下であると、焼鈍による転位密度の過度の低下を抑制できるので、得られる鋼線の(211)面の半価幅を0.14°以上に調整し易い。このため、焼鈍による鋼線の引張強さの低下を抑制できる。
焼鈍における焼鈍時間は、好ましくは120秒以下である。 On the other hand, if the annealing time in the annealing is 180 seconds or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more . For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
The annealing time in annealing is preferably 120 seconds or less.
焼鈍における焼鈍時間は、好ましくは120秒以下である。 On the other hand, if the annealing time in the annealing is 180 seconds or less, an excessive decrease in dislocation density due to the annealing can be suppressed, so the half width of the (211) plane of the obtained steel wire can be easily adjusted to 0.14 ° or more . For this reason, the fall of the tensile strength of the steel wire by annealing can be suppressed.
The annealing time in annealing is preferably 120 seconds or less.
(伸線加工ひずみ)
製法Aでは、下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下である。 (Wire drawing strain)
In the production method A, the drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm .
製法Aでは、下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下である。 (Wire drawing strain)
In the production method A, the drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm .
伸線加工ひずみ = 2×ln(線材の直径(mm)/アルミ覆鋼線中の鋼線の直径(mm)) … 式(1)
Wire drawing strain = 2 × ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm)) Formula (1)
式(1)で表される伸線加工ひずみは、第1の伸線加工及び第2の伸線加工によって導入されるひずみの量を数値化したものである。
式(1)中、「ln」は、自然対数(即ち、「loge」)を意味する。 The wire drawing strain represented by the formula (1) is a numerical value of the amount of strain introduced by the first wire drawing process and the second wire drawing process.
In Formula (1), "ln" means a natural logarithm (namely, "log e ").
式(1)中、「ln」は、自然対数(即ち、「loge」)を意味する。 The wire drawing strain represented by the formula (1) is a numerical value of the amount of strain introduced by the first wire drawing process and the second wire drawing process.
In Formula (1), "ln" means a natural logarithm (namely, "log e ").
式(1)で表される伸線加工ひずみが2.6超であると、第1の伸線加工及び第2の伸線加工でのひずみによって鋼の転位密度を上昇させやすいので、得られる鋼線の(211)面の半価幅を0.14°以上に調整しやすい。また、式(1)で表される伸線加工ひずみが2.6超であると、加工硬化も十分に行われる。これらの理由により、鋼線の引張強さが向上する。
更に、式(1)で表される伸線加工ひずみが2.6超であると、第1の伸線加工及び第2の伸線加工によってセメンタイトを分断しやすいので、得られる鋼線のセメンタイトの平均アスペクト比を25以下に調整し易い。このため、鋼線の電気抵抗率を低減できる。
式(1)で表される伸線加工ひずみは、好ましくは2.7以上であり、より好ましくは2.7超である。 It is easy to increase the dislocation density of the steel by the strain in the first wire drawing and the second wire drawing if the wire drawing strain represented by the formula (1) is more than 2.6, so it is obtained It is easy to adjust the half value width of the (211) plane of the steel wire to 0.14 ° or more. Moreover, work hardening is fully performed as the wire-drawing process distortion represented by Formula (1) is more than 2.6. For these reasons, the tensile strength of the steel wire is improved.
Furthermore, since it is easy to divide cementite by the first wire drawing and the second wire drawing when the wire drawing strain represented by the formula (1) is more than 2.6, the cementite of the obtained steel wire It is easy to adjust the average aspect ratio of to 25 or less. For this reason, the electrical resistivity of the steel wire can be reduced.
The wire drawing strain represented by the formula (1) is preferably 2.7 or more, more preferably more than 2.7.
更に、式(1)で表される伸線加工ひずみが2.6超であると、第1の伸線加工及び第2の伸線加工によってセメンタイトを分断しやすいので、得られる鋼線のセメンタイトの平均アスペクト比を25以下に調整し易い。このため、鋼線の電気抵抗率を低減できる。
式(1)で表される伸線加工ひずみは、好ましくは2.7以上であり、より好ましくは2.7超である。 It is easy to increase the dislocation density of the steel by the strain in the first wire drawing and the second wire drawing if the wire drawing strain represented by the formula (1) is more than 2.6, so it is obtained It is easy to adjust the half value width of the (211) plane of the steel wire to 0.14 ° or more. Moreover, work hardening is fully performed as the wire-drawing process distortion represented by Formula (1) is more than 2.6. For these reasons, the tensile strength of the steel wire is improved.
Furthermore, since it is easy to divide cementite by the first wire drawing and the second wire drawing when the wire drawing strain represented by the formula (1) is more than 2.6, the cementite of the obtained steel wire It is easy to adjust the average aspect ratio of to 25 or less. For this reason, the electrical resistivity of the steel wire can be reduced.
The wire drawing strain represented by the formula (1) is preferably 2.7 or more, more preferably more than 2.7.
式(1)で表される伸線加工ひずみが3.6以下であることにより、第1の伸線加工の対象となる線材の直径をある程度小さくすることができる。このため、式(1)で表される伸線加工ひずみが3.6以下であることにより、第1の伸線加工を行い易い。第1の伸線加工をより行い易い観点から、式(1)で表される伸線加工ひずみは、好ましくは3.4以下であり、より好ましくは3.2以下である。
When the wire drawing strain represented by the formula (1) is 3.6 or less, the diameter of the wire to be subjected to the first wire drawing process can be reduced to some extent. For this reason, it is easy to perform the first wire drawing process because the wire drawing process strain represented by the formula (1) is 3.6 or less. From the viewpoint of facilitating the first wire drawing process, the wire drawing process strain represented by the formula (1) is preferably 3.4 or less, more preferably 3.2 or less.
製法Aでは、最終的に得られるアルミ覆鋼線中の鋼線の直径が、1.0mm以上3.5mm以下である。
鋼線の直径が1.0mm以上であることにより、第1の伸線加工及び/又は第2の伸線加工をより安定的に行うことができる。
鋼線の直径が3.5mm以下であることにより、第1の伸線加工及び/又は第2の伸線加工中におけるセメンタイトの分解を抑制でき、これにより、鋼線の電気抵抗率の上昇をより抑制できる。 In the production method A, the diameter of the steel wire in the finally obtained aluminum clad steel wire is 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire is 1.0 mm or more, the first wire drawing and / or the second wire drawing can be performed more stably.
Since the diameter of the steel wire is 3.5 mm or less, the decomposition of cementite can be suppressed during the first wire drawing and / or the second wire drawing, thereby increasing the electrical resistivity of the steel wire. It can suppress more.
鋼線の直径が1.0mm以上であることにより、第1の伸線加工及び/又は第2の伸線加工をより安定的に行うことができる。
鋼線の直径が3.5mm以下であることにより、第1の伸線加工及び/又は第2の伸線加工中におけるセメンタイトの分解を抑制でき、これにより、鋼線の電気抵抗率の上昇をより抑制できる。 In the production method A, the diameter of the steel wire in the finally obtained aluminum clad steel wire is 1.0 mm or more and 3.5 mm or less.
When the diameter of the steel wire is 1.0 mm or more, the first wire drawing and / or the second wire drawing can be performed more stably.
Since the diameter of the steel wire is 3.5 mm or less, the decomposition of cementite can be suppressed during the first wire drawing and / or the second wire drawing, thereby increasing the electrical resistivity of the steel wire. It can suppress more.
〔アルミ覆鋼線の製造方法の別の一例(製法B)〕
本開示のアルミ覆鋼線を製造する方法として、製法Aとは別の一例として、以下の製法Bも挙げられる。
製法Bは、
化学組成が、前述した本開示における化学組成であり、横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程と、
線材の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き線材を得る工程と、
Al含有層付き線材に伸線加工を施す工程と、
伸線加工が施されたAl含有層付き線材に焼鈍を施すことにより、アルミ覆鋼線を得る工程と、
を含み、
前述の式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下であり、
焼鈍における焼鈍温度が370℃超520℃以下であり、焼鈍における焼鈍時間が10秒間以上180秒間以下である。
製法Bは、第1伸線工程を含まないこと以外は、製法Aと実質的に同様である。 [Another example of manufacturing method of aluminum coated steel wire (Process B)]
As a method of manufacturing the aluminum-coated steel wire of the present disclosure, the following manufacturing method B can also be mentioned as an example different from the manufacturing method A.
Process B is
Preparing a wire having a chemical composition according to the present disclosure as described above, and having a pearlite fraction of 90% or more in a region obtained by combining the region Y1 and the region Y2 in the cross section;
Obtaining an Al-containing layered wire by forming an Al-containing layer covering at least a part of the wire;
Drawing a wire with an Al-containing layer;
A process of obtaining an aluminum coated steel wire by annealing the wire rod with Al containing layer subjected to wire drawing;
Including
The wire drawing strain represented by the above-mentioned formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum clad steel wire is not less than 1.0 mm and not more than 3.5 mm,
The annealing temperature in the annealing is over 370 ° C. and 520 ° C. or less, and the annealing time in the annealing is 10 seconds or more and 180 seconds or less.
Manufacturing method B is substantially the same as Manufacturing method A except that the first wire drawing step is not included.
本開示のアルミ覆鋼線を製造する方法として、製法Aとは別の一例として、以下の製法Bも挙げられる。
製法Bは、
化学組成が、前述した本開示における化学組成であり、横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程と、
線材の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き線材を得る工程と、
Al含有層付き線材に伸線加工を施す工程と、
伸線加工が施されたAl含有層付き線材に焼鈍を施すことにより、アルミ覆鋼線を得る工程と、
を含み、
前述の式(1)で表される伸線加工ひずみが2.6超3.6以下であり、アルミ覆鋼線中の鋼線の直径が1.0mm以上3.5mm以下であり、
焼鈍における焼鈍温度が370℃超520℃以下であり、焼鈍における焼鈍時間が10秒間以上180秒間以下である。
製法Bは、第1伸線工程を含まないこと以外は、製法Aと実質的に同様である。 [Another example of manufacturing method of aluminum coated steel wire (Process B)]
As a method of manufacturing the aluminum-coated steel wire of the present disclosure, the following manufacturing method B can also be mentioned as an example different from the manufacturing method A.
Process B is
Preparing a wire having a chemical composition according to the present disclosure as described above, and having a pearlite fraction of 90% or more in a region obtained by combining the region Y1 and the region Y2 in the cross section;
Obtaining an Al-containing layered wire by forming an Al-containing layer covering at least a part of the wire;
Drawing a wire with an Al-containing layer;
A process of obtaining an aluminum coated steel wire by annealing the wire rod with Al containing layer subjected to wire drawing;
Including
The wire drawing strain represented by the above-mentioned formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum clad steel wire is not less than 1.0 mm and not more than 3.5 mm,
The annealing temperature in the annealing is over 370 ° C. and 520 ° C. or less, and the annealing time in the annealing is 10 seconds or more and 180 seconds or less.
Manufacturing method B is substantially the same as Manufacturing method A except that the first wire drawing step is not included.
以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
Examples of the present disclosure will be shown below, but the present disclosure is not limited to the following examples.
〔実施例1~23、比較例1~18〕
<アルミ覆鋼線の製造>
以下の各工程により、アルミ覆鋼線を製造した。 [Examples 1 to 23, Comparative Examples 1 to 18]
<Production of aluminum coated steel wire>
An aluminum coated steel wire was manufactured by the following steps.
<アルミ覆鋼線の製造>
以下の各工程により、アルミ覆鋼線を製造した。 [Examples 1 to 23, Comparative Examples 1 to 18]
<Production of aluminum coated steel wire>
An aluminum coated steel wire was manufactured by the following steps.
(線材準備工程)
表1に示す化学組成を有する鋼A~Tを真空溶解炉でそれぞれ50kg溶製し、次いで鋳造することにより、インゴットを得た。 (Wire rod preparation process)
Ingots were obtained by melting 50 kg of each of steels A to T having the chemical compositions shown in Table 1 in a vacuum melting furnace and then casting.
表1に示す化学組成を有する鋼A~Tを真空溶解炉でそれぞれ50kg溶製し、次いで鋳造することにより、インゴットを得た。 (Wire rod preparation process)
Ingots were obtained by melting 50 kg of each of steels A to T having the chemical compositions shown in Table 1 in a vacuum melting furnace and then casting.
実施例1~23並びに比較例1~16及び18では、インゴットを1250℃で1時間加熱し、次いで、仕上げ温度が950℃以上である熱間圧延を施し、次いで衝風冷却することにより、ラメラパーライト組織を主体とする直径10mmの線材を得た。
比較例17では、インゴットを1250℃で1時間加熱し、次いで、仕上げ温度が950℃以上である熱間圧延を施し、次いで、480℃のソルト浴に浸漬させることにより、ベイナイト組織を主体とする直径10mmの線材を得た。 In Examples 1 to 23 and Comparative Examples 1 to 16 and 18, the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then cooled by blast to obtain lamellae. A wire having a diameter of 10 mm mainly composed of pearlite was obtained.
In Comparative Example 17, the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then immersed in a salt bath at 480 ° C. to obtain a bainite structure as a main component. A wire of 10 mm in diameter was obtained.
比較例17では、インゴットを1250℃で1時間加熱し、次いで、仕上げ温度が950℃以上である熱間圧延を施し、次いで、480℃のソルト浴に浸漬させることにより、ベイナイト組織を主体とする直径10mmの線材を得た。 In Examples 1 to 23 and Comparative Examples 1 to 16 and 18, the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then cooled by blast to obtain lamellae. A wire having a diameter of 10 mm mainly composed of pearlite was obtained.
In Comparative Example 17, the ingot is heated at 1250 ° C. for 1 hour, then subjected to hot rolling with a finishing temperature of 950 ° C. or higher, and then immersed in a salt bath at 480 ° C. to obtain a bainite structure as a main component. A wire of 10 mm in diameter was obtained.
表1中の各鋼において、各元素の欄に示す数値は、該当する元素の質量%を意味する。
表1中の各鋼において、「-」は、該当する元素を含有しないことを意味する。
表1中の各鋼において、表1に記載した元素群を除いた残部は、Fe及び不純物である。
表1中の下線は、本開示の範囲外であることを示す(後述の表2についても同様である)。 In each steel in Table 1, the numerical values shown in the column of each element mean mass% of the corresponding element.
In each steel in Table 1, "-" means that the corresponding element is not contained.
In each steel in Table 1, the balance excluding the element group described in Table 1 is Fe and impurities.
The underline in Table 1 indicates that it is outside the scope of the present disclosure (the same applies to Table 2 described later).
表1中の各鋼において、「-」は、該当する元素を含有しないことを意味する。
表1中の各鋼において、表1に記載した元素群を除いた残部は、Fe及び不純物である。
表1中の下線は、本開示の範囲外であることを示す(後述の表2についても同様である)。 In each steel in Table 1, the numerical values shown in the column of each element mean mass% of the corresponding element.
In each steel in Table 1, "-" means that the corresponding element is not contained.
In each steel in Table 1, the balance excluding the element group described in Table 1 is Fe and impurities.
The underline in Table 1 indicates that it is outside the scope of the present disclosure (the same applies to Table 2 described later).
(線材の横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率の測定及び残部の確認)
上記で得られた線材について、前述した方法により、横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率を測定した。また、パーライト分率の測定に用いた金属組織写真に基づき、パーライト以外の残部の確認を行った。
これらの結果を表2に示す。
表2中の「残部」欄において、「F」は初析フェライト組織を意味し、「B」はベイナイト組織を意味する。 (Measurement of pearlite fraction and confirmation of the remaining part in the area obtained by combining the area Y1 and the area Y2 in the cross section of the wire rod)
With respect to the wire rod obtained above, the pearlite fraction in the region obtained by combining the region Y1 and the region Y2 in the cross section was measured by the method described above. Moreover, based on the metallographic structure photograph used for the measurement of the perlite fraction, the remaining parts other than perlite were confirmed.
The results are shown in Table 2.
In the "remaining" column in Table 2, "F" means a pro-eutectoid ferrite structure, and "B" means a bainite structure.
上記で得られた線材について、前述した方法により、横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率を測定した。また、パーライト分率の測定に用いた金属組織写真に基づき、パーライト以外の残部の確認を行った。
これらの結果を表2に示す。
表2中の「残部」欄において、「F」は初析フェライト組織を意味し、「B」はベイナイト組織を意味する。 (Measurement of pearlite fraction and confirmation of the remaining part in the area obtained by combining the area Y1 and the area Y2 in the cross section of the wire rod)
With respect to the wire rod obtained above, the pearlite fraction in the region obtained by combining the region Y1 and the region Y2 in the cross section was measured by the method described above. Moreover, based on the metallographic structure photograph used for the measurement of the perlite fraction, the remaining parts other than perlite were confirmed.
The results are shown in Table 2.
In the "remaining" column in Table 2, "F" means a pro-eutectoid ferrite structure, and "B" means a bainite structure.
(第1伸線工程)
上記得られた線材に対して第1の伸線加工を施し、直径が3.8mm以上8.8mm以下の範囲である未焼鈍鋼線を得た。 (First wire drawing process)
The first wire drawing was performed on the obtained wire rod to obtain an unannealed steel wire having a diameter of 3.8 mm or more and 8.8 mm or less.
上記得られた線材に対して第1の伸線加工を施し、直径が3.8mm以上8.8mm以下の範囲である未焼鈍鋼線を得た。 (First wire drawing process)
The first wire drawing was performed on the obtained wire rod to obtain an unannealed steel wire having a diameter of 3.8 mm or more and 8.8 mm or less.
(Al含有層形成工程)
上記で得られた未焼鈍鋼線を、Al管(即ち、純アルミニウム管)に通す押出加工を行うことにより、未焼鈍鋼線をAl含有層としてのAl層(即ち、純アルミニウム層)によって被覆した。これにより、Al含有層付き未焼鈍鋼線を得た。 (Al-containing layer forming step)
An unannealed steel wire is coated with an Al layer (ie, pure aluminum layer) as an Al-containing layer by extruding the unannealed steel wire obtained above through an Al tube (ie, a pure aluminum tube) did. Thus, an unannealed steel wire with an Al-containing layer was obtained.
上記で得られた未焼鈍鋼線を、Al管(即ち、純アルミニウム管)に通す押出加工を行うことにより、未焼鈍鋼線をAl含有層としてのAl層(即ち、純アルミニウム層)によって被覆した。これにより、Al含有層付き未焼鈍鋼線を得た。 (Al-containing layer forming step)
An unannealed steel wire is coated with an Al layer (ie, pure aluminum layer) as an Al-containing layer by extruding the unannealed steel wire obtained above through an Al tube (ie, a pure aluminum tube) did. Thus, an unannealed steel wire with an Al-containing layer was obtained.
(第2伸線工程)
上記で得られたAl含有層付き未焼鈍鋼線に対し、鋼線の直径が1.5mm以上3.0mm以下の範囲となるまで第2の伸線加工を施した。 (2nd wire drawing process)
The second wire drawing was performed on the unannealed steel wire with an Al-containing layer obtained above until the diameter of the steel wire was in the range of 1.5 mm to 3.0 mm.
上記で得られたAl含有層付き未焼鈍鋼線に対し、鋼線の直径が1.5mm以上3.0mm以下の範囲となるまで第2の伸線加工を施した。 (2nd wire drawing process)
The second wire drawing was performed on the unannealed steel wire with an Al-containing layer obtained above until the diameter of the steel wire was in the range of 1.5 mm to 3.0 mm.
(焼鈍工程)
第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に対し、表2に示す条件(即ち、焼鈍温度、焼鈍時間、及び冷却方法)の焼鈍を施すことにより、アルミ覆鋼線を得た。
得られたアルミ覆鋼線の横断面全体に対するAl含有層の面積率は、23%であった。 (Annealing process)
An aluminum coated steel wire is subjected to the annealing shown in Table 2 (that is, the annealing temperature, the annealing time, and the cooling method) on the second wire-drawn unalloyed steel wire with Al-containing layer. I got
The area ratio of the Al-containing layer to the entire cross section of the obtained aluminum coated steel wire was 23%.
第2の伸線加工が施されたAl含有層付き未焼鈍鋼線に対し、表2に示す条件(即ち、焼鈍温度、焼鈍時間、及び冷却方法)の焼鈍を施すことにより、アルミ覆鋼線を得た。
得られたアルミ覆鋼線の横断面全体に対するAl含有層の面積率は、23%であった。 (Annealing process)
An aluminum coated steel wire is subjected to the annealing shown in Table 2 (that is, the annealing temperature, the annealing time, and the cooling method) on the second wire-drawn unalloyed steel wire with Al-containing layer. I got
The area ratio of the Al-containing layer to the entire cross section of the obtained aluminum coated steel wire was 23%.
(伸線加工ひずみの算出)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線の直径(mm)を測定し、得られた結果を、アルミ覆鋼線中の鋼線の直径(mm)とした。
アルミ覆鋼線中の鋼線の直径(mm)、及び、線材の直径(即ち、10mm)に基づき、下記式(1)により、伸線加工ひずみを算出した。
結果を表2に示す。 (Calculation of wire drawing strain)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. The diameter (mm) of the obtained steel wire was measured, and the obtained result was made the diameter (mm) of the steel wire in the aluminum coated steel wire.
The wire drawing strain was calculated by the following formula (1) based on the diameter (mm) of the steel wire in the aluminum-coated steel wire and the diameter (i.e. 10 mm) of the wire rod.
The results are shown in Table 2.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線の直径(mm)を測定し、得られた結果を、アルミ覆鋼線中の鋼線の直径(mm)とした。
アルミ覆鋼線中の鋼線の直径(mm)、及び、線材の直径(即ち、10mm)に基づき、下記式(1)により、伸線加工ひずみを算出した。
結果を表2に示す。 (Calculation of wire drawing strain)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. The diameter (mm) of the obtained steel wire was measured, and the obtained result was made the diameter (mm) of the steel wire in the aluminum coated steel wire.
The wire drawing strain was calculated by the following formula (1) based on the diameter (mm) of the steel wire in the aluminum-coated steel wire and the diameter (i.e. 10 mm) of the wire rod.
The results are shown in Table 2.
伸線加工ひずみ=2×ln(線材の直径(mm)/アルミ覆鋼線中の鋼線の直径(mm)) … 式(1)
Wire drawing strain = 2 × ln (diameter of wire (mm) / diameter of steel wire in aluminum coated steel wire (mm)) Formula (1)
(アルミ覆鋼線中の鋼線の縦断面におけるセメンタイトの平均アスペクト比の算出)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線を用い、前述した方法により、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比を算出した。
結果を表2に示す。 (Calculation of average aspect ratio of cementite in longitudinal section of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. Using the obtained steel wire, the average aspect ratio of cementite in the region X in the longitudinal section was calculated by the method described above.
The results are shown in Table 2.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線を用い、前述した方法により、縦断面中の領域Xにおけるセメンタイトの平均アスペクト比を算出した。
結果を表2に示す。 (Calculation of average aspect ratio of cementite in longitudinal section of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. Using the obtained steel wire, the average aspect ratio of cementite in the region X in the longitudinal section was calculated by the method described above.
The results are shown in Table 2.
(アルミ覆鋼線中の鋼線の縦断面における(211)面の半価幅の測定)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線及びX線回折装置(リガク社製「RINT2200」)を用い、前述した方法により、縦断面における(211)面の半価幅を測定した。
結果を表2に示す。 (Measurement of Half-Value Width of (211) Plane in Longitudinal Section of Steel Wire in Aluminum Coated Steel Wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. The half value width of the (211) plane in the longitudinal section was measured by the method described above using the obtained steel wire and an X-ray diffractometer ("RINT 2200" manufactured by RIGAKU Co., Ltd.).
The results are shown in Table 2.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線及びX線回折装置(リガク社製「RINT2200」)を用い、前述した方法により、縦断面における(211)面の半価幅を測定した。
結果を表2に示す。 (Measurement of Half-Value Width of (211) Plane in Longitudinal Section of Steel Wire in Aluminum Coated Steel Wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. The half value width of the (211) plane in the longitudinal section was measured by the method described above using the obtained steel wire and an X-ray diffractometer ("RINT 2200" manufactured by RIGAKU Co., Ltd.).
The results are shown in Table 2.
(アルミ覆鋼線中の鋼線の横断面における金属組織の観察)
実施例1~23のアルミ覆鋼線中の鋼線の横断面における金属組織の観察を行った。
詳細には、実施例1~23の各々において、アルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線について、前述の、線材の横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率の測定と同様の手法により、アルミ覆鋼線中の鋼線の横断面における金属組織の観察を行った。
その結果、いずれの実施例においても、鋼線の横断面中の、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域(Dは、鋼線の直径)において、初析フェライト組織の面積率は10%以下であり、残部はラメラパーライト組織であった。 (Observation of metallographic structure in cross section of steel wire in aluminum coated steel wire)
The metal structure in the cross section of the steel wire in the aluminum clad steel wire of Examples 1 to 23 was observed.
Specifically, in each of Examples 1 to 23, a steel wire was obtained by mechanically peeling an Al-containing layer from the aluminum clad steel wire. Regarding the obtained steel wire, in the cross section of the steel wire in the aluminum coated steel wire, by the same method as the measurement of the pearlite fraction in the region where the region Y1 and the region Y2 in the cross section of the wire are combined The metallographic structure was observed.
As a result, in any of the embodiments, in the cross section of the steel wire, the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface (D is the diameter of the steel wire) In the above, the area ratio of the pro-eutectoid ferrite structure was 10% or less, and the balance was the lamellar perlite structure.
実施例1~23のアルミ覆鋼線中の鋼線の横断面における金属組織の観察を行った。
詳細には、実施例1~23の各々において、アルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線について、前述の、線材の横断面中の領域Y1と領域Y2とを合わせた領域におけるパーライト分率の測定と同様の手法により、アルミ覆鋼線中の鋼線の横断面における金属組織の観察を行った。
その結果、いずれの実施例においても、鋼線の横断面中の、中心からD/7以内の領域と外周面からD/7以内の領域とを合わせた領域(Dは、鋼線の直径)において、初析フェライト組織の面積率は10%以下であり、残部はラメラパーライト組織であった。 (Observation of metallographic structure in cross section of steel wire in aluminum coated steel wire)
The metal structure in the cross section of the steel wire in the aluminum clad steel wire of Examples 1 to 23 was observed.
Specifically, in each of Examples 1 to 23, a steel wire was obtained by mechanically peeling an Al-containing layer from the aluminum clad steel wire. Regarding the obtained steel wire, in the cross section of the steel wire in the aluminum coated steel wire, by the same method as the measurement of the pearlite fraction in the region where the region Y1 and the region Y2 in the cross section of the wire are combined The metallographic structure was observed.
As a result, in any of the embodiments, in the cross section of the steel wire, the region within D / 7 from the center and the region within D / 7 from the outer peripheral surface (D is the diameter of the steel wire) In the above, the area ratio of the pro-eutectoid ferrite structure was 10% or less, and the balance was the lamellar perlite structure.
(アルミ覆鋼線中の鋼線の引張強さの測定)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。
得られた鋼線から、長さ200mmの引張試験片を2本採取した。
採取した2本の引張試験片の各々について、JIS Z 2241(2011年)に準拠した方法で、20℃の温度条件下で引張試験を行い、引張強さ(詳細には、引張試験片の長手方向の引張強さ)を測定した。
2本の引張試験片の引張強さの平均値を、アルミ覆鋼線中の鋼線の引張強さとした。
結果を表2に示す。 (Measurement of tensile strength of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
Two tensile test pieces having a length of 200 mm were taken from the obtained steel wire.
Each of the two tensile test specimens collected was subjected to a tensile test under a temperature condition of 20 ° C. according to the method according to JIS Z 2241 (2011), and the tensile strength (in detail, the length of the tensile test specimen) Tensile strength in the direction was measured.
The average value of the tensile strengths of the two tensile test pieces was taken as the tensile strength of the steel wire in the aluminum clad steel wire.
The results are shown in Table 2.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。
得られた鋼線から、長さ200mmの引張試験片を2本採取した。
採取した2本の引張試験片の各々について、JIS Z 2241(2011年)に準拠した方法で、20℃の温度条件下で引張試験を行い、引張強さ(詳細には、引張試験片の長手方向の引張強さ)を測定した。
2本の引張試験片の引張強さの平均値を、アルミ覆鋼線中の鋼線の引張強さとした。
結果を表2に示す。 (Measurement of tensile strength of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
Two tensile test pieces having a length of 200 mm were taken from the obtained steel wire.
Each of the two tensile test specimens collected was subjected to a tensile test under a temperature condition of 20 ° C. according to the method according to JIS Z 2241 (2011), and the tensile strength (in detail, the length of the tensile test specimen) Tensile strength in the direction was measured.
The average value of the tensile strengths of the two tensile test pieces was taken as the tensile strength of the steel wire in the aluminum clad steel wire.
The results are shown in Table 2.
(アルミ覆鋼線中の鋼線の電気抵抗率の測定)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。
得られた鋼線の中心部から、直径1.0mm×長さ60mmの円柱形状の試験片を採取した。採取した試験片の長手方向の電気抵抗値を、温度20℃にて4端子法によって測定した。得られた電気抵抗値に試験片の横断面(即ち、試験片の長手方向に対して直交する断面)の面積を乗じ、得られた値を試験片の長手方向の長さで除することにより、試験片の長手方向の電気抵抗率(μΩm)を算出した。 (Measurement of electrical resistivity of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
From the center of the obtained steel wire, a cylindrical test piece 1.0 mm in diameter × 60 mm in length was collected. The electrical resistance value in the longitudinal direction of the collected test pieces was measured by a four-terminal method at a temperature of 20 ° C. By multiplying the obtained electrical resistance value by the area of the cross section of the test piece (that is, the cross section orthogonal to the longitudinal direction of the test piece) and dividing the obtained value by the length of the test piece in the longitudinal direction The electrical resistivity (μΩm) in the longitudinal direction of the test piece was calculated.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。
得られた鋼線の中心部から、直径1.0mm×長さ60mmの円柱形状の試験片を採取した。採取した試験片の長手方向の電気抵抗値を、温度20℃にて4端子法によって測定した。得られた電気抵抗値に試験片の横断面(即ち、試験片の長手方向に対して直交する断面)の面積を乗じ、得られた値を試験片の長手方向の長さで除することにより、試験片の長手方向の電気抵抗率(μΩm)を算出した。 (Measurement of electrical resistivity of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method.
From the center of the obtained steel wire, a cylindrical test piece 1.0 mm in diameter × 60 mm in length was collected. The electrical resistance value in the longitudinal direction of the collected test pieces was measured by a four-terminal method at a temperature of 20 ° C. By multiplying the obtained electrical resistance value by the area of the cross section of the test piece (that is, the cross section orthogonal to the longitudinal direction of the test piece) and dividing the obtained value by the length of the test piece in the longitudinal direction The electrical resistivity (μΩm) in the longitudinal direction of the test piece was calculated.
(アルミ覆鋼線中の鋼線の延性の評価)
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線から、直径の100倍の長さの鋼線(以下、「サンプル」とする)を10本切り出した。10本のサンプルの各々について、JIS Z 3541(1991年)に準拠したねじり試験を実施することにより、アルミ覆鋼線中の鋼線の延性を評価した。
詳細には、サンプルを15rpm(round per minute)で断線するまでねじり、トルク(ねじりに対する抵抗力)曲線を作成した。トルク曲線において、断線前に急激にトルクが減少した場合を、デラミネーションが生じたと判断した。
10本のサンプル中、デラミネーションが生じたサンプルが1本も存在しない場合を、延性が良好であると判断した(表2中では、延性「A」とした)。
10本のサンプル中、デラミネーションが生じたサンプルが1本以上存在した場合を、延性が不足していると判断した(表2中では、延性「B」とした)。
結果を表2に示す。 (Evaluation of ductility of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. From the obtained steel wire, ten steel wires having a length of 100 times the diameter (hereinafter referred to as "sample") were cut out. The ductility of the steel wire in the aluminum clad steel wire was evaluated by performing a torsion test according to JIS Z 3541 (1991) for each of the ten samples.
In detail, the sample was twisted at 15 rpm (round per minute) until broken, and a torque (resistance to twist) curve was created. In the torque curve, it was determined that delamination occurred when the torque decreased sharply before the disconnection.
The ductility was judged to be good (in Table 2, ductility "A") in the case where none of the 10 samples had delamination occurred.
It was judged that the ductility was insufficient when one or more of the samples in which delamination occurred was present among ten samples (in Table 2, ductility "B").
The results are shown in Table 2.
得られたアルミ覆鋼線から、Al含有層を機械的方法で剥離することにより、鋼線を得た。得られた鋼線から、直径の100倍の長さの鋼線(以下、「サンプル」とする)を10本切り出した。10本のサンプルの各々について、JIS Z 3541(1991年)に準拠したねじり試験を実施することにより、アルミ覆鋼線中の鋼線の延性を評価した。
詳細には、サンプルを15rpm(round per minute)で断線するまでねじり、トルク(ねじりに対する抵抗力)曲線を作成した。トルク曲線において、断線前に急激にトルクが減少した場合を、デラミネーションが生じたと判断した。
10本のサンプル中、デラミネーションが生じたサンプルが1本も存在しない場合を、延性が良好であると判断した(表2中では、延性「A」とした)。
10本のサンプル中、デラミネーションが生じたサンプルが1本以上存在した場合を、延性が不足していると判断した(表2中では、延性「B」とした)。
結果を表2に示す。 (Evaluation of ductility of steel wire in aluminum coated steel wire)
A steel wire was obtained from the obtained aluminum coated steel wire by peeling an Al-containing layer by a mechanical method. From the obtained steel wire, ten steel wires having a length of 100 times the diameter (hereinafter referred to as "sample") were cut out. The ductility of the steel wire in the aluminum clad steel wire was evaluated by performing a torsion test according to JIS Z 3541 (1991) for each of the ten samples.
In detail, the sample was twisted at 15 rpm (round per minute) until broken, and a torque (resistance to twist) curve was created. In the torque curve, it was determined that delamination occurred when the torque decreased sharply before the disconnection.
The ductility was judged to be good (in Table 2, ductility "A") in the case where none of the 10 samples had delamination occurred.
It was judged that the ductility was insufficient when one or more of the samples in which delamination occurred was present among ten samples (in Table 2, ductility "B").
The results are shown in Table 2.
表2に示すように、鋼線の化学組成が本開示における化学組成であり、鋼線の縦断面中の領域Xにおいて、セメンタイトの平均アスペクト比が10以上25以下であり、鋼線の縦断面において、(211)面の半価幅が0.14°以上0.30°未満である実施例1~23では、鋼線の引張強さ及び延性に優れ、鋼線の電気抵抗率が低減されていた。
As shown in Table 2, the chemical composition of the steel wire is the chemical composition in the present disclosure, and in the region X in the longitudinal cross section of the steel wire, the average aspect ratio of cementite is 10 to 25 and the longitudinal cross section of the steel wire In Examples 1 to 23, in which the half value width of the (211) plane is 0.14 ° or more and less than 0.30 °, the tensile strength and ductility of the steel wire are excellent, and the electrical resistivity of the steel wire is reduced. It was
各実施例に対し、各比較例の結果は以下のとおりであった。
C含有量が少なすぎる比較例1では、(211)面の半価幅が0.14°未満であり、鋼線の引張強さが不足した。この理由は、C含有量が少なすぎることに起因して、第1の伸線加工及び第2の伸線加工による転位の蓄積が不十分であったためと考えられる。
C含有量が多すぎる比較例2では、鋼線の電気抵抗率が高すぎた。
Si含有量が多すぎる比較例3では、鋼線の電気抵抗率が高すぎた。
Mn含有量が多すぎる比較例4では、鋼線の電気抵抗率が高すぎた。
Cr含有量が多すぎる比較例5では、セメンタイトの平均アスペクト比が25超であり、鋼線の電気抵抗率が高すぎた。この理由は、Cr含有量が多すぎることに起因し、焼鈍による球状化の進行が妨げられたためと考えられる。
Mo含有量が多すぎる比較例6では、鋼線の電気抵抗率が高すぎた。
Nb含有量が多すぎる比較例7では、鋼線の電気抵抗率が高すぎた。
Ti含有量が多すぎる比較例8では、鋼線の電気抵抗率が高すぎた。
V含有量が多すぎる比較例9では、鋼線の電気抵抗率が高すぎた。 For each example, the results of each comparative example were as follows.
In Comparative Example 1 in which the C content is too small, the half value width of the (211) plane is less than 0.14 °, and the tensile strength of the steel wire is insufficient. The reason is considered to be that the accumulation of dislocations due to the first wire drawing and the second wire drawing was insufficient due to the C content being too low.
In Comparative Example 2 in which the C content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 3 in which the Si content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 4 in which the Mn content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 5 in which the Cr content was too high, the average aspect ratio of cementite was over 25 and the electrical resistivity of the steel wire was too high. The reason for this is considered to be that the progress of spheroidization due to annealing was impeded due to the Cr content being too high.
In Comparative Example 6 in which the Mo content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 7 in which the Nb content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 8 in which the Ti content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 9 in which the V content was too high, the electrical resistivity of the steel wire was too high.
C含有量が少なすぎる比較例1では、(211)面の半価幅が0.14°未満であり、鋼線の引張強さが不足した。この理由は、C含有量が少なすぎることに起因して、第1の伸線加工及び第2の伸線加工による転位の蓄積が不十分であったためと考えられる。
C含有量が多すぎる比較例2では、鋼線の電気抵抗率が高すぎた。
Si含有量が多すぎる比較例3では、鋼線の電気抵抗率が高すぎた。
Mn含有量が多すぎる比較例4では、鋼線の電気抵抗率が高すぎた。
Cr含有量が多すぎる比較例5では、セメンタイトの平均アスペクト比が25超であり、鋼線の電気抵抗率が高すぎた。この理由は、Cr含有量が多すぎることに起因し、焼鈍による球状化の進行が妨げられたためと考えられる。
Mo含有量が多すぎる比較例6では、鋼線の電気抵抗率が高すぎた。
Nb含有量が多すぎる比較例7では、鋼線の電気抵抗率が高すぎた。
Ti含有量が多すぎる比較例8では、鋼線の電気抵抗率が高すぎた。
V含有量が多すぎる比較例9では、鋼線の電気抵抗率が高すぎた。 For each example, the results of each comparative example were as follows.
In Comparative Example 1 in which the C content is too small, the half value width of the (211) plane is less than 0.14 °, and the tensile strength of the steel wire is insufficient. The reason is considered to be that the accumulation of dislocations due to the first wire drawing and the second wire drawing was insufficient due to the C content being too low.
In Comparative Example 2 in which the C content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 3 in which the Si content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 4 in which the Mn content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 5 in which the Cr content was too high, the average aspect ratio of cementite was over 25 and the electrical resistivity of the steel wire was too high. The reason for this is considered to be that the progress of spheroidization due to annealing was impeded due to the Cr content being too high.
In Comparative Example 6 in which the Mo content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 7 in which the Nb content is too large, the electrical resistivity of the steel wire was too high.
In Comparative Example 8 in which the Ti content is too high, the electrical resistivity of the steel wire was too high.
In Comparative Example 9 in which the V content was too high, the electrical resistivity of the steel wire was too high.
本開示における化学組成を有するが、(211)面の半価幅が0.14°未満である比較例10では、鋼線の引張強さが不足した。
比較例10において、(211)面の半価幅が0.14°未満であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたことにより、転位の蓄積が不十分であったためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 10 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 10 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, It is considered that the accumulation of dislocations was insufficient.
比較例10において、(211)面の半価幅が0.14°未満であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたことにより、転位の蓄積が不十分であったためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 10 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 10 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, It is considered that the accumulation of dislocations was insufficient.
本開示における化学組成を有するが、セメンタイトの平均アスペクト比が25超であり、(211)面の半価幅が0.30°以上である比較例11では、鋼線の電気抵抗率が高すぎ、かつ、鋼線の延性が不足した。
比較例11において、セメンタイトの平均アスペクト比が25超であった理由は、焼鈍温度が低すぎるために、焼鈍によるセメンタイトの球状化の効果(即ち、平均アスペクト比を小さくする効果)が不十分であったためと考えられる。
比較例11において、(211)面の半価幅が0.30°以上であった理由は、焼鈍温度が低すぎるために、焼鈍による、転位の回復の効果が不十分であったためと考えられる。 In Comparative Example 11 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is 0.30 ° or more, the electrical resistivity of the steel wire is too high, although it has the chemical composition in the present disclosure. And the ductility of the steel wire was insufficient.
In Comparative Example 11, the reason why the average aspect ratio of cementite is more than 25 is that the annealing temperature is too low, so the effect of spheroidizing cementite by annealing (ie, the effect of reducing the average aspect ratio) is insufficient. It is thought that there was.
The reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 11 is considered to be that the effect of recovery of dislocations by annealing is insufficient because the annealing temperature is too low. .
比較例11において、セメンタイトの平均アスペクト比が25超であった理由は、焼鈍温度が低すぎるために、焼鈍によるセメンタイトの球状化の効果(即ち、平均アスペクト比を小さくする効果)が不十分であったためと考えられる。
比較例11において、(211)面の半価幅が0.30°以上であった理由は、焼鈍温度が低すぎるために、焼鈍による、転位の回復の効果が不十分であったためと考えられる。 In Comparative Example 11 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is 0.30 ° or more, the electrical resistivity of the steel wire is too high, although it has the chemical composition in the present disclosure. And the ductility of the steel wire was insufficient.
In Comparative Example 11, the reason why the average aspect ratio of cementite is more than 25 is that the annealing temperature is too low, so the effect of spheroidizing cementite by annealing (ie, the effect of reducing the average aspect ratio) is insufficient. It is thought that there was.
The reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 11 is considered to be that the effect of recovery of dislocations by annealing is insufficient because the annealing temperature is too low. .
本開示における化学組成を有するが、(211)面の半価幅が0.14°未満である比較例12では、鋼線の引張強さが不足した。
比較例12において、(211)面の半価幅が0.14°未満であった理由は、焼鈍温度が高すぎたために、焼鈍による、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 12 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 12 is that the annealing temperature was too high, so the recovery of dislocations due to annealing became excessive and the dislocation density of the steel wire decreased. It is believed that
比較例12において、(211)面の半価幅が0.14°未満であった理由は、焼鈍温度が高すぎたために、焼鈍による、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 12 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 12 is that the annealing temperature was too high, so the recovery of dislocations due to annealing became excessive and the dislocation density of the steel wire decreased. It is believed that
本開示における化学組成を有するが、(211)面の半価幅が0.30°以上である比較例13では、鋼線の延性が不足した。
比較例13において、(211)面の半価幅が0.30°以上であった理由は、焼鈍時間が短すぎたために、焼鈍による、転位の回復の効果が不十分であったためと考えられる。 The ductility of the steel wire was insufficient in Comparative Example 13 which has the chemical composition in the present disclosure but the half value width of the (211) plane is 0.30 ° or more.
The reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 13 is considered to be that the effect of recovery of dislocations by annealing was insufficient because the annealing time was too short. .
比較例13において、(211)面の半価幅が0.30°以上であった理由は、焼鈍時間が短すぎたために、焼鈍による、転位の回復の効果が不十分であったためと考えられる。 The ductility of the steel wire was insufficient in Comparative Example 13 which has the chemical composition in the present disclosure but the half value width of the (211) plane is 0.30 ° or more.
The reason why the half value width of the (211) plane is 0.30 ° or more in Comparative Example 13 is considered to be that the effect of recovery of dislocations by annealing was insufficient because the annealing time was too short. .
本開示における化学組成を有するが、(211)面の半価幅が0.14°未満である比較例14では、鋼線の引張強さが不足した。
比較例14において、(211)面の半価幅が0.14°未満であった理由は、焼鈍時間が長すぎたために、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 14 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason why the half width of the (211) plane is less than 0.14 ° in Comparative Example 14 is considered to be that the recovery of dislocation was excessive and the dislocation density of the steel wire was lowered because the annealing time was too long. Be
比較例14において、(211)面の半価幅が0.14°未満であった理由は、焼鈍時間が長すぎたために、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 14 having the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason why the half width of the (211) plane is less than 0.14 ° in Comparative Example 14 is considered to be that the recovery of dislocation was excessive and the dislocation density of the steel wire was lowered because the annealing time was too long. Be
本開示における化学組成を有するが、セメンタイトの平均アスペクト比が25超であり、(211)面の半価幅が0.14°未満である比較例15では、鋼線の電気抵抗率が高すぎ、かつ、鋼線の引張強さが不足した。
比較例15において、セメンタイトの平均アスペクト比が25超であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたために、これらの伸線加工による、セメンタイトを分断する効果が不十分であったためと考えられる。
比較例15において、(211)面の半価幅が0.14°未満であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたために、転位の蓄積が不十分であったためと考えられる。 In Comparative Example 15 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is less than 0.14 ° while having the chemical composition in the present disclosure, the electrical resistivity of the steel wire is too high. And the tensile strength of the steel wire was insufficient.
In Comparative Example 15, the reason why the average aspect ratio of cementite is more than 25 is that the wire drawing strain by the first wire drawing and the second wire drawing was too small. It is considered that the effect of dividing cementite was insufficient.
The reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 15 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, so the dislocation was It is considered that the accumulation of
比較例15において、セメンタイトの平均アスペクト比が25超であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたために、これらの伸線加工による、セメンタイトを分断する効果が不十分であったためと考えられる。
比較例15において、(211)面の半価幅が0.14°未満であった理由は、第1の伸線加工及び第2の伸線加工による伸線加工ひずみが小さすぎたために、転位の蓄積が不十分であったためと考えられる。 In Comparative Example 15 in which the average aspect ratio of cementite is more than 25 and the half value width of the (211) plane is less than 0.14 ° while having the chemical composition in the present disclosure, the electrical resistivity of the steel wire is too high. And the tensile strength of the steel wire was insufficient.
In Comparative Example 15, the reason why the average aspect ratio of cementite is more than 25 is that the wire drawing strain by the first wire drawing and the second wire drawing was too small. It is considered that the effect of dividing cementite was insufficient.
The reason for the half value width of the (211) plane being less than 0.14 ° in the comparative example 15 is that the wire drawing strain due to the first wire drawing and the second wire drawing was too small, so the dislocation was It is considered that the accumulation of
本開示における化学組成を有するが、(211)面の半価幅が0.14°未満である比較例16では、鋼線の引張強さが不足した。
比較例16において、(211)面の半価幅が0.14°未満であった理由は、焼鈍温度が高すぎたために、焼鈍による、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 16 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 16 is that the annealing temperature was too high, so the recovery of dislocations by annealing became excessive and the dislocation density of the steel wire was lowered It is believed that
比較例16において、(211)面の半価幅が0.14°未満であった理由は、焼鈍温度が高すぎたために、焼鈍による、転位の回復が過度となり、鋼線の転位密度が低下したためと考えられる。 The tensile strength of the steel wire was insufficient in Comparative Example 16 which has the chemical composition in the present disclosure but the half value width of the (211) plane is less than 0.14 °.
The reason for the half value width of the (211) plane being less than 0.14 ° in Comparative Example 16 is that the annealing temperature was too high, so the recovery of dislocations by annealing became excessive and the dislocation density of the steel wire was lowered It is believed that
本開示における化学組成を有するが、セメンタイトの平均アスペクト比が10未満である比較例17では、鋼線の引張強さが不足した。この理由は、セメンタイトの平均アスペクト比が10未満であったために(即ち、線材の組織がベイナイト主体の組織であったために)、第1の伸線加工及び第2の伸線加工による加工硬化が不足したためと考えられる。
In Comparative Example 17 having the chemical composition in the present disclosure but having an average aspect ratio of cementite of less than 10, the tensile strength of the steel wire was insufficient. The reason for this is that work hardening by the first wire drawing and the second wire drawing is due to the average aspect ratio of cementite being less than 10 (that is, the structure of the wire rod is bainite-based structure). It is thought that it is because it ran short.
Al含有量が多すぎる比較例18では、鋼線の電気抵抗率が高すぎた。
In Comparative Example 18 in which the Al content was too high, the electrical resistivity of the steel wire was too high.
Claims (6)
- 鋼心アルミニウム撚線の芯材として用いられ、
鋼線と、前記鋼線の少なくとも一部を被覆するAl含有層と、を備え、
前記鋼線の化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
前記鋼線の縦断面において、前記鋼線の直径をDとした場合に、前記鋼線の中心軸からの距離がD/4である直線からD/10以内の領域におけるセメンタイトの平均アスペクト比が10以上25以下であり、
前記鋼線の縦断面において、Mo管球を使用したX線回折装置を用いて測定した(211)面の半価幅が0.14°以上0.30°未満であるアルミ覆鋼線。 Used as core material of steel core aluminum stranded wire,
A steel wire, and an Al-containing layer covering at least a part of the steel wire,
The chemical composition of the steel wire is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities,
In the longitudinal section of the steel wire, when the diameter of the steel wire is D, the average aspect ratio of cementite in a region within D / 10 from the straight line where the distance from the central axis of the steel wire is D / 4 is 10 or more and 25 or less,
The aluminum coated steel wire whose half value width of (211) plane measured using the X-ray-diffraction apparatus which used Mo tube in the longitudinal cross-section of the said steel wire is 0.14 degrees or more and less than 0.30 degrees. - 前記鋼線が、質量%で、
Cr:0%超1.00%以下及びMo:0%超0.20%以下の少なくとも1種を含有する請求項1に記載のアルミ覆鋼線。 The steel wire is, by mass%,
The aluminum-coated steel wire according to claim 1, containing at least one of Cr: more than 0% and 1.00% or less and Mo: more than 0% and 0.20% or less. - 前記鋼線が、質量%で、
V:0%超0.15%以下、Ti:0%超0.050%以下、及びNb:0%超0.050%以下の少なくとも1種を含有する請求項1又は請求項2に記載のアルミ覆鋼線。 The steel wire is, by mass%,
The method according to claim 1 or claim 2, containing at least one of V: more than 0% and 0.15% or less, Ti: more than 0% and 0.050% or less, and Nb: more than 0% and 0.050% or less. Aluminum coated steel wire. - 前記鋼線が、質量%で、
B:0%超0.0030%以下を含有する請求項1~請求項3のいずれか1項に記載のアルミ覆鋼線。 The steel wire is, by mass%,
The aluminum-coated steel wire according to any one of claims 1 to 3, which contains B: more than 0% and 0.0030% or less. - 前記鋼線の引張強さが、1900MPa以上である請求項1~請求項4のいずれか1項に記載のアルミ覆鋼線。 The aluminum-coated steel wire according to any one of claims 1 to 4, wherein a tensile strength of the steel wire is 1900 MPa or more.
- 請求項1~請求項5のいずれか1項に記載のアルミ覆鋼線を製造する方法であって、
化学組成が、質量%で、
C :0.60~1.10%、
Si:0.01~0.10%、
Mn:0.10~0.30%、
Al:0.005~0.050%、
N :0~0.0070%、
P :0~0.030%、
S :0~0.030%、
Cr:0~1.00%、
Mo:0~0.20%、
V :0~0.15%、
Ti:0~0.050%、
Nb:0~0.050%、
B :0~0.0030%、並びに、
残部:Fe及び不純物からなり、
横断面において、線材の直径をdとした場合に、中心からd/7以内の領域と外周面からd/7以内の領域とを合わせた領域におけるパーライト分率が90%以上である線材を準備する工程と、
前記線材に対し、第1の伸線加工を施すことにより未焼鈍鋼線を得る工程と、
前記未焼鈍鋼線の少なくとも一部を被覆するAl含有層を形成することにより、Al含有層付き未焼鈍鋼線を得る工程と、
前記Al含有層付き未焼鈍鋼線に対し、第2の伸線加工を施す工程と、
前記第2の伸線加工が施された前記Al含有層付き未焼鈍鋼線に焼鈍を施すことにより、前記アルミ覆鋼線を得る工程と、
を含み、
下記式(1)で表される伸線加工ひずみが2.6超3.6以下であり、前記アルミ覆鋼線中の前記鋼線の直径が1.0mm以上3.5mm以下であり、
前記焼鈍における焼鈍温度が370℃超520℃以下であり、前記焼鈍における焼鈍時間が10秒間以上180秒間以下である
アルミ覆鋼線の製造方法。
伸線加工ひずみ=2×ln(前記線材の直径(mm)/前記アルミ覆鋼線中の前記鋼線の直径(mm)) … 式(1) A method of manufacturing the aluminum clad steel wire according to any one of claims 1 to 5,
The chemical composition is in mass%,
C: 0.60 to 1.10%,
Si: 0.01 to 0.10%,
Mn: 0.10 to 0.30%,
Al: 0.005 to 0.050%,
N: 0 to 0.0070%,
P: 0 to 0.030%,
S: 0 to 0.030%,
Cr: 0 to 1.00%,
Mo: 0 to 0.20%,
V: 0 to 0.15%,
Ti: 0 to 0.050%,
Nb: 0 to 0.050%,
B: 0 to 0.0030%, and
Remainder: consists of Fe and impurities
In the cross section, when the diameter of the wire is d, prepare a wire having a pearlite fraction of 90% or more in the region combining the region within d / 7 from the center and the region within d / 7 from the outer peripheral surface The process to
Obtaining an unannealed steel wire by subjecting the wire to a first wire drawing process;
Obtaining an unannealed steel wire with an Al-containing layer by forming an Al-containing layer covering at least a part of the unannealed steel wire;
Performing a second wire drawing process on the unannealed steel wire with the Al-containing layer;
Obtaining the aluminum-coated steel wire by annealing the non-annealed steel wire with the Al-containing layer subjected to the second wire drawing;
Including
The wire drawing strain represented by the following formula (1) is more than 2.6 and not more than 3.6, and the diameter of the steel wire in the aluminum coated steel wire is not less than 1.0 mm and not more than 3.5 mm,
The manufacturing method of the aluminum coated steel wire whose annealing temperature in the said annealing is 370 degreeC-520 degrees C or less, and the annealing time in the said annealing is 10 to 180 second.
Wire drawing strain = 2 × ln (diameter of the wire (mm) / diameter of the steel wire in the aluminum-coated steel wire (mm)) Formula (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019556501A JP6825720B2 (en) | 2017-11-30 | 2017-11-30 | Aluminum covered steel wire and its manufacturing method |
PCT/JP2017/043197 WO2019106815A1 (en) | 2017-11-30 | 2017-11-30 | Aluminum-clad steel wire and method of producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/043197 WO2019106815A1 (en) | 2017-11-30 | 2017-11-30 | Aluminum-clad steel wire and method of producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019106815A1 true WO2019106815A1 (en) | 2019-06-06 |
Family
ID=66663874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043197 WO2019106815A1 (en) | 2017-11-30 | 2017-11-30 | Aluminum-clad steel wire and method of producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6825720B2 (en) |
WO (1) | WO2019106815A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043094A (en) * | 2023-01-09 | 2023-05-02 | 鞍钢股份有限公司 | Copper-clad steel wire manufacturing method for improving heat treatment performance of intermediate wire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113445338A (en) * | 2021-06-30 | 2021-09-28 | 新余新钢金属制品有限公司 | Aluminum-clad steel wire with high torsion performance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920427A (en) * | 1982-07-22 | 1984-02-02 | Sumitomo Metal Ind Ltd | Steel wire for steel core of steel reinforced al twisted wire and its production |
WO2000044954A1 (en) * | 1999-01-28 | 2000-08-03 | Nippon Steel Corporation | Wire for high-fatigue-strength steel wire, steel wire and production method therefor |
JP2003096544A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Wire rod for high-strength high-carbon steel wire and its manufacturing method |
WO2015186701A1 (en) * | 2014-06-02 | 2015-12-10 | 新日鐵住金株式会社 | Steel wire material |
JP2016100269A (en) * | 2014-11-25 | 2016-05-30 | 株式会社ジェイ・パワーシステムズ | Power transmission line and manufacturing method of power transmission line |
-
2017
- 2017-11-30 WO PCT/JP2017/043197 patent/WO2019106815A1/en active Application Filing
- 2017-11-30 JP JP2019556501A patent/JP6825720B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920427A (en) * | 1982-07-22 | 1984-02-02 | Sumitomo Metal Ind Ltd | Steel wire for steel core of steel reinforced al twisted wire and its production |
WO2000044954A1 (en) * | 1999-01-28 | 2000-08-03 | Nippon Steel Corporation | Wire for high-fatigue-strength steel wire, steel wire and production method therefor |
JP2003096544A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Wire rod for high-strength high-carbon steel wire and its manufacturing method |
WO2015186701A1 (en) * | 2014-06-02 | 2015-12-10 | 新日鐵住金株式会社 | Steel wire material |
JP2016100269A (en) * | 2014-11-25 | 2016-05-30 | 株式会社ジェイ・パワーシステムズ | Power transmission line and manufacturing method of power transmission line |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043094A (en) * | 2023-01-09 | 2023-05-02 | 鞍钢股份有限公司 | Copper-clad steel wire manufacturing method for improving heat treatment performance of intermediate wire |
Also Published As
Publication number | Publication date |
---|---|
JP6825720B2 (en) | 2021-02-03 |
JPWO2019106815A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101302291B1 (en) | HIGH-STRENGTH Zn-Al-PLATED STEEL WIRE FOR BRIDGES WHICH HAS EXCELLENT CORROSION RESISTANCE AND FATIGUE PROPERTIES, AND PROCESS FOR PRODUCTION THEREOF | |
RU2566131C1 (en) | Hot galvanised steel sheet and method of its production | |
JP5169839B2 (en) | PWS plated steel wire with excellent twisting characteristics and manufacturing method thereof | |
JP5599751B2 (en) | High carbon steel wire rod with excellent drawing workability and fatigue properties after drawing | |
EP3085805B1 (en) | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same | |
EP3988678B1 (en) | Wire rod | |
CA3001966A1 (en) | Steel wire rod for wire drawing | |
JP6687112B2 (en) | Steel wire | |
WO2019004454A1 (en) | High-strength steel wire | |
WO2020166231A1 (en) | Steel sheet and method for producing same | |
JP6575691B2 (en) | Steel wire and coated steel wire | |
WO2019106815A1 (en) | Aluminum-clad steel wire and method of producing same | |
JP6881665B2 (en) | Wire rod, steel wire and aluminum coated steel wire | |
JP7230669B2 (en) | Steel wire and aluminum-coated steel wire | |
TWI637066B (en) | Aluminum-clad steel wire and method of producing the same | |
JP7623562B2 (en) | Steel wire for wire drawing | |
JP7440758B2 (en) | wire rod and steel wire | |
WO2024161659A1 (en) | Wire rod, steel wire, rope and production method of rope | |
WO2023191027A1 (en) | Plated steel wire | |
TW201814062A (en) | Steel wire and coated steel wire | |
JPH11209847A (en) | Wire rod for hot-dip metal coated steel wire, excellent in longitudinal crack resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933223 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019556501 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933223 Country of ref document: EP Kind code of ref document: A1 |