JPS5920427A - Steel wire for steel core of steel reinforced al twisted wire and its production - Google Patents

Steel wire for steel core of steel reinforced al twisted wire and its production

Info

Publication number
JPS5920427A
JPS5920427A JP12666082A JP12666082A JPS5920427A JP S5920427 A JPS5920427 A JP S5920427A JP 12666082 A JP12666082 A JP 12666082A JP 12666082 A JP12666082 A JP 12666082A JP S5920427 A JPS5920427 A JP S5920427A
Authority
JP
Japan
Prior art keywords
less
wire
tensile strength
steel
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12666082A
Other languages
Japanese (ja)
Other versions
JPH0565581B2 (en
Inventor
Takashi Tsukamoto
塚本 孝
Chuzo Sudo
須藤 忠三
Kenji Aihara
相原 賢治
Shoji Nishimura
彰二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12666082A priority Critical patent/JPS5920427A/en
Priority to US06/435,413 priority patent/US4525598A/en
Priority to GB08229953A priority patent/GB2113751B/en
Priority to AU90003/82A priority patent/AU543136B2/en
Priority to DE19823240621 priority patent/DE3240621A1/en
Priority to FR8219802A priority patent/FR2522692B1/en
Publication of JPS5920427A publication Critical patent/JPS5920427A/en
Publication of JPH0565581B2 publication Critical patent/JPH0565581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/104Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of metallic wires, e.g. steel wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide a high tensile steel wire for a steel core of a steel reinforced Al twisted wire for aerial cables having excellent tensile strength and resistance to fatigue by regulating the contents of C, Si, Mn, Al and P, S, N, O as impurities. CONSTITUTION:A high tension steel wire for a steel core is constituted of 0.6- 1.2% C, <=2% Si, <=2% Mn, <=0.1% Al, and the balance Fe and unavoidable impurities. The contents of P, S, N and O as impurities are regulated to <=0.025% P, <=0.015% S, <=0.03% P+S, <=0.005% N and <=0.002% O. The tensile strength of such steel wire is >=180kgf/mm.<2> and the resistance to fatigue >=40kgf/mm.<2>. The steel wire has the tensile strength and winding and rewinding characteristics superior to those of conventional galvanized steel reinforced cables and has also an extremely good fatigue characteristic and high temp. strength.

Description

【発明の詳細な説明】 本発明は、架空送電線に用いられる銅芯Alよりfgj
(以下AC8Rという)の調芯用高張力鋼線の改良に関
する。
Detailed Description of the Invention The present invention provides fgj from copper core Al used for overhead power transmission lines.
(hereinafter referred to as AC8R) relates to improvements in high tensile strength steel wire for core alignment.

近年、架空送電線用のAC8Rは、その使用条件の高負
荷化または動的負荷の増大等によシ、銅芯線の機械的特
性の向上1例えば引張強さなどの静的強度のみならず、
動的な強度である疲労特性の高度化が必須とされている
、すなわち、■架空送電線の山岳地での長距離に亘る延
線架設が多くなったため、長スパン架線になるとともに
山岳特有の高低差が加わり、架線張力が極めて大となる
傾向がある。■電力需要増大に応じるため送電容量を上
げるべ(AC8Rの大径化が進められ、架線重量が大と
なって架線張力の増大が著るしい。■山岳地特有の激し
い風雪等のため゛に、太径化にともなって着氷雪や風圧
による張力の増大および各種の撮動等による複雑な動的
張力の負荷増大が生じる。tた。■上記送電容量を上げ
るべく大電力送電(例75〜100万Wという高電圧送
電)を行うため、ジュール熱によるAC8Rの温度上昇
が激しくなる(時には400〜500Cに達する例もあ
る)。
In recent years, AC8R for overhead power transmission lines has been developed to improve the mechanical properties of copper core wires1, for example, not only static strength such as tensile strength, but also to improve the mechanical properties of copper core wires due to higher load or increased dynamic load.
It is essential to improve the fatigue properties, which is dynamic strength. Due to the height difference, the tension on the overhead wire tends to become extremely large. ■Power transmission capacity must be increased to meet the increasing demand for electricity (AC8R diameter is being increased, and the weight of the overhead wires is increasing, resulting in a significant increase in the tension of the overhead wires. ■Due to the severe wind and snow characteristic of mountainous areas As the diameter increases, the tension increases due to ice and snow accumulation and wind pressure, and the complex dynamic tension load increases due to various types of photography. Because of the high-voltage power transmission (1 million W), the temperature of AC8R increases rapidly due to Joule heat (sometimes reaching 400-500C).

したがって、高張力化ならびに疲労特性の高度化が必要
であり、さらには高温度域における引張強さく以下高温
強度という)の確保が望まれる。
Therefore, it is necessary to increase the tensile strength and improve the fatigue properties, and it is also desired to secure tensile strength in a high temperature range (hereinafter referred to as high temperature strength).

また、現在のAC8Rは、銅芯線とその外側に巻かれた
AIより線の双方に張力が作用するように両者の合成よ
り線として設計されているものと、アルミニウムよシ線
部を張力分担から解放し、銅芯線のみで張力を担わせる
ように設計されたものとがある。しかし前者の張力複合
分担型のAC8Rにおいても、送電中の温度上昇などに
よって、実質的には銅芯線が全張力の大部分を分担して
いる事例もしばしば経験されるので、AC8Rの機械的
特性は殆んどすべて銅芯線の特性に依存しているといっ
ても過言ではない。
In addition, the current AC8R is designed as a synthetic stranded wire so that tension acts on both the copper core wire and the AI stranded wire wound on the outside, and the aluminum stranded wire is designed to share the tension. Some are designed to be open and have only the copper core wire carry the tension. However, even with the former AC8R, which is a composite tension sharing type, cases are often experienced where the copper core wire essentially shares most of the total tension due to temperature rises during power transmission, etc., so the mechanical characteristics of AC8R It is no exaggeration to say that almost everything depends on the characteristics of the copper core wire.

上記ACSRの銅芯線には、従来一般にJISG353
7に規定されている亜鉛メッキ鋼よシ線が用いられてい
るが、かかる従来の鋼線では、引張強さは勿論、疲労特
性、その他の機械的特性について、上述の■〜■の如き
、、昨今の苛酷な使用条件に耐える要求を満足せしめる
のは到底不可能である。
Conventionally, the copper core wire of ACSR mentioned above is generally JISG353.
Galvanized steel wires specified in 7 are used, but such conventional steel wires have not only tensile strength but also fatigue properties and other mechanical properties such as those listed in ■ to ■ above. , it is simply impossible to satisfy the requirement to withstand the harsh conditions of use these days.

本発明者らは、先きに、特願昭57−3607号(「銅
芯Al撚線の調芯用高張力鋼線」)としてAC8R用の
新規な鋼組成を提案した。それによれば、従来の亜鉛メ
ッキ鋼よシ線を凌ぐ引張強さ。
The present inventors previously proposed a new steel composition for AC8R in Japanese Patent Application No. 57-3607 ("High tensile strength steel wire for alignment of copper core Al stranded wire"). According to it, the tensile strength exceeds that of conventional galvanized steel wire.

巻付、巻戻特性と、極めて良好な疲労強度、ならびに高
温強度を併せ持つAC8Rの銅芯用高張力鋼緋であって
下記8)〜に)を満足せしめるものが得られる。
A high tensile strength steel for copper cores of AC8R having excellent winding and unwinding properties, extremely good fatigue strength, and high temperature strength can be obtained, which satisfies the following 8) to 8).

(イ) 耐架線張力を高めるため、vII線の標準引張
強さを従来より高くして130〜260 kgf /m
r??とする。
(b) In order to increase the tensile strength of the overhead wire, the standard tensile strength of the vII line has been increased from 130 to 260 kgf/m.
r? ? shall be.

(ロ) 苛酷な使用環境下での安全性を確保するため疲
労強度を従来より高くして、疲労限≦引張強さくTS)
Xo、19とする。
(b) In order to ensure safety under harsh usage environments, the fatigue strength is higher than before, and fatigue limit ≦ tensile strength TS)
Xo, 19.

HAC8Rの定常時および異常時の温度上昇に際して安
全な張力を確保するため、高温時(150〜450C)
の引張強さを下記の通シとする。
To ensure safe tension when the temperature of HAC8R rises during normal and abnormal conditions,
The tensile strength of is as shown below.

T 5(Tl≧TS(ul X (1,42−0,00
28T)好ましくはTS(rl≧TS(RIX (1,
29−0,0019T)但し、 T 5(T) :温度
T℃でのTSTSIRI:室温でのTS に) AC8Rの製造または架線工事施工に際して、折
損や亀裂発生を防止するため1巻付1巻戻特性を従来よ
シ高くして5巻付曲率半径が線の半径の3.0倍、好ま
しくは半径1.5倍の巻付試験において、折損もしくは
亀裂発生の確率(以下不良率という)が50%以下とす
る。
T 5(Tl≧TS(ul X (1,42-0,00
28T) Preferably TS(rl≧TS(RIX (1,
29-0,0019T) However, T5(T): TSTSIRI at a temperature of T°C: TS at room temperature) When manufacturing AC8R or carrying out overhead wire work, one roll must be returned with one roll to prevent breakage or cracking. In a winding test where the curvature radius of 5 windings is 3.0 times the radius of the wire, preferably 1.5 times the radius of the wire, the probability of breakage or crack occurrence (hereinafter referred to as defective rate) is 50. % or less.

ここに、本発明はかかる高張力鋼粉の疲労強度をさらに
改善することを目的とするものであって。
The present invention aims to further improve the fatigue strength of such high tensile strength steel powder.

その特徴とするところは、 C:0.6〜1.2%、Si:2%以下+ Mn : 
2%以下。
Its characteristics are: C: 0.6-1.2%, Si: 2% or less + Mn:
Less than 2%.

Al:0.1%以下、さらに、必要によシCr:  5
%以下、Cu:196以下、シよびNi : 1%以下
の1種または2種以上、および/または。
Al: 0.1% or less, and optionally Cr: 5
% or less, Cu: 196 or less, Si and Ni: 1% or less, and/or.

V:0.5%以下、Nb:0.2%以下、Ti:0.2
%以下およびZr、:0.2%以下の1種または2棟以
上を含み。
V: 0.5% or less, Nb: 0.2% or less, Ti: 0.2
% or less and Zr: Contains one or more types of 0.2% or less.

残部Feおよび不可避的不純物からなり、不純物として
のP、S、Nおよび酸素が。
The balance consists of Fe and unavoidable impurities, including P, S, N, and oxygen as impurities.

P≦0.025%   S≦0.015% P+8≦0
.03%N≦0.005%   酸素≦0.002%の
各条件を満たす鋼組成を有する。 Fe−Zn合金層の
厚さが15μm以下、引張強さ180 kgf/mm’
以上。
P≦0.025% S≦0.015% P+8≦0
.. The steel has a composition that satisfies the following conditions: 03%N≦0.005% and oxygen≦0.002%. The thickness of the Fe-Zn alloy layer is 15 μm or less, and the tensile strength is 180 kgf/mm'
that's all.

疲労強度40 kgf /mtr?  以上である。銅
芯Alよシ線の調芯用高張力Znメッキ鋼線; および、前記鋼組成を有する素材の線材にノくテンテ ヂング処理を行ないオーステナイト組織とし、パーライ
ト変態後、酸洗・潤滑処理してから伸線加工を行ない、
次いで4500以下の浴温度で15秒以下浸漬亜鉛メン
キすることから成る、銅芯Alよりaの調芯用高張力Z
nメッキ鋼線の製造法である。
Fatigue strength 40 kgf/mtr? That's all. High tensile strength Zn-plated steel wire for alignment of copper core Al-wiss wire; And, the wire rod of the material having the above steel composition is subjected to tenting treatment to form an austenitic structure, and after pearlite transformation, pickling and lubrication treatment. Perform wire drawing processing,
High tensile strength Z for alignment of a from copper core Al, which consists of then immersion zinc coating for 15 seconds or less at a bath temperature of 4500℃ or less.
This is a method for manufacturing n-plated steel wire.

なお、本発明によれば、その製造法にあっては更に疲労
強度などの動的特性を改善するために、(11前記オー
ステナイト組織のオーステナイト粒径を20〜60μm
とするとともに、前記伸#加工の際の減面率を70〜9
5%とすること。
According to the present invention, in order to further improve dynamic properties such as fatigue strength, (11) the austenite grain size of the austenite structure is adjusted to 20 to 60 μm.
At the same time, the area reduction rate during the stretching process is 70 to 9.
It shall be 5%.

(1)  前記パーライト変態にょシ得られるパーライ
ト組織のラメラ間隔を0.2μm以下とするとともに、
前記伸線加工や際の減面率を70〜95%とすること。
(1) The lamella spacing of the pearlite structure obtained by the pearlite transformation is 0.2 μm or less, and
The area reduction rate during the wire drawing process is 70 to 95%.

(Itl  前記パテンテング処理が鉛パテンテング処
理であシ、鉛パテンテング処理後の線材表面層の脱炭状
態が、 全脱炭深さ≦150μm フェライト脱炭深さ≦50μm となるように該鉛パテンテング処理を管理すること。
(Itl) The above-mentioned patenting treatment is a lead patenting treatment, and the lead patenting treatment is carried out so that the decarburization state of the wire surface layer after the lead patenting treatment is such that the total decarburization depth≦150μm and the ferrite decarburization depth≦50μm. To manage.

[lv)  前記伸線加工に先立つ潤滑処理をリン酸亜
鉛系下地潤滑剤を使用して行ない、該潤滑剤の付着量を
3〜7gβとすること、ふ・よびtv+  浸漬亜鉛メ
ッキ処理後 5秒以内に、得られたZn  メッキ鋼線
を水冷すること、を適宜組合せて実施してもよい。
[lv) The lubrication treatment prior to the wire drawing process is performed using a zinc phosphate base lubricant, and the amount of the lubricant applied is 3 to 7 gβ. Within the same period, the obtained Zn plated steel wire may be cooled with water in an appropriate combination.

かくして5本発明によれば、引張強さ180kgf/m
−以上、疲労強度40kgf/m−以上である、すでに
述べたような今日的要請に適合する高張力Znメッキ鋼
線が得られるのである。
Thus, according to the present invention, the tensile strength is 180 kgf/m.
- As a result, a high tensile strength Zn-plated steel wire having a fatigue strength of 40 kgf/m or more and meeting the current requirements as already mentioned can be obtained.

以下、本発明における成分限定の理由について詳細に述
べる。
The reasons for limiting the ingredients in the present invention will be described in detail below.

C:耐熱性を要する高張力鋼線として必要な引張強さを
確保するのに有用な成分で、0.6%未満では目標強度
の180kgf/m−以上の引張強さが実現できず、ま
た1、2%を越えると巻付1巻戻特性への悪影響が出る
ので、0.6〜1.2%とした。
C: A useful component for securing the tensile strength necessary for high-tensile steel wire that requires heat resistance. If it is less than 0.6%, the target strength of 180 kgf/m or more cannot be achieved, and If it exceeds 1 or 2%, it will adversely affect the winding and unwinding characteristics, so it was set at 0.6 to 1.2%.

Sl:高炭素高張力鋼線にかいて、疲労特性と高温強度
の上昇に有効な成分でちるが、2%を越えると延性が著
るしく低下し、巻付1巻戻特性に悪影響が出るので%2
%以下とした。
Sl: A component effective in increasing the fatigue properties and high-temperature strength of high-carbon high-strength steel wires, but if it exceeds 2%, the ductility decreases significantly and the winding and unwinding characteristics are adversely affected. So %2
% or less.

Mn:太径鋼線での引張強さの向上に有効であるが。Mn: Effective for improving the tensile strength of large diameter steel wires.

多量に添加するとパーライトが粗大となって強度がかえ
って低下する性質がある。2%を越えると必要な引張強
さの確保が困難となるので、2%以下とした。
If added in a large amount, the pearlite will become coarse and its strength will actually decrease. If it exceeds 2%, it becomes difficult to secure the necessary tensile strength, so it is set to 2% or less.

P:巻付、巻戻特性に顕著な影響力をもつ成分であシ、
引張強さの上昇に伴って巻付、巻戻特性が劣化する高炭
素鋼において、この劣化を防止して必要な巻付、巻戻特
性を確保するためには、2社を極めて低位に抑える必要
がある。一般に、高炭素鋼中にはPは、精錬中のスラグ
からの戻シPによシ比較的多く存在するが、0.025
%を越えると上記必要な巻付、巻戻特性の確保が困難に
なるので、0.025%以下とした。
P: A component that has a significant influence on the winding and unwinding characteristics,
In high carbon steel, the winding and unwinding properties deteriorate as the tensile strength increases, so in order to prevent this deterioration and ensure the necessary winding and unwinding properties, it is necessary to keep the two companies at an extremely low level. There is a need. Generally, P exists in a relatively large amount in high carbon steel due to P returned from slag during refining, but 0.025
If it exceeds 0.025%, it becomes difficult to secure the necessary winding and unwinding characteristics.

S二巻付1巻戻特性ならびに疲労特性に顕著な影響力を
もつ成分でsb、引張強さの上昇に伴って巻付、巻戻特
性、疲労特性が劣化する高炭素鋼において、これらの劣
化を防止して必要な巻付1巻戻特性、疲労特性を確保す
るためには、Slを極めて低位に抑える必要がある。通
常の高炭素鋼中にはSlは0.02%程度あるが、0.
015%を越えると上記必要な巻付1巻戻特性および疲
労特性の確保が困難になるので、 0.015%以下と
した、P+S:0−0396を越えると必要な巻付、巻
戻特性と必要な疲労特性とをともに確保することが困難
な場合が生じるので、 0.03%以下とした。また巻
付5巻戻特性と疲労特性の一層の向上を得るためには0
.028%以下が好ましい。
Sb is a component that has a significant influence on the unwinding characteristics and fatigue properties of high carbon steel, where the winding, unwinding characteristics, and fatigue characteristics deteriorate as the tensile strength increases. In order to prevent this and ensure the necessary winding and unwinding characteristics and fatigue characteristics, it is necessary to suppress Sl to an extremely low level. Normal high carbon steel contains about 0.02% Sl, but 0.
If it exceeds 0.015%, it will be difficult to secure the above-mentioned required winding and unwinding characteristics and fatigue characteristics, so if it exceeds 0.015% or less, P+S: 0-0396, the necessary winding and unwinding characteristics will not be achieved. Since it may be difficult to ensure both the necessary fatigue properties, the content is set at 0.03% or less. In addition, in order to further improve the winding and unwinding characteristics and fatigue characteristics,
.. 0.028% or less is preferable.

N:巻付、巻戻特性に大きな影響力をもつ成分であシ、
低い方が望ましい。特に引張強さく T S )が18
0kgf/m−以上では、 0.005%を越えると巻
付1巻戻特性が極端に劣化する場合があるので。
N: A component that has a large influence on the winding and unwinding characteristics.
Lower is preferable. In particular, the tensile strength T S ) is 18
At 0 kgf/m- or more, if it exceeds 0.005%, the winding and unwinding characteristics may be extremely deteriorated.

0.005%以下とした。It was set to 0.005% or less.

酸素二巻付、巻戻特性と疲労特性の双方に大きな影響力
をもつ成分である。0.0029sを越えると。
Oxygen double winding is a component that has a large influence on both unwinding characteristics and fatigue characteristics. If it exceeds 0.0029s.

線径の3.0倍径巻付試験での不良率が5096を越え
、且り引張強さくTS)が180 kgf /mrr?
  以上の高炭素鋼線における疲労限が前記TSX0.
19を達成出来なくなるので、0.002%以下とした
。なお、0.002〜0.0010%とすると、上記3
.0倍径巻付試験での不良率が0%となるとともに1.
5倍径巻付試験での不良率が50%に改善され、またo
、o o i o%以下とすると、上記1.5倍径巻付
試験での不良率が30%以下に改善されるので、可及的
に低い方が好ましい成分である。
The defect rate in the winding test with a diameter 3.0 times the wire diameter exceeds 5096, and the tensile strength (TS) is 180 kgf/mrr?
The fatigue limit of the above high carbon steel wire is TSX0.
19 cannot be achieved, so it is set to 0.002% or less. In addition, if it is 0.002 to 0.0010%, the above 3
.. The defect rate in the 0x diameter winding test was 0%, and 1.
The defective rate in the 5x diameter winding test was improved to 50%, and o
, o o io% or less, the defective rate in the above 1.5 diameter winding test is improved to 30% or less, so it is preferable that the content be as low as possible.

Cr、Cu、Ni:これらはいずれも必要によシ添加さ
れ。
Cr, Cu, Ni: All of these are added as necessary.

引張強さの向上、特に太径鋼線の引張強さの向上を図る
だめの元累である。
This is the basis for improving the tensile strength, especially of large-diameter steel wires.

Crは、このように引張強さの同上に有効な成分であり
、特に大径鋼線において顕著な効果があるが、またCr
の添加によって顕著な高温強度が得られる。
Cr is thus an effective component for tensile strength, and has a particularly remarkable effect on large-diameter steel wires, but Cr
By adding , remarkable high temperature strength can be obtained.

しかし5%を越えると、必要な巻付、巻戻特性及び疲労
特性の確保が困難になるので、5%以下とした。また、
Cu * N sはMnと類似の作用効果をもつ成分で
あシ、太径鋼線において焼入性の向上効果によって引張
強さ、延性の向上が得られるが、1%を越えると逆にパ
ーライト組織を粗大にして、引張強さ5延性を低下させ
るとともに、変態終了時間の遅延によシ、パテンテ本ン
グ工程においてトラブルが生じ易くなるので、1%以下
とした。
However, if it exceeds 5%, it becomes difficult to secure the necessary winding, unwinding and fatigue characteristics, so it is set at 5% or less. Also,
Cu*Ns is a component that has similar effects to Mn, and can improve tensile strength and ductility in large-diameter steel wires by improving hardenability, but if it exceeds 1%, pearlite It coarsens the structure, lowers tensile strength and ductility, delays the completion time of transformation, and tends to cause trouble in the patent book process, so it is set at 1% or less.

V * Nb、Ti、Zr:これらの元累は鋼組織の微
細化及び強化に効果があり、特に引張強さの高い高炭素
鋼線において巻付、巻戻特性の改善に有効である。
V*Nb, Ti, Zr: These elements are effective in refining and strengthening the steel structure, and are particularly effective in improving the winding and unwinding characteristics of high carbon steel wires with high tensile strength.

しかしVが0.5%、Nb、Ti、Zrがそれぞれ0.
2%を越えると、未固溶のV + Nb、Ti、Zrの
粗大炭化物の量が増加し、#I記巻付、巻戻特性の改善
の効果が著るしく減殺されて該特性が劣化するので、■
は0.5%以下、 Nb * Ti *Zrは0.2%
以下とした。
However, V was 0.5%, and Nb, Ti, and Zr were each 0.5%.
If it exceeds 2%, the amount of coarse carbides of undissolved V + Nb, Ti, and Zr will increase, and the effect of improving the #I winding and unwinding characteristics will be significantly diminished and the characteristics will deteriorate. Therefore, ■
is 0.5% or less, Nb*Ti*Zr is 0.2%
The following was made.

Zn合金層の厚さを15μm以下に制限するが、これは
従来品のFe−Zn合金層の厚さが20〜25μmであ
るのと対照的であル1本発明にあってはその厚さは可及
的に小さくすることが、疲労強度の向上にとって好まし
い。特に、鋼組成を前述の如く規制することによって疲
労強度は40 kgf /mrr?以上。
The thickness of the Zn alloy layer is limited to 15 μm or less, which is in contrast to the Fe-Zn alloy layer of conventional products, which has a thickness of 20 to 25 μm. It is preferable to make it as small as possible in order to improve fatigue strength. In particular, by regulating the steel composition as described above, the fatigue strength can be reduced to 40 kgf/mrr? that's all.

好ましくは例えば44 kgf/m−以上と相乗的に改
善される。
Preferably, it is synergistically improved to, for example, 44 kgf/m- or more.

Fe−Zn合金層の厚さを15μm以下に制限するには
メッキ浴温度を低温度側にもってくるがあるいは浸漬メ
ッキ時間をより短時間側にもってくればよいが、一般に
はメッキ浴温度を450c以下にそして浸漬メッーキ時
間を15秒以下に制御すれば良い。
To limit the thickness of the Fe-Zn alloy layer to 15 μm or less, the plating bath temperature can be lowered or the immersion plating time can be shortened, but generally the plating bath temperature is set at 450°C. The immersion plating time may be controlled to 15 seconds or less.

第1図は、下記fP組成のZnメッキ鋼線についてFe
−Zn合金層の厚さと疲労強度との関係を一連の実験に
よって得られたデータにもとすいて一般的に示すグラフ
、第2図はFe−Zn合金層の厚さとメッキ浴中への浸
漬時間との関係を示す同様なグラフ(図中、浴温度44
0 Cで5メッキ後4秒で水冷を施した場合を○、同じ
(450Cで、メッキ後4秒で水冷を施した場合を△で
それぞれ示した。)そして第3図は同じく浴温度との関
係を示す同様なグラフ(図中、添字は浸漬時間(see
)、3本の曲線はそれぞれ浸漬時間(tlが9sec 
、 15sec、 30secの場合の関係を線図化し
たものである。)である。
Figure 1 shows the Fe
- A graph that generally shows the relationship between the thickness of the Zn alloy layer and fatigue strength based on data obtained from a series of experiments. Figure 2 shows the relationship between the thickness of the Fe-Zn alloy layer and immersion in the plating bath. A similar graph showing the relationship with time (in the figure, bath temperature 44
The case where water cooling was applied 4 seconds after plating at 0 C is shown as ○, the same (the case where water cooling was applied 4 seconds after plating at 450 C is shown as △), and Figure 3 shows the same relationship with the bath temperature. A similar graph showing the relationship (in the figure, the subscript is immersion time (see
), each of the three curves shows the immersion time (tl is 9 sec).
, 15sec, and 30sec. ).

鋼組成 CSt Mn AX P S N O ・0.820,270.750.0340.0170.
0100.0040.001第1図ないし第3図に示す
データからも明らかなように、40 kgf /mイ以
上の疲労強度を得るにはFe−Zn合金層の厚さは18
μm以下、好ましくは15μm以下に制限することによ
って特に臨界的な改善がなされ、そしてそのためには浴
温度を450C以下に、−浸漬時間を15秒以下に制限
することが本発明の目的にとって望ましい。換言すれば
、これら2つの条件さえ考慮すればFe−Zn合金層の
厚みは実用レベルの精度でもって制御できるのである。
Steel composition CSt Mn AX P S N O ・0.820, 270.750.0340.0170.
0100.0040.001 As is clear from the data shown in Figures 1 to 3, in order to obtain a fatigue strength of 40 kgf/m or more, the thickness of the Fe-Zn alloy layer must be 18
A particularly critical improvement is achieved by limiting the bath temperature to below .mu.m, preferably below 15 .mu.m, and for which purpose it is desirable for the purposes of the invention to limit the bath temperature to below 450C and the immersion time to below 15 seconds. In other words, if these two conditions are taken into account, the thickness of the Fe--Zn alloy layer can be controlled with a practical level of accuracy.

次いで、メッキ浴中に12秒浸漬した後1種々の時間経
過した後、放冷して合金−の生成状況を調べた。。結果
を第4図に示す。合金層の成長は厚さ15μmまでは5
秒間で11は終了することが分かる。りまシ、メッキ後
水冷して合金−の生成を阻止するにはメッキ後5秒以内
に水冷を行なう必要がある。
Next, after 12 seconds of immersion in a plating bath, various time periods had elapsed, the samples were allowed to cool and the state of alloy formation was examined. . The results are shown in Figure 4. The growth of the alloy layer is 5 up to a thickness of 15 μm.
It can be seen that 11 is completed in seconds. However, in order to prevent the formation of alloys by water cooling after plating, it is necessary to perform water cooling within 5 seconds after plating.

ところで、AC311jの製造または架線工事に際して
の鋼線の折損や亀裂発生を防止するため、捻回特性を従
来よシ高くして、S径の100倍のつかみ間隔での捻回
試験において、折損もしくは亀裂の生じるまでのねじ多
回数(以下捻回値という)を例えば20回以上とするこ
とが必要とされる。
By the way, in order to prevent the steel wire from breaking or cracking during AC311j manufacturing or overhead line work, the twisting characteristics were made higher than before, and in a twisting test with a grip spacing 100 times the S diameter, no breakage or cracking occurred. It is required that the number of times the screw is twisted (hereinafter referred to as the twist value) before cracking occurs is, for example, 20 or more times.

したがって1本発明の好適具体化例では、パテンテ礫ン
グ処理を行なうことにより得られるオーステナづト組織
のオーステナイト粒径を20〜60μmとしおよび/ま
たはパーライト組織のラメラ間隔を0.20μm以下と
するとともに伸線加工時の減面率を70〜95%とする
ことによシ動的疲労特性をさらに改善することが望まし
い。
Therefore, in a preferred embodiment of the present invention, the austenite grain size of the austenite structure obtained by performing the Patente gravelling process is 20 to 60 μm and/or the lamella spacing of the pearlite structure is 0.20 μm or less, and It is desirable to further improve the dynamic fatigue properties by setting the area reduction rate during wire drawing to 70 to 95%.

疲労強度を改善するにはオーステナイト粒径は小さい方
が良いが、捻回特性については粒径が余シ小さすぎると
かえって劣化する。したがって、本発明では好ましくは
オーステナイト粒径を20〜60μmの範囲とする。な
お、従来一般にはこのオーステナイト粒径は100μm
程度である。
In order to improve fatigue strength, it is better to have a smaller austenite grain size, but if the grain size is too small, the twisting properties will deteriorate. Therefore, in the present invention, the austenite grain size is preferably in the range of 20 to 60 μm. Conventionally, this austenite grain size is generally 100 μm.
That's about it.

第5図は前記と同じ鋼組成のZnメッキ鋼線を製造する
際のパーライトラメラ間隔(μm)と捻回値(回)との
関係を一連の実験データにもとすいて一般的に示すグラ
フである。このときのオーステナイト粒径はほぼ97μ
mであった。捻回値ff:20回以上とするためにはラ
メラ間隔を帆24μm以下、好ましくは0.20μn1
以下とすることが必要であるのが分かる。
Figure 5 is a graph generally showing the relationship between pearlite lamella spacing (μm) and twist value (turns) when manufacturing Zn-plated steel wire with the same steel composition as above, based on a series of experimental data. It is. The austenite grain size at this time is approximately 97μ
It was m. Twisting value ff: In order to make 20 times or more, the lamella spacing should be 24 μm or less, preferably 0.20 μn1.
It can be seen that the following is necessary.

このオーステナイト粒径およびパーライトのラメラ間隔
の調整は、一般に、鋼種成分の調整適正化および製造条
件の適正化を図ることによって行なうことができる。例
えば鉛パテンテキング処理においては、加熱速度、加熱
温度、加熱時間ならつて行なわれる。また前記鉛パテン
テ布ングに代えて、その他の各椋パテンテネング処理法
(例えば、熱間圧延後調整冷却する各種の面接パテンテ
丸ング処理法)を利用し、さらに鋼の成分および熱間圧
延条件を調整適正化する制御圧延法等の単独もしくは2
以上を併用し、それぞれの条件を適止に管理する方法に
よっても行なうことができる。
The austenite grain size and pearlite lamella spacing can generally be adjusted by appropriately adjusting the steel type components and manufacturing conditions. For example, in lead patenting treatment, the heating rate, heating temperature, and heating time are determined. In addition, instead of the lead patente wrapping, other patentening treatment methods (for example, various surface patente rounding treatment methods in which adjustment cooling is performed after hot rolling) are used, and the composition of the steel and hot rolling conditions are further adjusted. Controlled rolling method, etc. to optimize adjustment alone or in combination
This can also be done by using the above methods in combination and managing each condition appropriately.

このようなオーステナイト、粒径およびパーライトのラ
メラ間隔のB周整手段それ自体については当業者にはす
でに明らかなところであろう。なお鋼線の断面減少率つ
まり減面率で示した伸線加工率は。
Those skilled in the art will already be aware of the means for adjusting the austenite, grain size, and lamellar spacing of pearlite. In addition, the wire drawing processing rate expressed as the area reduction rate of the steel wire is.

70%未満ではCが0.6〜1.2%の炭素鋼および低
合金鋼において引張強さを目標値の180 kgf/m
rr/に到達せしめることならびに耐久比の目標値0.
19の達成が困難となる。また伸線加工率が95%を越
えると、疲労強度が急激に低下して耐久比が0.18よ
り下となるとともに巻付巻戻特性への悪影響も生じる。
If the carbon content is less than 70%, the target value of tensile strength is 180 kgf/m for carbon steel and low alloy steel with C content of 0.6 to 1.2%.
rr/ and the target value of durability ratio 0.
19 becomes difficult to achieve. Further, when the wire drawing rate exceeds 95%, the fatigue strength rapidly decreases, the durability ratio becomes less than 0.18, and the winding and unwinding characteristics are also adversely affected.

また同じく95%を越えると捻回試験において一様なね
じれが進まず、極端に低いねじり回数の段階で異常な破
断を生じることがあり好ましくない。
Similarly, if it exceeds 95%, uniform twisting will not proceed in the twisting test, and abnormal breakage may occur at an extremely low number of twists, which is undesirable.

本発明にかかる製造法の好適態様にあっては、パテンテ
曵ング処理として鉛バテンテへング処理が採用されるが
、鉛パテンテ曵ング処理後の線材表層部の脱炭の程度が
疲労強度の良否に大きく関連している。すなわち、鉛パ
テンテ穫ングとは。
In a preferred embodiment of the manufacturing method according to the present invention, a lead batente rolling process is adopted as the patente rolling process, but the degree of decarburization of the surface layer of the wire after the lead patente rolling process determines whether the fatigue strength is good or not. is significantly related to In other words, what is lead patenting?

線材の変形能を高めて伸線加工を容易ならしめるもので
あル、一般には加熱炉において900〜1000℃に1
時間和度保持し5次いで530℃の鉛浴中で冷却すると
いうものであるが、この鉛パテンテ壓ングを受けたとき
、線材の脱炭状態としては最外層に炭化物を一切含まな
いフェライト脱炭層が存在し、その下に一部炭化物を含
む、いわば不完全な脱炭層が拡がる形態を呈する。上記
フェライト脱炭の深さをDmFの記号で示し、一方上記
不完全な脱炭層を含む全脱炭深さをDmTの記号にて示
すとこれら2つの脱炭指標とZnメッキ鋼線の疲労強度
との関係は第6図および第7図に示す通シでおる。
It increases the deformability of the wire rod and makes wire drawing easier. Generally, it is heated to 900 to 1000℃ in a heating furnace.
The method is to maintain the temperature for 5 hours and then cool it in a lead bath at 530°C. When the wire is subjected to this lead patenting, the decarburized state of the wire is a ferrite decarburized layer that does not contain any carbide in the outermost layer. exists, and below it there is an incompletely decarburized layer that partially contains carbide. If the depth of ferrite decarburization is indicated by the symbol DmF, and the total decarburization depth including the incomplete decarburized layer is indicated by the symbol DmT, these two decarburization indexes and the fatigue strength of Zn-plated steel wire The relationship is as shown in FIGS. 6 and 7.

このときの鋼組成は前述の通シであシ、浴温450Cで
12秒間浸漬Znメッキして得たZn  メッキ鋼線に
ついての実験データである。図示vilIの場合、全脱
炭深さが150μmを越える場合、またはフェライト脱
炭深さが50μmを越える場合には、40kgf/m−
以上の疲労強度が得られない。第6図に示す例の場合、
DmFは10μmであった2、第7図の場合、DmTは
150μmであった。したがって、鉛パテンテへング処
理を採用する本発明方法の好適態様にあっては、 Dm
T≦150μmおよびDmF≦50μmとしなければな
らない。
The steel composition at this time is experimental data for a Zn-plated steel wire obtained by immersion Zn plating at a bath temperature of 450 C for 12 seconds using the above-mentioned method. In the case of the illustrated vil I, if the total decarburization depth exceeds 150 μm or the ferrite decarburization depth exceeds 50 μm, 40 kgf/m-
It is not possible to obtain higher fatigue strength. In the case of the example shown in Figure 6,
DmF was 10 μm2, and in the case of FIG. 7, DmT was 150 μm. Therefore, in a preferred embodiment of the method of the present invention employing lead patenting treatment, Dm
T≦150 μm and DmF≦50 μm.

以上のような脱炭管理は、鉛ノくテンテヘング処理にお
ける処理条件の設定を調節することによって達成し得る
。加熱温度と保持時間のAl1合せ、それに雰囲気(空
燃比等)などの沿1j御によればよく。
Decarburization management as described above can be achieved by adjusting the setting of treatment conditions in the lead removal treatment. The heating temperature and holding time may be adjusted according to Al1, and the atmosphere (air-fuel ratio, etc.) may be controlled.

一般には加熱温度を低く、保持時間を短力1〈すれば、
また雰囲気ではそのO!酸成分少なくすれば。
Generally, if the heating temperature is low and the holding time is shortened by 1,
Also, the atmosphere is O! If you reduce the acid content.

それぞれ脱炭が抑制されるものであるカニ、本発明の1
つの好適態様としての前述の脱炭管理のためのこのよう
な手法の採用は、鉛/<テンテ屹ングのその本来の目的
の達成を阻むというようなことになる懸念はまったくな
い。
Crabs whose decarburization is suppressed, respectively, and 1 of the present invention.
There is no concern that the adoption of such a method for managing decarburization as described above as a preferred embodiment will hinder the achievement of the original purpose of the lead/temperature process.

なお、従来は、この種Znメッキ鋼線について云えば、
 DmTは150μmをこえて170〜200μm程度
になっておシ、またDmFについても50μm を上廻
って60〜70μm程度であるのが通例である。
Regarding this type of Zn-plated steel wire, conventionally,
DmT exceeds 150 .mu.m and is about 170 to 200 .mu.m, and DmF also usually exceeds 50 .mu.m to about 60 to 70 .mu.m.

かくして得られる線材には伸線加工に先立って潤滑処理
が行なわれる。ここに、潤滑処理とは一般に、鉛パテン
ティング−酸洗後においてまず。
The wire thus obtained is subjected to a lubrication treatment prior to wire drawing. Here, lubrication treatment is generally performed first after lead patenting and pickling.

リン酸亜鉛系の下地潤滑剤1例えばボンデライト(商品
名:日本バーカー社M)を浸漬等により塗布し、その上
に更にステアリン酸ナトリウム系の潤滑剤、例えばボン
ダリューベ(同上)を塗布して、これらの両層間にステ
アリン酸ナトリウムの鳩を形成させることである。
A zinc phosphate-based base lubricant 1, such as Bonderite (trade name: Nippon Barker Co., Ltd. M), is applied by dipping or the like, and a sodium stearate-based lubricant, such as Bondarube (same as above), is further applied thereon. The goal is to form a dove of sodium stearate between these two layers.

潤滑処理に関し1本発明者らが見い出したところによれ
ば、下地潤滑剤の付着量が7y/rr?  以下で耐久
比が最も良好な値を示す。一方、下地潤滑剤の付着量が
3fl/−未満になると、潤滑という本来の機能が損わ
れ、伸線時において焼付の危険が生じる。
Regarding lubrication treatment, 1. According to what the present inventors found, the amount of adhesion of the base lubricant is 7y/rr? The durability ratio shows the best value below. On the other hand, if the amount of the base lubricant applied is less than 3 fl/-, the original function of lubrication will be impaired and there will be a risk of seizure during wire drawing.

な訃、従来法では、この下地潤滑剤の付N量としては、
10L背以上になっておシ、これでは優れた疲労特性は
期待できない。従来かかる潤滑剤の塗布については一般
に、伸線中の焼付防止そのことのみ考えて行なわれてお
り、このため安全を図る立場から前記付着量も10y/
lr?以上という必要以上に多いものになっていたので
ある。
However, in the conventional method, the amount of N applied to this base lubricant is:
Since the height is 10L or more, excellent fatigue properties cannot be expected. Conventionally, the application of such lubricant has generally been carried out with the sole purpose of preventing seizing during wire drawing, and for this reason, the amount of lubricant applied has been reduced to 10 y/min from the standpoint of safety.
lr? There were more than necessary.

次に実施例によって本発明をさらに説明する。Next, the present invention will be further explained by examples.

実施例1 第1表に示す鋼組成を有する鋼種屋1゛〜11を4トノ
屯気炉で酊製し、直径8.0誌の素材の線材に熱間圧延
した。この線材を9000に加熱して鉛パテンテイグ処
理を行なった。パテンテ4ング処理時のオーステナイト
粒径30μm、パテンテベング処理後のパーライト組織
のラメラ間隔0.15μmそして全脱炭層深さくDmT
)50μmフェライト脱炭層深さゼロのバテンテ激ング
処理材を得た。次いで酸洗後、下地潤滑剤としてのリン
酸亜鉛被膜の付着量が6P/イとなるように潤滑処理を
施し、直径3.11語の線材にまで連続押縁した(減面
率=85.9% )。
Example 1 Steel grades 1 to 11 having the steel compositions shown in Table 1 were produced in a 4-ton air furnace and hot rolled into wire rods having a diameter of 8.0 mm. This wire was heated to 9,000 ℃ and subjected to lead patenting treatment. The austenite grain size during the Patente bending process is 30 μm, the lamella spacing of the pearlite structure after the Patente bending process is 0.15 μm, and the total decarburization layer depth is DmT.
) A Batente-hardened material with a 50 μm ferrite decarburized layer depth of zero was obtained. Next, after pickling, lubrication treatment was performed so that the amount of zinc phosphate coating as a base lubricant was 6P/I, and the wire was continuously pressed to a wire rod with a diameter of 3.11 wires (area reduction rate = 85.9 %).

亜鉛浸漬メッキは、 Znメッキ浴温度450C。For zinc immersion plating, the Zn plating bath temperature is 450C.

浸漬メッキ時間12秒とし、メッキ4tν後に水冷却を
行なって実施した。
The immersion plating time was 12 seconds, and water cooling was performed after plating 4tν.

第2表に各供試鋼の機械的性質をまとめて示す。Table 2 summarizes the mechanical properties of each steel sample.

同表から各比較鋼に比べ1本発明鋼の機械的性質が明ら
かに優れていることが判る。
From the same table, it can be seen that the mechanical properties of the steel of the present invention are clearly superior to each of the comparative steels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Znメッキ鋼線におけるFe−Zn合金層の
厚さと疲労強度との関係を一般的に示すグラフ; 第2図は、Fe−Zn合金層の厚さとメッキ浴中への浸
漬時間との関係を示す同様なグラフ;第3図は、Fe−
Zn合金層の厚さと浴温度との関係を示す同様なグラフ
; 第4図は、 pe−7rn合金層の成長と放冷時間との
関係を示すグラフ; 第5図は、伸線前のパーライト組織のラメラ間隔と捻回
値との関係を示すグラフ; 第6図は、鉛パテンテング処理による全脱炭深さとその
とき得られる鋼線の疲労強度との関係を示すグラフ;お
よび 第7図は、同じくフェライトの脱炭深さと疲労強度との
関係を示すグラフである。 出願人代理人 弁理士 広 瀬 章 −第1図 Ee−2’/1合44庫(μ姐 尾2 図 浴中々潰鴫蘭(Sec ) ′#3図。 浴弓見廣(°C) 孔4図 革、5 図 1申線前の1マーライトラノラ藺鳩(μrn)氷ろ 図 DmT、’全1え戻:軍さ Cμ町
Figure 1 is a graph generally showing the relationship between the thickness of the Fe-Zn alloy layer and fatigue strength in Zn-plated steel wire; Figure 2 is a graph showing the relationship between the thickness of the Fe-Zn alloy layer and the immersion time in the plating bath. A similar graph showing the relationship between Fe-
A similar graph showing the relationship between the thickness of the Zn alloy layer and the bath temperature; Figure 4 is a graph showing the relationship between the growth of the PE-7RN alloy layer and the cooling time; Figure 5 is a graph showing the relationship between the growth of the PE-7RN alloy layer and the cooling time; Figure 5 is the graph showing the relationship between the thickness of the Zn alloy layer and the bath temperature; A graph showing the relationship between the lamella spacing of the structure and the torsion value; Figure 6 is a graph showing the relationship between the total decarburization depth by lead patenting treatment and the fatigue strength of the steel wire obtained at that time; and Figure 7 is a graph showing the relationship between the lamella spacing of the structure and the twist value. , is a graph showing the relationship between the decarburization depth and fatigue strength of ferrite. Applicant's representative Patent attorney Akira Hirose - Figure 1 Ee-2'/1 go 44 (μ 姐 2 Figure 3) Figure 3. 4 Figure Leather, 5 Figure 1 1 Marlite Lanora in front of the monkey line (μrn) ice Figure DmT, 'All 1 Return: Military Cμ Town

Claims (1)

【特許請求の範囲】 tll  C: 0.6〜1.2%、St:2%以下、
Mn:2%以下、AJ:0.1%以下、残部Feおよび
不可避的不純物からなり、不純物としてのP、S、Nお
よび酸素が、 P≦0.025%    S≦0.015%  P十S
≦0.03%N≦0.005%   酸素≦0.002
%の各条件を満たす鋼組成を有し、引張強さ180 k
gf/m?以上、疲労強度40kgf/mn?以上であ
る。銅芯A/ よシ線の調芯用高張力Znメッキ鋼線。 (2) Fe−Zn合金層の厚さが15μm以下7であ
る。 特許請求の範囲第(1)項に記載のZnメッキ鋼線。 131  C: 0.6〜1.2%、st:2%以下、
Mn:2%以下、 Al: 0.1%以下、さらに、C
r:5%以下。 Cu:1%以下、およびNt : 1%以下の1種また
は2f11以上を含み、 残部Feおよび不可避的不純物からなり、不純物として
のP、S、Nおよび酸素が、 P≦0.025%  S≦0.015%  P+S≦0
.03%N≦0.005%  酸素≦0.002%の各
条件を満たす鋼組成を有し、引張強さ180kgf/m
m’以上、疲労強度40kgf/mrr?以上である、
銅芯Alよシ線の調芯用高張力Znメッキ鋼iIJ。 14)Fe−Zn合金層の厚さが、154m以下である
、特許請求の範囲第(3)項に記載1のZnメッキ鋼線
。 (5)C: 0.6〜1.2%、Si:2%以下+ M
n : 2%以下、AJ:0.1%以下、さらに、V 
: 0.5 %以下、Nb:0.2%以下、Ti:0.
2%以下およびZr: 0.2% 以下の1種または2
種以上を含み、 残部Feおよび不可避的不純物からなシ、不純物として
のP、S、Nおよび酸素が、 P≦0.025%   S≦0.015% P+8≦0
.03%N≦o、oos%   酸素≦0.002%の
各条件を満たす鋼組成を有し、引張強さ180kgf/
mi以上、疲労強度40 kgf /mn?  以上で
ある。 銅芯A/より線の調芯用高張力Znメッキ鋼線。 (67Fe−Zn合金層の厚さが、1.5pm以下であ
るI。 特許請求の範囲第(5)項に記載のZnメッキ鋼線。 (7) C:0.6〜1.2%、Si:2%以下、 M
n : 2%以下、 Al : 0.i%%以下さらに
、Cr:5%以下、Cu:1%以下、およびNi:1%
以下の1種または2種以上 さらに、V:0.5%以下、 Nb : 0.2%以下
、Ti:0.2%以下およびZr : 0.2%以下の
1種または2種以上を含み、 残部Feおよび不可避的不純物からなシ、不純物として
のP、S、Nおよび酸素が。 P≦0.025%    S≦0.015%    p
十sso、o3%N≦0.005%  酸素≦0.00
2%の各条件を満たす鋼組成を有し、引張強さ180k
gf/m−以上、疲労強度40 kgf /mrr?以
上テアル、銅芯よhaO鋼芯銅芯張力Znメッキ鋼1M
。 (81Fe−Zn合金層の厚さが15μm以下である、
特許請求の範囲第(7)項に記載のZnメッキ鋼線。 191  C: 0.6〜1.2%、Si:2%以下s
 Mn : 2%以下、Al:0.1%以下、さらに必
要によりCr:5%以下、Cu:1%以下、およびNi
:1%以下の1種または2種以上、および/または、V
:0.5%以下、Nb:0.2%以下、 Ti:0.2
 %以下およびZr : 0.2%以下の1種または2
種以上を含み5 残部Feおよび不可避的不純物からなシ、不純物として
のP、S、Nおよび酸素が、 P≦0.025%    S≦0.015%  P十S
≦0.03%N≦0.005%  酸素≦0.002%
の各条件を満たす鋼組成を有する素材の線材にパテ テンをング処理を行ないオーステナイト組織とし、パー
ライト変態後、酸洗・潤滑処理してから伸線加工を行な
い5次いで450°C以下の浴温度で15秒以下浸漬亜
鉛メンキすることから成る、Fe −Zn合金層の厚さ
15μm以下、引張強さ180 kgf /mn?以上
、疲労強度40kgf/mr!  以上である。銅芯M
よシ線の調芯用高張力Znメッキ鋼線の製造法。 tlo+  前記オーステナイト組織のオーステナイト
粒径を20〜60μm とするとともに、前記伸線加0
υ 前記パーライト変態により得られるパーライト組織
のラメラ間隔を0.20μm以下とするととの製造法。 側 前記パテンテング処理が鉛バテンテング処理であシ
、鉛パテンテング処理後の線材表面層の脱炭状態が、 全脱炭深さ6150μm フェライト脱炭深さ650μm 記載の製造法。 Q31  前記伸線加工に先立つ潤滑処理をリン、酸亜
鉛系下地潤滑剤を使用して行ない、該下地潤滑剤04)
浸漬亜鉛メッキ処理後、5秒以内に得られ
[Claims] tll C: 0.6 to 1.2%, St: 2% or less,
Mn: 2% or less, AJ: 0.1% or less, the balance consists of Fe and unavoidable impurities, P, S, N and oxygen as impurities are: P≦0.025% S≦0.015% P1S
≦0.03%N≦0.005% Oxygen≦0.002
It has a steel composition that satisfies each condition of %, and has a tensile strength of 180 k
gf/m? Above, fatigue strength 40kgf/mn? That's all. Copper core A/ High tensile strength Zn plated steel wire for alignment of horizontal wire. (2) The thickness of the Fe-Zn alloy layer is 15 μm or less7. A Zn-plated steel wire according to claim (1). 131C: 0.6 to 1.2%, st: 2% or less,
Mn: 2% or less, Al: 0.1% or less, and C
r: 5% or less. Contains Cu: 1% or less and Nt: 1% or less of one kind or 2f11 or more, the balance consists of Fe and inevitable impurities, and P, S, N and oxygen as impurities are P≦0.025% S≦ 0.015% P+S≦0
.. It has a steel composition that satisfies the following conditions: 03%N≦0.005% and oxygen≦0.002%, and has a tensile strength of 180kgf/m.
m' or more, fatigue strength 40kgf/mrr? That's all,
High-strength Zn-plated steel iIJ for aligning copper-core aluminum wire. 14) The Zn-plated steel wire according to claim (3), wherein the thickness of the Fe-Zn alloy layer is 154 m or less. (5) C: 0.6-1.2%, Si: 2% or less + M
n: 2% or less, AJ: 0.1% or less, and V
: 0.5% or less, Nb: 0.2% or less, Ti: 0.
2% or less and Zr: 0.2% or less of one or two of the following
P≦0.025% S≦0.015% P+8≦0
.. It has a steel composition that satisfies the following conditions: 03%N≦o, oos% oxygen≦0.002%, and has a tensile strength of 180kgf/
mi or more, fatigue strength 40 kgf/mn? That's all. Copper core A/High tensile strength Zn plated steel wire for alignment of stranded wires. (I in which the thickness of the 67Fe-Zn alloy layer is 1.5 pm or less. Zn-plated steel wire according to claim (5). (7) C: 0.6 to 1.2%, Si: 2% or less, M
n: 2% or less, Al: 0. i%% or less Furthermore, Cr: 5% or less, Cu: 1% or less, and Ni: 1%
One or more of the following: Further, one or more of the following: V: 0.5% or less, Nb: 0.2% or less, Ti: 0.2% or less, and Zr: 0.2% or less , the balance is Fe and unavoidable impurities, and the impurities are P, S, N and oxygen. P≦0.025% S≦0.015% p
10sso, o3%N≦0.005% Oxygen≦0.00
It has a steel composition that satisfies each condition of 2%, and has a tensile strength of 180k.
gf/m- or more, fatigue strength 40 kgf/mrr? More than that, copper core haO steel core copper core tensile strength Zn plated steel 1M
. (The thickness of the 81Fe-Zn alloy layer is 15 μm or less,
A Zn-plated steel wire according to claim (7). 191 C: 0.6 to 1.2%, Si: 2% or less
Mn: 2% or less, Al: 0.1% or less, and if necessary Cr: 5% or less, Cu: 1% or less, and Ni
: 1% or less of one or more kinds, and/or V
: 0.5% or less, Nb: 0.2% or less, Ti: 0.2
% or less and Zr: 0.2% or less of type 1 or 2
The remainder is Fe and unavoidable impurities, P, S, N and oxygen as impurities, P≦0.025% S≦0.015% P10S
≦0.03%N≦0.005% Oxygen≦0.002%
A wire rod made of a material having a steel composition that satisfies each of the following conditions is subjected to a puttyening treatment to form an austenite structure, and after pearlite transformation, it is pickled and lubricated, and then wire drawn. The thickness of the Fe-Zn alloy layer is 15 μm or less and the tensile strength is 180 kgf/mn? Above, fatigue strength is 40kgf/mr! That's all. Copper core M
A method for producing high-tensile Zn-plated steel wire for alignment of horizontal wires. tlo+ The austenite grain size of the austenite structure is 20 to 60 μm, and the wire drawing is 0
υ A manufacturing method in which the lamella spacing of the pearlite structure obtained by the pearlite transformation is 0.20 μm or less. Side The manufacturing method according to which the patenting process is a lead battening process, and the decarburized state of the wire surface layer after the lead patenting process is: Total decarburization depth: 6150 μm Ferrite decarburization depth: 650 μm. Q31 The lubrication treatment prior to the wire drawing process is performed using a phosphorus and zinc acid base lubricant, and the base lubricant 04)
Obtained within 5 seconds after immersion galvanizing treatment
JP12666082A 1982-01-12 1982-07-22 Steel wire for steel core of steel reinforced al twisted wire and its production Granted JPS5920427A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12666082A JPS5920427A (en) 1982-07-22 1982-07-22 Steel wire for steel core of steel reinforced al twisted wire and its production
US06/435,413 US4525598A (en) 1982-01-12 1982-10-20 Steel wire for use in stranded steel core of an aluminum conductor, steel reinforced and production of same
GB08229953A GB2113751B (en) 1982-01-12 1982-10-20 Steel wire for use in straned steel core of an aluminum conductor steel reinforced and production of same
AU90003/82A AU543136B2 (en) 1982-01-12 1982-10-29 High tensile steel wire support for aluminium alloy high tension conductor
DE19823240621 DE3240621A1 (en) 1982-01-12 1982-11-03 STEEL WIRE FOR THE STRANDED CORE OF A STEEL REINFORCED ALUMINUM LADDER AND METHOD FOR THE PRODUCTION THEREOF
FR8219802A FR2522692B1 (en) 1982-01-12 1982-11-25 STEEL WIRE FOR USE IN THE STRANDED STEEL CORE OF A STEEL REINFORCED ALUMINUM CONDUCTOR AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12666082A JPS5920427A (en) 1982-07-22 1982-07-22 Steel wire for steel core of steel reinforced al twisted wire and its production

Publications (2)

Publication Number Publication Date
JPS5920427A true JPS5920427A (en) 1984-02-02
JPH0565581B2 JPH0565581B2 (en) 1993-09-20

Family

ID=14940711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12666082A Granted JPS5920427A (en) 1982-01-12 1982-07-22 Steel wire for steel core of steel reinforced al twisted wire and its production

Country Status (1)

Country Link
JP (1) JPS5920427A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116745A (en) * 1983-11-30 1985-06-24 Kobe Steel Ltd Wire for steel cord
JPS60181255A (en) * 1984-02-28 1985-09-14 Azuma Seikosho:Kk Direct air patenting type wire rod
JPS60208463A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd Galvanized steel wire having superior twisting characteristic and its manufacture
JPS60208464A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd High tension galvanized steel wire and its manufacture
JPS62284044A (en) * 1986-06-02 1987-12-09 Shinko Kosen Kogyo Kk High-strength high-toughness steel wire having excellent toughness and ductility and production thereof
JPS63192846A (en) * 1987-02-04 1988-08-10 Nippon Steel Corp High strength steel wire rod for extra fine steel wire
JP2016180147A (en) * 2015-03-24 2016-10-13 新日鐵住金株式会社 Steel wire excellent in conductivity
WO2019106815A1 (en) * 2017-11-30 2019-06-06 日本製鉄株式会社 Aluminum-clad steel wire and method of producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116745A (en) * 1983-11-30 1985-06-24 Kobe Steel Ltd Wire for steel cord
JPS60181255A (en) * 1984-02-28 1985-09-14 Azuma Seikosho:Kk Direct air patenting type wire rod
JPS60208463A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd Galvanized steel wire having superior twisting characteristic and its manufacture
JPS60208464A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd High tension galvanized steel wire and its manufacture
JPH0373625B2 (en) * 1984-03-30 1991-11-22 Sumitomo Metal Ind
JPS62284044A (en) * 1986-06-02 1987-12-09 Shinko Kosen Kogyo Kk High-strength high-toughness steel wire having excellent toughness and ductility and production thereof
JPH0526851B2 (en) * 1986-06-02 1993-04-19 Shinko Kosen Kogyo Kk
JPS63192846A (en) * 1987-02-04 1988-08-10 Nippon Steel Corp High strength steel wire rod for extra fine steel wire
JPH0371502B2 (en) * 1987-02-04 1991-11-13 Nippon Steel Corp
JP2016180147A (en) * 2015-03-24 2016-10-13 新日鐵住金株式会社 Steel wire excellent in conductivity
WO2019106815A1 (en) * 2017-11-30 2019-06-06 日本製鉄株式会社 Aluminum-clad steel wire and method of producing same
JPWO2019106815A1 (en) * 2017-11-30 2020-04-23 日本製鉄株式会社 Aluminum covered steel wire and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0565581B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US4525598A (en) Steel wire for use in stranded steel core of an aluminum conductor, steel reinforced and production of same
KR100747133B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
EP0201997A2 (en) High strength and toughness steel bar, rod and wire and the process of producing the same
WO2000044954A1 (en) Wire for high-fatigue-strength steel wire, steel wire and production method therefor
JPS5920427A (en) Steel wire for steel core of steel reinforced al twisted wire and its production
KR100882122B1 (en) Manufacturing method of the high strength wire for bridge cable having excellent torsional property
EP0113255A2 (en) Heat-resistant galvanized iron alloy wire
JP3011596B2 (en) Low thermal expansion high strength core wire for transmission line and low sag wire using the same
JP7230669B2 (en) Steel wire and aluminum-coated steel wire
KR102561381B1 (en) High-strength alloyed electro-galvanized steel sheet and manufacturing method thereof
JP3505047B2 (en) Steel wire for ACSR with low iron loss
JP3984393B2 (en) High-strength steel wire without delamination and method for producing the same
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3520109B2 (en) High strength galvanized steel wire and method of manufacturing the same
JP3505048B2 (en) High strength steel wire for high strength ACSR with low iron loss in high magnetic field
JPH0551657B2 (en)
JP2769843B2 (en) Manufacturing method of alloy plated steel wire
KR20010064990A (en) Weathering steel wire and strand, and its production method
JPH10110216A (en) High strength steel wire for acsr, reduced in iron loss in medium and low magnetic field
JPH07292443A (en) High strength and high toughness hot-dip plated steel wire and its production
JPS58120735A (en) Manufacture of galvanized steel wire for steel core al twisted wire
JPS602656A (en) Galvanized fe-ni alloy wire
JPH0372365B2 (en)
JPS58130252A (en) High tensile steel wire for steel core of twisted al wire having steel core
JPH1088307A (en) Production of hot dip plated steel sheet excellent in plating adhesion