KR20010064990A - Weathering steel wire and strand, and its production method - Google Patents

Weathering steel wire and strand, and its production method Download PDF

Info

Publication number
KR20010064990A
KR20010064990A KR1019990059482A KR19990059482A KR20010064990A KR 20010064990 A KR20010064990 A KR 20010064990A KR 1019990059482 A KR1019990059482 A KR 1019990059482A KR 19990059482 A KR19990059482 A KR 19990059482A KR 20010064990 A KR20010064990 A KR 20010064990A
Authority
KR
South Korea
Prior art keywords
steel
steel wire
less
weathering
wire
Prior art date
Application number
KR1019990059482A
Other languages
Korean (ko)
Other versions
KR100334116B1 (en
Inventor
조명현
Original Assignee
홍영철
고려제강 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍영철, 고려제강 주식회사 filed Critical 홍영철
Priority to KR1019990059482A priority Critical patent/KR100334116B1/en
Publication of KR20010064990A publication Critical patent/KR20010064990A/en
Application granted granted Critical
Publication of KR100334116B1 publication Critical patent/KR100334116B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: A process for preparing weathering steel wire and strand remarkably increased in toughness by controlling the chemical composition of steel, adding a deposition hardening element and applying a suitable processing method is provided. Whereby, the steel can be used as steel requested for high strength and high atmospheric corrosion resistance. CONSTITUTION: This weathering steel wire is characterized in that it comprises 0.30 to 0.60% by weight of C, 0.15 to 0.65% by weight of Si, below 0.85% by weight of Mn, 0.20 to 0.50% by weight of Cu, 0.45 to 0.75% by weight of Cr, 0.05 to 0.30% by weight of Ni, 0.05 to 0.30% by weight of Ni, 0.02 to 0.2% by weight of W and 0.05 to 0.30% by weight of Nb or Ti and the balance of Fe and inevitable impurities. This steel wire has a toughness of 160 to 215kgf/mm¬2.

Description

내후성 강선과 강연선 및 그 제조 방법{Weathering steel wire and strand, and its production method}Weathering steel wire and strand and its manufacturing method {Weathering steel wire and strand, and its production method}

본 발명은 대기 부식에 대한 저항성을 갖는 내후성(weathering) 강선과 강연선 및 그 제조 방법에 관한 것으로서, 더 자세하게는 내후성 원소인 구리, 니켈,크롬, 실리콘 등을 함유한 탄소 합금강에 텅스텐, 바나듐, 티타늄, 니오비듐 등의 석출 경화형 원소를 첨가하고, 1차 신선(인발) 및 소둔 열처리 후, 2차 신선을 적절히 조합하므로써 내후성이 우수하면서도 높은 인장 강도를 갖는 강선과 강연선 및 그 제조방법에 관한 것이다.The present invention relates to weathering steel wire and strand wire having a resistance to atmospheric corrosion, and more particularly, to a tungsten, vanadium, titanium in a carbon alloy steel containing weathering elements copper, nickel, chromium, silicon, etc. And steel wires and strands having a high tensile strength and a method of producing the same, by adding a precipitated curable element such as niobium, and by appropriately combining secondary drawing after primary drawing (drawing) and annealing heat treatment. .

일반적으로 사용되고 있는 내후성 강재는 주로 후판 강재로서, 교량, 송전선용 철탑, 빌딩 구조물, 선박, 철도 차량 등에 많이 쓰이는 재료이며, 탄소 함량이 0.18% 이하로 낮고 인장 강도는 50∼60Kgf/mm2정도이다.The weathering steel generally used is mainly steel plate steel, which is widely used in bridges, transmission towers, building structures, ships, railway cars, etc., with a low carbon content of less than 0.18% and a tensile strength of 50-60 Kgf / mm 2 . .

이러한 내후성 강재의 대기에 대한 내부식 성능은 인, 구리, 니켈, 크롬, 실리콘 등과 같은 내후성 원소의 첨가에 의하여 얻어 진다. 즉, 내후성 강재의 내후성은 거의 화학 성분에 의존하며, 강재의 조직이나 제조 공정에는 의존하지 않는다.The corrosion resistance of the weathering steel to the atmosphere is obtained by the addition of weathering elements such as phosphorus, copper, nickel, chromium and silicon. In other words, the weatherability of the weather resistant steel is almost dependent on the chemical composition and does not depend on the structure or manufacturing process of the steel.

그리고, 상기 내후성에 대한 평가는 ASTM G101에 규정되어 있는 다음 식1에 의하며, 이 지수가 6.0 이상이면 보통 탄소강보다 4∼8배의 대기 부식 저항을 갖는것으로 알려져 있다.In addition, the evaluation of the weather resistance is based on the following Equation 1 prescribed in ASTM G101, and when this index is 6.0 or more, it is known to have an atmospheric corrosion resistance of 4 to 8 times that of ordinary carbon steel.

(대기 부식 저항성 지수) = 26.01×(wt%Cu) + 3.88×(wt%Ni) + 1.20×(wt%Cr) + 17.28×(wt%P) - 7.29×(wt%Cu ×wt%Ni) - 9.10×(wt%N ×wt%P)Atmospheric Corrosion Resistance Index = 26.01 × (wt% Cu) + 3.88 × (wt% Ni) + 1.20 × (wt% Cr) + 17.28 × (wt% P)-7.29 × (wt% Cu × wt% Ni) 9.10 × (wt% N × wt% P)

상기 식1에 의하면 강재의 내후성에 가장 효과가 있는 원소는 구리, 인, 니켈, 크롬, 실리콘의 순임을 알 수 있다.According to Equation 1 it can be seen that the most effective element in the weather resistance of the steel is the order of copper, phosphorus, nickel, chromium, silicon.

도1에 도시한 바와 같이, 강재(1)가 대기에 노출되어 표면에 스케일(3)이 발생하면 스케일(3) 내부에 상기 원소들이 비정질의 농축층(2)을 형성하므로써 스케일 표면의 크랙(4) 진행을 방해하게 되고, 그 틈을 통한 산소의 공급이 감소하여 강재의 부식 진행이 억제되는 것이다.As shown in FIG. 1, when the steel 1 is exposed to the atmosphere and a scale 3 occurs on the surface, the cracks on the scale surface are formed by forming the amorphous concentrated layer 2 within the scale 3. 4) It hinders the progress, and the supply of oxygen through the gap is reduced and the progress of corrosion of the steel is suppressed.

종래의 내후성 강재로는 0.18wt%이하 C, 0.15∼0.65wt% Si, 1.40wt%이하 Mn, 0.035wt%이하 P, 0.035wt%이하 S, 0.30∼0.50wt% Cu, 0.45∼0.75wt% Cr, 0.05∼0.30wt% Ni, 잔량 Fe의 화학성분을 가지며 인장 강도가 50Kgf/mm2급인 SWA50BW 강재가 널리 사용되어 왔다.Conventional weathering steels include 0.18 wt% or less C, 0.15 to 0.65 wt% Si, 1.40 wt% or less Mn, 0.035 wt% or less P, 0.035 wt% or less S, 0.30 to 0.50 wt% Cu, 0.45 to 0.75 wt% Cr , SWA50BW steel with 0.05 ~ 0.30wt% Ni, residual Fe chemical composition and 50Kgf / mm 2 tensile strength has been widely used.

그러나, 이러한 강재는 내후성이 양호한 장점은 있으나 160Kgf/mm2이상의 강도가 요구되는 보강용 강선이나 정색(瀞索)용 로프 등에는 사용할 수가 없으며, 상기의 내후성 강재를 개선하여 우수한 인성과 신속한 보호 피막을 형성하는 0.18wt% 이하의 내후성 강재가 미국특허 4,094,670에 개시되어 있으나, 이 강재 역시 인장 강도가 약 60Kgf/mm2에 지나지 않는다.However, these steels have good weather resistance, but they cannot be used for reinforcing steel wires or color ropes that require strengths of 160 Kgf / mm 2 or more, and have improved toughness and rapid protective coating. A weather resistant steel of 0.18 wt% or less is disclosed in US Pat. No. 4,094,670, but this steel also has a tensile strength of only about 60 Kgf / mm 2 .

따라서, 내후성 강재를 써야하는 대형 케이블이나 행거 로프(hanger rope) 등에 인장 강도가 높은 탄소강을 방청처리하여 사용하고 있으나 대기에 노출된 상태로 쓰이기 때문에 발청에 의한 노화를 완벽히 방지하기는 어려운 실정이다.Therefore, although carbon steel having a high tensile strength is used as a rust preventive treatment for large cables or hanger ropes using weather resistant steels, it is difficult to prevent aging due to rusting because it is used in an air-exposed state.

앞에서 살펴본 바와같이, 주로 대형의 구조물용으로서 대기중에 노출되어 사용되는 종래의 내후성 강선과 강연선은 인장 강도가 낮아 그 용도가 제한될 수 밖에 없는 실정이다.As described above, conventional weather resistant steel wire and strand wire mainly used for large structures exposed to the air have low tensile strength, and thus their use is limited.

상기와 같은 종래 내후성 강재의 문제점을 해결하기 위하여, 강재의 화학조성을 새롭게 조정하여 내후성을 향상시키고, 석출 강화형 원소의 첨가와 적절한 가공 방법을 적용하므로써 인장 강도를 획기적으로 높인 내후성 강선과 강연선 및 그 제조 방법을 제공하는 데에 목적이 있다.In order to solve the problems of the conventional weathering steel as described above, the weather resistance by improving the weather resistance by newly adjusting the chemical composition of the steel, and the addition of precipitation-reinforced elements and the appropriate processing method, the weathering steel wire and strand and dramatically increased the tensile strength and its It is an object to provide a manufacturing method.

도 1은 내후성 강재의 부식 방지 기구의 모식도로서,1 is a schematic diagram of a corrosion preventing mechanism of weathering steel,

(가)는 초기의 스케일 발생 과정의 단면도이고,(A) is a cross-sectional view of the initial scale generation process,

(나)는 비정질층과 스케일층이 분리된 단면도이다.(B) is sectional drawing in which an amorphous layer and a scale layer were isolate | separated.

도 2는 본 발명 내후성 강연선의 단면도.2 is a cross-sectional view of the present invention weather resistant strand.

((도면의 주요 부분에 대한 부호의 설명))((Explanation of symbols for main part of drawing))

1. 내후성 강재 2.비정질층1. Weather resistant steel 2. Amorphous layer

3. 스케일 4. 크 랙3. Scale 4. Crack

본 발명의 내후성 강선과 강연선은, C-Si-Mn-Cu-Cr-Ni을 기본 조성으로 하는 강재를 사용한다는 점에 있어서는 종래와 동일하나, 탄소 함량이 0.30∼0.60wt%로 높고 석출경화 및 조직 미세화 원소인 V, W, Ti, Nb 등이 첨가된다는 것이 다른 점이다.The weather resistant steel wire and the stranded wire of the present invention are the same as the conventional one in that steel materials having C-Si-Mn-Cu-Cr-Ni as the basic composition are used, but the carbon content is 0.30 to 0.60 wt%, and the precipitation hardening and The difference is that the microstructured elements V, W, Ti, Nb and the like are added.

그리고, 상기 조성의 강재를 2차에 걸친 냉간 인발 가공과 열처리를 통하여 석출 경화 효과와 전위(dislocation) 고착에 의한 조직 강화로 인장 강도가 종래보다 현저히 높아진 내후성 강선과 강연선을 제조함에 본 발명의 기술적 특징이 있다.In addition, the steel material of the composition through the cold drawing and heat treatment for two times through the precipitation hardening effect and the dislocation (dislocation) by strengthening the structure of the structure by the tensile strength is significantly higher than the conventional to produce weathering steel wire and strand wire There is a characteristic.

본 발명 방법의 기술적 특징을, 특정 화학성분의 첨가와 선택된 화학성분의 강재를 가공하는 두 가지 측면에서 살펴볼 수 있는 바, 우선 화학성분의 측면에서보면, 본 발명 강재의 화학 성분과 각 첨가 원소별 특성은 아래와 같다.The technical features of the method of the present invention can be seen in terms of the addition of specific chemical components and the processing of steels of selected chemical components. First, in terms of chemical components, the chemical components of the inventive steels and their respective additive elements The characteristics are as follows.

구분division CC SiSi MnMn CuCu CrCr NiNi VV WW NbNb FeFe wt%wt% 0.30∼0.600.30 to 0.60 0.15∼0.650.15 to 0.65 0.85이하0.85 or less 0.20∼0.500.20 to 0.50 0.45∼0.750.45 to 0.75 0.05∼0.300.05 to 0.30 0.05∼0.300.05 to 0.30 0.02∼0.20.02 to 0.2 0.05∼0.300.05 to 0.30 잔량Remaining amount

* Nb은 Ti으로 대체할 수 있다.Nb can be replaced with Ti.

표1에서 내후성 원소인 Si, Mn, Cu, Cr의 효과는 전술한 바와 같고, 강재의 인장 강도를 상승시키기 위하여 새로히 첨가된 강화 원소와 강의 기본 원소인 C의 증량 효과 및 내후성을 함께 가지는 Ni의 역활을 살펴보면 다음과 같다.In Table 1, the effects of the weather-resisting elements Si, Mn, Cu, and Cr are as described above, and the Ni and the increase of the newly added reinforcing element and the basic element of steel to increase the tensile strength of the steel, and the weather resistance of Ni The roles are as follows.

C는 강재의 강도에 직접적으로 영향을 미치는 강의 기본 원소로써 그 함량이 증가 할 수록 강재의 강도가 높아지나, 0.60wt%를 초과하게 되면 선재 제조 공정인 연속 주조 및 압연 작업중 Cu의 영향으로 발생하는 표면 결함의 억제에 한계가 있고 0.30wt% 미만에서는 목표로 하는 강도를 얻을 수가 없다.C is a basic element of steel that directly affects the strength of steel. As its content increases, the strength of steel increases, but when it exceeds 0.60wt%, C is generated by the influence of Cu during the continuous casting and rolling process of wire rod manufacturing. There is a limit to the suppression of surface defects, and the target strength cannot be obtained at less than 0.30 wt%.

V은 강선의 모상(母相, 기지, matrix)인 페라이트(ferrite) 조직내에 V4C3형태로 미세하게 석출하여 연약한 페라이트 조직을 강화시키는 석출 경화 원소로서, 이러한 석출 경화를 일으키기 위해서는 0.05wt% 이상을 필요로 하지만, 과도하게 첨가되면 상기의 탄화물이 오스테나이트(austenite) 입계에 필림상으로 석출하여 입계 부식을 초래하거나 입계의 결합력을 떨어뜨려 오히려 강재의 강성을 낮추게 된다. 따라서, 그 함량은 0.30wt%이하로 하는 것이 바람직 하다.V is a precipitation hardening element that finely precipitates in the form of V 4 C 3 in a ferrite structure, which is a matrix of steel wire, to strengthen a weak ferrite structure. In order to cause such precipitation hardening, 0.05 wt% However, when excessively added, the carbide precipitates in a film form at the austenite grain boundary, causing grain boundary corrosion or lowering the bonding strength of the steel, thereby lowering the rigidity of the steel. Therefore, the content is preferably 0.30 wt% or less.

W은 다른 석출 경화형 원소의 석출을 촉진시키며, 그 자신도 W2C로 석출하기때문에 첨가 효과가 크다. 0.02wt% 이상 되어야 효과가 있고 0.2wt%를 초과하면 입계에 괴상으로 석출하여 입계를 취화(脆化)시키게 된다.W promotes the precipitation of other precipitation hardening elements, and because it itself precipitates with W 2 C, the addition effect is large. It is effective when it is more than 0.02wt%, and when it exceeds 0.2wt%, it precipitates as a mass at grain boundary and embrittles the grain boundary.

Nb과 Ti은 모상 페라이트 석출 강화에 기여할 뿐아니라 입자 미세화에도 유효한 원소로서, 0.05wt% 미만에서는 그 효과가 미미하며, 0.30wt%를 초과하게 되면 그 효과가 더 이상 커지지 않고 오히려 냉간 인발 가공성을 떨어뜨리게 되어 결과적으로 강재의 인성을 저하시킨다.Nb and Ti are not only contributing to strengthening the ferrite precipitation of the mother phase but are also effective elements for particle refinement, and the effect is insignificant at less than 0.05 wt%. To lower the toughness of the steel.

그리고, 상기 첨가 원소의 강도 증가 효과와 더불어 본 발명 내후성 강선과 강연선의 강도를 높여 주는 가공 방법의 특징은, 적절한 가공율로서 행하는 2차에 걸친 냉간 인발 가공과 두 차례의 인발 가공 사이에서 실시하는 소둔 처리에 있다.And the characteristic of the processing method which raises the intensity | strength of this invention weather resistant steel wire and a stranded wire together with the effect of the strength increase of the said additional element is performed between two cold drawing processes and two drawing processes performed with an appropriate processing rate. It is in annealing treatment.

이를 자세히 살펴본 본 발명의 방법은, 웨더링 강선과 강연선의 최종 직경에 따라 선경 5.5∼22mm인 내후성 선재를 1차 산세 및 피막 처리하는 단계와, 30∼75%의 감면율로서 1차 냉간 인발 가공하는 단계와, 1차 인발된 선재를 650∼930℃에서 10시간 이하의 소둔 열처리를 행하는 단계와, 2차 산세 및 피막 처리하는 단계와 소둔된 선재를 95% 이하의 감면율로서 2차 냉간 인발 가공하는 단계로 이루어 진다.According to the method of the present invention, the pickling and coating of weathering wire having a diameter of 5.5 to 22 mm based on the final diameter of the weathering steel wire and the stranded wire, and the primary cold drawing process with a reduction ratio of 30 to 75% And performing annealing heat treatment of the primary drawn wire at 650 to 930 ° C. for 10 hours or less, performing secondary pickling and coating, and performing secondary cold drawing on the annealed wire with a reduction rate of 95% or less. It is made of.

상기의 가공 방법에서 1차 냉간 인발 가공의 감면율을 30∼75%로 한정한 것은, 열처리 전의 가공량이 클 수록 금속 조직 내에 비축되는 잔류응력이 커지고, 이 잔류응력이 열처리시 조직 내에서 일어나는 재결정 과정에 대한 추진력(driving force)으로 작용하여 새롭게 형성되는 재결정립의 미세화와 석출 강화 원소와의 화합물인 탄화물 석출을 도와 주어 선재의 강도와 인성을 상승시켜 주기 때문이다.In the above processing method, the reduction rate of the primary cold drawing is limited to 30 to 75%. The larger the processing amount before the heat treatment, the higher the residual stress accumulated in the metal structure, and the residual stress is a recrystallization process occurring in the tissue during heat treatment. This is because it helps to refine the newly formed recrystallized grains and precipitate carbide, which is a compound with precipitation strengthening element, by increasing the strength and toughness of the wire rod.

그러나, 감면율이 30% 미만일 경우에는 금속 조직 내에 축적되는 잔류응력이 적어 재결정립 미세화와 탄화물 석출 효과가 미미하여 목표 강도를 얻을 수 없고, 선재의 중심부까지 인발 가공의 효과가 미치지 못하여 열처리시 중심부 조직은 재결정이 일어나지 않거나 처음 결정립의 이상 조대화로 선재가 비틀리거나 왜곡될 수 있는 문제가 있다.However, if the reduction rate is less than 30%, the residual stress accumulated in the metal structure is small, so that the effect of recrystallization and carbide precipitation is insignificant, so that the target strength cannot be obtained. There is a problem that re-crystallization does not occur or wire rods may be twisted or distorted due to abnormal coarsening of the initial grains.

그리고, 감면율이 75% 정도가 되면 재결정립 미세화와 탄화물 석출에 대한 상기 잔류응력에 의한 효과는 포화 상태가 되고, 그 이상의 가공은 가공 원가를 높일 뿐아니라 오히려 과다한 가공에 의한 내부 균열을 초래할 위험이 커지기 때문에 감면율은 75%를 초과하지 않도록 하는 것이 바람직 하다.When the reduction rate is about 75%, the effect of the residual stress on the recrystallization and carbide precipitation becomes saturated, and further processing increases the processing cost and risks of causing internal cracking due to excessive processing. It is desirable that the reduction rate should not exceed 75% because it becomes large.

1차 인발 가공 후의 소둔 열처리는 가공 경화된 금속 조직에 재결정을 일으켜 새로운 조직으로 만드는 과정으로서, 650℃ 미만에서는 재결정 과정 및 탄화물 석출의 진행 속도가 느리고 입계에 편석하는 석출물이 증가하여 입계 취화의 문제가 있으며, 930℃를 초과하면 재결정립의 성장 속도가 빨라 결정립 크기에 영향을 받는 목표 인장 강도의 제어가 어렵게 된다.Annealing heat treatment after the primary drawing process is a process of recrystallization of the hardened metal structure to form a new structure.At less than 650 ° C, the recrystallization process and the progress of carbide precipitation are slow and the precipitates segregating at the grain boundaries are increased. If the temperature exceeds 930 ° C, the growth rate of recrystallized grains is increased, which makes it difficult to control the target tensile strength affected by grain size.

그 외에, 소둔 시간을 10시간으로 한 것은 650℃부근의 온도로 소둔하는 경우에 대한 것으로, 그 정도의 온도에서는 재결정과 탄화물 석출과정의 속도가 느리기 때문에 석출 경화에 필요한 유효 석출물을 얻는데는 10시간 정도의 시간을 필요로 한다.In addition, the annealing time of 10 hours is for the case of annealing at a temperature near 650 ° C. At this temperature, the recrystallization and carbide precipitation process is slow, so it is 10 hours to obtain an effective precipitate required for precipitation hardening. It needs time.

소둔 후 행하는 2차 냉간 인발 가공은 재결정된 선재의 표면을 마무리하는 측면과 최종 목표 강도를 얻기 위하여 가공 경화시키는 과정이며, 이때의 가공 정도를 95% 이하의 감면율로 제한 한 것은 95%를 초과시 선재의 인성이 급격히 저하되어 염회 특성이 낮아지기 때문이다.The secondary cold drawing process after annealing is the process of hardening the surface to refinish the recrystallized wire surface to obtain final target strength. The limit of the processing is limited to 95% or less reduction rate when the wire rod exceeds 95%. This is because the toughness of the saline decreases rapidly, resulting in lower salt characteristics.

상기 본 발명의 목적과 기술적 구성 및 그에 따른 작용 효과는 도면을 참조한 본 발명의 바람직한 실시예를 통한 아래의 자세한 설명에 의하여 명확하게 이해 될 것이다.The purpose and technical configuration of the present invention and the effects thereof according to the present invention will be clearly understood by the following detailed description through preferred embodiments of the present invention with reference to the drawings.

탄소 함량이 0.33∼0.55wt%이며 선경이 13mm인, 내후성 원소와 석출 경화형 원소를 함유한 본 발명의 웨더링 선재와 비교재로서의 내후성 선재를 제조하였으며, 각 선재의 화학 성분과 기계적 성질은 다음의 표2 및 표3과 같다.Weathering wires of the present invention containing weatherable elements and precipitation hardening elements having a carbon content of 0.33 to 0.55 wt% and a wire diameter of 13 mm were prepared. The chemical composition and mechanical properties of each wire were shown in the following table. 2 and Table 3.

(단위; 중량% 단, N는 ppm)(Unit; wt%, where N is ppm) 구분division CC SiSi MnMn PP SS CuCu CrCr NiNi VV WW TiTi NbNb NN AlAl 본발명재Invention 1One 0.330.33 0.410.41 0.780.78 0.0150.015 0.0030.003 0.350.35 0.580.58 0.250.25 0.100.10 0.090.09 0.100.10 5555 0.0210.021 22 0.440.44 0.440.44 0.790.79 0.0140.014 0.0030.003 0.340.34 0.610.61 0.240.24 0.110.11 0.080.08 0.110.11 6161 0.0230.023 33 0.560.56 0.430.43 0.770.77 0.0140.014 0.0020.002 0.330.33 0.570.57 0.260.26 0.120.12 0.100.10 0.090.09 4848 0.0190.019 44 0.350.35 0.420.42 0.760.76 0.0160.016 0.0030.003 0.350.35 0.600.60 0.230.23 0.130.13 0.090.09 0.060.06 4242 0.0250.025 55 0.470.47 0.410.41 0.780.78 0.0150.015 0.0040.004 0.360.36 0.620.62 0.290.29 0.120.12 0.080.08 0.050.05 5858 0.0260.026 66 0.550.55 0.450.45 0.770.77 0.0140.014 0.0050.005 0.340.34 0.590.59 0.270.27 0.110.11 0.110.11 0.070.07 5656 0.0200.020 비교재Comparative material 77 0.080.08 0.280.28 1.201.20 0.0160.016 0.0030.003 0.410.41 0.780.78 0.020.02 4848 0.0220.022 88 0.340.34 0.430.43 0.770.77 0.0150.015 0.0040.004 0.350.35 0.610.61 0.240.24 5454 0.0210.021

상기의 비교재 7은 전기로 용해를 거쳐 만들어진 인고트(ingot)를 1200℃에서 열간 압연한 후, 40℃/초의 냉각 속도로 650℃까지 냉각한 다음 상온까지 공랭시켜 제조하였으며, 전술한 미국특허 4,094,670의 강재와 같은 화학 조성을 갖는다.The comparative material 7 was prepared by hot rolling an ingot made through melting with an electric furnace at 1200 ° C., cooling it to 650 ° C. at a cooling rate of 40 ° C./sec, and then air-cooling to room temperature. It has the same chemical composition as steel of 4,094,670.

그리고, 비교재 8은 석출 경화 원소의 효과를 조사하기 위하여 본 발명의 화학 성분에서 석출 경화 원소가 첨가되지 않은 선재이다.In addition, the comparative material 8 is a wire rod in which the precipitation hardening element is not added in the chemical component of this invention in order to investigate the effect of a precipitation hardening element.

구 분division 인장강도(Kgf/mm2)Tensile Strength (Kgf / mm 2 ) 단 면수축률(%)Sectional shrinkage (%) 연신율(%)Elongation (%) 대기부식저항성지수Atmospheric Corrosion Resistance Index 본발명재Invention 1One 8484 6060 2020 6.916.91 22 9393 5858 1818 6.956.95 33 105105 5757 1717 6.906.90 44 8282 6161 2020 6.946.94 55 9191 5959 1919 7.017.01 66 103103 5858 1818 6.986.98 비교재Comparative material 77 6161 6363 2222 6.686.68 88 7676 5454 1616 6.696.69

표2와 표3으로부터 탄소 함량이 증가할 수록 선재의 인장 강도가 증가하고, 본 발명재의 인장 강도가 미국특허에 의한 비교재(비교재 7)보다 21∼44Kg/mm2정도 더 높게 나타남을 알 수 있다.Table 2 and Table 3 show that as the carbon content increases, the tensile strength of the wire rod increases, and the tensile strength of the present invention material is 21 to 44 Kg / mm 2 higher than the comparative material according to the US patent (Comparative Material 7). Can be.

그리고, 거의 비슷한 탄소 함량의 발명재 1 및 4와 비교재 8을 비교해 보면, 발명재의 인장 강도가 6∼8Kg/mm2정도 높게 나타나는데, 이는 석출 경화 원소의 첨가에 기인하는 것이다.In addition, when comparing the inventive materials 1 and 4 with comparatively similar carbon contents and the comparative material 8, the tensile strength of the inventive material appears to be about 6 to 8 Kg / mm 2 , which is due to the addition of the precipitation hardening element.

또한, 본 발명의 선재는 대기 부식성 저항 지수에 있어서 종래 특허재와 같은 화학 조성의 비교재 7에 비하여 동등 이상임을 알 수 있다.In addition, it can be seen that the wire rod of the present invention is equal or more than the comparative material 7 of the same chemical composition as the conventional patent material in the atmospheric corrosion resistance index.

표2의 내후성 선재를, 1차 스케일 제거 및 피막 처리 →62% 1차 냉간 인발 가공 →760℃ ×3시간 소둔 →2차 스케일 제거 및 피막 처리 →89.4% 2차 냉간 인발 가공 등의 공정을 통하여 선경 2.6mm의 내후성 강선을 제조하였고, 소둔 열처리 선과 2차 냉간 인발 가공 선의 기계적 성질을 조사한 결과가 표4이다.The weatherproof wire of Table 2 is subjected to the first scale removal and coating treatment → 62% first cold drawing process → 760 ° C × 3 hours annealing → second scale removal and coating treatment → 89.4% second cold drawing process A weather resistant steel wire with a diameter of 2.6 mm was manufactured, and the results of the mechanical properties of the annealing heat treatment line and the secondary cold drawing line were shown in Table 4.

구분division 소둔 열처리선Annealed Heat Treatment Wire 2차 냉간 인발 가공 선Secondary cold drawing line 인장강도(Kgf/mm)Tensile Strength (Kgf / mm) 단 면수축률(%)Sectional shrinkage (%) 인장강도(Kgf/mm)Tensile Strength (Kgf / mm) 비틀림 값(회/100d)Torsion value (times / 100d) 연신율(%)Elongation (%) 본발명재Invention 1One 9797 5858 177177 3131 2.32.3 22 105105 5656 193193 2727 2.12.1 33 117117 5353 212212 2323 1.91.9 44 9292 5959 174174 3333 2.42.4 55 102102 5757 191191 2929 2.22.2 66 112112 5656 209209 2525 2.02.0 비교재Comparative material 77 6767 5858 115115 3535 2.52.5 88 8080 5353 142142 3030 2.22.2

표4에서 알 수 있듯이, 소둔 열처리선의 경우 본 발명의 강선이 종래 특허의 화학 성분을 갖고 있는 비교재 7보다 인장 강도가 25∼50Kg/mm2정도 높고, 비슷한 탄소 함량의 경우에는 비교재 8 보다 12∼17Kg/mm2더 높다.As can be seen from Table 4, in the case of annealing heat treatment wire, the steel wire of the present invention has a tensile strength of about 25 to 50 Kg / mm 2 higher than that of the comparative material 7 having the chemical composition of the conventional patent, and in the case of a similar carbon content, compared to the comparative material 8 12-17 Kg / mm 2 higher.

2차 냉간 인발 가공선의 경우에 있어서는, 본 발명재의 인장 강도가 비교재 7 보다는 59∼97Kg/mm2높고, 비슷한 탄소 함량의 경우 비교재 8 보다는 32∼35Kg/mm2정도 더 높은 값을 보이고 있다.In the second case of the cold drawing overhead lines, the present invention tensile strength of the comparative material 7 than the high 59~97Kg / mm 2 material, showing a comparative material 8 32~35Kg / mm 2 degree of a higher value than in the case of similar carbon content .

상기와 같은 인장 강도의 상승은 소둔 열처리에 의한 석출 강화 효과와 2차 냉간 인발 가공에 의해 금속 조직 내에서 새롭게 생성된 전위가 석출물에 의하여 고착되어 움직이기 어렵게 되었기 때문이다.The increase in tensile strength is because the dislocation reinforcing effect by the annealing heat treatment and the secondary cold drawing process cause the newly created dislocation in the metal structure to adhere to the precipitate, making it difficult to move.

상기 본 발명재 5의 2차 냉간 인발 가공재(21)를 피치를 140mm로 하여 도2의 단면 구조와 같이 연선하여 강연선을 제조하였고, 그 강연선을 인장 시험한 결과 절단하중이 7254Kgf 이었으며, 강연선의 중요 품질 특성인 연효율이 92%로서 통상 탄소강으로 제조되고 있는 강연선과 유사한 수준을 보여 주었다.The secondary cold drawn material 21 of the Inventive Material 5 was twisted as shown in the cross-sectional structure of FIG. 2 with a pitch of 140 mm, and a stranded wire was manufactured. As a result of the tensile test of the stranded wire, the cutting load was 7254 Kgf. The quality efficiency, 92%, is similar to that of stranded steel, which is usually made of carbon steel.

그리고, 연효율은 아래 식에 의하여 구한다.And the annual efficiency is calculated | required by the following formula.

상기에서 살펴본 바와 같이 본 발명의 방법은 종래 내후성 강재에 비하여 탄소 함량을 높이고 석출 경화 원소를 첨가하므로써 대기에 대한 내부식성을 동등 이상 수준으로 유지하고 연효율을 떨어뜨리지 않으면서 인장 강도를 현저히 높여 주므로써 보강용 강선이나 정색용 로프 및 행거 로프 등 고강도와 높은 대기 부식 저항성이 요구되는 용도에 사용할 수 있다.As described above, the method of the present invention increases the carbon content and adds precipitation hardening elements as compared to the conventional weather resistant steels, thereby maintaining the corrosion resistance to the atmosphere at an equivalent level or higher and significantly increasing the tensile strength without reducing the annual efficiency. Therefore, it can be used for applications requiring high strength and high atmospheric corrosion resistance such as reinforcing steel wire, color rope and hanger rope.

Claims (6)

화학성분이 0.30∼0.60wt% C, 0.15∼0.65wt% Si, 0.85wt% 이하 Mn, 0.20∼0.50wt% Cu, 0.45∼0.75wt% Cr, 0.05∼0.30wt% Ni, 0.05∼0.30wt% V, 0.02∼0.2wt% W, 그리고 0.05∼0.30wt% Nb 또는 Ti 중에서 하나의 원소를 포함하고 잔량의 철 및 불가피한 불순물로 조성됨을 특징으로 하는 내후성 강선.Chemical composition 0.30 to 0.60 wt% C, 0.15 to 0.65 wt% Si, 0.85 wt% or less Mn, 0.20 to 0.50 wt% Cu, 0.45 to 0.75 wt% Cr, 0.05 to 0.30 wt% Ni, 0.05 to 0.30 wt% V , 0.02 to 0.2 wt% W, and 0.05 to 0.30 wt% Nb or Ti and weathering steel wire, characterized in that it is composed of the remaining amount of iron and inevitable impurities. 제 1항에 있어서, 상기 강선은 인장 강도가 160∼215Kgf/mm2임을 특징으로 하는 내후성 강선.The weather resistant steel wire according to claim 1, wherein the steel wire has a tensile strength of 160 to 215 Kgf / mm 2 . 화학성분이 0.30∼0.60wt% C, 0.15∼0.65wt% Si, 0.85wt% 이하 Mn, 0.20∼0.50wt% Cu, 0.45∼0.75wt% Cr, 0.05∼0.30wt% Ni, 0.05∼0.30wt% V, 0.02∼0.2wt% W, 그리고 0.05∼0.30wt% Nb 또는 Ti 중에서 하나의 원소를 포함하고 잔량의 철 및 불가피한 불순물로 조성됨을 특징으로 하는 내후성 강연선.Chemical composition 0.30 to 0.60 wt% C, 0.15 to 0.65 wt% Si, 0.85 wt% or less Mn, 0.20 to 0.50 wt% Cu, 0.45 to 0.75 wt% Cr, 0.05 to 0.30 wt% Ni, 0.05 to 0.30 wt% V And 0.02-0.2 wt% W, and 0.05-0.30 wt% Nb or Ti, and the weathering strand is characterized by being composed of a residual amount of iron and inevitable impurities. 제 3항에 있어서, 상기 강연선은 인장 강도가 160∼215Kgf/mm2인 내후성 강선으로 이루어짐을 특징으로 하는 내후성 강연선.The weathering strand according to claim 3, wherein the strand comprises a weather resistant steel wire having a tensile strength of 160 to 215 Kgf / mm 2 . 화학성분이 0.30∼0.60wt% C, 0.15∼0.65wt% Si, 0.85wt% 이하 Mn, 0.20∼0.50wt% Cu, 0.45∼0.75wt% Cr, 0.05∼0.30wt% Ni, 0.05∼0.30wt% V, 0.02∼0.2wt% W, 그리고 0.05∼0.30wt% Nb 또는 Ti 중에서 하나를 포함하고 잔량의 철 및 불가피한 불순물로 조성된 선경 5.5∼22mm인 내후성 선재를 1차 산세 및 피막처리 하는 단계와, 30∼75% 감면율의 1차 냉간 인발 가공하는 단계와, 650∼930℃에서 10시간 이하의 소둔 열처리 단계와, 2차 산세 및 피막처리 하는 단계와, 95% 이하의 2차 냉간 인발 가공하는 단계로 제조됨을 특징으로 하는 내후성 강선의 제조방법.Chemical composition 0.30 to 0.60 wt% C, 0.15 to 0.65 wt% Si, 0.85 wt% or less Mn, 0.20 to 0.50 wt% Cu, 0.45 to 0.75 wt% Cr, 0.05 to 0.30 wt% Ni, 0.05 to 0.30 wt% V Primary pickling and coating of weather-resistant wire having a diameter of 5.5 to 22 mm comprising one of 0.02 to 0.2 wt% W, and 0.05 to 0.30 wt% Nb or Ti and composed of residual iron and unavoidable impurities; A first cold drawing process with a reduction rate of ˜75%, a heat treatment step of 10 hours or less at 650 to 930 ° C., a second pickling and coating process, and a second cold drawing process of 95% or less. Method for producing a weathering steel wire, characterized in that the production. 화학성분이 0.30∼0.60wt% C, 0.15∼0.65wt% Si, 0.85wt% 이하 Mn, 0.20∼0.50wt% Cu, 0.45∼0.75wt% Cr, 0.05∼0.30wt% Ni, 0.05∼0.30wt% V, 0.02∼0.2wt% W, 그리고 0.05∼0.30wt% Nb 또는 Ti 중에서 하나를 포함하고 잔량의 철 및 불가피한 불순물로 조성된 선경 5.5∼22mm인 내후성 선재를 1차 산세 및 피막처리 하는 단계와, 30∼75% 감면율의 1차 냉간 인발 가공하는 단계와, 650∼930℃에서 10시간 이하의 소둔 열처리 단계와, 2차 산세 및 피막처리 하는 단계와, 95% 이하의 2차 냉간 인발 가공하는 단계로 제조된 내후성 강선을 연선하여 제조됨을 특징으로 하는 내후성 강연선의 제조방법.Chemical composition 0.30 to 0.60 wt% C, 0.15 to 0.65 wt% Si, 0.85 wt% or less Mn, 0.20 to 0.50 wt% Cu, 0.45 to 0.75 wt% Cr, 0.05 to 0.30 wt% Ni, 0.05 to 0.30 wt% V Primary pickling and coating of weather-resistant wire having a diameter of 5.5 to 22 mm comprising one of 0.02 to 0.2 wt% W, and 0.05 to 0.30 wt% Nb or Ti and composed of residual iron and unavoidable impurities; A first cold drawing process with a reduction rate of ˜75%, a heat treatment step of 10 hours or less at 650 to 930 ° C., a second pickling and coating process, and a second cold drawing process of 95% or less. A method for producing weathering stranded steel, characterized in that it is produced by stranding the weathering steel wire produced.
KR1019990059482A 1999-12-20 1999-12-20 Production method of weathering steel wire and strand KR100334116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990059482A KR100334116B1 (en) 1999-12-20 1999-12-20 Production method of weathering steel wire and strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990059482A KR100334116B1 (en) 1999-12-20 1999-12-20 Production method of weathering steel wire and strand

Publications (2)

Publication Number Publication Date
KR20010064990A true KR20010064990A (en) 2001-07-11
KR100334116B1 KR100334116B1 (en) 2002-04-26

Family

ID=19627361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990059482A KR100334116B1 (en) 1999-12-20 1999-12-20 Production method of weathering steel wire and strand

Country Status (1)

Country Link
KR (1) KR100334116B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779912B1 (en) * 2006-07-19 2007-11-29 신수정 A manufacture process of steel bar by cold rolling and cold drawing method
CN101397634B (en) * 2008-09-05 2013-06-19 杭州钢铁集团公司 Atmospheric corrosion resistant 08CrNiCu low-alloy high intensity non-annealed cold-forging steel and production process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025943A (en) * 2002-03-12 2002-04-04 성창원 The manufacturing method of fishhook's material steel wire
KR101008517B1 (en) 2008-04-15 2011-01-14 광진실업 주식회사 method for processing of LM guide rail
KR102067080B1 (en) * 2018-11-30 2020-01-16 리녹스 주식회사 Steel pipe manufacturing method using pullout molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779912B1 (en) * 2006-07-19 2007-11-29 신수정 A manufacture process of steel bar by cold rolling and cold drawing method
CN101397634B (en) * 2008-09-05 2013-06-19 杭州钢铁集团公司 Atmospheric corrosion resistant 08CrNiCu low-alloy high intensity non-annealed cold-forging steel and production process

Also Published As

Publication number Publication date
KR100334116B1 (en) 2002-04-26

Similar Documents

Publication Publication Date Title
TWI601833B (en) Pickling property, the bolt wire excellent in delayed fracture resistance after quenching and tempering, and a bolt
US4525598A (en) Steel wire for use in stranded steel core of an aluminum conductor, steel reinforced and production of same
EP1442147B1 (en) Steel sheet for vitreous enameling excellent in workability and fish scale resistance, and method for producing the same
KR20210065164A (en) High-strength steel sheet and its manufacturing method
KR20020037339A (en) High resistance steel band or sheet and method for the production thereof
KR950007472B1 (en) High strength cold rolled steel sheet having excellent non-aging property at room temperature and suitable for drawing and method of producing the same
CN1088628A (en) High-intensity high-tenacity and fabulous resistivity against fire shaped steel material and the method for producing the rolled section steel of this material
US10337079B2 (en) Maraging steel
RU2530212C2 (en) High-strength cold-rolled steel sheet and steel sheet with coating that features excellent thermal hardenability and mouldability and method of their production
KR100910332B1 (en) Invar alloy wire excellent in strength and turning characteristics and method for production thereof
KR100264258B1 (en) Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof
CN113832386A (en) High-strength hot-rolled substrate, hot-dip galvanized steel and manufacturing method thereof
JP3314833B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
KR100334116B1 (en) Production method of weathering steel wire and strand
KR101987656B1 (en) High strength steel wire and the method for manufacturing the same
JP3232120B2 (en) Low Yield Ratio Hot Rolled Steel Strip for Buildings Excellent in Fire Resistance and Toughness and Method for Producing the Strip
US5156690A (en) Building low yield ratio hot-dip galvanized cold rolled steel sheet having improved refractory property
KR100261678B1 (en) Invar type slab and a wire rod having a circular shape, etc, and a method of producing thereof
KR101380407B1 (en) Enameling steel sheet with surface defect free and manufacturing method thereof
JPS5910415B2 (en) Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
KR100435468B1 (en) A method for manufacturing wire rod for armouring cable
CN110343957B (en) High-strength fire-resistant corrosion-resistant steel for construction and manufacturing method thereof
JPH10140237A (en) Production of cold rolled steel sheet and hot-dip metal coated cold rolled steel sheet for building material, excellent in fire resistance
JP5586704B2 (en) Cold-rolled steel sheet for processing excellent in heat resistance and method for producing the same
JPH05339629A (en) Production of cr-mo steel having excellent strength and toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120412

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130412

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee