JP3505048B2 - High strength steel wire for high strength ACSR with low iron loss in high magnetic field - Google Patents

High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Info

Publication number
JP3505048B2
JP3505048B2 JP26462296A JP26462296A JP3505048B2 JP 3505048 B2 JP3505048 B2 JP 3505048B2 JP 26462296 A JP26462296 A JP 26462296A JP 26462296 A JP26462296 A JP 26462296A JP 3505048 B2 JP3505048 B2 JP 3505048B2
Authority
JP
Japan
Prior art keywords
steel wire
iron loss
magnetic field
strength
acsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26462296A
Other languages
Japanese (ja)
Other versions
JPH10110246A (en
Inventor
淳彦 吉江
世紀 西田
政男 薮本
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26462296A priority Critical patent/JP3505048B2/en
Publication of JPH10110246A publication Critical patent/JPH10110246A/en
Application granted granted Critical
Publication of JP3505048B2 publication Critical patent/JP3505048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は送電線用ケーブルの
Al導線を補強するために使用される鋼撚線の素線(A
CSR(Aluminium Conductor Steel Reinforced) 鋼
線) に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel stranded wire (A) used to reinforce an Al conductor wire of a cable for a transmission line.
It relates to CSR (Aluminium Conductor Steel Reinforced) steel wire.

【0002】[0002]

【従来の技術】ACSRは米国ALCOA社が考案し、
Alの軽量により送電線として多く用いられている。し
かしAlは強度が低いため、補強用にACSRの中心部
にZnやAlをメッキした鋼線と組み合わせて用いる。
通常、当該鋼線にはJIS SWRH62〜77Aを素
線として用い、冷間伸線後の鋼線を3〜19本に縒りあ
わせて用いる。このような心線は強度、伸び、捻回値、
巻き付き試験時の折損などに関する規定があるが、AC
SRとして用いた場合の鉄損に関する規定はとくに定め
られていない。しかるに現実のACSR用鋼心線には、
鋼より線の周囲によりあわせた硬Al線に電流が流れる
ため、誘導電流による鉄損が生ずるという欠点があっ
た。この鉄損は大きな送電ロスの原因となるにもかかわ
らず、現状ではこの鉄損を防止する手段は何もとられて
いない。
2. Description of the Related Art ACSR, a US company, devised the ACSR.
Due to the light weight of Al, it is often used as a power transmission line. However, since Al has low strength, it is used in combination with a steel wire plated with Zn or Al at the center of the ACSR for reinforcement.
Usually, JIS SWRH62-77A is used for the said steel wire as an element wire, and the steel wire after cold drawing is twisted and used for 3-19 pieces. Such a core wire has strength, elongation, twist value,
Although there are regulations regarding breakage during wrapping tests, AC
There is no specific regulation on iron loss when used as SR. However, in the actual steel core wire for ACSR,
Since a current flows through the hard Al wire, which is matched with the circumference of the steel stranded wire, there is a drawback that iron loss occurs due to the induced current. Although this iron loss causes a large transmission loss, at present, no measures are taken to prevent this iron loss.

【0003】一般にトランスやモーターの鉄損を低減さ
せるために電磁鋼板が使用されており、圧延方向に対し
て結晶方位をそろえた方向性電磁鋼板、結晶方位をラン
ダムに配列した無方向性電磁鋼板が知られている。これ
らの電磁鋼板では結晶方位を制御するために製造工程で
はCを含む鋼を用い、最終製品では脱炭焼鈍等によりC
を30ppm 以下に抑える。この方法は多大な製造コスト
を要する。またこれらはいずれも薄板に関するものであ
り、より線を周囲の硬Al線とより合わせた場合に鉄損
を低減させる方法については報告はない。
Generally, electromagnetic steel sheets are used to reduce iron loss of transformers and motors. Grain-oriented electrical steel sheets in which crystal orientations are aligned with the rolling direction, non-oriented electrical steel sheets in which crystal orientations are randomly arranged. It has been known. In these electromagnetic steel sheets, steel containing C is used in the manufacturing process in order to control the crystal orientation, and in the final product, C is obtained by decarburization annealing or the like.
To 30ppm or less. This method requires a large manufacturing cost. Further, these are all related to thin plates, and there is no report on a method of reducing iron loss when a stranded wire is twisted with a surrounding hard Al wire.

【0004】[0004]

【発明が解決しようとする課題】本発明は、鋼素線の成
分系と製造条件を特定することにより、送電時の鉄損を
低減しうるACSR用鋼心線とその製造法に関するもの
である。
DISCLOSURE OF THE INVENTION The present invention relates to a steel core wire for ACSR capable of reducing iron loss during power transmission by specifying the component system of steel wire and manufacturing conditions, and a manufacturing method thereof. .

【0005】[0005]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明は鋼材の成分を限定し、さらに鋼材の製造
条件を選定することにより送電時の電力ロスを低減する
ことを可能とするACSR用鋼心線とその製造法を提供
するものである。即ち要旨とするところは以下のとおり
である。
In order to solve such a problem, the present invention makes it possible to reduce the power loss during power transmission by limiting the composition of the steel material and selecting the manufacturing conditions of the steel material. The present invention provides a steel core wire for ACSR and a manufacturing method thereof. That is, the main points are as follows.

【0006】(1)重量%で、C :0.01%〜0.
3%、Si:0.6%〜6.5%、Mn:0.10%〜
1.5%、且つCとSiの関係が、Si≧10×C+
0.5の範囲にあり、残部がFeおよび不可避的不純物
からなることを特徴とする高磁場で鉄損の低い高強度A
CSR用鋼線。
(1) C: 0.01% to 0.
3%, Si: 0.6% to 6.5%, Mn: 0.10% to
1.5%, and the relation between C and Si is Si ≧ 10 × C +
High strength A with low iron loss in a high magnetic field, characterized by being in the range of 0.5 and the balance being Fe and unavoidable impurities
Steel wire for CSR.

【0007】(2)重量%で、Al:0.002%〜
0.050%を含有することを特徴とする(1)に記載
の高磁場で鉄損の低い高強度ACSR用鋼線。 (3)重量%で、Nb:0.002%〜0.10%、T
i:0.002%〜0.10%の1種または2種以上を
含有することを特徴とする(1)乃至(2)のいずれか
1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(2) Al: 0.002% by weight
The steel wire for high strength ACSR having a high magnetic field and a low iron loss according to (1), which contains 0.050%. (3) wt%, Nb: 0.002% to 0.10%, T
i: 0.002% to 0.10% of one kind or two or more kinds contained in (1) to (2). Steel wire for ACSR.

【0008】(4)重量%で、 Cu:0.02%〜0.5%、 Ni:0.02%〜0.5%、 Cr:0.02%〜0.5%、 Mo:0.02%〜0.5%、 Co:0.02%〜0.5%、 W :0.02%〜0.5% の1種または2種以上を含有することを特徴とする
(1)乃至(3)のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
(4) In weight%, Cu: 0.02% to 0.5%, Ni: 0.02% to 0.5%, Cr: 0.02% to 0.5%, Mo: 0. 02% to 0.5%, Co: 0.02% to 0.5%, W: 0.02% to 0.5%, or one or more of (1) to. The high-strength steel wire for ACSR having a high magnetic field and low iron loss according to any one of (3).

【0009】(5)重量%で、V:0.002%〜0.
10%を含有することを特徴とする(1)乃至(4)の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用鋼線。 (6)重量%で、B:0.0002%〜0.0025%
を含有することを特徴とする(1)乃至(5)のいずれ
か1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(5) V: 0.002% to 0.
High strength ACS with low iron loss in a high magnetic field according to any one of (1) to (4), characterized by containing 10%.
Steel wire for R. (6) B: 0.0002% to 0.0025% by weight
A steel wire for high strength ACSR with high magnetic field and low iron loss according to any one of (1) to (5), characterized in that

【0010】(7)重量%で、Rem:0.002%〜
0.10%、Ca:0.0003%〜0.0030%、
Mg:0.0003〜0.01%の1種または2種以上
を含有することを特徴とする(1)乃至(6)のいずれ
か1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(7) Rem: 0.002% by weight%
0.10%, Ca: 0.0003% to 0.0030%,
Mg: 0.0003 to 0.01% of one kind or two or more kinds is contained, and the high strength ACSR having a low magnetic field and a low iron loss according to any one of (1) to (6). Steel wire for use.

【0011】(8)鋼線をZnメッキ、または重量比
で、Al:2〜12% Si:0.01〜0.12% 残余をZnおよび不可避的不純物からなる合金浴を用い
て溶融メッキすることを特徴とする(1)乃至(7)の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用メッキ鋼線。
(8) Steel wire is Zn-plated, or Al: 2 to 12%, Si: 0.01 to 0.12% in weight ratio, and the rest is hot-dipped using an alloy bath containing Zn and inevitable impurities. High strength ACS with low iron loss in a high magnetic field according to any one of (1) to (7), characterized in that
Plated steel wire for R.

【0012】(9)メッキ後の鋼線を総減面率20〜8
0%で伸線することを特徴とする(8)に記載の高磁場
で鉄損の低い高強度ACSR用メッキ鋼線。 (10)伸線後の鋼線を300度以上370度以下の温
度でブルーイング処理を施すことを特徴とする(9)に
記載の高磁場で鉄損の低い高強度ACSR用メッキ鋼
線。
(9) The total area reduction rate of the steel wire after plating is 20 to 8
A high-strength plated steel wire for ACSR with a low magnetic field and a low iron loss, which is drawn at 0%. (10) The plated steel wire for high strength ACSR with high magnetic field and low iron loss according to (9), wherein the drawn steel wire is subjected to bluing treatment at a temperature of 300 ° C. or higher and 370 ° C. or lower.

【0013】(11)伸線後の鋼線を300度以上37
0度以下の温度で加熱し且つ加熱中に鋼線の引張強度の
20%〜50%の範囲の応力を加えることを特徴とする
(9)に記載の高磁場で鉄損の低い高強度ACSR用メ
ッキ鋼線。ただし、ここで高磁場とは磁界の強さが20
00A/mを越える場合を意味する。
(11) Steel wire after drawing is 300 degrees or more 37
A high strength ACSR with a high magnetic field and a low iron loss, which is characterized in that the steel wire is heated at a temperature of 0 ° C. or less and a stress in the range of 20% to 50% of the tensile strength of the steel wire is applied during the heating. For plated steel wire. However, here, the high magnetic field means that the strength of the magnetic field is 20.
It means the case where it exceeds 00 A / m.

【0014】[0014]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明の根幹をなす技術思想は以下のとおりであ
る。一般に、鉄損はヒステリシス損と渦電流損に分離す
ることができる。前者は結晶方位と鋼の純度の影響を受
けることが知られている。鋼板の場合は圧延面に(11
0)[001]方位(いわゆるGoss方位)が集積す
ることが望ましく、また純度が高いほど良い。しかし、
高強度の鋼線は多量のCを含むことにより高強度化して
いるため、Cを低減する場合はそれに代替する高強度化
の手段をとる必要がある。さらに伸線加工は強烈な繊維
状集合組織を発達させるため、伸線材特有の集合組織以
外の結晶方位を得ることは不可能に近い。一方、後者の
渦電流損は固有抵抗が大きいほど小さくなるため、Si
添加が有効であることが知られている。特に高磁場(磁
界の強さが強い場合で、2000A/mを越えるような
場合)における鉄損を低減するためには高Si化が有効
である。しかし、高Si鋼は延性が低く、実際に伸線加
工する場合に容易に破断する。このような問題点を総合
的に解決するために本発明者らは種々検討を加え下記の
解決策を見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The technical idea that forms the basis of the present invention is as follows. Generally, iron loss can be separated into hysteresis loss and eddy current loss. The former is known to be affected by crystal orientation and steel purity. In the case of steel plate, (11
0) It is desirable that [001] orientation (so-called Goss orientation) be integrated, and the higher the purity, the better. But,
High-strength steel wire has a high strength by containing a large amount of C. Therefore, in the case of reducing C, it is necessary to take a means for strengthening that substitutes for it. Furthermore, since wire drawing develops a strong fibrous texture, it is almost impossible to obtain a crystal orientation other than the texture unique to the wire drawing material. On the other hand, the latter eddy current loss decreases as the specific resistance increases, so Si
It is known that the addition is effective. In particular, in order to reduce iron loss in a high magnetic field (when the magnetic field strength is strong and exceeds 2000 A / m), high Si is effective. However, the high Si steel has low ductility and easily breaks when actually drawn. In order to solve such problems as a whole, the present inventors have made various studies and found the following solutions.

【0015】ヒステリシス損を低減するためにはC含有
量の低減が必須である。そのためCの低減に伴う強度の
低下を別の手法で補う必要がある。一般にC含有量が大
きいほど伸線加工による強度上昇は大きくなるため、C
量を低減すると伸線加工による高強度化もあまり期待で
きない。しかるに、Cの代わりにSiを高めることによ
り伸線加工による強度上昇量を大きくとることが可能で
ある。単にSiを高めると伸線加工性を阻害して伸線中
に容易に破断してしまうが、C量を低くすることにより
伸線加工性を阻害せずに強度を高めることができ且つヒ
ステリシス損も低減することが可能となる。良好な伸線
加工性を保つためにはCとSiの含有量が所定の範囲に
ある必要がある。さらに本発明が目的とするように高磁
場における鉄損を低減するためにはSiはCに対して所
定の量以上添加する必要がある。
In order to reduce the hysteresis loss, it is essential to reduce the C content. Therefore, it is necessary to compensate the decrease in strength due to the decrease in C by another method. In general, the higher the C content, the greater the increase in strength due to wire drawing.
If the amount is reduced, higher strength due to wire drawing cannot be expected so much. However, by increasing Si instead of C, it is possible to increase the amount of strength increase due to wire drawing. If Si is simply increased, wire drawing workability is hindered and the wire is easily broken during wire drawing. However, by lowering the amount of C, strength can be increased without hindering wire drawing workability, and hysteresis loss can be reduced. Can also be reduced. In order to maintain good wire drawing workability, the contents of C and Si must be within a predetermined range. Further, in order to reduce the iron loss in a high magnetic field as intended by the present invention, Si needs to be added to C in a predetermined amount or more.

【0016】以下に化学成分および金属組織の限定理由
を詳細に説明する。まず本発明の成分の限定理由につい
て述べる。Cは、線材を強化するのに有効な元素である
が、鉄損を著しく増大させるためにその含有量を厳しく
制限する必要がある。0.3%を超えると鉄損の増加が
顕著であるため含有量を0.3%以下とする。一方、
0.01%未満では実際に要求される1500MPaを
越えるような強度を得ることができないため、含有量の
範囲を0.01%〜0.3%とする。
The reasons for limiting the chemical composition and the metal structure will be described in detail below. First, the reasons for limiting the components of the present invention will be described. C is an element effective for strengthening the wire rod, but its content must be strictly limited in order to significantly increase iron loss. If it exceeds 0.3%, the iron loss increases remarkably, so the content is made 0.3% or less. on the other hand,
If it is less than 0.01%, the strength that actually exceeds 1500 MPa cannot be obtained, so the content range is set to 0.01% to 0.3%.

【0017】Siは脱酸元素として有効であるとともに
固有抵抗を増して渦電流損を低減させる。0.6%未満
の含有量ではその効果が小さい。一方、6.5%を越え
ると伸線性が劣化するために含有量の範囲を0.6%以
上6.5%以下とする。2000A/mを越えるような
高磁場における鉄損を低減するためにはSiが所定の関
係を満たす範囲にある必要がある。特にSi含有量はC
量に対して所定の関係を満たす以上に多く添加すること
が必要である。著者らは、CとSiの含有量の関係が、
Si≧10×C+0.5を満たす範囲にある場合に高磁
場における鉄損が低減することを見出したので、CとS
iの含有量の範囲をSi≧10×C+0.5の範囲とす
る。
Si is effective as a deoxidizing element and increases the specific resistance to reduce the eddy current loss. If the content is less than 0.6%, the effect is small. On the other hand, if it exceeds 6.5%, the wire drawability deteriorates, so the content range is made 0.6% or more and 6.5% or less. In order to reduce iron loss in a high magnetic field exceeding 2000 A / m, Si needs to be in a range satisfying a predetermined relationship. Especially Si content is C
It is necessary to add more than the amount satisfying a predetermined relationship with the amount. The authors have found that the relationship between the contents of C and Si is
Since it has been found that iron loss in a high magnetic field is reduced when Si ≧ 10 × C + 0.5 is satisfied, C and S
The range of the content of i is set to the range of Si ≧ 10 × C + 0.5.

【0018】Mnは金属の強靱化に有効な元素であり、
0.10%未満の添加では十分な効果が得られない。一
方、その含有量が1.5%を越えると溶着金属の靱性が
劣化する。TiおよびNbはいずれも微量の添加で結晶
粒の微細化と析出硬化の面で有効に機能するが、添加量
が少ないとその効果が得られず、また過度の量の添加は
鉄損の増加をもたらすため、Nb,Tiともその添加量
をTi:0.002%〜0.10%、Nb:0.002
%〜0.10%の範囲に限定する。
Mn is an element effective in strengthening the metal,
If it is less than 0.10%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 1.5%, the toughness of the deposited metal deteriorates. Both Ti and Nb function effectively in terms of grain refinement and precipitation hardening by adding a small amount, but if the addition amount is small, the effect cannot be obtained, and addition of an excessive amount increases iron loss. Therefore, the addition amount of Nb and Ti is 0.002% to 0.10% for Nb and 0.002 for Nb.
% To 0.10%.

【0019】Cu,Ni,Cr,Mo,Wはいずれも鋼
の強度を高めることができるが、添加量が少ないと固溶
強化による強度上昇の効果が得られず、また過度の量の
添加は延性を劣化させるため、添加量をCu:0.02
%〜0.5%、Ni:0.02%〜0.5%、Cr:
0.02%〜0.5%、Mo:0.02%〜0.5%、
W:0.02%〜0.5%の範囲に限定する。
Each of Cu, Ni, Cr, Mo and W can increase the strength of the steel, but if the addition amount is small, the effect of increasing the strength by solid solution strengthening cannot be obtained, and if an excessive amount is added, To deteriorate the ductility, the addition amount is Cu: 0.02
% -0.5%, Ni: 0.02% -0.5%, Cr:
0.02% to 0.5%, Mo: 0.02% to 0.5%,
W: Limited to the range of 0.02% to 0.5%.

【0020】Vは、鋼の強度を高めるのに有効である
が、添加量が少ないとその効果が得られず、また過度の
量の添加は鉄損の増加をもたらすため、その添加量を
0.002%〜0.10%の範囲に限定する。Bは鋼の
焼入れ性を向上させる元素である。本発明における場
合、その添加により鋼の強度を高めることができるが、
添加量が少ないと焼き入れ性が向上せず、また過度の添
加はBの析出物を増加させて延性を損なうためその含有
量を0.0002%〜0.0025%の範囲とする。
V is effective in increasing the strength of the steel, but if the addition amount is small, the effect cannot be obtained, and if the addition amount is excessive, the iron loss increases, so the addition amount is 0. It is limited to the range of 0.002% to 0.10%. B is an element that improves the hardenability of steel. In the case of the present invention, the addition thereof can increase the strength of steel,
If the amount of addition is small, the hardenability does not improve, and excessive addition increases the precipitates of B and impairs ductility, so the content is made 0.0002% to 0.0025%.

【0021】Rem,CaおよびMgはSまたは酸素と
結び付いて金属組織を微細化するのに有効である。少量
の添加ではSがそのまま残り、また過度の添加は鉄損の
増加をもたらすため、Rem:0.002%〜0.10
%、Ca:0.0003%〜0.0030%、Mg:
0.0003%〜0.01%の範囲で添加する。Alは
脱酸元素として有効である。0.002%未満の含有量
ではその効果がなく、0.05%を越えると表面疵がで
やすくなるため、その含有量を0.002%〜0.05
0%の範囲とする。
Rem, Ca and Mg are effective in finely forming the metal structure by combining with S or oxygen. If a small amount is added, S remains as it is, and excessive addition causes an increase in iron loss. Therefore, Rem: 0.002% to 0.10
%, Ca: 0.0003% to 0.0030%, Mg:
It is added in the range of 0.0003% to 0.01%. Al is effective as a deoxidizing element. If the content is less than 0.002%, there is no effect, and if it exceeds 0.05%, surface defects are likely to occur, so the content is 0.002% to 0.05%.
The range is 0%.

【0022】次に本発明における製造条件の限定条件に
ついて述べる。本発明の鋼線はその製造工程をとくに定
める必要はない。すなわち、通常の製鋼工程で精錬およ
び鋳造された鋼塊または鋳片を出発点として必要に応じ
て分塊圧延を施し、通常の線材圧延工程で鋼線としたも
のを対象としている。各工程での操業条件は多岐にわた
るがそのいずれを用いても有効である。
Next, the limiting conditions of the manufacturing conditions in the present invention will be described. The steel wire of the present invention does not need to have a particular manufacturing process. That is, the steel ingot or slab smelted and cast in the normal steelmaking process is used as a starting point to perform slab rolling as required, and a steel wire is produced in the normal wire rod rolling process. There are various operating conditions in each process, but any of them is effective.

【0023】通常ACSRに用いられる鋼線は耐食性を
付与するためにZnメッキまたはAl−Zn等の合金メ
ッキを施す必要がある。通常のZnメッキでも耐食性は
向上するが、Alを添加するとより良好な耐食性を示す
ため、使用環境の過酷度合に応じてAl量を選択すれば
良い。ただし、Al量が2%未満では耐食性の向上効果
は不十分であり、12%を越えると融点上昇によりメッ
キ温度が高くなるため鋼線強度の低下をもたらす。よっ
てメッキ浴中のAlの量は、重量%で2%以上12%以
下に限定する。一方、メッキ浴中にSiを添加する理由
はメッキ槽などの鋼製の設備・機器からFeが溶け出る
のを抑制し、メッキ浴中のドロスの発生を抑えることに
ある。Si添加量が0.01%未満ではドロスが発生
し、0.12%を越えるとSiがメッキ浴中に溶解しな
いため、その添加量を0.01%以上0.12%未満に
限定する。
The steel wire normally used for ACSR needs to be plated with Zn or an alloy such as Al-Zn in order to impart corrosion resistance. Corrosion resistance is improved even with normal Zn plating, but better corrosion resistance is exhibited when Al is added, so the Al amount may be selected according to the severity of the operating environment. However, if the amount of Al is less than 2%, the effect of improving corrosion resistance is insufficient, and if it exceeds 12%, the melting point rises and the plating temperature increases, leading to a decrease in the strength of the steel wire. Therefore, the amount of Al in the plating bath is limited to 2% or more and 12% or less by weight. On the other hand, the reason for adding Si to the plating bath is to prevent Fe from leaching out from steel facilities and equipment such as a plating bath and to suppress the generation of dross in the plating bath. When the amount of Si added is less than 0.01%, dross occurs, and when it exceeds 0.12%, Si is not dissolved in the plating bath. Therefore, the amount added is limited to 0.01% or more and less than 0.12%.

【0024】通常メッキ工程が減ることにより強度が低
下するため、メッキ後伸線加工(アフタードロー)を施
し強度を補償する。その際の総減面率が20%未満では
強度が十分に回復せず、80%を越えると延性が著しく
劣化するので、総減面率の範囲を20%以上80%未満
に限定する。このような伸線加工をすると製品としての
伸びが劣化するため、再度加熱して伸びを確保する必要
がある。その際の加熱温度が300℃未満では伸びが十
分に回復せず、370℃を越えるとメッキ層が軟化して
しまうため、加熱温度の範囲を300℃以上370℃未
満に限定する。さらにメッキにより低下した強度を高め
るには、加熱中に応力を負荷することが有効である。そ
の際の負荷応力が鋼線の常温での引張り強度の10%未
満では強度上昇が不十分であり、50%を越えると局部
的に塑性変形が生じて延性を劣化させるため、負荷応力
の範囲を鋼線の常温での引張り強度の10%以上50%
以下に限定する。
Since strength is usually reduced by reducing the number of plating steps, a wire drawing process (afterdraw) is performed after plating to compensate for the strength. At that time, if the total area reduction rate is less than 20%, the strength is not sufficiently recovered, and if it exceeds 80%, the ductility is remarkably deteriorated. Therefore, the range of the total area reduction rate is limited to 20% or more and less than 80%. Since elongation as a product deteriorates when such wire drawing is performed, it is necessary to heat again to secure the elongation. If the heating temperature at that time is less than 300 ° C., the elongation is not sufficiently recovered, and if it exceeds 370 ° C., the plating layer is softened. Therefore, the heating temperature range is limited to 300 ° C. or more and less than 370 ° C. Further, in order to increase the strength lowered by plating, it is effective to apply stress during heating. If the load stress at that time is less than 10% of the tensile strength of the steel wire at room temperature, the strength increase is insufficient, and if it exceeds 50%, plastic deformation locally occurs and ductility deteriorates. 10% to 50% of the tensile strength of steel wire at room temperature
Limited to:

【0025】[0025]

【実施例】次に本発明を実施例にもとづいて詳細に説明
する。まず表1に示す成分の鋼線を通常の転炉法による
精錬(一部真空溶解)、連続鋳造(一部鋼塊法+分塊圧
延)、線材圧延(熱間圧延)により製造した。さらに冷
間伸線により所定の直径まで引いて強度を調整した。冷
間伸線後、一部のものについては表2に示す条件でメッ
キ、アフタードロー、ブルーイング、温間ストレッチン
グの各処理を施した。これらの鋼線の機械的性質および
耐食性倍率を表2に合わせて示す。ここで耐食性倍率は
下記の式で計算した。
EXAMPLES Next, the present invention will be described in detail based on examples. First, the steel wires having the components shown in Table 1 were manufactured by refining (partially vacuum melting) by a normal converter method, continuous casting (partial steel ingot method + slabbing), and wire rod rolling (hot rolling). Furthermore, the strength was adjusted by drawing to a predetermined diameter by cold drawing. After cold drawing, some of the products were subjected to plating, afterdrawing, bluing, and warm stretching under the conditions shown in Table 2. The mechanical properties and corrosion resistance magnification of these steel wires are also shown in Table 2. Here, the corrosion resistance magnification was calculated by the following formula.

【0026】[0026]

【化1】 [Chemical 1]

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】これらの鋼線を直径270mmのリング状に
約6巻し、さらにその周囲に1次側で700巻、2次側
で20巻の銅線を巻いて鉄損の測定に供した。鉄損の測
定のためには交流での磁束密度と磁界強さの関係を測定
した。周波数は50Hzとした。磁界強さ(Hm)は1
000〜4000(A/m)の範囲で、また磁束密度
(Bm)は0.2〜1.5(T)の範囲で変化させて鉄
損を測定した。鉄損の測定結果を表3に示す。
Each of these steel wires was wound in a ring shape having a diameter of 270 mm about 6 times, and around that, a copper wire of 700 turns on the primary side and 20 turns on the secondary side was wound, and the iron loss was measured. For the measurement of iron loss, the relationship between magnetic flux density and magnetic field strength under alternating current was measured. The frequency was 50 Hz. Magnetic field strength (Hm) is 1
The iron loss was measured in the range of 000 to 4000 (A / m) and the magnetic flux density (Bm) in the range of 0.2 to 1.5 (T). Table 3 shows the measurement results of iron loss.

【0030】[0030]

【表3】 [Table 3]

【0031】表3に示したように、本発明の鋼は極低C
鋼ではあるものの1500MPaを越える引張強度を有
している。さらに伸びも比較的良好でACSRとしての
仕様に十分耐えるものである。メッキをほどこすことに
より、耐食性が確保できるが、特にZn−Alメッキを
施した場合の耐食性倍率が大きく、効果が顕著であるこ
とがわかる。
As shown in Table 3, the steel of the present invention has an extremely low C
Although it is steel, it has a tensile strength exceeding 1500 MPa. Furthermore, it has a relatively good elongation and can withstand the specifications of ACSR. It can be seen that the corrosion resistance can be ensured by applying the plating, but particularly when the Zn—Al plating is applied, the corrosion resistance ratio is large and the effect is remarkable.

【0032】また、表3に示したように、本発明の鋼は
2000A/mを越えるような高磁場域での鉄損が低
い。特に鉄損はC量が低くSi量が高いほど低くなる傾
向が見られるが、本発明鋼のいずれの鉄損も、現状使用
されている0.82%C鋼21に比較して半減している
ことがわかる。また、CとSiの含有量の関係が、Si
≧10×C+0.5を満たす範囲にない比較鋼8,9は
高磁場における鉄損が高いことがわかる。メッキ後の熱
処理温度が400℃を越える場合11は強度、伸び、耐
食性倍率ともに劣化している。熱処理中の負荷応力が6
0%σyと高い場合12は伸び、耐食性倍率ともに劣化
している。またメッキ後の減面率が81%と過剰な場合
15,18は伸びが劣化する。
Further, as shown in Table 3, the steel of the present invention has a low iron loss in a high magnetic field region exceeding 2000 A / m. In particular, the iron loss tends to decrease as the C content decreases and the Si content increases, but any iron loss of the steels of the present invention is halved as compared with the currently used 0.82% C steel 21. You can see that Further, the relationship between the contents of C and Si is Si
It can be seen that the comparative steels 8 and 9 which do not satisfy the range of ≧ 10 × C + 0.5 have a high iron loss in a high magnetic field. When the heat treatment temperature after plating exceeds 400 ° C., 11, the strength, elongation, and corrosion resistance are all deteriorated. Load stress during heat treatment is 6
When it is as high as 0% σy, No. 12 is elongated and the corrosion resistance magnification is deteriorated. When the area reduction rate after plating is 81%, which is excessive, the elongation of 15 and 18 deteriorates.

【0033】[0033]

【発明の効果】このように本発明は1500MPa以上
の高強度を有し、伸び、耐食性に優れさらに従来鋼より
はるかに高磁場での鉄損も低い。このことはACSRの
心線として用いた場合に電力ロスの大幅な低減を可能と
し省エネルギーに多大な効果をもたらすものである。
INDUSTRIAL APPLICABILITY As described above, the present invention has a high strength of 1500 MPa or more, is excellent in elongation and corrosion resistance, and has a lower iron loss in a much higher magnetic field than conventional steels. This makes it possible to significantly reduce power loss when used as the core wire of ACSR, and bring about a great effect on energy saving.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大羽 浩 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Ohba 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Stock company, Kimitsu Works (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38 / 00-38/60

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.01%〜0.3%、 Si:0.6%〜6.5%、 Mn:0.10%〜1.5%、 且つCとSiの関係が、Si≧10×C+0.5の範囲
にあり、残部がFeおよび不可避的不純物からなること
を特徴とする高磁場で鉄損の低い高強度ACSR用鋼
線。
1. By weight%, C: 0.01% to 0.3%, Si: 0.6% to 6.5%, Mn: 0.10% to 1.5%, and C and Si. A steel wire for high strength ACSR having a high magnetic field and a low iron loss, characterized in that the relationship is in the range of Si ≧ 10 × C + 0.5, and the balance is Fe and unavoidable impurities.
【請求項2】 重量%で、Al:0.002%〜0.0
50%を含有することを特徴とする請求項1に記載の高
磁場で鉄損の低いACSR用鋼線。
2. Al: 0.002% to 0.0 by weight.
The steel wire for ACSR having a high magnetic field and a low iron loss according to claim 1, wherein the steel wire contains 50%.
【請求項3】 重量%で、Nb:0.002%〜0.1
0%、Ti:0.002%〜0.10%の1種または2
種以上を含有することを特徴とする請求項1乃至請求項
2のいずれか1つに記載の高磁場で鉄損の低い高強度A
CSR用鋼線。
3. Nb: 0.002% to 0.1% by weight.
0%, Ti: 0.002% to 0.10%, one or two
3. A high strength A with a low magnetic field and a low iron loss according to any one of claims 1 to 2, characterized in that it contains at least one species.
Steel wire for CSR.
【請求項4】 重量%で、 Cu:0.02%〜0.5%、 Ni:0.02%〜0.5%、 Cr:0.02%〜0.5%、 Mo:0.02%〜0.5%、 Co:0.02%〜0.5%、 W :0.02%〜0.5% の1種または2種以上を含有することを特徴とする請求
項1乃至請求項3のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
4. By weight%, Cu: 0.02% to 0.5%, Ni: 0.02% to 0.5%, Cr: 0.02% to 0.5%, Mo: 0.02. % To 0.5%, Co: 0.02% to 0.5%, W: 0.02% to 0.5%, and one or more kinds are contained. Item 5. A high-strength ASR steel wire having a high magnetic field and a low iron loss according to any one of items 3.
【請求項5】 重量%で、V:0.002%〜0.10
%を含有することを特徴とする請求項1乃至請求項4の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用鋼線。
5. V: 0.002% to 0.10.
%, High strength ACS with low iron loss and high magnetic field according to any one of claims 1 to 4.
Steel wire for R.
【請求項6】 重量%で、B:0.0002%〜0.0
025%を含有することを特徴とする請求項1乃至請求
項5のいずれか1つに記載の高磁場で鉄損の低い高強度
ACSR用鋼線。
6. B: 0.0002% to 0.0 by weight.
025% is contained, The high strength steel wire for ACSR with a low iron loss with a high magnetic field of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
【請求項7】 重量%で、 Rem:0.002%〜0.10%、Ca:0.000
3%〜0.0030%、 Mg:0.0003〜0.01% の1種または2種以上を含有することを特徴とする請求
項1乃至請求項6のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
7. In% by weight, Rem: 0.002% to 0.10%, Ca: 0.000
3% -0.0030%, Mg: 0.0003-0.01% 1 type (s) or 2 or more types are contained, The high magnetic field of any one of Claim 1 thru | or 6 characterized by the above-mentioned. High strength steel wire for ACSR with low iron loss.
【請求項8】 鋼線をZnメッキ、または重量比で、 Al:2〜12% Si:0.01〜0.12% 残余をZnおよび不可避的不純物からなる合金浴を用い
て溶融メッキすることを特徴とする請求項1乃至請求項
7のいずれか1つに記載の高磁場で鉄損の低い高強度A
CSR用メッキ鋼線。
8. A steel wire is plated with Zn, or by weight, Al: 2 to 12%, Si: 0.01 to 0.12%, and the rest is hot-dipped by using an alloy bath containing Zn and inevitable impurities. High strength A with low iron loss in a high magnetic field according to any one of claims 1 to 7.
Plated steel wire for CSR.
【請求項9】 メッキ後の鋼線を総減面率20〜80%
で伸線することを特徴とする請求項8に記載の高磁場で
鉄損の低い高強度ACSR用メッキ鋼線。
9. A steel wire after plating has a total area reduction rate of 20 to 80%.
9. The high-strength plated steel wire for high strength ACSR with low iron loss according to claim 8, which is drawn with.
【請求項10】 伸線後の鋼線を300度以上370度
以下の温度でブルーイング処理を施すことを特徴とする
請求項9に記載の高磁場で鉄損の低い高強度ACSR用
メッキ鋼線。
10. The plated steel for high strength ACSR with high magnetic field and low iron loss according to claim 9, wherein the drawn steel wire is subjected to bluing treatment at a temperature of 300 ° C. or higher and 370 ° C. or lower. line.
【請求項11】 伸線後の鋼線を300度以上370度
以下の温度で加熱し且つ加熱中に鋼線の引張強度の20
%〜50%の範囲の応力を加えることを特徴とする請求
項9に記載の高磁場で鉄損の低い高強度ACSR用メッ
キ鋼線。
11. The drawn steel wire is heated at a temperature of 300 ° C. or higher and 370 ° C. or lower, and the tensile strength of the steel wire is 20 during heating.
The high-strength plated steel wire for ACSR with low iron loss in a high magnetic field according to claim 9, wherein a stress in the range of 50% to 50% is applied.
JP26462296A 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field Expired - Fee Related JP3505048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26462296A JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26462296A JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Publications (2)

Publication Number Publication Date
JPH10110246A JPH10110246A (en) 1998-04-28
JP3505048B2 true JP3505048B2 (en) 2004-03-08

Family

ID=17405901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26462296A Expired - Fee Related JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Country Status (1)

Country Link
JP (1) JP3505048B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317388A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Plated strand steel wire having high corrosion resistance and method for producing the same
KR100723157B1 (en) 2005-12-23 2007-05-30 주식회사 포스코 Steel sheet having ultra-high strength and excellent corrosion resistance after hot press forming and the method for manufacturing thereof
JP2008067842A (en) * 2006-09-13 2008-03-27 Kanai Hiroaki Core material for manufacturing catheter tube and method of manufacturing the same
CN103060822B (en) * 2013-01-04 2014-07-16 湖南雪豹电器有限公司 Blueing treatment process for semi-processed electrical steel rotor or stator

Also Published As

Publication number Publication date
JPH10110246A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
CN108463569B (en) Non-oriented electromagnetic steel sheet and method for producing same
JP4585609B2 (en) Non-oriented electrical steel sheet with low high-frequency iron loss and manufacturing method thereof
US5954896A (en) Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same
JP7159311B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
WO1999053113A1 (en) Steel sheet for can and manufacturing method thereof
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
US11142813B2 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP4360349B2 (en) Soft magnetic steel bar
JP3505048B2 (en) High strength steel wire for high strength ACSR with low iron loss in high magnetic field
JP4051778B2 (en) Steel plate for cans suitable for 3-piece cans with good surface properties
JP3505047B2 (en) Steel wire for ACSR with low iron loss
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP2006328462A (en) Soft magnetic steel
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP3984393B2 (en) High-strength steel wire without delamination and method for producing the same
JP4068731B2 (en) High grade non-oriented electrical steel sheet and manufacturing method thereof
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JPH10110216A (en) High strength steel wire for acsr, reduced in iron loss in medium and low magnetic field
JP3520109B2 (en) High strength galvanized steel wire and method of manufacturing the same
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
JP3528676B2 (en) Steel wire rod, steel wire and manufacturing method thereof
JP3461604B2 (en) Method for producing steel wire with low power loss
JP2808452B2 (en) Manufacturing method of cold rolled steel sheet with excellent brazing crack resistance
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JPH09184043A (en) Low alloy heat resistant steel excellent in high temperature strength and weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees