JPS61170545A - High manganese steel for very low temperature use having superior rust resistance - Google Patents

High manganese steel for very low temperature use having superior rust resistance

Info

Publication number
JPS61170545A
JPS61170545A JP1140285A JP1140285A JPS61170545A JP S61170545 A JPS61170545 A JP S61170545A JP 1140285 A JP1140285 A JP 1140285A JP 1140285 A JP1140285 A JP 1140285A JP S61170545 A JPS61170545 A JP S61170545A
Authority
JP
Japan
Prior art keywords
steel
rust resistance
toughness
manganese steel
high manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140285A
Other languages
Japanese (ja)
Inventor
Kazuo Sugino
杉野 和男
Kenichiro Suemune
末宗 賢一郎
Susumu Shimamoto
進 島本
Kiyoshi Yoshida
清 吉田
Hideo Nakajima
中嶋 秀夫
Masayuki Oshikiri
押切 雅幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nippon Steel Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP1140285A priority Critical patent/JPS61170545A/en
Publication of JPS61170545A publication Critical patent/JPS61170545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide excellent toughness at very low temp. as well as rust resistance by specifying the amounts of C, Si, Mn, Cr, Ni, N, Al, and Ca as principal components in the high Mn steel. CONSTITUTION:The high Mn steel consists of <=0.20% C, 0.05-2.5% Si, 9-35% Mn, 10-20% Cr, 0.1-8.0% Ni, 0.001-0.50% N, 0.001-0.20% Al, 0.001-0.50% Ca, and the balance Fe with inevitable impurities, to which 0.05-4.0% Mo is incorporated if necessary, and further >=1 kind among Cu, W, Co, Nb, Ti, and V is incorporated by 0.01-4.0% in total in case of Cu, W, and Co and by 0.005-2.0% in total in case of Nb, Ti, and V. Owing to this composition, the high Mn steel for very low temp. use excelling in rust resistance in the wet environment and having superior toughness at the temp. as low as <=about 25K can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿@壌境で#M性が優れ、25に以下の極低温
で優れた靭性を有する極低温用高マンガン鋼に関するも
のである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a high manganese steel for cryogenic use that has excellent #M properties in wet @ soil conditions and excellent toughness at cryogenic temperatures of 25 or below. .

(従来の技術) 最近、超伝導磁石を使用した核融合実験炉2粒子加速器
および発電機など大型設備が世界的に建設されつつある
が、それらの設v//Iにおいて使用される構造材は液
体ヘリウムなどの極低温液体の容器やH1云導体の支持
材およびその周辺の構造物は4に付近の極低温度に冷却
されるためにそのような温度でも脆性破壊を明さないよ
うな優れた靭性を有していなければならない、iた、磁
石容量の巨大化に伴なりて電磁力も大きくなって従来よ
シも高い応力下で使用される丸め高い強度も要求されて
いる。また、かかる構造材は断熱構造部材の一部として
表面に金属光沢を付与した後、真空に接して使用される
場合がhり、その5A面は尚真空を維持するため金属光
沢を保つことが要求されている。したがって大気中の暴
露、あるいは装置の真空夏劣化によシ大気が侵入した場
合に結露、結氷などにより金属光沢向が発錆しないこと
、すなわち耐錆性も重要な特性となる。またその他の用
途においても耐錆性は無視し得ない特性の一つである。
(Prior Art) Recently, large-scale facilities such as experimental nuclear fusion reactors, two-particle accelerators, and generators using superconducting magnets are being constructed around the world, but the structural materials used in these facilities are Containers of cryogenic liquids such as liquid helium, supporting materials for the H1 conductor, and surrounding structures are cooled to extremely low temperatures in the vicinity of 4. In addition, as the magnet capacity increases, the electromagnetic force also increases, and high strength is also required for rounding, which is used under higher stress than ever before. In addition, such structural materials are sometimes used in contact with a vacuum after being given a metallic luster to the surface as part of a heat insulating structural member, and the 5A surface cannot maintain its metallic luster in order to maintain the vacuum. requested. Therefore, an important property is that the metallic luster does not rust due to dew condensation, freezing, etc. when exposed to the atmosphere or when the atmosphere enters due to vacuum summer deterioration of the equipment, that is, rust resistance. Rust resistance is also one of the properties that cannot be ignored in other applications.

現在かかる要求に対し、低温における強度の増加と靭性
の向上のために通常よシもN含有量を増加させた8US
 304LN +SUB 316LNなどのCr−N1
系オーステナイト鋼が使用されているが、この鋼は耐錆
性が極めて優れている反面、4に付近の極低温でオース
テナイト組織が不安定となって靭性が低下する欠点があ
り、またN1含有量が多いため° に高価である。一方
最近では特開昭57−2868号公報、特開昭58−1
44418号公報などに示されるように多量のMmを含
有した高Mnオーステナイト鋼が低温構造用鋼として開
発されているが、これらは前記した耐錆性に欠けるとい
う問題がある。最近では湿11Sil環境の耐錆性に優
れた高Mn鋼が!#開昭59−104455号公報に1
9提某されているが、この鋼は靭性の向上をはかった。
In response to current demands, 8US has a higher N content than usual in order to increase strength and improve toughness at low temperatures.
Cr-N1 such as 304LN +SUB 316LN
Although this steel has extremely good rust resistance, it has the disadvantage that the austenitic structure becomes unstable at extremely low temperatures around 4°C, resulting in a decrease in toughness. It is extremely expensive due to the large number of On the other hand, recently, JP-A-57-2868, JP-A-58-1
As shown in Japanese Patent No. 44418, high Mn austenitic steel containing a large amount of Mm has been developed as a low temperature structural steel, but these have the problem of lacking the rust resistance described above. Recently, high Mn steel has excellent rust resistance in a wet 11Sil environment! #1 in Publication No. 59-104455
9 has been proposed, but this steel has been improved in toughness.

ものではない。It's not a thing.

(発明が解決しようとする問題点) 本発明は大気暴露時あるいは結露時に発銹せず、さらに
4に付近の極低温でも優れた靭性を有するt’1ttt
−安価に提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention does not rust when exposed to the atmosphere or when condensed, and has excellent toughness even at extremely low temperatures near 4.
-It is intended to be provided at low cost.

(問題点を解決するための手段) 本発明の要旨とするところはC0,20%(重量−以下
同じ)以下、 Si0.05〜2.5%、Mn9〜35
%、Cr10〜20%、N10.1〜8.0%、N0.
001〜0.50s、Aj0.001〜0.20s、C
a0.001〜0.020−を含有し、必要に応じてさ
らにMo0.05〜4.0%、およびまたはCu # 
W * Co e Nb * Tl *volaま九は
2種以上f Cu 、 W 、 Co Kライ”C”は
総量テ0.01〜4.0 % 、 Nb 、 TI 、
 VK−)イテは総量で0.005〜2.0%を含有し
、残部が鉄および不可避的不純物から成る耐錆性の曖れ
九極低温用鋼にある。
(Means for solving the problem) The gist of the present invention is that C0.20% (weight - the same below) or less, Si0.05-2.5%, Mn9-35
%, Cr10-20%, N10.1-8.0%, N0.
001~0.50s, Aj0.001~0.20s, C
a0.001 to 0.020-, and optionally further Mo0.05 to 4.0%, and or Cu #
W * Coe Nb * Tl * Vola There are two or more kinds of f Cu, W, Co K, the total amount of "C" is 0.01 to 4.0%, Nb, TI,
VK-)ite contains a total amount of 0.005 to 2.0%, with the remainder consisting of iron and unavoidable impurities.

まず本発明における化学成分の限定理由について述べる
が、こ仁に述べる機械的性質は25に以下における性質
である。
First, the reason for limiting the chemical components in the present invention will be described.The mechanical properties described in this article are the properties in 25 below.

Cは多量のMnとCrt−t)Kする鋼ではきわめて有
効なオーステナイト安定化元素でラシ、オーステナイト
の安定化によj1725に以下の極低温における靭性を
向上させ、さらに引張強さを高める効果を有する。しか
し、その含有量が0.2%を超えると加工性が著しく劣
化し、さらに溶接時、あるいは応力除去焼鈍時などに6
00〜800℃に加熱された部分にOr炭化物が析出し
て耐錆性を劣化させ靭性も低下させる。したがりてC景
は0.20慢以下とした。
C is an extremely effective austenite stabilizing element in steels containing a large amount of Mn and Crt-t).By stabilizing austenite, it improves the toughness at extremely low temperatures below J1725 and has the effect of increasing tensile strength. have However, if the content exceeds 0.2%, the workability deteriorates significantly, and furthermore, when the content exceeds 0.2%, the
Or carbide precipitates in the portion heated to 00 to 800°C, deteriorating rust resistance and reducing toughness. Therefore, the C view was set to be 0.20 or less.

Siは強度上昇のために必要であるがo、oss未満で
は効果が不十分でISシ、2.5%を超えるとオーステ
ィトを不安定化して靭性を低下させるため、0.05〜
1.5 %トし九* MnはCrをio〜zo*含有する鋼のオーステナイト
相を安定化して極低温における強度と靭性を向上させる
が、9%未満では十分な量のオーステナイトが得られず
、また重量の増加とともに強度、靭性は同上するが、3
5%を超えると鋼の溶製も困虐になりMn合金の投入量
も増えて局側になる丸め35%以下とした。
Si is necessary to increase strength, but if it is less than oss, the effect is insufficient and if it exceeds 2.5%, it will destabilize the ostite and reduce toughness, so it is
1.5% Mn stabilizes the austenite phase of steel containing io~zo* Cr and improves strength and toughness at extremely low temperatures, but if it is less than 9%, a sufficient amount of austenite cannot be obtained. , strength and toughness increase as the weight increases, but 3
If it exceeds 5%, it will be difficult to melt the steel, and the amount of Mn alloy added will increase, resulting in a rounding value of 35% or less.

Crは耐錆性を付与するとともにオーステナイトの安定
化効果を有するが、10%未満では十分な耐錆性が得ら
れず大気暴露で発情する。ま九20−を超えると7エラ
イト相を生成して靭性を安定させるのに十分な量のオー
ステナイトが得られないため10〜20%とした。
Cr imparts rust resistance and has the effect of stabilizing austenite, but if it is less than 10%, sufficient rust resistance cannot be obtained and rutting occurs when exposed to the atmosphere. If it exceeds 20%, a 7-elite phase will be generated and a sufficient amount of austenite to stabilize toughness will not be obtained, so it is set at 10 to 20%.

N1はオーステナイトのα′マルテンサイトへの変態を
阻止し強度と靭性を向上させる効果を有し、溶製上問題
となるM総量、Ntを減少させ得るが0.1%未満では
顕著な効果が昭められない。一方N1はMnに比べて強
化作用が小さく、またNの溶解度を減少させるためその
上限を8.01とした。
N1 has the effect of preventing the transformation of austenite into α' martensite and improving strength and toughness, and can reduce the total amount of M and Nt, which are problems in melting, but if it is less than 0.1%, there is no noticeable effect. I can't get old. On the other hand, since N1 has a smaller strengthening effect than Mn and also reduces the solubility of N, its upper limit was set at 8.01.

また、Nlは耐錆性を劣化させる九め6、〇−以下が好
ましい。
Further, Nl is preferably 6,0- or less, which deteriorates rust resistance.

Nはオーステナイトを安定化させるとともに極低温にお
いて強度、特に耐力の上昇に著しい効果を有する。特に
本発明鋼ではNの溶解腿を増大させる作用のMnとCr
t−多量に含有するため、N溶解匿を減少させる作用を
有するN1を多量に含むCr−Ni糸オーステナイトス
テンレス鋼にくらべ、高強度化にはきわめて有利である
。しかしながら0.001%未満ではこのような効果が
認められず0.50%を超えると熱間加工性が悪くな夛
圧延中に割れが発生するのでN11t”0.001−0
.50%とした。
N stabilizes austenite and has a remarkable effect on increasing strength, especially yield strength, at extremely low temperatures. In particular, in the steel of the present invention, Mn and Cr act to increase the dissolution rate of N.
Since it contains a large amount of t-, it is extremely advantageous for increasing strength compared to Cr--Ni thread austenitic stainless steel containing a large amount of N1, which has the effect of reducing N dissolution and obscurity. However, if it is less than 0.001%, such an effect is not observed, and if it exceeds 0.50%, hot workability is poor and cracks occur during rolling.
.. It was set at 50%.

AtはMn−Cr系オーステナイト鋼の熱間加工性を向
上させ、さらにCaの歩留を向上し、かつ結晶粒を微細
化して強度を上昇させる成分で0.001  %未満で
はその効果が得られず、一方0.20%を超えると靭性
を低下させるため、o、ooi〜0.20%とした。
At is a component that improves the hot workability of Mn-Cr-based austenitic steel, further improves the Ca yield, and refines the grains to increase strength, and if it is less than 0.001%, this effect cannot be obtained. On the other hand, if it exceeds 0.20%, the toughness decreases, so it was set to o, ooi ~ 0.20%.

Caの含有はMn 9〜35%1CrlO〜20%の高
Mn 、高Cr鋼において4に付近の極低温の靭性を著
しく向上させる効果を有する。第1図はC0.02〜0
.04%、 Sl 0.20〜0.30%、Mn22〜
26 % 、 80.003〜0.005%e Cr 
13〜16%。
The content of Ca has the effect of significantly improving the cryogenic toughness of around 4 in high Mn, high Cr steel of Mn 9-35% 1CrlO-20%. Figure 1 shows C0.02~0
.. 04%, Sl 0.20~0.30%, Mn22~
26%, 80.003~0.005%eCr
13-16%.

N10.7〜3.5%、N0.20〜0.259G、A
zo、01〜0.03%含Mする鋼の4.2にの0.2
%耐力およびシャルピー衝撃吸収エネルプーにおよtt
すCa添加の影響を示したものでめる・これらの試験値
は、1100℃で溶体化処理された厚さ30Mの厚板か
ら引張試験片(平行部の直径7n%r−ジ長450)お
よびJI84号衝耀試験片を製作し液体ヘリウム温度(
4,2K)で試峻したものである。
N10.7-3.5%, N0.20-0.259G, A
zo, 0.2 to 4.2 of steel containing 01 to 0.03% M
% proof stress and Charpy impact absorption energy
・These test values are obtained from a tensile test piece (parallel part diameter 7n% r - length 450) from a 30M thick plate solution-treated at 1100℃. And JI No. 84 impact test piece was manufactured and the liquid helium temperature (
4.2K).

この結果から明らかなようにCa含有量が0.001俤
において4.2 K Kおけるシャルピー*g吸収エネ
ルギーを著しく向上するが0.020慢を超えて多量に
添加すると逆に靭性や延性の低下原因になる。したがり
てその含有量はo、ooi〜0.0201でなければな
らない、このようなCaの効果はS含有量が少いほどよ
シ大きくなるためSiは0.005。
As is clear from these results, when the Ca content is 0.001, Charpy*g absorbed energy at 4.2 KK is significantly improved, but when added in a large amount exceeding 0.020, the toughness and ductility decrease. become the cause. Therefore, its content must be o,ooi~0.0201.The effect of Ca becomes greater as the S content decreases, so Si is 0.005.

−以下が望ましい。-The following is desirable.

本発明はさらに必要に応じてMeおよび/又はCu#W
、 Co 、 Nb 、 TI 、 ’%C)l総量以
上を含有させることができる。
The present invention further provides Me and/or Cu#W as necessary.
, Co, Nb, TI, '%C)l or more can be contained.

本発明鋼のような極低C高Mn−Crオーステナイト鋼
はNi−0r系オーステナイトステンレス鋼と同様に応
力除去焼鈍や#供などで600〜800℃に加熱された
部分の靭性がCr炭化物などの析出によシ方化するのが
普通でるるか、このIA象をなくすにはMO添加がきわ
めて効果的であることを本発明者らは知見した。第2図
鉱、C0,002〜0.004% 、 Si 0.3〜
0.5%、 Mn22.0〜23.0%、So、003
 % 、 N 0.22〜0.23%、 Cr 12.
5〜13.5% 、 Ni 2.8〜3.3%、 At
0.01〜0.03%、 Ca0.002〜0.003
 %およびNoを含有する鋼を厚さ30鵡に圧延後、1
100℃で溶体化処理した板、およびさらにその溶体化
6理の後700℃で2時間の加熱処、珊した板から引張
試験片(平行部直径7g、r−ジ長45n)とJI84
号−7ヤ/L/ビー衡乍試験片を製作し、液体ヘリウム
温度(4,2K)で試験した結果を示す。この結果から
れかるように溶体化処理t&700℃加熱によるrN撃
吸収エネルギーの低下はMoの添加によプ著しく軽減さ
れる。
Ultra-low C high Mn-Cr austenitic steel such as the steel of the present invention has a toughness similar to that of Ni-0r austenitic stainless steel in the part heated to 600 to 800°C by stress relief annealing or #coating. The present inventors have found that addition of MO is extremely effective in eliminating this IA phenomenon, which usually occurs due to precipitation. Figure 2 ore, C0,002~0.004%, Si 0.3~
0.5%, Mn22.0-23.0%, So, 003
%, N 0.22-0.23%, Cr 12.
5-13.5%, Ni 2.8-3.3%, At
0.01~0.03%, Ca0.002~0.003
After rolling steel containing % and No. to a thickness of 30 mm, 1
Tensile test pieces (parallel part diameter 7g, r-gear length 45n) and JI84 were prepared from plates solution-treated at 100°C, and then heat-treated at 700°C for 2 hours after the solution treatment for 6 treatments.
A No.-7 Y/L/B equilibrium test piece was prepared and tested at liquid helium temperature (4.2K).The results are shown below. As can be seen from these results, the reduction in rN shock absorption energy due to solution treatment and heating at 700° C. is significantly reduced by the addition of Mo.

このようなMo効果はその含有量が0.1%以上でらら
れれ、4%を超えるとフェライト相を生成して靭性が低
下するためにMe鰍を0.05〜4.0%とした・ Cu e W a Coは0.01%以上でa注の同上
と地の強化に効果t−有するが4.0%を超えると・初
注の劣化が始まるためそれらの成分の含有量の総和は0
.O2N2.0%でなければならない、 Nb # T
i 。
Such a Mo effect can be seen when the Mo content exceeds 0.1%, and if it exceeds 4%, a ferrite phase is formed and the toughness decreases, so the Me content was set at 0.05 to 4.0%. At 0.01% or more, Cu e W a Co has the effect of strengthening the same as above for a note and the ground, but when it exceeds 4.0%, the deterioration of the initial pour starts, so the total content of those components is 0
.. Must be O2N2.0%, Nb #T
i.

Vは析出硬化および結晶籾微細化により強度を上昇させ
る効果を有する。しかしこれらの元素は総量で2.0%
を超えると靭性が低下するため総量で0.005〜2.
0%とした。
V has the effect of increasing strength through precipitation hardening and grain refinement. However, the total amount of these elements is 2.0%
If the total amount exceeds 0.005 to 2.0, the toughness will decrease.
It was set to 0%.

極低温として、25に以下の温度を用いているが、これ
は現在の超電導磁石がほとんどの場合、液化ヘリウム(
4,2K)で冷却されておシ、また試験の使宜上冷媒と
して液化ヘリウムを用いたためである。実際の使用温度
としては、超流動液化ヘリウムの温度(2,1K)から
液化水素の温度(20,4K)tでを対象としている。
The temperature below 25 is used as the cryogenic temperature, which is because most current superconducting magnets are made of liquefied helium (
This is because it was cooled at a temperature of 4.2 K) and liquefied helium was used as the refrigerant for the purpose of testing. The actual operating temperature ranges from the temperature of superfluid liquefied helium (2.1 K) to the temperature of liquefied hydrogen (20.4 K) t.

iた、既述のように、最近では磁石容量の巨大化にとも
なう設備の使用応力の増大によJ)25に以下の温度で
1100MPa以上の耐力を要求される場合があるが、
その場合にはN含有量を0.20%以上にする必要がら
る・ 従来、かかる用途に用いられる構造用鋼は強蝉場で用い
られるため、非磁性であることが要求され、従りて4,
2に付近の使用温度で完全にオーステナイトであること
が必要でちった。しかし、本発明鋼では4.2に付近に
おいて完全に非磁性であることは必ずしも必要とするも
のではなく、オーステナイト相の他に強磁性のフェライ
ト相が存在することを妨げるものではなi、そのために
はオーステナイト相は5Ots以上存在すればよく、こ
の限度内で合金元素の増減、取捨選択を行ない得る。も
ちろん4.2Kにおいて完全なオーステナイト鋼とする
ことは可能であってこの場合にはAtは0.005〜0
.0896 、 Drは10〜18 % 、 Mnは2
0〜27%、Nは0.20〜0.40%とすることが望
ましい・ 不発明鋼は、次に述べる工程に従りて製造される。すな
わち転炉あるいは電気炉などの溶解炉を用い、さらに必
talcよっては真空脱ガス法、取鍋N線法、再溶解法
などを用いてn諌することによって所定成分の#!mt
″得、これを鋼塊とした後、1000〜1250℃に加
熱して分JIIBm延ま九は鍛造することによシ、ある
いは迩続鋳造することによって鋼片とする。この鋼片を
通常の方法によって1000〜1250℃に再加熱した
後、あるいは鋼片製造直後、低温まで冷却することなく
圧延または鍛造などの加工を行なって厚板、形鋼、棒鋼
、線材、熱延薄板などとして製造される。この圧延また
は環造後の冷却は通常行われるように自然放冷でもよい
が、冷却中の炭窒化物の析出による靭性や耐錆性の劣化
を防ぐために水冷などの急冷を行ってもよい。
In addition, as mentioned above, recently, due to the increase in operating stress of equipment due to the increase in magnet capacity, there are cases where a proof stress of 1100 MPa or more is required at the following temperatures.
In that case, it is necessary to increase the N content to 0.20% or more. Traditionally, structural steel used for such purposes is required to be non-magnetic because it is used in strong magnetic field. 4,
It was necessary for the material to be completely austenitic at operating temperatures near 2. However, the steel of the present invention does not necessarily need to be completely non-magnetic in the vicinity of 4.2, and does not prevent the presence of a ferromagnetic ferrite phase in addition to the austenite phase. It is sufficient that the austenite phase is present at 5 Ots or more, and the alloying elements can be increased or decreased or selected within this limit. Of course, it is possible to make a completely austenitic steel at 4.2K, and in this case At is 0.005 to 0.
.. 0896, Dr is 10-18%, Mn is 2
It is desirable that N is 0 to 27% and N is 0.20 to 0.40%. The non-inventive steel is manufactured according to the steps described below. That is, by using a melting furnace such as a converter or an electric furnace, and if necessary, using a vacuum degassing method, a ladle N-line method, a remelting method, etc., the #! mt
After making this into a steel ingot, it is heated to 1000 to 1250°C and forged for 9 minutes, or it is made into a steel billet by continuous casting. After being reheated to 1,000 to 1,250°C depending on the method, or immediately after producing a billet, it is processed by rolling or forging without cooling to a low temperature to produce thick plates, shaped steel, steel bars, wire rods, hot-rolled sheets, etc. Cooling after rolling or ring forming may be done by natural cooling as is usually done, but rapid cooling such as water cooling may also be used to prevent deterioration of toughness and rust resistance due to precipitation of carbonitrides during cooling. good.

本発明鋼は、圧延または鍛造の11で使用してもよいが
耐錆性や靭性をよ多安定させるには900〜1150℃
に加熱して固溶化処理する仁とが望ましい。
The steel of the present invention may be rolled or forged, but in order to further stabilize the rust resistance and toughness, the steel should be heated at 900 to 1150°C.
It is preferable to heat it to a solid solution treatment.

さらに、このよう和して製造された熱延薄板については
、通常の方法で冷間圧延を行い900〜1150℃で再
結晶および固溶化のための熱処理を行って冷延薄板とす
ることができる。
Furthermore, the hot-rolled thin sheet produced in this manner can be cold-rolled by a normal method and heat-treated for recrystallization and solid solution formation at 900 to 1150°C to form a cold-rolled thin sheet. .

壜た、本発明鋼は切61j1曲げなどの加工、および浴
接も問題なく行いうる。ま九、?ルトとしての使用もも
ちろん可能でめる壽 次に本発明を実施例について説明する。
In addition, the steel of the present invention can be processed such as cutting, bending, and bath welding without any problems. Maku,? Of course, the present invention can also be used as a default.Next, the present invention will be described with reference to embodiments.

第1表に、不発#46Aおよび比較鋼の化学成分と機械
的性質および耐誘性を示す、これらの特性は厚さ30M
の厚板を1100℃で溶体化処理後水焼入した後、所定
寸法の試験片を製作し試験したものである。
Table 1 shows the chemical composition, mechanical properties, and induction resistance of unexploded #46A and comparative steel.
A thick plate was solution-treated at 1100°C and then water-quenched, and then a test piece of a predetermined size was manufactured and tested.

lから131での鋼は本発明鋼であるか、14から15
までの鋼伐比較鋼である。この結果かられかるように、
本発明鋼は比較鋼に比べて@零値が著しく優れているこ
とがわかる。また、本発明鋼は60日間の屋外曇露試験
を行っても全く錆が発生することなく耐誘性もきわめて
優れている。
Is the steel from l to 131 the invention steel or from 14 to 15
This is a comparative steel cutting process. As you can see from this result,
It can be seen that the steel of the present invention is significantly superior in @zero value compared to the comparative steel. In addition, the steel of the present invention shows no rust even when subjected to a 60-day outdoor dew test, and has extremely excellent resistance to corrosion.

比較鋼のうち、1J410はCaを含有していないこと
を除けば本発明の成分を満足する鋼であシ、鋼11 ハ
SUS 304LN、 412は低C−2596Mn 
711 テある。
Among the comparative steels, 1J410 is a steel that satisfies the composition of the present invention except that it does not contain Ca, steel 11 is SUS 304LN, and 412 is a low C-2596Mn steel.
711 There is te.

(発明の効果) 以上の如く本発明によれば耐誘性と靭性に浸れ九極低温
用高マンガン鋼を提供しうるので、産業上婢益するとこ
ろが極めて大である。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a high manganese steel for use at extremely low temperatures with excellent induction resistance and toughness, and therefore the present invention has extremely large industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は鋼中のCajlと0.2%耐力、シャルピー*
m吸収エネルイーとの関係を示す図、第2図は鋼中のM
e量と0.2%耐力、シャルピー@撃吸収エネルイーと
の関係を示す図である。 Ca(%)
@Figure 1 shows Cajl in steel, 0.2% yield strength, and Charpy*
Figure 2 shows the relationship between M and absorption energy.
It is a figure showing the relationship between the amount of e, 0.2% yield strength, and Charpy@impact absorption energy. Ca (%)

Claims (4)

【特許請求の範囲】[Claims] (1)C0.20%以下、Si0.05〜2.5%、M
n9〜35%、Cr10〜20%、Ni0.1〜8.0
%、N0.001〜0.50%、Al0.001〜0.
20%、Ca0.001〜0.020%を含有し、残部
が鉄および不可避的不純物から成ることを特徴とする耐
錆性の優れた極低温用高マンガン鋼。
(1) C0.20% or less, Si0.05-2.5%, M
n9-35%, Cr10-20%, Ni0.1-8.0
%, N0.001-0.50%, Al0.001-0.
A cryogenic high manganese steel with excellent rust resistance, containing 20% and 0.001 to 0.020% of Ca, with the remainder consisting of iron and inevitable impurities.
(2)C0.20%以下、Si0.05〜2.5%、M
n9〜35%、Cr10〜20%、Ni0.1〜8.0
%、N0.001〜0.50%、Al0.001〜0.
20%、Ca0.001〜0.020%およびMo0.
05〜4.0%を含有し、残部が鉄および不可避的不純
物から成ることを特徴とする耐錆性の優れた極低温用高
マンガン鋼。
(2) C0.20% or less, Si0.05-2.5%, M
n9-35%, Cr10-20%, Ni0.1-8.0
%, N0.001-0.50%, Al0.001-0.
20%, Ca0.001-0.020% and Mo0.
A high manganese steel for cryogenic use with excellent rust resistance, characterized in that it contains 05 to 4.0% and the remainder consists of iron and inevitable impurities.
(3)C0.20%以下、Si0.05〜2.5%、M
n9〜35%、Cr10〜20%、Ni0.1〜8.0
%、N0.001〜0.50%、Al0.001〜0.
20%、Ca0.001〜0.020%を含有し、さら
にCu、W、Co、Nb、Ti、Vの1種または2種以
上をCu、W、Coについては総量で0.01〜4.0
%、Nb、Ti、Vについては総量で0.005〜2.
0%を含有し、残部が鉄および不可避的不純物から成る
ことを特徴とする耐錆性の優れた極低温用高マンガン鋼
(3) C0.20% or less, Si0.05-2.5%, M
n9-35%, Cr10-20%, Ni0.1-8.0
%, N0.001-0.50%, Al0.001-0.
20%, Ca0.001-0.020%, and further contains one or more of Cu, W, Co, Nb, Ti, and V in a total amount of 0.01-4.0% for Cu, W, and Co. 0
%, Nb, Ti, and V in a total amount of 0.005 to 2.
A high manganese steel for cryogenic use with excellent rust resistance, characterized in that it contains 0% and the remainder consists of iron and unavoidable impurities.
(4)C0.20%以下、Si0.05〜2.5%、M
n9〜35%、Cr10〜20%、Ni0.1〜8.0
%、N0.001〜0.50%、Al0.001〜0.
20%、Ca0.001〜0.020%およびMo0.
05〜4.0%を含有し、さらにCu、W、Co、Nb
、Ti、Vの1種または2種以上をCu、W、Coにつ
いては総量で0.01〜4.0%、Nb、Ti、Vにつ
いては総量で0.005〜2.0%を含有し、残部が鉄
および不可避的不純物から成ることを特徴とする耐錆性
の優れた極低温用高マンガン鋼。
(4) C0.20% or less, Si0.05-2.5%, M
n9-35%, Cr10-20%, Ni0.1-8.0
%, N0.001-0.50%, Al0.001-0.
20%, Ca0.001-0.020% and Mo0.
05 to 4.0%, and further contains Cu, W, Co, Nb
, Ti, and V in a total amount of 0.01 to 4.0% for Cu, W, and Co, and 0.005 to 2.0% in total for Nb, Ti, and V. A high manganese steel for cryogenic use with excellent rust resistance, the balance being iron and unavoidable impurities.
JP1140285A 1985-01-24 1985-01-24 High manganese steel for very low temperature use having superior rust resistance Pending JPS61170545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140285A JPS61170545A (en) 1985-01-24 1985-01-24 High manganese steel for very low temperature use having superior rust resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140285A JPS61170545A (en) 1985-01-24 1985-01-24 High manganese steel for very low temperature use having superior rust resistance

Publications (1)

Publication Number Publication Date
JPS61170545A true JPS61170545A (en) 1986-08-01

Family

ID=11777020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140285A Pending JPS61170545A (en) 1985-01-24 1985-01-24 High manganese steel for very low temperature use having superior rust resistance

Country Status (1)

Country Link
JP (1) JPS61170545A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227557A (en) * 1985-07-27 1987-02-05 Kobe Steel Ltd High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability
EP2248919A1 (en) 2009-04-27 2010-11-10 Daido Tokushuko Kabushiki Kaisha High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same
JP2016102244A (en) * 2014-11-28 2016-06-02 株式会社日本製鋼所 High strength austenite steel excellent in hydrogen embrittlement resistance and manufacturing method therefor
CN106399867A (en) * 2016-09-28 2017-02-15 睿智钢业有限公司 Processing technology for super-strength corrosion-resistant steel product and rolling unit thereof
CN110883317A (en) * 2019-11-25 2020-03-17 衡阳市鑫诚和重型机械设备制造有限公司 Casting process of reinforced steel plate of hopper of mine dump truck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS5118913A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseito netsukankakoseinosugureta oosutenaitoko
JPS5236513A (en) * 1975-09-18 1977-03-19 Daido Steel Co Ltd Strong and tough steel used at extremely low temperature
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS5118913A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseito netsukankakoseinosugureta oosutenaitoko
JPS5236513A (en) * 1975-09-18 1977-03-19 Daido Steel Co Ltd Strong and tough steel used at extremely low temperature
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227557A (en) * 1985-07-27 1987-02-05 Kobe Steel Ltd High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability
JPH0586462B2 (en) * 1985-07-27 1993-12-13 Kobe Steel Ltd
EP2248919A1 (en) 2009-04-27 2010-11-10 Daido Tokushuko Kabushiki Kaisha High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same
JP2016102244A (en) * 2014-11-28 2016-06-02 株式会社日本製鋼所 High strength austenite steel excellent in hydrogen embrittlement resistance and manufacturing method therefor
CN106399867A (en) * 2016-09-28 2017-02-15 睿智钢业有限公司 Processing technology for super-strength corrosion-resistant steel product and rolling unit thereof
CN106399867B (en) * 2016-09-28 2019-01-04 浙江睿智钢业有限公司 The processing technology and its rolling unit of extra-strong corrosion resistant steel
CN110883317A (en) * 2019-11-25 2020-03-17 衡阳市鑫诚和重型机械设备制造有限公司 Casting process of reinforced steel plate of hopper of mine dump truck

Similar Documents

Publication Publication Date Title
Niikura et al. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures
WO2008007572A1 (en) ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
CN108251762A (en) Nonmagnetic ventilation channel steel material for nuclear power/hydropower station and preparation method thereof
JP4654440B2 (en) Low work hardening type iron alloy
JPH0536481B2 (en)
CN105861935B (en) Excellent Fe 36Ni invar alloy materials of a kind of thermoplasticity and preparation method thereof
JPH0941087A (en) High manganese non-magnetic steel for cryogenic use and its production
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JP3749616B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
JPH029647B2 (en)
JPH02285053A (en) Maraging steel and its production
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
US4911884A (en) High strength non-magnetic alloy
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP3505048B2 (en) High strength steel wire for high strength ACSR with low iron loss in high magnetic field
JP3439062B2 (en) High Mn stainless steel with excellent hot workability and cryogenic toughness
JP3505047B2 (en) Steel wire for ACSR with low iron loss
JPH0245695B2 (en)
JPS5910415B2 (en) Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JPH07107187B2 (en) High Mn non-magnetic steel with low susceptibility to stress corrosion cracking
JPS59211552A (en) Martensitic high cr steel with high toughness
JPS63145752A (en) Austenitic iron alloy having strength and toughness