JPS6013022A - Production of nonmagnetic steel plate - Google Patents
Production of nonmagnetic steel plateInfo
- Publication number
- JPS6013022A JPS6013022A JP58121435A JP12143583A JPS6013022A JP S6013022 A JPS6013022 A JP S6013022A JP 58121435 A JP58121435 A JP 58121435A JP 12143583 A JP12143583 A JP 12143583A JP S6013022 A JPS6013022 A JP S6013022A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- toughness
- steel
- content
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は非磁性鋼板の製造方法に関し、さらに詳しくは
、極低温において高強度および高靭性を有する非磁性鋼
板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-magnetic steel sheet, and more particularly, to a method for manufacturing a non-magnetic steel sheet having high strength and high toughness at extremely low temperatures.
核融合炉、超電導マグネント蓄電設置イ11、超電導発
電弐等に必要とされる超電導マグネットは、液体ヘリウ
ム温度(−269℃)に冷却され、しかも、強磁場中で
繰り返し高応力が働くという苛酷な条件下で稼動する。Superconducting magnets required for nuclear fusion reactors, superconducting magnet power storage installations, superconducting power generators, etc. are cooled to liquid helium temperature (-269°C) and subjected to severe stress repeatedly in strong magnetic fields. operate under conditions.
従って、超電導マグネットの支持構造材料は一269°
Cにおいて高耐力、高靭性を有し、しがも非磁性である
ことが必要である。察らに、発錆するとマグネットの断
熱効率を低下させるため優れた耐誘性をも要求される。Therefore, the supporting structure material of the superconducting magnet is -269°
C has high yield strength and high toughness, and is also required to be non-magnetic. Of course, when rust develops, the insulation efficiency of the magnet decreases, so excellent induction resistance is also required.
しめ化で、従来の代表的な非磁性鋼であるS U S
304.316等のオーステナイト系ステンレス鋼は優
れた耐誘性、高靭性を有するものの耐力が低く、しかも
、オーステナイトの安定性が悪く、塑性変形により容易
に透磁率が上昇するという欠点を持っている。一方、極
低温用として開発されている高Mn系オーステナイト鋼
、例えば、25Mn−lNi−5Cr鋼、32Mn−−
7Cr鋼等は耐力或いは耐誘性の面で充分であるとはい
えない。従って、従来におけるこれらの鋼は、超電導マ
グネット支持構造材料として未だ不充分である。SUS is a typical non-magnetic steel.
Although austenitic stainless steels such as 304.316 have excellent induction resistance and high toughness, they have low yield strength, and have the disadvantage that austenite has poor stability and magnetic permeability easily increases due to plastic deformation. . On the other hand, high Mn-based austenitic steels developed for cryogenic applications, such as 25Mn-lNi-5Cr steel, 32Mn--
7Cr steel and the like cannot be said to be sufficient in terms of yield strength or resistance to induction. Therefore, these conventional steels are still insufficient as superconducting magnet support structure materials.
本発明は上記に説明した超電導マグネット支持構造材料
としての非磁性鋼の欠点および問題点に鑑みなされたも
のであって、−269℃においても高耐力、高靭性、低
透磁率を有すると共に、優れた耐誘性を兼備し、しかも
、板厚方向の機械的性質のバラツキの小さい超電導マグ
ネット支持構造材料として有用な、高Mnオーステナイ
トステンレス系非磁性鋼板の製造方法を提供することに
あ本発明に係る非磁性鋼板の製造方法は、(1)CO,
01〜0.20田t%、Si0.01〜2.00w1%
、Mn1O−30+ut%、N i 、0.Ol−10
,oou+L%、Cr 12−20u+t%、N O,
001〜0.300u+t%、を含有し、がっ、0.2
0u+t%≦C+N ≦0.40u+t%を満足する残
部鉄および不可避不純物からなる鋼塊或いは鋼片を95
0℃以上の温度で熱間圧延を終了し、その後、800℃
以上の温度で1〜60分間の等温保持或いは空冷の過程
を経た後、500°C以下の温度まで急冷することを特
徴とする非磁性鋼板の製造方法を第1の発明とし、(2
)CO,01〜0.20IIIL%、Si0.01−2
,0(but%、Mn 1O−30u+t%、Ni O
,01−10,00u+L%、Cr 12−20wt%
、N O,001−0,300社%を含有し、カッ、
0.20u+L%≦c十N ≦0.40u+t%を満足
し、さらに、Cu、Mo、W、Nb、V、Ti、AI、
Ca、Ce、Zrの内から選択した1種または2種以」
二を、Cu、Mo、 wについては総量で0.01〜3
.00u+t%、Nl)、■、Tiは総量で′0.01
−1.00 wt%、また、AI、Ca%Ce、Zrに
ついては総量で0.001〜0.1000wt%を含有
し、残部鉄および不可避不純物からなる鋼塊或いは鋼片
を950°C以上の温度で熱間圧延を終了し、その後、
800℃以上の温度で1〜60分間の等温保持或いは空
冷の過程を経た後、500℃以下の温度まで急冷するこ
とを特徴とする非磁性鋼板の製造方法を第2の発明とす
る2つの発明よりなるものである。The present invention was made in view of the drawbacks and problems of non-magnetic steel as a superconducting magnet support structure material explained above. An object of the present invention is to provide a method for manufacturing a high Mn austenitic stainless steel nonmagnetic steel sheet that is useful as a superconducting magnet support structure material that has high induction resistance and small variations in mechanical properties in the thickness direction. The method for manufacturing such a non-magnetic steel sheet includes (1) CO,
01~0.20 t%, Si0.01~2.00w1%
, Mn1O-30+ut%, N i , 0. Ol-10
, oou+L%, Cr 12-20u+t%, NO,
Contains 001~0.300u+t%, 0.2
0u+t%≦C+N≦0.40u+t% A steel ingot or billet consisting of residual iron and unavoidable impurities that satisfies 95%
Finish hot rolling at a temperature of 0°C or higher, then roll to 800°C
The first invention provides a method for manufacturing a non-magnetic steel sheet, which is characterized in that it is subjected to an isothermal holding or air cooling process at the above temperature for 1 to 60 minutes, and then rapidly cooled to a temperature of 500°C or less,
) CO, 01-0.20IIIL%, Si0.01-2
,0(but%, Mn 1O-30u+t%, NiO
,01-10,00u+L%, Cr 12-20wt%
, contains 0,001-0,300% of NO,
0.20u+L%≦c1N≦0.40u+t%, and furthermore, Cu, Mo, W, Nb, V, Ti, AI,
One or more selected from Ca, Ce, and Zr.”
2, the total amount of Cu, Mo, and w is 0.01 to 3
.. 00u+t%, Nl), ■, Ti is '0.01 in total amount
-1.00 wt%, and the total amount of AI, Ca%Ce, and Zr is 0.001 to 0.1000wt%, with the balance being iron and unavoidable impurities. Finish hot rolling at temperature, then
Two inventions in which the second invention is a method for manufacturing a non-magnetic steel sheet characterized by carrying out isothermal holding or air cooling at a temperature of 800°C or higher for 1 to 60 minutes, and then rapidly cooling to a temperature of 500°C or lower. It is more than that.
本発明に係る非磁性鋼板の製造方法について以下詳細に
説明する。The method for manufacturing a non-magnetic steel sheet according to the present invention will be described in detail below.
先づ、本発明に係る非磁性鋼板の製造方法において使用
する鋼の含有成分および成分割合について説明する。First, the components and component ratios of the steel used in the method for manufacturing a non-magnetic steel sheet according to the present invention will be explained.
Cはオーステナイトの安定化と耐力の向上に有効な元素
であり、含有量が0.0IIIIL%未満ではこの効果
が小さく、また、0.20u+t%を越える過剰な含有
量では靭性が低化し、がっ、耐誘性を損なうようになる
。よって、C含有量は0.01〜0.20wt%とする
。C is an element that is effective in stabilizing austenite and improving its yield strength. If the content is less than 0.0III%, this effect will be small, and if the content exceeds 0.20u+t%, the toughness will decrease and This will impair the resistance to induction. Therefore, the C content is set to 0.01 to 0.20 wt%.
Siは鋼溶製時の脱酸に必要であり、造塊時に溶鋼の流
動性を高めて、鋼塊の内部欠陥を減少させると同時に耐
方向上にも有効な元素であり、含有量がO,OhL%未
満ではこのような効果がなく、また、2.0On+L%
を越えて含有されると高温延性の阻害および靭性の低下
をもたらす。よって、Si含有量は0.01〜2,00
wt%とする。Si is necessary for deoxidation during steel making, and is an element that increases the fluidity of molten steel during ingot making, reduces internal defects in steel ingots, and is also effective in improving direction resistance. , less than OhL%, there is no such effect, and 2.0On+L%
If the content exceeds 100%, the high temperature ductility will be inhibited and the toughness will be reduced. Therefore, the Si content is 0.01 to 2,00
Let it be wt%.
Mnはオーステナイトの安定化と靭性の向上に有効であ
り、含有量が10wt%未満ではこの効果が少なく、ま
た、30wt%を越えるような過剰の含有では熱間加工
性および靭性が低下する。よって、Mn含有量は10〜
30Illt%とする。Mn is effective in stabilizing austenite and improving toughness, and if the content is less than 10 wt%, this effect will be small, and if the content is in excess of 30 wt%, hot workability and toughness will decrease. Therefore, the Mn content is 10~
It is set to 30Illt%.
Niはオーステナイトの安定化と靭性の向上および耐誘
性向上に有効な元素であり、含有量が0.01u+L%
未満ではこのような優れた効果はなく、また、8.OO
+ut%を越える含有量では靭性は飽和してしまいこれ
以上の含有は無駄である。よって、Ni含有量は0.0
1〜8.00w1%とする。Ni is an element effective in stabilizing austenite, improving toughness, and improving resistance to induction, and its content is 0.01u+L%.
If it is less than 8, there will be no such excellent effect. OO
If the content exceeds +ut%, the toughness will be saturated, and any further content will be wasteful. Therefore, the Ni content is 0.0
1 to 8.00w1%.
Crは耐誘性を付与するために必要であり、がっ、耐力
を向上させる元素であり、含有量が12u+t%未満で
はこの効果はなく、20wL%を越えるよ′うな過剰な
含有は熱間加工性、靭性を低下させる。Cr is necessary for imparting resistance to induction, and is an element that improves yield strength.If the content is less than 12u+t%, this effect will not occur, and if the content exceeds 20wL%, the hot Decreases workability and toughness.
よって、Cr含有量は12〜20wt%とする。Therefore, the Cr content is set to 12 to 20 wt%.
Nはオーステナイトの安定化と耐力の向」二に有効な元
素であり、含有量か0.001帆%未満ではこの効果は
なく、また、0.300u+j%を越えて含有されると
靭性の低下が大きい。よって、N含有量は0.001〜
0.30軸L%とする。N is an element that is effective in stabilizing austenite and increasing its yield strength, but if the content is less than 0.001%, it will not have this effect, and if it is contained in more than 0.300u+j%, the toughness will decrease. is large. Therefore, the N content is 0.001~
0.30 axis L%.
C+Nは共に強力なオーステナイト安定化元素であり、
かつ、耐フハ靭性に大きな影響をおよぼすものであり、
C十N含有量が0.20wt%未満ではオーステナイト
安定化および高耐力化の効果は小さく、また、0.40
u+t%を越える過剰な含有は靭性を著しく低下させる
。よって、0.20≦C+N≦0.40u+t%とする
。Both C and N are strong austenite stabilizing elements,
In addition, it has a large effect on the crack resistance toughness.
When the C+N content is less than 0.20 wt%, the effect of stabilizing austenite and increasing yield strength is small;
Excessive content exceeding u+t% significantly reduces toughness. Therefore, 0.20≦C+N≦0.40u+t%.
以上の成分の外に、Cu、Mo、W、Nb、V、Ti、
AI、Ca、Ce、Zrを1種または2種以上を含有
する。そして、Cu、 Mo、Wはオーステナイト地を
強化し、高耐力化に有効であるが、含有量が0,0bu
t%未満ではその効果はなく、3.00wt%を越える
含有量では熱間加工性、靭性を劣化させる。よって、C
u%Mo、Wは総量で0.01〜3.0Otut%とす
る。また、N b、V、Ti、AIは炭窒化物を作り、
析出強化による耐方向」−に有効であり、含有量が0.
O]、ulL%未満ではその効果はなく、1.OOwL
%を越えて含有されると靭性を劣化させる。よって、N
b、■、T1、ノ\I含有量は総量で0.01−1.0
0wt%とする。さらに、Ca、 Ce、Zrは含有量
がO,0Oht%以上で鋼の清浄化或いは介在物の微細
化、球状化作用を有し、靭性を向上させ、また、0.1
001%を越えて含有されると逆に清浄度を悪くする。In addition to the above components, Cu, Mo, W, Nb, V, Ti,
Contains one or more of AI, Ca, Ce, and Zr. Cu, Mo, and W are effective in strengthening the austenite base and increasing the yield strength, but when the content is 0.0bu
If the content is less than t%, there will be no effect, and if the content exceeds 3.00wt%, hot workability and toughness will deteriorate. Therefore, C
The total amount of u%Mo and W is 0.01 to 3.0%. In addition, Nb, V, Ti, and AI form carbonitrides,
It is effective for directional resistance due to precipitation strengthening, and the content is 0.
O], less than ulL% has no effect; 1. OOwL
If the content exceeds %, the toughness will deteriorate. Therefore, N
b,■,T1,ノ\I content is 0.01-1.0 in total
It is set to 0wt%. Furthermore, Ca, Ce, and Zr have the effect of cleaning steel, refining inclusions, and spheroidizing the steel when the content is O.
If the content exceeds 0.001%, the cleanliness will be adversely affected.
よって、Ca、 Ce、 Zr、含有量は総量で0.0
01〜1.001%とする。Therefore, the total content of Ca, Ce, and Zr is 0.0
01 to 1.001%.
次に、本発明に係る非磁性鋼板の製造方法における製造
条件について説明する。Next, manufacturing conditions in the method for manufacturing a non-magnetic steel sheet according to the present invention will be explained.
本発明者は、0.05C22Mn 5N i−+3cr
−0,22N系鋼を用いて、上記した液体ヘリウ1.
温度(−269°C)における各種機械的性質におよぼ
す製造条件の影響について調査したのでそれについて説
明する。The inventor has obtained 0.05C22Mn 5N i-+3cr
Using -0,22N steel, the above liquid helium 1.
The influence of manufacturing conditions on various mechanical properties at temperature (-269°C) was investigated and will be explained.
11図および$2図に一269°Cにおける耐力とシャ
ルピー吸収エネルギー値におよぼす製造条件の影響を示
す。第4図、第2図において、1は水冷材、2は空冷材
および3は空冷後溶体化処理材を示す。この第1図、第
2図において、圧延後空冷材は圧延仕上温度が高くなる
につれて、靭性の向上が顕著であるが、耐力の大幅な低
下が認められた。また、この材料を溶体化処理すると仕
上温度依存性がなくなることおよび靭性の向上が認めら
れるが耐力の低下が大きいことがわかった。一方、圧延
後直ちに水冷した材料は、空冷材と比較して耐力、靭性
共に向」ニするという新しい事実を知見した。即ち、高
温仕上→水冷により、−269°Cで高耐力、高靭性が
得られることがわかった。Figures 11 and 2 show the influence of manufacturing conditions on the yield strength and Charpy absorbed energy value at -269°C. In FIGS. 4 and 2, 1 indicates a water-cooled material, 2 indicates an air-cooled material, and 3 indicates a solution-treated material after air cooling. In FIG. 1 and FIG. 2, the toughness of the air-cooled material after rolling increased as the rolling finishing temperature increased, but the yield strength significantly decreased. Furthermore, it was found that when this material was solution treated, the finishing temperature dependence was eliminated and the toughness was improved, but the yield strength was significantly reduced. On the other hand, we discovered a new fact that materials that are water-cooled immediately after rolling have better yield strength and toughness than air-cooled materials. That is, it was found that high yield strength and high toughness can be obtained at -269°C by high-temperature finishing → water cooling.
しかしなが呟この処理を施した材料は、第3図(図中4
は1000℃仕上→水冷、5は950°C仕」二→水冷
を示す。)に示すように、板厚方向試験片採取位置によ
る靭性の変化が大きく、表層部近傍で大幅な靭性の低下
が認められ、このような不均質材料は実用上問題が残る
可能性が強い。However, the material subjected to this treatment is shown in Figure 3 (4 in the figure).
1000°C finish → water cooling; 5 indicates 950°C finish → water cooling. ), there is a large change in toughness depending on where the specimen is taken in the thickness direction, and a significant decrease in toughness is observed near the surface layer, and there is a strong possibility that such a heterogeneous material will remain a problem in practice.
次に、本発明者は高温仕上→水冷材の表層部の靭性低下
の原因について調査したのでこのことについて説明する
。Next, the present inventor investigated the cause of the decrease in toughness of the surface layer of a water-cooled material after high-temperature finishing, and this will be explained.
第4図に板厚方向の硬度分布を示すが(図中1は圧延後
水冷材、2は空冷材および3は空冷後溶体化処理材を示
す。)、空冷材、空冷後溶体化処理材においては、硬度
変化が小さいのに対して、水冷材は1/4を部から表層
部にかけて硬度、L昇が著しいことが明らかとなった。Figure 4 shows the hardness distribution in the plate thickness direction (in the figure, 1 indicates water-cooled material after rolling, 2 indicates air-cooled material, and 3 indicates solution-treated material after air-cooling). It was revealed that the hardness change was small in the case of the water-cooled material, whereas the hardness and L of the water-cooled material increased significantly from the 1/4 part to the surface part.
また、第6図は板厚方向各部のミクロ組臓0顕微鏡写真
であるが(第6図(、)は鋼板表層部近傍、第6図(I
))は1 / 4 を部、第6図(c)は1/2を部)
、この写真から明らかなように、表層部近傍では再結晶
が充分でなく、未再結晶粒が残留していると同時に再結
晶粒は微細化していることがわかる。このことは、表層
部は水冷時の冷却速度が大きく充分な再結晶がなされな
いことおよび第5図に示すように(Aは22Mn−5N
1−13Cr−0,22N系鋼、T3は0.6(二1
4Mn 2Ni−2Cr系鋼、Cは5S41を示す。)
ニオ−ステナイト鋼は5S41のようなフエライト鋼よ
りも熱間変形抵抗がかなり高く、熱開圧延時、1パス当
りの圧下量が充分にとれないことにより、加工が表層部
に集中するためこのような組織となったものと考察)れ
る。In addition, Fig. 6 is a microscopic micrograph of each part in the thickness direction of the steel plate (Fig. 6 (, ) is near the surface layer of the steel plate, Fig. 6 (I
)) is 1/4 part, Figure 6 (c) is 1/2 part)
As is clear from this photograph, recrystallization is not sufficient in the vicinity of the surface layer, and it can be seen that unrecrystallized grains remain and at the same time, the recrystallized grains become finer. This means that the surface layer has a high cooling rate during water cooling and is not sufficiently recrystallized, and as shown in Figure 5 (A is 22Mn-5N
1-13Cr-0,22N steel, T3 is 0.6 (21
4Mn 2Ni-2Cr steel, C indicates 5S41. )
Niostenitic steel has much higher hot deformation resistance than ferritic steel such as 5S41, and during hot open rolling, the reduction amount per pass is not sufficient and the processing concentrates on the surface layer. It is considered that the organization has become a major organization.
以上説明したような、本発明者の種々の新知見により、
上記に説明した含有成分および成分割合の鋼塊或いは鋼
片を950℃以上の温度で熱間圧延を終了し、その後直
ちに急冷するのではなく、表層部の再結晶が完了するま
で、即ち、800°C以上の温度で1〜60分間等温保
持或いは空冷等の徐冷をした後、靭性、耐誘性な損なう
炭化物の析出を防ぐと同時にγ粒の過度の粗大化(耐力
低下)を1すj止するため500°C以下の温度まで急
冷処理を実施することにより優れた機械的性質が得られ
た。Based on the various new findings of the present inventors as explained above,
A steel ingot or billet having the above-mentioned components and ratios is hot-rolled at a temperature of 950°C or higher, and instead of being rapidly cooled immediately thereafter, it is rolled until recrystallization of the surface layer is completed, that is, at 800°C. After holding isothermally for 1 to 60 minutes at a temperature of 1 to 60 minutes or slowly cooling by air cooling, it is possible to prevent the precipitation of carbides that impair toughness and resistance, and at the same time to prevent excessive coarsening of γ grains (reduction in yield strength). Excellent mechanical properties were obtained by carrying out a rapid cooling treatment to a temperature of 500° C. or less to prevent the material from sagging.
この場合、熱間圧延を950℃以上の温度で終了させる
のは、この温度未満では結晶粒の微細化に伴なう靭性の
劣化が著しいためである。In this case, the hot rolling is terminated at a temperature of 950° C. or higher because, below this temperature, toughness deteriorates significantly due to grain refinement.
また、急冷開始温度を800℃以上とするのは、この温
度未満では粒界へのCr炭化物の析出が顕著となり、靭
性の劣化および耐誘性の低下を招来するからである。Further, the reason why the quenching start temperature is set to 800° C. or higher is that below this temperature, precipitation of Cr carbides at grain boundaries becomes significant, resulting in deterioration of toughness and reduction of induction resistance.
さらに、500℃以下の温度まで急冷するのは、500
℃以上の温度において冷却を停止するとCr炭化物の多
量の析出が起ることの懸念があるためである。Furthermore, rapid cooling to a temperature of 500℃ or less requires 500℃.
This is because there is a concern that a large amount of Cr carbide will precipitate if cooling is stopped at a temperature of 0.degree. C. or higher.
以上の結果、第7図に示すように(6は1000℃仕上
→空冷→900℃→水冷、7は1000℃仕上→水冷を
示す。)、水冷前に徐冷工程を入れることにより表層部
近傍の靭性が大幅に向上し、板厚方向の靭性のばらつき
が殆んどなくなると同時に1/4E、1/2を部分でも
靭性の向上が認められるという従来見られない新事実を
知見した。。そして、第9図の板厚方向各部のミクロ組
織の顕微鏡写真に示すように、表層部のγ粒はやや微細
化しているものの再結晶は完了しており、また、第8図
に示すように(8は1000°C仕上→空冷→900
”C→水冷、9は1000°C仕上−水冷を示す。)、
板lv力方向硬度バラツキも大幅に改善されている。As a result of the above, as shown in Fig. 7 (6 indicates 1000℃ finish → air cooling → 900℃ → water cooling, 7 indicates 1000℃ finish → water cooling), by adding a slow cooling process before water cooling, the area near the surface layer The researchers discovered a new fact that had not been seen before: the toughness of the steel plate was significantly improved, and the variation in toughness in the thickness direction was almost eliminated, and at the same time, an improvement in toughness was observed even in the 1/4E and 1/2 portions. . As shown in the micrograph of the microstructure at various parts in the thickness direction in Figure 9, the γ grains in the surface layer have become slightly finer, but recrystallization has been completed, and as shown in Figure 8, (8 is 1000°C finish → air cooling → 900°C
"C→Water cooling, 9 indicates 1000°C finish - water cooling.)
The variation in plate lv force direction hardness has also been significantly improved.
本発明に係る非磁性鋼板の製造方法の実施例を比較例と
共に説明する。Examples of the method for manufacturing a non-magnetic steel sheet according to the present invention will be described together with comparative examples.
第1表に示す含有成分および成分割合の鋼を溶製してm
塊成いは鋼片とし、tjS2表の処理を行なった。その
結果を第3表に示す。Molten steel with the ingredients and ingredient ratios shown in Table 1.
The agglomerates were made into steel slabs, and the treatments shown in Table tjS2 were performed. The results are shown in Table 3.
以上説明したように、本発明に係る非磁性鋼板の製造方
法は上記の構成を有しているから、−269℃の極低温
において高耐力、高靭性および低透磁率を有し、しかも
、耐錆性に優れた超電導マグネット支持構造材料として
好適な非磁性鋼板を製造することができるものである。As explained above, since the method for manufacturing a non-magnetic steel sheet according to the present invention has the above configuration, it has high yield strength, high toughness, and low magnetic permeability at an extremely low temperature of -269°C, and also has high durability. A non-magnetic steel plate suitable as a superconducting magnet support structure material with excellent rust resistance can be manufactured.
第1図、第2図は圧延仕上温度と耐力およびシャルピー
吸収エネルギー値との関係を示す図、第3図は板厚方向
の試験片採取位置と靭性の関係を示す図、第4図は板厚
方向の硬度分布を示す図、第5図は圧延温度と変形抵抗
の関係を示す図、第6図は板厚方向各部の金属組織を示
す顕微鏡写真、第7図は試験片採取(fi置と靭性との
関係を示す図、第8図は板厚方向の硬度分布を示す図、
第9図は板厚方向各部の金属組織を示す顕微鏡写真であ
る。
(Jデ・/l゛舅) 躬9ど一=ドζ0ヱ
(ぶ’Not) AH
毛
[F]
(と”l”A)Ig断独1
“メ <゛・
−9Figures 1 and 2 are diagrams showing the relationship between rolling finishing temperature, proof stress, and Charpy absorbed energy value, Figure 3 is a diagram showing the relationship between specimen sampling position in the plate thickness direction and toughness, and Figure 4 is a diagram showing the relationship between the plate toughness and the test piece sampling position in the plate thickness direction. Figure 5 is a diagram showing the hardness distribution in the thickness direction, Figure 5 is a diagram showing the relationship between rolling temperature and deformation resistance, Figure 6 is a micrograph showing the metal structure of each part in the thickness direction, and Figure 7 is a diagram showing the specimen collection (fi position). Figure 8 is a diagram showing the relationship between toughness and toughness, and Figure 8 is a diagram showing the hardness distribution in the plate thickness direction.
FIG. 9 is a micrograph showing the metal structure of each part in the thickness direction of the plate. (J de・/l゛舅) 躬9doichi=doζ0ヱ(bu'Not) AH 毛 [F] (と"l"A)Ig dandoku 1 "Me <゛・ -9
Claims (1)
〜2.001%、Mloo −30111t%、Ni
O,01−10,OOu+t%、Cr 12〜20+l
lt%、N O,001〜0.300+ut%、を含有
し、かつ、0.20+++L%≦C十N ≦0.40+
lIt%を満足する残部鉄および不可避不純物からなる
鋼塊或いは鋼片を950’C以」二の温度で熱間圧延を
終了し、その後、S00°C以上の温度で1〜60分間
の等温保持或いは空冷の過程を経た後、500℃以下の
温度まで急冷することを特徴とする非磁性鋼板の製造方
法。 (2) CO,01−0,20u+L%、S i 0.
01−2.OOu+L%、Mn 1O−30u+L%、
Ni O,01−10,00u+L%、Cr 12〜・
20社%、N O,001〜0.300畦%を含有し、
かつ、0.20wt%≦C十N 60.40wt%を満
足し、さらに、Cu、Mo、W、Nb、\’STi、A
1、Ca。 Ce、Zrの内から選択した1種または2種以上を、C
u、Mo、Wについては総量で0.01〜3.00Il
lt%、Nb、V、Ti%A1は総量で0.01〜1.
00IllL%、また、Ca、Ce、Zrは総量で0.
001−0. ]000wtを含有し、残部鉄および不
可避不純物からなるwI塊或いは鋼片を950°C以上
の温度で熱間圧延を終了し、その後、800°C以上の
温度で1〜60分間の等温保持或いは空冷の過程を経た
後、500°C以下の温度まで急冷することを特徴とす
る非磁性鋼板の製造方法。[Claims] (],)CO,O]~0.20u+t%, Si0.01
~2.001%, Mloo-30111t%, Ni
O, 01-10, OOu+t%, Cr 12-20+l
lt%, NO,001~0.300+ut%, and 0.20+++L%≦C1N≦0.40+
Hot rolling of a steel ingot or billet consisting of residual iron and unavoidable impurities that satisfies lIt% at a temperature of 950°C or higher, followed by isothermal holding at a temperature of 00°C or higher for 1 to 60 minutes. Alternatively, a method for producing a non-magnetic steel sheet, which is characterized by rapidly cooling to a temperature of 500°C or less after undergoing an air cooling process. (2) CO, 01-0, 20u+L%, Si 0.
01-2. OOu+L%, Mn 1O-30u+L%,
NiO, 01-10,00u+L%, Cr 12~・
Contains 20%, NO,001~0.300%,
and satisfies 0.20wt%≦C1N 60.40wt%, and furthermore, Cu, Mo, W, Nb, \'STi, A
1.Ca. One or more selected from Ce and Zr, C
The total amount of u, Mo, and W is 0.01 to 3.00 Il.
The total amount of lt%, Nb, V, Ti%A1 is 0.01 to 1.
00IllL%, and the total amount of Ca, Ce, and Zr is 0.
001-0. ] 000wt, with the balance consisting of iron and unavoidable impurities, hot rolling is completed at a temperature of 950°C or higher, followed by isothermal holding at a temperature of 800°C or higher for 1 to 60 minutes, or A method for producing a non-magnetic steel sheet, which comprises air cooling and then rapid cooling to a temperature of 500°C or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58121435A JPS6013022A (en) | 1983-07-04 | 1983-07-04 | Production of nonmagnetic steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58121435A JPS6013022A (en) | 1983-07-04 | 1983-07-04 | Production of nonmagnetic steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6013022A true JPS6013022A (en) | 1985-01-23 |
JPH0536481B2 JPH0536481B2 (en) | 1993-05-31 |
Family
ID=14811063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58121435A Granted JPS6013022A (en) | 1983-07-04 | 1983-07-04 | Production of nonmagnetic steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6013022A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170545A (en) * | 1985-01-24 | 1986-08-01 | Nippon Steel Corp | High manganese steel for very low temperature use having superior rust resistance |
JPS61270356A (en) * | 1985-05-24 | 1986-11-29 | Kobe Steel Ltd | Austenitic stainless steels plate having high strength and high toughness at very low temperature |
JPS6227557A (en) * | 1985-07-27 | 1987-02-05 | Kobe Steel Ltd | High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability |
JPS62156257A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | High strength, nonmagnetic cold rolled steel sheet |
JPS62156258A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability |
JPS62267419A (en) * | 1986-05-13 | 1987-11-20 | Kawasaki Steel Corp | Manufacture of austenitic stainless steel plate |
JPS62267418A (en) * | 1986-05-14 | 1987-11-20 | Kawasaki Steel Corp | Manufacture of high strength austenitic stainless steel |
JPS62271308A (en) * | 1986-05-19 | 1987-11-25 | 日本原子力研究所 | Superconductive cable conductor |
JPS64254A (en) * | 1987-03-11 | 1989-01-05 | Nippon Steel Corp | High-hardness nonmagnetic stainless steel |
JPH03207836A (en) * | 1985-08-28 | 1991-09-11 | Nkk Corp | Mn stainless steel having high strength and high toughness at 4.2k |
JPH06253485A (en) * | 1992-12-28 | 1994-09-09 | Japan Casting & Forging Corp | High strength end ring and manufacture thereof |
KR100744129B1 (en) | 2006-02-10 | 2007-08-01 | 삼성전자주식회사 | Balancer, head stack assembly with the same, and method for manufacturing the balancer and overmold of the head stack assembly |
WO2009013827A1 (en) * | 2007-07-26 | 2009-01-29 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Process, and apparatus utilizing the same, for manufacturing steel sheet |
WO2010013083A1 (en) * | 2008-07-30 | 2010-02-04 | Lepl-Ferdinand Tavadze Institute Of Metallurgy Andmaterials Science | Austenitic alloy for cryogenic applications |
CN105331905A (en) * | 2015-11-12 | 2016-02-17 | 张荣斌 | Novel non-magnetic stainless steel and preparation method thereof |
CN105329198A (en) * | 2015-11-26 | 2016-02-17 | 成都九十度工业产品设计有限公司 | Vehicle bumper structure capable of being heated and repaired |
CN105396688A (en) * | 2015-11-30 | 2016-03-16 | 成都德善能科技有限公司 | Electromagnetic ore separator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55107729A (en) * | 1979-02-13 | 1980-08-19 | Sumitomo Metal Ind Ltd | Solution-treating method for austenitic stainless steel |
-
1983
- 1983-07-04 JP JP58121435A patent/JPS6013022A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55107729A (en) * | 1979-02-13 | 1980-08-19 | Sumitomo Metal Ind Ltd | Solution-treating method for austenitic stainless steel |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170545A (en) * | 1985-01-24 | 1986-08-01 | Nippon Steel Corp | High manganese steel for very low temperature use having superior rust resistance |
JPS61270356A (en) * | 1985-05-24 | 1986-11-29 | Kobe Steel Ltd | Austenitic stainless steels plate having high strength and high toughness at very low temperature |
JPS6227557A (en) * | 1985-07-27 | 1987-02-05 | Kobe Steel Ltd | High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability |
JPH0586462B2 (en) * | 1985-07-27 | 1993-12-13 | Kobe Steel Ltd | |
JPH0573821B2 (en) * | 1985-08-28 | 1993-10-15 | Nippon Kokan Kk | |
JPH03207836A (en) * | 1985-08-28 | 1991-09-11 | Nkk Corp | Mn stainless steel having high strength and high toughness at 4.2k |
JPH0475305B2 (en) * | 1985-12-27 | 1992-11-30 | ||
JPS62156257A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | High strength, nonmagnetic cold rolled steel sheet |
JPS62156258A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability |
JPS62267419A (en) * | 1986-05-13 | 1987-11-20 | Kawasaki Steel Corp | Manufacture of austenitic stainless steel plate |
JPS62267418A (en) * | 1986-05-14 | 1987-11-20 | Kawasaki Steel Corp | Manufacture of high strength austenitic stainless steel |
JPH0570887B2 (en) * | 1986-05-19 | 1993-10-06 | Japan Atomic Energy Res Inst | |
JPS62271308A (en) * | 1986-05-19 | 1987-11-25 | 日本原子力研究所 | Superconductive cable conductor |
JPH0248612B2 (en) * | 1987-03-11 | 1990-10-25 | Shinnippon Seitetsu Kk | |
JPS64254A (en) * | 1987-03-11 | 1989-01-05 | Nippon Steel Corp | High-hardness nonmagnetic stainless steel |
JPH06253485A (en) * | 1992-12-28 | 1994-09-09 | Japan Casting & Forging Corp | High strength end ring and manufacture thereof |
KR100744129B1 (en) | 2006-02-10 | 2007-08-01 | 삼성전자주식회사 | Balancer, head stack assembly with the same, and method for manufacturing the balancer and overmold of the head stack assembly |
WO2009013827A1 (en) * | 2007-07-26 | 2009-01-29 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Process, and apparatus utilizing the same, for manufacturing steel sheet |
WO2010013083A1 (en) * | 2008-07-30 | 2010-02-04 | Lepl-Ferdinand Tavadze Institute Of Metallurgy Andmaterials Science | Austenitic alloy for cryogenic applications |
CN105331905A (en) * | 2015-11-12 | 2016-02-17 | 张荣斌 | Novel non-magnetic stainless steel and preparation method thereof |
CN105331905B (en) * | 2015-11-12 | 2017-05-03 | 深圳市雅鲁实业有限公司 | Novel non-magnetic stainless steel and preparation method thereof |
CN105329198A (en) * | 2015-11-26 | 2016-02-17 | 成都九十度工业产品设计有限公司 | Vehicle bumper structure capable of being heated and repaired |
CN105329198B (en) * | 2015-11-26 | 2018-11-02 | 沈阳名华模塑科技有限公司 | A kind of bumper of vehicles heating reparation |
CN105396688A (en) * | 2015-11-30 | 2016-03-16 | 成都德善能科技有限公司 | Electromagnetic ore separator |
Also Published As
Publication number | Publication date |
---|---|
JPH0536481B2 (en) | 1993-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893768B2 (en) | Manufacturing method of 700MPa class high strength weathering steel by strip casting method | |
JP5893770B2 (en) | Manufacturing method of 700MPa class high strength weathering steel by continuous strip casting method | |
KR100324892B1 (en) | High-strength, high-strength superstructure tissue stainless steel and its manufacturing method | |
JPS6013022A (en) | Production of nonmagnetic steel plate | |
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
EP4317512A1 (en) | Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor | |
JPS61270356A (en) | Austenitic stainless steels plate having high strength and high toughness at very low temperature | |
WO2005095663A1 (en) | High-rigidity high-strength thin steel sheet and method for producing same | |
CN112899577B (en) | Preparation method of Fe-Mn series high-strength high-damping alloy | |
JP4691240B2 (en) | Structure control method for duplex structure steel | |
CN110343970A (en) | A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content | |
CN109576569A (en) | A kind of torsion beam of automobile steel and preparation method thereof | |
JPS581012A (en) | Production of homogeneous steel | |
JP4687554B2 (en) | Steel plate for quenched member, quenched member and method for producing the same | |
JPS62270721A (en) | Production of high-mn austenitic stainless steel for cryogenic service | |
JPS6054374B2 (en) | Method for manufacturing austenitic steel plates and steel strips | |
JPS6137953A (en) | Nonmagnetic steel wire rod and its manufacture | |
JPS63203721A (en) | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance | |
JP4179486B2 (en) | Steel sheet having fine grain structure and method for producing the same | |
JP2512650B2 (en) | Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality | |
JPH1192860A (en) | Steel having ultrafine ferritic structure | |
JPH07316653A (en) | Production of thick stainless steel plate excellent in very low temperature characteristic | |
JPH02205631A (en) | Production of high-mn nonmagnetic steel excellent in very low temperature characteristic after formation and heat treatment of nb3sn | |
CN108929993A (en) | A kind of the nonmagnetic steel plate and its manufacturing method of micro-alloying high-ductility | |
CN108796383A (en) | A kind of titaniferous high-intensity and high-tenacity nonmagnetic steel and its manufacturing method |