JPH0248612B2 - - Google Patents

Info

Publication number
JPH0248612B2
JPH0248612B2 JP62232896A JP23289687A JPH0248612B2 JP H0248612 B2 JPH0248612 B2 JP H0248612B2 JP 62232896 A JP62232896 A JP 62232896A JP 23289687 A JP23289687 A JP 23289687A JP H0248612 B2 JPH0248612 B2 JP H0248612B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
hot workability
corrosion resistance
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62232896A
Other languages
Japanese (ja)
Other versions
JPH01254A (en
JPS64254A (en
Inventor
Atsushi Nakatsuka
Hidehiko Sumitomo
Jiro Tominaga
Takanori Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sanwa Needle Bearing Co Ltd
Original Assignee
Nippon Steel Corp
Sanwa Needle Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Sanwa Needle Bearing Co Ltd filed Critical Nippon Steel Corp
Priority to JP23289687A priority Critical patent/JPS64254A/en
Publication of JPH01254A publication Critical patent/JPH01254A/en
Publication of JPS64254A publication Critical patent/JPS64254A/en
Publication of JPH0248612B2 publication Critical patent/JPH0248612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、通信機器、音響製品、コンピユータ
ー関連機器および精密電子機器等の磁気を利用す
る機器等各種産業機械の部品等に好適な、熱間加
工性及び耐食性に優れた高硬度非磁性ステンレス
鋼に関するものである。 〔従来の技術〕 上述のような高硬度でかつ非磁性であることが
要求される部品としては、画像音声記憶装置(以
下VTRと呼ぶ)に用いられるシリンダー軸、キ
ヤプスタイン軸及びVTRカセツトテープ内に使
用されるガイドローラー、ガイドピン、板バネや
線バネ等の各種バネがある。また、通信機器、音
響製品、コンピユーター関連機器、精密電子機器
等に用いられる各種バネやプーリー、チエーン、
シヤフト等も高硬度でかつ非磁性であることが要
求される。これらの部品は、耐食性も要求されて
おり、この点からオーステナイト系ステンレス鋼
が材料として使用される場合が多い。一般的に
は、常温で安定なオーステナイト組織を有する
SUS 305、SUS 316等のステンレス鋼が従来多
く使用されている。 しかし、上述のオーステナイト系ステンレス鋼
を高硬度化するためには冷間加工する必要があ
り、冷間加工すると加工誘起マルテンサイトの生
成により非磁性を確保できなくなる。 Niの一部をMnで置き換え、CおよびN含有量
を高めて高硬度化したオーステナイト系ステンレ
ス鋼が知られている(特開昭61−84324号公報、
特開昭61−213351号公報等)が熱間加工性が悪
く、製造性の面からも改善が強く望まれていた。
また、従来、非磁性鋼の製造方法としては特開昭
61−37953号公報記載の方法が知られているが、
高硬度及び熱間加工性については考慮されていな
い。 〔発明が解決しようとする問題点〕 本発明は、従来のかかる問題点を改善するた
め、Mn−Ni−Cr系のオーステナイト系ステンレ
ス鋼に着目し、熱間加工性及び耐食性に優れた高
硬度非磁性ステンレス鋼を提供することを目的と
する。 〔問題点を解決するための手段および作用〕 本発明者は、この目的のためにMn−Ni−Cr系
のオーステナイト系ステンレス鋼の組成を種々検
討し、これを達成した。 本発明の要旨は、重量%にて、C;0.01〜0.5
%、Si;0.1〜4%、Mn;5〜15%、S≦0.006
%、Ni;0.1〜15%、Cr;12〜22%、O≦0.01%、
N;0.01〜0.5%、Ca;0.0001〜0.02%、残部Feお
よび不可避的不純物からなり、かつ(1)式のNieq
が18以上、(2)式のCreqが23以下、(3)式のPVが0
以下の組成からなる高硬度非磁性ステンレス鋼で
ある。 Nieq=Ni%+30C%+25N%+0.5Mn%
………(1) Creq=Cr%+1.5Si% ………(2) PV=S(ppm)+O(ppm)−0.8Ca(ppm)−30
………(3) 本発明の対象材は、熱間加工を行いさらに冷間
加工を行つた材料で、形状は板(ストリツプおよ
びシート)、線、管等いずれでもよい。 以下、本発明の構成要件の限定理由について説
明する。 Cは、オーステナイト安定化元素であると同時
に固溶硬化に寄与する元素である。これらの硬化
は、0.01%未満では充分ではなく、また0.5%を
超えるとオーステナイト粒界に炭化物が析出しこ
れにより耐食性を劣化させる。従つて、Cを0.01
〜0.5%とした。 Siは、加工硬化性を向上させる元素であるが、
0.1%未満では充分でなく、また、フエライト安
定化元素であることから4%を超えるとフエライ
ト量が増加し熱間加工性を劣化させる。従つて、
Siを0.1〜4%とした。 Mnは、安価にオーステナイト組織を安定化さ
せる作用があり、鋼の非磁性を確保するために必
要な元素である。この効果は5%未満では充分で
はなく、また15%を超えるとその効果が飽和す
る。従つて、Mnを5〜15%とした。 Sは、0.006%を超えると熱間加工性を阻害す
る虞れがある。従つて、Sを0.006%以下とした。 Niは、有力なオーステナイト安定化元素であ
り、非磁性を確保するために必要である。この効
果は0.1%未満では充分でなく、また、15%を超
えるとその効果が飽和する。従つて、Niを0.1%
〜15%とした。 Crは、ステンレス鋼としての耐食性の点から
12%未満では不十分であり、また、22%を超える
とフエライト・オーステナイトの2相組織となり
透磁率を上げる。従つて、Crを12〜22%とした。 Oは、0.01%を超えると熱間加工性を阻害する
虞れがある。従つて、Oを0.01%以下とした。 Nは、Cと同様オーステナイト安定化元素であ
ると同時に固溶硬化に寄与する元素である。この
効果は0.01%未満では不十分であり、また0.5%
を超えると鋼塊中にブローホールにる欠陥を生じ
させる虞れがあるため好ましくない。従つて、N
を0.01〜0.5%とした。 Caは熱間加工性を向上させる元素であり、そ
の効果は0.0001%未満では不十分であり、また
0.02%を超えて添加してもその効果が飽和するた
めコスト上好ましくない。従つて、Caを0.0001〜
0.02%とした。 Nieqはオーステナイト安定度を示す指標であ
り、18未満では焼鈍後もしくは冷間加工後の透磁
率が高くなり非磁性を確保できない。従つて、
Nieqを18以上とした。 Creqはフエライト安定度を示す指標であり、
23を超えるとフエライト・オーステナイトの2相
となり透磁率を上げる。従つて、Creqを23以下
とした。 PVは熱間加工性を示す指標であり、0を超え
ると熱間加工時に材料が割れる等の問題が生じ
る。従つて、PVを0以下とした。 Nieq及びCreqが上記範囲であれば、熱間加工
性が向上し、製造性が著しく改善される。 〔実施例〕 第1表に示すようなオーステナイト系ステンレ
ス鋼を熱間加工し、さらに冷間加工して、板、
線、管とした。これら材料の熱間加工性、硬さ、
透磁率、耐食性を第2表に示す。熱間加工性は、
熱間加工時に割れが生じたものを×とし、割れな
かつたものを〇とした。硬さは、最終焼鈍後に加
工率50%で冷間加工したものについてJISZ2244
に従い測定したビツカース硬さであり、透磁率は
同じく加工率50%で冷間加工したものについての
値である。耐食性は、15%食塩水に100時間浸漬
したとき発銹しなかつたものを〇とし、発銹した
ものを×で示す。本発明鋼はいずれも熱間加工性
及び耐食性に優れると同時に比較鋼と比べ著しく
高硬度であり透磁率の低いことが判る。
[Industrial Application Field] The present invention has excellent hot workability and corrosion resistance, and is suitable for parts of various industrial machines such as communication equipment, audio products, computer-related equipment, precision electronic equipment, and other equipment that uses magnetism. This relates to high hardness non-magnetic stainless steel. [Prior Art] The above-mentioned parts that are required to be highly hard and non-magnetic include cylinder shafts and capstein shafts used in video and audio storage devices (hereinafter referred to as VTRs), and in VTR cassette tapes. There are various types of springs used, such as guide rollers, guide pins, leaf springs, and wire springs. We also supply various springs, pulleys, chains, etc. used in communication equipment, audio products, computer-related equipment, precision electronic equipment, etc.
The shaft and the like are also required to be highly hard and non-magnetic. These parts are also required to have corrosion resistance, and from this point of view austenitic stainless steel is often used as the material. Generally has an austenite structure that is stable at room temperature
Stainless steels such as SUS 305 and SUS 316 are commonly used. However, in order to increase the hardness of the above-mentioned austenitic stainless steel, it is necessary to cold-work it, and when cold-worked, non-magnetism cannot be ensured due to the formation of deformation-induced martensite. Austenitic stainless steel is known that has high hardness by replacing part of Ni with Mn and increasing the C and N contents (Japanese Patent Application Laid-open No. 84324/1983,
JP-A No. 61-213351, etc.) had poor hot workability, and improvements were strongly desired from the viewpoint of manufacturability.
In addition, the conventional manufacturing method for non-magnetic steel was
Although the method described in Publication No. 61-37953 is known,
High hardness and hot workability are not considered. [Problems to be Solved by the Invention] In order to improve these conventional problems, the present invention focuses on Mn-Ni-Cr-based austenitic stainless steel, which has high hardness and excellent hot workability and corrosion resistance. The purpose is to provide non-magnetic stainless steel. [Means and effects for solving the problem] For this purpose, the present inventor studied various compositions of Mn-Ni-Cr-based austenitic stainless steel, and achieved this goal. The gist of the present invention is that, in weight%, C: 0.01 to 0.5
%, Si; 0.1-4%, Mn; 5-15%, S≦0.006
%, Ni; 0.1-15%, Cr; 12-22%, O≦0.01%,
N; 0.01 to 0.5%, Ca; 0.0001 to 0.02%, balance Fe and unavoidable impurities, and Nieq of formula (1)
is 18 or more, Creq of formula (2) is 23 or less, PV of formula (3) is 0
This is a high hardness non-magnetic stainless steel with the following composition. Nieq=Ni%+30C%+25N%+0.5Mn%
………(1) Creq=Cr%+1.5Si% ………(2) PV=S(ppm)+O(ppm)−0.8Ca(ppm)−30
(3) The target material of the present invention is a material that has been hot-worked and then cold-worked, and may be in any shape such as a plate (strip or sheet), wire, or tube. The reasons for limiting the constituent elements of the present invention will be explained below. C is an austenite stabilizing element and at the same time an element that contributes to solid solution hardening. Hardening of these components is not sufficient when the content is less than 0.01%, and when the content exceeds 0.5%, carbides precipitate at the austenite grain boundaries, thereby degrading corrosion resistance. Therefore, C is 0.01
~0.5%. Si is an element that improves work hardenability.
If it is less than 0.1%, it is not sufficient, and since it is a ferrite stabilizing element, if it exceeds 4%, the amount of ferrite increases and hot workability deteriorates. Therefore,
Si was set at 0.1 to 4%. Mn has the effect of stabilizing the austenite structure at low cost, and is an element necessary to ensure the nonmagnetism of steel. This effect is not sufficient when it is less than 5%, and the effect is saturated when it exceeds 15%. Therefore, Mn was set at 5 to 15%. When S exceeds 0.006%, there is a possibility that hot workability may be inhibited. Therefore, S was set to 0.006% or less. Ni is a potent austenite stabilizing element and is necessary to ensure non-magnetism. This effect is not sufficient if it is less than 0.1%, and the effect is saturated if it exceeds 15%. Therefore, Ni 0.1%
~15%. Cr is selected from the viewpoint of corrosion resistance as a stainless steel.
If it is less than 12%, it is insufficient, and if it exceeds 22%, it becomes a two-phase structure of ferrite and austenite, increasing the magnetic permeability. Therefore, Cr was set at 12 to 22%. If O exceeds 0.01%, there is a possibility that hot workability will be inhibited. Therefore, O was set to 0.01% or less. Like C, N is an austenite stabilizing element and at the same time an element that contributes to solid solution hardening. This effect is insufficient below 0.01%, and 0.5%
Exceeding this is not preferable because it may cause defects such as blowholes in the steel ingot. Therefore, N
was set at 0.01 to 0.5%. Ca is an element that improves hot workability, and its effect is insufficient at less than 0.0001%, and
Adding more than 0.02% is not preferable in terms of cost since the effect is saturated. Therefore, Ca from 0.0001 to
It was set at 0.02%. Nieq is an index indicating austenite stability, and if it is less than 18, the magnetic permeability after annealing or cold working will be high and non-magnetism cannot be ensured. Therefore,
Nieq was 18 or higher. Creq is an indicator of ferrite stability,
When it exceeds 23, it forms two phases of ferrite and austenite, increasing the magnetic permeability. Therefore, Creq was set to 23 or less. PV is an index showing hot workability, and if it exceeds 0, problems such as cracking of the material during hot working will occur. Therefore, PV was set to 0 or less. When Nieq and Creq are in the above ranges, hot workability is improved and manufacturability is significantly improved. [Example] Austenitic stainless steel as shown in Table 1 was hot worked and further cold worked to produce a plate,
Lines and tubes. Hot workability, hardness,
The magnetic permeability and corrosion resistance are shown in Table 2. Hot workability is
Those that cracked during hot working were marked as ×, and those that did not crack were marked as ○. Hardness is based on JISZ2244 for cold worked at a processing rate of 50% after final annealing.
This is the Vickers hardness measured according to the same method, and the magnetic permeability is the value for the material cold-worked at a processing rate of 50%. Corrosion resistance is indicated by ○ if it does not rust when immersed in 15% saline solution for 100 hours, and × if it does. It can be seen that all of the steels of the present invention have excellent hot workability and corrosion resistance, and at the same time, have significantly higher hardness and lower magnetic permeability than comparative steels.

【表】【table】

【表】【table】

【表】 ○:割れなし
○:発銹なし
×:割れ発生
×:発銹有り
〔発明の効果〕 以上のことから明らかな如く、本発明によれ
ば、熱間加工性および耐食性に優れた高硬度かつ
非磁性のステンレス鋼が得られ、通信機器、音響
製品、コンピユーター関連機器および精密電子機
器等の磁気を利用する機器等各種産業機械の部品
等に使用して、機器の磁気特性を乱すことなく、
耐食性、耐摩耗性に効果を発揮する。
[Table] ○: No cracks
○: No rusting
×: Cracking occurred
×: Rusting [Effects of the Invention] As is clear from the above, according to the present invention, a highly hard and non-magnetic stainless steel with excellent hot workability and corrosion resistance can be obtained, and it can be used for communication equipment, audio products, etc. It can be used in parts of various industrial machines such as computer-related equipment and precision electronic equipment that use magnetism, without disturbing the magnetic properties of the equipment.
Effective in corrosion resistance and wear resistance.

Claims (1)

【特許請求の範囲】 1 重量%にて、C;0.01〜0.5%、Si;0.1〜4
%、Mn;5〜15%、S≦0.006%、Ni;0.1〜15
%、Cr;12〜22%、O≦0.01%、N;0.01〜0.5
%、Ca;0.0001〜0.02%、残部Feおよび不可避的
不純物からなり、かつ下記の式で示されるNieq
が18以上、Creqが23以下、PVが0以下の範囲の
組成からなる高硬度非磁性ステンレス鋼。 Nieq=Ni%+30C%+25N%+0.5Mn%
………(1) Creq=Cr%+1.5Si% ………(2) PV=S(ppm)+O(ppm)−0.8Ca(ppm)−30
………(3)
[Claims] 1% by weight: C: 0.01-0.5%, Si: 0.1-4
%, Mn; 5-15%, S≦0.006%, Ni; 0.1-15
%, Cr; 12-22%, O≦0.01%, N; 0.01-0.5
%, Ca; 0.0001~0.02%, balance Fe and unavoidable impurities, and is represented by the following formula:
High hardness non-magnetic stainless steel with a composition in the range of 18 or more, Creq 23 or less, and PV 0 or less. Nieq=Ni%+30C%+25N%+0.5Mn%
………(1) Creq=Cr%+1.5Si% ………(2) PV=S(ppm)+O(ppm)−0.8Ca(ppm)−30
......(3)
JP23289687A 1987-03-11 1987-09-17 High-hardness nonmagnetic stainless steel Granted JPS64254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23289687A JPS64254A (en) 1987-03-11 1987-09-17 High-hardness nonmagnetic stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-54217 1987-03-11
JP5421787 1987-03-11
JP23289687A JPS64254A (en) 1987-03-11 1987-09-17 High-hardness nonmagnetic stainless steel

Publications (3)

Publication Number Publication Date
JPH01254A JPH01254A (en) 1989-01-05
JPS64254A JPS64254A (en) 1989-01-05
JPH0248612B2 true JPH0248612B2 (en) 1990-10-25

Family

ID=26394964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23289687A Granted JPS64254A (en) 1987-03-11 1987-09-17 High-hardness nonmagnetic stainless steel

Country Status (1)

Country Link
JP (1) JPS64254A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591256B2 (en) * 1990-05-21 1997-03-19 住友金属工業株式会社 High strength non-magnetic steel
JPH0762173B2 (en) * 1990-11-27 1995-07-05 神鋼鋼線工業株式会社 Method for manufacturing high strength non-magnetic prestressed concrete steel
SE506550C2 (en) * 1994-11-02 1998-01-12 Sandvik Ab Use of an non-magnetic stainless steel in superconducting low temperature applications
JP2003155542A (en) * 2001-11-21 2003-05-30 Japan Atom Energy Res Inst HIGH NONMAGNETIC Mn STEEL FOR SUPERCONDUCTING MAGNET HAVING EXCELLENT HOT WORKABILITY AND HEATING EMBRITTLEMENT RESISTANCE AFTER HEAT TREATMENT FOR PRODUCING SUPERCONDUCTING MAGNET
CN112877612A (en) * 2021-01-07 2021-06-01 浙江工业大学 Preparation method of high-manganese TWIP steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182956A (en) * 1983-04-02 1984-10-17 Nippon Steel Corp High-alloy stainless steel with superior hot workability
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate
JPS6137953A (en) * 1984-07-31 1986-02-22 Sumitomo Metal Ind Ltd Nonmagnetic steel wire rod and its manufacture
JPS61213353A (en) * 1985-03-20 1986-09-22 Nisshin Steel Co Ltd Non-magnetic stainless steel excelling in spring characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182956A (en) * 1983-04-02 1984-10-17 Nippon Steel Corp High-alloy stainless steel with superior hot workability
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate
JPS6137953A (en) * 1984-07-31 1986-02-22 Sumitomo Metal Ind Ltd Nonmagnetic steel wire rod and its manufacture
JPS61213353A (en) * 1985-03-20 1986-09-22 Nisshin Steel Co Ltd Non-magnetic stainless steel excelling in spring characteristic

Also Published As

Publication number Publication date
JPS64254A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US7780908B2 (en) Low nickel containing chromium-nickel-manganese- copper austenitic stainless steel
US20220010392A1 (en) Nonmagnetic austenitic stainless steel and manufacturing method therefor
JPH0686645B2 (en) Nickel-saving austenitic stainless steel with excellent hot workability
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JP2007063632A (en) Austenitic stainless steel
JP5729827B2 (en) High strength non-magnetic steel
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
JPH0248612B2 (en)
JPH0542493B2 (en)
JPH01254A (en) High hardness non-magnetic stainless steel
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPH04272158A (en) Nonmagnetic stainless steel having low work hardenability
JPH0759723B2 (en) High hardness non-magnetic stainless steel manufacturing method
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
JPH064905B2 (en) Non-magnetic stainless steel with excellent spring characteristics
JP7453796B2 (en) Low magnetic austenitic stainless steel
JP3603461B2 (en) High hardness non-magnetic stainless steel and high hardness non-magnetic stainless steel wire
JPH0432144B2 (en)
EP1431408B1 (en) Low nickel containing chromium-nickel-manganese-copper austenitic stainless steel
JPH0341541B2 (en)
JPH0475305B2 (en)
JP2537679B2 (en) High-strength stainless steel and its steel material
JPS62136557A (en) High strength nonmagnetic steel having rust resistance