JPS6227557A - High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability - Google Patents

High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability

Info

Publication number
JPS6227557A
JPS6227557A JP60166614A JP16661485A JPS6227557A JP S6227557 A JPS6227557 A JP S6227557A JP 60166614 A JP60166614 A JP 60166614A JP 16661485 A JP16661485 A JP 16661485A JP S6227557 A JPS6227557 A JP S6227557A
Authority
JP
Japan
Prior art keywords
steel
less
electron beam
welding
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60166614A
Other languages
Japanese (ja)
Other versions
JPH0586462B2 (en
Inventor
Mutsuo Hiromatsu
廣松 睦生
Shoji Tone
登根 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60166614A priority Critical patent/JPS6227557A/en
Publication of JPS6227557A publication Critical patent/JPS6227557A/en
Publication of JPH0586462B2 publication Critical patent/JPH0586462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high-Mn nonmagnetic steel for very low temp. use for large-sized superconducting magnet excellent in electron beam weldability by incorporating specific percentage of C, Si, Mn, P, S, O, Ni, Cr and N to Fe. CONSTITUTION:The high-Mn nonmagnetic steel consisting of, by weight, 0.01-0.15% C, 0.01-1.50% Si, 10-30% Mn, <=0.03% P, <=0.01% S, <=0.0030% O, 0.5-1.5% Ni, 12-25% Cr, 0.10-0.28% N and the balance Fe with inevitable impurities and satisfying [(%Mn)-0.3(%Ni)+2.0(%Cr)]/(%N)X10<2>>=2.0 is prepared. This steel is excellent in electron beam weldability and has high strength and toughness at a joint at -269 deg.C and has superior magnetic properties as well, so that it is suitably used as large-sized superconducting magnet for nuclear fusion reactor, MHD generator equipment, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子ビーム溶接性にすぐれた極低温用高Mn
非磁性鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a high-Mn alloy for cryogenic use with excellent electron beam weldability.
Regarding non-magnetic steel.

(従来の技術) 核融合炉、Ml(D発電設備、超電導発電機等に用いら
れる超電導マグネットは、液体ヘリウム温度(−269
℃)に冷却され、しがも、強磁場中で繰返し高応力が働
く過酷な条件下で稼動される。
(Prior technology) Superconducting magnets used in nuclear fusion reactors, Ml(D power generation equipment, superconducting generators, etc.) are used at liquid helium temperatures (-269
℃), and is operated under harsh conditions in which high stress is applied repeatedly in a strong magnetic field.

従って、このような超電導マグネットを支持するための
構造材料は、−269℃において高強度、高靭性、及び
すぐれた磁気特性を有することが要求され、更に、超電
導マグネットは非常に大型であるので、これを支持する
材料にも極厚鋼板が使用される。同時に機器の寸法精度
が厳しいので、溶接時の変形ができる限り小さいことが
要求される。
Therefore, structural materials for supporting such superconducting magnets are required to have high strength, high toughness, and excellent magnetic properties at -269°C, and furthermore, since superconducting magnets are very large, Extra-thick steel plates are also used to support this. At the same time, the dimensional accuracy of the equipment is critical, so deformation during welding is required to be as small as possible.

従来、極低温用非磁性鋼としては、SO3304Lのオ
ーステナイト系ステンレス非磁性鋼が知られている。こ
れらの非磁性鋼は、溶接性にはすぐれているものの、溶
接時の高温割れを防止するために、溶接金属中に数%程
度のδフェライトを生じさせるので、極低温において靭
性が劣化し、或いは透磁率が上昇する。更に、母材及び
継手部の耐力が一269℃において40〜50 kgf
/mm”であって極めて低い。他方、304LNは0.
14%程度の窒素を含有して、耐力にはすぐれるが、溶
接時にブローホールが発生しやすいという致命的な欠陥
を有している。
Conventionally, SO3304L austenitic stainless nonmagnetic steel is known as a nonmagnetic steel for cryogenic use. These non-magnetic steels have excellent weldability, but in order to prevent hot cracking during welding, several percent of δ ferrite is generated in the weld metal, so the toughness deteriorates at extremely low temperatures. Alternatively, magnetic permeability increases. Furthermore, the yield strength of the base material and joint portion is 40 to 50 kgf at 1269°C.
/mm”, which is extremely low. On the other hand, 304LN has a value of 0.
It contains about 14% nitrogen and has excellent yield strength, but it has the fatal defect of being prone to blowholes during welding.

また、従来、極厚鋼板の溶接には手、一般に、TIG、
MIG溶接等が採用されているが、これらは溶接作業に
多大の時間を要すると共に、多大の溶接材料を必要とす
るので、作業性及び経済性に劣る。更に、超電導マグネ
ットの支持材料は、上記した溶接によれば、変形が大き
いので、溶接後、矯正或いは多大の切削加工を必要とし
て、製作費用が高い。更に、溶接継手部においても、高
強度、高靭性及び低透磁率であることが要求されるが、
前述したように、上記オーステナイト系ステンレス鋼に
は、溶接金属中にδフェライトが発生ずるので、靭性が
劣化し、また、透磁率が上昇する問題がある。
In addition, in the past, welding of extra-thick steel plates was done by hand, generally using TIG,
Although MIG welding and the like have been adopted, these methods require a large amount of time for welding work and a large amount of welding material, so they are inferior in workability and economy. Further, the supporting material of the superconducting magnet is largely deformed by the above-mentioned welding, so it requires straightening or a large amount of cutting after welding, resulting in high manufacturing costs. Furthermore, welded joints are also required to have high strength, high toughness, and low magnetic permeability.
As mentioned above, the austenitic stainless steel has problems in that δ ferrite is generated in the weld metal, which deteriorates toughness and increases magnetic permeability.

従って、近年、超電導マグネットの支持構造材料製作の
ための溶接法としては電子ビーム溶接が最適とされてお
り、他方、この極低温用途における鋼材については、高
Mn非磁性鋼の使用が注目されている。電子ビーム溶接
によれば、肉厚鋼板でも1バスにて溶接が可能であり、
溶接材料も必要でなく、更に溶接による変形が少ないの
で、溶接作業性が飛躍的に向上し、且つ、経済性も向上
するからである。更に、電子ビーム溶接は真空中での溶
接であるため、溶接金属中に酸素の侵入がなく、靭性が
高い利点も有する。
Therefore, in recent years, electron beam welding has been considered the most suitable welding method for fabricating support structure materials for superconducting magnets.On the other hand, the use of high Mn nonmagnetic steel has attracted attention as a steel material for this cryogenic application. There is. According to electron beam welding, even thick steel plates can be welded in one bus.
This is because welding materials are not required and furthermore, there is little deformation due to welding, so welding workability is dramatically improved and economical efficiency is also improved. Furthermore, since electron beam welding is welding in a vacuum, there is no penetration of oxygen into the weld metal, which has the advantage of high toughness.

(発明の目的) 本発明は、例えば、前記したような超電導マグネットを
支持するための構造材料として好適に使用し得るように
、電子ビーム溶接性にすぐれると共に、継手部において
も一269℃の温度で高強度、高靭性であり、且つ、す
ぐれた磁気特性を有する極低温用高Mn非磁性鋼を提供
することを目的とする。
(Objective of the Invention) The present invention has excellent electron beam weldability and a temperature of -269°C at the joint so that it can be suitably used, for example, as a structural material for supporting superconducting magnets as described above. The object of the present invention is to provide a high Mn nonmagnetic steel for cryogenic use that has high strength and toughness at high temperatures and has excellent magnetic properties.

(発明の構成) 本発明による電子ビーム溶接性にすぐれた極低温用高M
n非磁性鋼は、重量%で C0.01〜0.15%、 Si0.01〜1.50%、 Mn 10〜30%、 P   0.03%以下、 S   0.01%以下、 0  0.0030%以下、 Ni0.5〜15%、 Cr 12〜25%、及び N   0.10〜0.28%を含有し、且つ、〔(%
Mn)−0,3(%Ni)+2.0(%Cr)〕 /(
%N)×102上2゜0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする。
(Structure of the Invention) High M for cryogenic use with excellent electron beam weldability according to the present invention
n Non-magnetic steel has, in weight percent, C 0.01 to 0.15%, Si 0.01 to 1.50%, Mn 10 to 30%, P 0.03% or less, S 0.01% or less, 0 0. 0.030% or less, contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and [(%
Mn)-0,3(%Ni)+2.0(%Cr)] /(
It is characterized by satisfying 2°0 over %N)×102, with the balance being iron and unavoidable impurities.

先ず、本発明鋼において化学成分を限定した理由を説明
する。
First, the reason for limiting the chemical components in the steel of the present invention will be explained.

Cは、オーステナイトの安定化と高強度化に有効な元素
である。添加量が0.oi%よりも少ないときは、上記
効果に乏しく、他方、0.15%を越えて過多に添加す
るときは、溶接金属中にCr炭化物を生成し、鋼の靭性
及び耐食性を損ない、また、溶接時に鋼中の0と反応し
てブローホールを生成しやすいので、添加量の上限を0
.15%とする。
C is an element effective in stabilizing and increasing the strength of austenite. Addition amount is 0. If it is less than oi%, the above effect will be poor; on the other hand, if it is added in excess of 0.15%, Cr carbide will be generated in the weld metal, impairing the toughness and corrosion resistance of the steel, and the welding Sometimes, it tends to react with 0 in steel and create blowholes, so the upper limit of the amount added is set to 0.
.. It shall be 15%.

Stは鋼溶製時の脱酸に必要であると共に、造塊時に溶
鋼の流動性を高めて鋼塊の内部欠陥を減少させ、また、
溶接時に溶接金属の流動性を高めて欠陥の発生を防止す
る効果を有し、かかる効果を有効に発現させるために0
.01%以上を添加することが必要である。しかし、1
.50%を越えて多量に添加するときは、高温延性を阻
害し、また、靭性を低下させるのみならず、溶接時に溶
接金属の流動性が過度に大きくなって、却ってブローホ
ール等の欠陥を発生しやくなるので、添加量は1゜50
%以下の範囲とする。
St is necessary for deoxidation during steel making, and also increases the fluidity of molten steel during ingot making to reduce internal defects in steel ingots.
It has the effect of increasing the fluidity of weld metal during welding and preventing the occurrence of defects, and in order to effectively express this effect, 0
.. It is necessary to add 0.01% or more. However, 1
.. When added in a large amount exceeding 50%, it not only inhibits high-temperature ductility and reduces toughness, but also causes the fluidity of the weld metal to become excessively large during welding, causing defects such as blowholes. It becomes softer, so the amount added is 1゜50.
% or less.

Mnも、Cと同様に、オーステナイトの安定化効果を有
すると共に、靭性を向上させ、また、溶接金属中のN溶
解度を高めて、ブローホール等の欠陥発生の防止に有効
であり、かかる効果を有効に得るためには16%以上の
添加を必要とする。
Like C, Mn also has the effect of stabilizing austenite, improves toughness, and increases the solubility of N in the weld metal, which is effective in preventing the occurrence of defects such as blowholes. To be effective, addition of 16% or more is required.

しかし、30%を越えて過多に添加するときは、熱間加
工性が劣化し、また、溶接金属中にδフェライトの生成
を促して、靭性及び磁気特性を劣化させるので、Mnの
添加量は30%以下の範囲とする。
However, when added in excess of 30%, hot workability deteriorates, and also promotes the formation of δ ferrite in the weld metal, deteriorating toughness and magnetic properties, so the amount of Mn added is The range shall be 30% or less.

P及びSは共に鋼の熱間加工性及び靭性を損ない、また
、溶接時に高温割れを助長する。従って、本発明鋼にお
いてはその含有量を極力抑えることが好ましいが、経済
性を考慮して、含有量は、Pについては0.03%以下
、Sについては0.01%以下とする。
Both P and S impair the hot workability and toughness of steel, and also promote hot cracking during welding. Therefore, in the steel of the present invention, it is preferable to suppress the content as much as possible, but in consideration of economic efficiency, the content is set to 0.03% or less for P and 0.01% or less for S.

0の含有は、母材のみな・らず、溶接金属中に酸化物系
介在物を生成させて靭性を劣化させる。
The content of 0 causes oxide inclusions to be generated not only in the base metal but also in the weld metal, thereby degrading the toughness.

第1図に溶接金属中のO量と一269℃における■シャ
ルピー吸収エネルギー(vE−g6.)との関係を示す
。本発明鋼は、1つは、図示したように、0量を約30
ppm以下、好ましくは約20ppm以下とするとき、
シャルピー吸収エネルギーが顕著に上昇するという新し
い知見に基づくものである。
Figure 1 shows the relationship between the amount of O in the weld metal and Charpy absorbed energy (vE-g6.) at -269°C. As shown in the figure, the steel of the present invention has an amount of about 30
ppm or less, preferably about 20 ppm or less,
This is based on the new finding that Charpy absorbed energy increases significantly.

電子ビーム溶接は、真空中での溶接であるため、溶接金
属中のO量は母材のそれと比較して高くなることはなく
、むしろ低減される傾向にある。従って、本発明鋼にお
いては、母材におけるOの含有量を0.0030%以下
し、好ましくは0.OO20%以下とする。
Since electron beam welding is welding in a vacuum, the amount of O in the weld metal does not become higher than that of the base metal, but rather tends to be reduced. Therefore, in the steel of the present invention, the O content in the base metal is 0.0030% or less, preferably 0.0030% or less. OO shall be 20% or less.

Niは、オーステナイトの安定化と靭性の向上に有効で
あり、更に、溶接金属におけるδフェライトの生成を効
果的に抑制する。かかる効果を有効に発現させるために
は、少なくとも0.5%の添加が好ましい。しかし、過
多に添加するときは、溶接金属中のN溶解度を下げるの
みならず、経済性を損なうので、Niの添加量は0.5
〜15%の範囲とする。
Ni is effective in stabilizing austenite and improving toughness, and furthermore, effectively suppresses the formation of δ ferrite in the weld metal. In order to effectively exhibit such effects, it is preferable to add at least 0.5%. However, when adding too much Ni, it not only lowers the solubility of N in the weld metal but also impairs economic efficiency, so the amount of Ni added is 0.5
-15% range.

Crは、鋼に耐錆性を付与すると共に、耐力の向上に有
効な元素であり、また、溶接金属中のN溶解度を高めて
、ブローホール等の欠陥発生の防止にも有効であるので
、本発明鋼においては、少なくとも12%を添加するこ
とが必要である。他方、25%を越える多量の添加は、
溶接金属中にδフェライトを生成しやすくなり、靭性や
磁気特性を劣化させるので、添加量は12〜25%の範
囲とする。
Cr is an element that is effective in imparting rust resistance to steel and improving yield strength, and is also effective in increasing the solubility of N in the weld metal and preventing the occurrence of defects such as blowholes. In the steel of the invention it is necessary to add at least 12%. On the other hand, addition of a large amount exceeding 25%
Since δ ferrite is likely to be generated in the weld metal and deteriorates toughness and magnetic properties, the amount added should be in the range of 12 to 25%.

Nは、Cと同様に、オーステナイトの安定化と耐力の向
上に有効である。CはCr炭化物を形成し、靭性及び耐
誘性を損なうが、Nはかかる有害な影響をもたない。上
記効果を有効に発現させるためには、含有量は0.10
%以上であることが必要である。しかし、0,28%を
越えて過多に含有させる場合は、靭性の低下が著しい。
Like C, N is effective in stabilizing austenite and improving yield strength. C forms Cr carbides and impairs toughness and induction resistance, while N has no such deleterious effect. In order to effectively express the above effect, the content should be 0.10
% or more. However, when the content exceeds 0.28%, the toughness is significantly reduced.

また、溶接金属にブローホール等の欠陥を生じやすい。In addition, defects such as blowholes are likely to occur in the weld metal.

従って、Nの含有量は0.10−0.28%の範囲とす
る。
Therefore, the N content is in the range of 0.10-0.28%.

本発明鋼は、上述したように、高N鋼であるので、溶接
時のブローホール等の欠陥の発生を防止するために、更
に、Mn、Ni、Cr及びNは次の関係を満足すること
が必要である。
As mentioned above, the steel of the present invention is a high-N steel, so in order to prevent defects such as blowholes during welding, Mn, Ni, Cr, and N must satisfy the following relationship. is necessary.

〔(%Mn)−0,3(%Ni)+2.0(%Cr)〕
バ%N)xlo”上2゜0(但し、(%元素)は当該元
素の鋼中の含有量を重量%にて示す。) Mn及びCrは溶接金属のN溶解度を高め、Nガスの発
生を抑制することによって、溶接時におけるブローホー
ルの発生を防止する。反対にNiはNの溶解度を下げる
ので、ブローホールの発生を促進する。そこで、本発明
者らは、これら元素の添加量及びN量が溶接欠陥の発生
に及ぼす影響を広範囲にわたって研究した結果、第2図
に示すように、上記式が満足されるとき、溶接欠陥のな
い継手を得ることができることを見出したものである。
[(%Mn)-0.3(%Ni)+2.0(%Cr)]
%N) By suppressing the amount of these elements, the occurrence of blowholes during welding is prevented.On the other hand, Ni reduces the solubility of N, so it promotes the occurrence of blowholes.The present inventors therefore determined the amount of these elements added and As a result of extensive research on the influence of the amount of N on the occurrence of welding defects, we have found that when the above formula is satisfied, a joint free of welding defects can be obtained, as shown in FIG.

更に、本発明鋼は、Nb5V% Ti及びAlよりなる
群から選ばれる少なくとも1種の元素を含有することが
できる。これら元素は、いずれも炭窒化物を形成し、析
出強化によって耐力を向上させるのに効果を存し、かか
る効果を有効に発現させるためには、少なくとも1種の
元素を総量にて0、1%以上添加することが必要である
。しかし、その添加量が総量にて0.50%を越えると
きは、溶接金属中の固溶N量を低減し、耐力の低下又は
オーステナイトの不安定化を招くので、添加量は総量に
て0.50%以下とする。
Furthermore, the steel of the present invention can contain at least one element selected from the group consisting of Nb5V% Ti and Al. All of these elements form carbonitrides and are effective in improving yield strength through precipitation strengthening. In order to effectively express this effect, at least one element must be added in a total amount of 0 to 1. It is necessary to add more than %. However, if the total amount added exceeds 0.50%, the amount of solid solution N in the weld metal will be reduced, resulting in a decrease in proof strength or destabilization of austenite, so the total amount added will be 0.50%. .50% or less.

また、本発明鋼は上記した元素に加えて、又は上記した
元素とは独立して、Cu、MO及びWよりなる群から選
ばれる少なくとも1種の元素を総量にて0.01〜2.
00%の範囲で含有することができる。これらの元素は
いずれも、オーステナイト地を強化し、高耐力化に有効
である。しかし、添加量が総量にて0.01%よりも少
ないときは上記効果に乏しく、他方、総量にて2.00
%を越えて過多に添加するときは、鋼の熱間加工性及び
靭性を劣化させるので、添加量は0.01〜2.00%
の範囲とする。
The steel of the present invention also contains at least one element selected from the group consisting of Cu, MO, and W in a total amount of 0.01 to 2.0% in addition to or independently of the above-mentioned elements.
It can be contained within a range of 0.00%. All of these elements are effective in strengthening the austenite base and increasing its strength. However, when the total amount added is less than 0.01%, the above effect is poor;
If added in excess of 0.01 to 2.00%, the hot workability and toughness of the steel will deteriorate.
The range shall be .

更に、本発明鋼は、上記した諸元素と共に、又は独立し
て、Ca、Ce及びZrよりなる群から選ばれる少なく
とも1種の元素を総量にて0.001〜0.050%の
範囲で含有してもよい。これら元素はいずれも、Oの低
減等を通じて、鋼の清浄化や、介在物の微細化、球状化
作用を有して、鋼の靭性を向上させるが、!、= ft
で0.001%よりも少ない添加によっては、上記効果
を有効に得ることができず、他方、総量にて0.050
%越える過多量の添加は、却って鋼の清浄度を劣化させ
、また、鋼の靭性を劣化させる。
Furthermore, the steel of the present invention contains at least one element selected from the group consisting of Ca, Ce, and Zr in a total amount of 0.001 to 0.050%, either together with the above-mentioned elements or independently. You may. All of these elements improve the toughness of steel by cleaning the steel, making inclusions finer, and spheroidizing them by reducing O content, etc. , = ft
If the total amount is less than 0.001%, the above effect cannot be obtained effectively; on the other hand, if the total amount is less than 0.050%
Addition of an excessive amount exceeding % will actually deteriorate the cleanliness of the steel and the toughness of the steel.

(発明の効果) 以上のように、本発明鋼は、高Mn非磁性鋼において、
特に、0量を規制すると共に、溶接時にブローホールの
発生防止にを効なMn及びCrと、ブローホールの発生
を促進するNiをNに対して一定の関係の下に添加し、
かくして、高N化によって高強度化、高靭性化を図りつ
つ、ブローホールの発生がない電子ビーム溶接性にすぐ
れた極低温用高Mn非磁性鋼を得ることができる。
(Effects of the invention) As described above, the steel of the present invention is a high Mn nonmagnetic steel.
In particular, while regulating the amount of zero, Mn and Cr, which are effective in preventing the generation of blowholes during welding, and Ni, which promotes the generation of blowholes, are added in a certain relationship to N.
In this way, it is possible to obtain a high-Mn nonmagnetic steel for cryogenic use that is high in strength and toughness by increasing the N content and has excellent electron beam weldability without blowholes.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例 代表的に第1表に示す化学組成を有する本発明wJl〜
4及び比較鋼5〜8について、〔(%Mn)−0,3(
%Ni)+2.0(χCr) ] 及び (%N)×1
02とン容接欠陥の有無との関係を第2図に示す。
Examples wJl of the present invention having the chemical composition typically shown in Table 1
4 and comparative steels 5 to 8, [(%Mn)-0,3(
%Ni)+2.0(χCr)] and (%N)×1
The relationship between 02 and the presence or absence of contact defects is shown in FIG.

次に、第2表に示す化学成分を有する本発明鋼A−D及
び比較ME−1を大気溶解又は真空溶解にて溶製し、鋼
塊又は鋼片とし、鍛造後、熱間圧延して、表に示す所定
の厚さの鋼板を得た。各鋼板の引張特性、−269℃に
おけるVシャルピー吸収エネルギー(VE−269)及
び−269℃における透磁率を表に示す。これら鋼板に
ついて、横向き電子ビーム溶接を施し、溶接金属中のo
lと溶接金属のVB−269を求めた。結果を第2表に
示す。
Next, the inventive steels A-D and comparative ME-1 having the chemical components shown in Table 2 are melted by air melting or vacuum melting to form steel ingots or slabs, which are then forged and then hot rolled. A steel plate having the predetermined thickness shown in the table was obtained. The tensile properties, V Charpy absorbed energy (VE-269) at -269°C and magnetic permeability at -269°C of each steel plate are shown in the table. These steel plates were subjected to horizontal electron beam welding, and the o
1 and VB-269 of the weld metal were determined. The results are shown in Table 2.

次に、本発明鋼A−D及び比較鋼E−1を真空溶解にて
溶製し、鋼塊又は鋼片とし、鍛造後、熱間圧延して、表
に示す所定の厚さの鋼板を得た。
Next, the inventive steel A-D and the comparative steel E-1 are melted in vacuum to form a steel ingot or slab, forged, and then hot rolled to form a steel plate with a predetermined thickness shown in the table. Obtained.

このw4板について、横向き電子ビーム溶接を施し、X
線透過試験にて溶接欠陥の有無を調べた。結果を第2表
に示す。
This W4 plate was subjected to horizontal electron beam welding,
The presence or absence of welding defects was investigated using a ray transmission test. The results are shown in Table 2.

比較鋼はいずれもO量が0. OO30%よりも多く、
更に、比較鋼EはN量が著しく少なく、また、比較鋼E
及びFは低Mnfiである。従って、比較鋼Eは母材耐
力が著しく小さいうえに、VE−269もまた小さい。
All comparison steels had an O content of 0. More than OO30%,
Furthermore, comparative steel E has a significantly lower amount of N, and comparative steel E
and F is low Mnfi. Therefore, comparative steel E has a significantly low base metal yield strength, and VE-269 also has a low yield strength.

比較鋼F低Mn鋼であって、〔(%Mn)−0,3(%
Ni)+2.0(%Cr)〕 /(%N)×102 (
以下A値という。)が1.8であり、一方、比較鋼Gは
低N1f4であって、A値が1.7であるので、いずれ
も溶接欠陥(ブローホール)が発生する。比較iH及び
Iは特にO量が多いので、A値は0.20を越えるもの
の、vE−zb。が小さい。
Comparative steel F is a low Mn steel, [(%Mn)-0,3(%
Ni)+2.0(%Cr)] /(%N)×102 (
Hereinafter referred to as A value. ) is 1.8, and on the other hand, comparative steel G has a low N1f4 and an A value of 1.7, so welding defects (blowholes) occur in both cases. Comparative iH and I have a particularly large amount of O, so although the A value exceeds 0.20, vE-zb. is small.

これら比較鋼に対して、本発明鋼によれば、母材特性に
すぐれるのみならず、電子ビーム溶接性°にもすぐれる
ことが明らかである。
Compared to these comparative steels, it is clear that the steel of the present invention not only has superior base metal properties but also superior electron beam weldability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶接金属中の酸素量と溶接金属の一269℃
におけるVシャルピー吸収エネルギー(シB−249)
との関係を示すグラフ、第2図は、電子ビーム溶接にお
ける溶接欠陥の発生の有無と化学成分との関係を示すグ
ラフである。 特許出願人  株式会社神戸製鋼所 代理人 弁理士  牧 野 逸 部 第2図 手続補正書(自発) 昭和60年 9月 4日
Figure 1 shows the amount of oxygen in the weld metal and the temperature of the weld metal at 269°C.
V Charpy absorbed energy in (SiB-249)
FIG. 2 is a graph showing the relationship between chemical components and the presence or absence of welding defects in electron beam welding. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Ittsu Makino Department Figure 2 Procedural Amendment (Voluntary) September 4, 1985

Claims (8)

【特許請求の範囲】[Claims] (1)重量%で C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)x10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(1) C0.01-0.15% by weight, Si0.01-1.50%, Mn10-30%, P0.03% or less, S0.01% or less, O0.0030% or less, Ni0.5 -15%, 12-25% Cr, and 0.10-0.28% N, and [(%Mn)-0.3(%Ni)+2.0(%Cr)]
/ (%N)
(2)重量%で (a)C0.01〜0.15%、  Si0.01〜1.50%、  Mn10〜30%、  P0.03%以下、  S0.01%以下、  O0.0030%以下、  Ni0.5〜15%、  Cr12〜25%、及び  N0.10〜0.28%を含有すると共に、(b)N
b、V、Ti及びAlよりなる群から選ばれる少なくと
も1種の元素を総量にて0.01〜0.50%含有し、
且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)x10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(2) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) N
Contains 0.01 to 0.50% in total of at least one element selected from the group consisting of b, V, Ti and Al,
And [(%Mn)-0.3(%Ni)+2.0(%Cr)]
/ (%N)
(3)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Cu
、Mo及びWよりなる群から選ばれる少なくとも1種の
元素を総量にて0.01〜2.00%含有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(3) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Cu
, Mo and W in a total amount of 0.01 to 2.00%, and [(%Mn)-0.3(%Ni)+2.0(% Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
(4)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Ca
、Ce及びZrよりなる群から選ばれる少なくとも1種
の元素を総量にて0.001〜0.050%含有し、且
つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(4) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Ca
, Ce and Zr in a total amount of 0.001 to 0.050%, and [(%Mn)-0.3(%Ni)+2.0(% Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
(5)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Nb
、V、Ti及びAlよりなる群から選ばれる少なくとも
1種の元素を総量にて0.01〜0.50%と、 (c)Cu、Mo及びWよりなる群から選ばれる少なく
とも1種の元素を総量にて0.01〜2.00%とを含
有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(5) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Nb
, at least one element selected from the group consisting of V, Ti, and Al in a total amount of 0.01 to 0.50%, and (c) at least one element selected from the group consisting of Cu, Mo, and W. 0.01 to 2.00% in total amount, and [(%Mn)-0.3(%Ni)+2.0(%Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
(6)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Nb
、V、Ti及びAlよりなる群から選ばれる少なくとも
1種の元素を総量にて0.01〜0.50%と、 (c)Ca、Ce及びZrよりなる群から選ばれる少な
くとも1種の元素を総量にて0.001〜0.050%
とを含有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(6) In weight% (a) C 0.01 to 0.15%, Si 0.01 to 1.50%, Mn 10 to 30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Nb
, V, Ti, and Al in a total amount of 0.01 to 0.50%, and (c) at least one element selected from the group consisting of Ca, Ce, and Zr. 0.001-0.050% in total amount
and [(%Mn)-0.3(%Ni)+2.0(%Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
(7)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Ca
、Ce及びZrよりなる群から選ばれる少なくとも1種
の元素を総量にて0.001〜0.050%と、 (c)Cu、Mo及びWよりなる群から選ばれる少なく
とも1種の元素を総量にて0.01〜2.00%とを含
有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(7) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Ca
, at least one element selected from the group consisting of Ce and Zr in a total amount of 0.001 to 0.050%, and (c) a total amount of at least one element selected from the group consisting of Cu, Mo and W. contains 0.01 to 2.00%, and [(%Mn)-0.3(%Ni)+2.0(%Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
(8)重量%で (a)C0.01〜0.15%、 Si0.01〜1.50%、 Mn10〜30%、 P0.03%以下、 S0.01%以下、 O0.0030%以下、 Ni0.5〜15%、 Cr12〜25%、及び N0.10〜0.28%を含有すると共に、(b)Nb
、V、Ti及びAlよりなる群から選ばれる少なくとも
1種の元素を総量にて0.01〜0.50%と、 (c)Ca、Ce及びZrよりなる群から選ばれる少な
くとも1種の元素を総量にて0.001〜0.050%
と、 (d)Cu、Mo及びWよりなる群から選ばれる少なく
とも1種の元素を総量にて0.01〜2.00%とを含
有し、且つ、 〔(%Mn)−0.3(%Ni)+2.0(%Cr)〕
/(%N)×10^2≧2.0を満足し、 残部鉄及び不可避的不純物よりなることを特徴とする電
子ビーム溶接性にすぐれた極低温用高Mn非磁性鋼。
(8) In weight% (a) C 0.01-0.15%, Si 0.01-1.50%, Mn 10-30%, P 0.03% or less, S 0.01% or less, O 0.0030% or less, Contains 0.5-15% Ni, 12-25% Cr, and 0.10-0.28% N, and (b) Nb
, V, Ti, and Al in a total amount of 0.01 to 0.50%, and (c) at least one element selected from the group consisting of Ca, Ce, and Zr. 0.001-0.050% in total amount
(d) contains 0.01 to 2.00% in total of at least one element selected from the group consisting of Cu, Mo and W, and [(%Mn)-0.3( %Ni)+2.0(%Cr)]
/(%N)×10^2≧2.0, and the balance is iron and unavoidable impurities. A high Mn nonmagnetic steel for cryogenic use with excellent electron beam weldability.
JP60166614A 1985-07-27 1985-07-27 High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability Granted JPS6227557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166614A JPS6227557A (en) 1985-07-27 1985-07-27 High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166614A JPS6227557A (en) 1985-07-27 1985-07-27 High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability

Publications (2)

Publication Number Publication Date
JPS6227557A true JPS6227557A (en) 1987-02-05
JPH0586462B2 JPH0586462B2 (en) 1993-12-13

Family

ID=15834571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166614A Granted JPS6227557A (en) 1985-07-27 1985-07-27 High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability

Country Status (1)

Country Link
JP (1) JPS6227557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106643A (en) * 1989-09-21 1991-05-07 Iwata Denko Kk Object having insulating resin layer
WO2020054553A1 (en) * 2018-09-12 2020-03-19 Jfeスチール株式会社 Steel material and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate
JPS61143563A (en) * 1984-12-17 1986-07-01 Nippon Steel Corp Rust resistant, tough and hard high-manganese steel for use at very low temperature
JPS61170545A (en) * 1985-01-24 1986-08-01 Nippon Steel Corp High manganese steel for very low temperature use having superior rust resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013022A (en) * 1983-07-04 1985-01-23 Kobe Steel Ltd Production of nonmagnetic steel plate
JPS61143563A (en) * 1984-12-17 1986-07-01 Nippon Steel Corp Rust resistant, tough and hard high-manganese steel for use at very low temperature
JPS61170545A (en) * 1985-01-24 1986-08-01 Nippon Steel Corp High manganese steel for very low temperature use having superior rust resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106643A (en) * 1989-09-21 1991-05-07 Iwata Denko Kk Object having insulating resin layer
WO2020054553A1 (en) * 2018-09-12 2020-03-19 Jfeスチール株式会社 Steel material and production method therefor
JP6750748B1 (en) * 2018-09-12 2020-09-02 Jfeスチール株式会社 Steel material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0586462B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
JP5793283B2 (en) Ferritic stainless steel with few black spots
JP5861599B2 (en) Austenitic stainless steel for nuclear reactors
JP5622707B2 (en) Welding materials for cryogenic steel
JP2009013431A (en) Low chromium-containing stainless steel excellent in the corrosion resistance of repeatedly welded heat-affected zone, and producing method thereof
JP3851394B2 (en) High Mn stainless steel welding wire for cryogenic temperatures with excellent resistance to welding hot cracking
JP6961518B2 (en) Ferrite / austenite two-phase stainless steel plate for tank band and tank band and spot welding method using this
JP2001001181A (en) Wire for gas shielded arc welding
JP5469648B2 (en) Welding materials for cryogenic steel
JPS63157795A (en) Wire for high tensile steel
JPS6227557A (en) High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability
JPH0657379A (en) Non-magnetic steel excellent in hot workability and corrosion resistance
JPS62110894A (en) Welding wire for nonmagnetic steel
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JPS628504B2 (en)
WO1997006286A1 (en) Stainless steels excellent in thermal neutron absorption
JPS6075551A (en) Stainless nonmagnetic steel for electronic device parts
WO2021201122A1 (en) Welded structure and storage tank
JP7370830B2 (en) Nickel-based alloy welding materials, welding materials for nuclear reactors, nuclear equipment and structures, and repair methods for nuclear equipment and structures
JPS61147990A (en) Submerged arc welding wire for high tension steel
JP2942450B2 (en) Gas shielded arc welding method with less welding deformation
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JP2022023289A (en) Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method
JP2001179484A (en) Welded joint for steel structure and producing method therefor
JPH0237830B2 (en) 9CRR1MOKOYOSETSUYOWAIYA