JP2022023289A - Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method - Google Patents

Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method Download PDF

Info

Publication number
JP2022023289A
JP2022023289A JP2020126118A JP2020126118A JP2022023289A JP 2022023289 A JP2022023289 A JP 2022023289A JP 2020126118 A JP2020126118 A JP 2020126118A JP 2020126118 A JP2020126118 A JP 2020126118A JP 2022023289 A JP2022023289 A JP 2022023289A
Authority
JP
Japan
Prior art keywords
austenite
phase
ferrite
hardness
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020126118A
Other languages
Japanese (ja)
Inventor
純一 濱田
Junichi Hamada
憲博 神野
Norihiro Jinno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2020126118A priority Critical patent/JP2022023289A/en
Publication of JP2022023289A publication Critical patent/JP2022023289A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a ferrite-austenite 2-phase stainless steel plate having an excellent spot weldability, fastening parts using the same, and an appropriate welding method.SOLUTION: There is provided a ferrite-austenite 2-phase stainless steel plate for fastening parts, that contains Mn: 2-5%, Ni: 0.1-6.0%, Cr: 15.0-23.0%, Mo: 0.01-1.0%, Cu: 0.01-2.0%, N: 0.005-0.30%, B: 0.0005-0.0100%, Al: 0.01-0.5%, V: 0.01-0.50%, Ca: 0.0002-0.0100%, Mg: 0.0002-0.0100%, exhibits a two-phase structure of ferrite phase and austenite phase, and has 260 or less of hardness by Vickers hardness. There is provided fastening parts using the steel plates, in which austenite phase ratio of spot weld nugget is 10% or more.SELECTED DRAWING: Figure 4

Description

本発明は、自動車の締結部品、特に燃料部品を締結するために使用するタンクバンドへの適用に有効な、スポット溶接性に優れた、フェライト相とオーステナイト相から成る締結部品用フェライト・オーステナイト2相ステンレス鋼板およびこれを用いた締結部品ならびにスポット溶接方法に関するものである。 The present invention is a ferrite austenite two phase for fastening parts composed of a ferrite phase and an austenite phase, which is effective for application to fastener parts of automobiles, particularly tank bands used for fastening fuel parts, and has excellent spot weldability. It relates to a stainless steel plate, fastening parts using the same, and a spot welding method.

近年、排気ガス規制の強化が更に強まる他、燃費性能の向上やダウンサイジング等の動きから自動車の車体軽量化が進められており、各部材の薄肉化が急務である。自動車の締結部品であるフランジ、ブラケット、ステー、タンクバンドには主に鉄系材料が使用されており、ステンレス鋼の場合フェライト系ステンレス鋼板が適用される場合が多い。これらの部品は各種排気部品や燃料部品等を車体と結合するためのものであり、自動車走行時の振動、衝突時の衝撃、排気管を流れる排気ガスによる熱環境に耐える必要があり、高い信頼性が求められる。また、各部品は溶接によって結合されることが多く、溶接部の靭性および高強度が要求される。例えばステンレス製の燃料系部品の場合、燃料タンクを支持するタンクバンドへの高耐食フェライト系ステンレス鋼板であるSUS436L(17%Cr-0.2%Ti-1%Mo)の適用が特許文献1~3に開示されている。しかしながら、該鋼は低炭素・窒素成分に起因してフェライト単相組織を有することから、部品を溶接した際に溶接組織が粗大化してしまい、靭性や強度が低下する課題があった。また、素材の引張強度が450MPa程度であるため、所定の締結力を得るためには2mm以上の板厚とする必要があった。車体の軽量化を進めるためには、タンクバンドのような締結部品に対しても薄肉化を行う必要があるが、燃料タンクは重要保安部品であるため、これを支持するタンクバンドには極めて高い信頼性、強度が必要であり、従来の材料を用いる限り薄肉化は困難であった。 In recent years, in addition to the tightening of exhaust gas regulations, the weight reduction of automobile bodies has been promoted due to the improvement of fuel efficiency and the movement of downsizing, and there is an urgent need to reduce the thickness of each member. Iron-based materials are mainly used for flanges, brackets, stays, and tank bands that are fastening parts of automobiles, and in the case of stainless steel, ferrite-based stainless steel plates are often applied. These parts are for connecting various exhaust parts and fuel parts to the car body, and they need to withstand the vibration during driving of a car, the impact at the time of a collision, and the thermal environment due to the exhaust gas flowing through the exhaust pipe, and are highly reliable. Sex is required. In addition, each part is often joined by welding, and the toughness and high strength of the welded portion are required. For example, in the case of stainless steel fuel-based parts, the application of SUS436L (17% Cr-0.2% Ti-1% Mo), which is a highly corrosion-resistant ferritic stainless steel plate, to the tank band supporting the fuel tank is Patent Documents 1 to 1. It is disclosed in 3. However, since the steel has a ferrite single-phase structure due to the low carbon / nitrogen component, there is a problem that the welded structure becomes coarse when the parts are welded, and the toughness and strength are lowered. Further, since the tensile strength of the material is about 450 MPa, it is necessary to make the plate thickness 2 mm or more in order to obtain a predetermined fastening force. In order to reduce the weight of the car body, it is necessary to thin the fastener parts such as the tank band, but since the fuel tank is an important safety part, it is extremely expensive for the tank band that supports it. Reliability and strength are required, and thinning is difficult as long as conventional materials are used.

一方、フェライト相とオーステナイト相から成る2相ステンレス鋼板は、耐食性に優れているとともに、微細組織であるため高強度であることから、化学プラントなど広範囲に使用されている。近年では省合金2相ステンレス鋼板が家電、各種構造物、自動車、二輪車および鉄道等の輸送機器への適用も進められている。従来の代表的な2相ステンレス鋼は、SUS329J4L(25%Cr-7%Ni-3%Mo-0.1%N)に代表される高Ni、Mo含有であったが、最近ではNi量を低減したり、Moを含有しない省合金フェライト・オーステナイト2相ステンレス鋼が開発され、種々の分野に適用されつつある。このような省Ni、Mo含有鋼は、MnやNを添加することでオーステナイト量の調整や耐食性の確保が成されており、SUS304(18%Cr-8%Ni)やSUS316(18%Cr-10%Ni-2%Mo)の代替としても期待されている。 On the other hand, a two-phase stainless steel sheet composed of a ferrite phase and an austenite phase is widely used in chemical plants and the like because it has excellent corrosion resistance and high strength due to its fine structure. In recent years, alloy-saving duplex stainless steel sheets have been applied to home appliances, various structures, automobiles, motorcycles, railways, and other transportation equipment. Conventional typical duplex stainless steels contain high Ni and Mo represented by SUS329J4L (25% Cr-7% Ni-3% Mo-0.1% N), but recently the amount of Ni has been increased. Alloy-saving ferrite austenite two-phase stainless steels that are reduced or do not contain Mo have been developed and are being applied to various fields. In such Ni- and Mo-containing steels, the amount of austenite is adjusted and corrosion resistance is ensured by adding Mn and N, and SUS304 (18% Cr-8% Ni) and SUS316 (18% Cr-) are used. It is also expected to be an alternative to 10% Ni-2% Mo).

特許文献4には、成分の他に形状アスペクトやオーステナイト粒の面積率等を所定の範囲にすることで成形性に優れるフェライト・オーステナイト系ステンレス鋼板の技術が開示されている。特許文献5~7にはオーステナイト相の面積率の他、集合組織や粒径を規定することで成形性に優れた2相ステンレス鋼板を得る技術が開示されている。更に、特許文献8には溶接熱影響部の耐食性と靭性が良好な省合金二相ステンレス鋼板を得ることが開示されている。しかしながら板厚が10mm以上の厚鋼板に対する大入熱溶接(サブマージアーク溶接)を前提とした技術であり、自動車締結部品に使用される薄鋼板の靭性や耐疲労強度に関する知見はなかった。特許文献8には、二相ステンレス鋼において介在物の密度を規定して溶接部の衝撃値や疲労強度を確保する技術が開示されているが、TIG溶接を対象としたものである。特に自動車燃料タンクを支持するタンクバンドはスポット溶接で結合される場合が多く、この点についての先行技術は少ない。特許文献9には、スポット溶接部のナゲット形状と強度を確保したフェライト・オーステナイト二相ステンレス鋼板およびこれを用いたタンクバンドならびに適正な溶接方法が開示されている。 Patent Document 4 discloses a technique of a ferrite austenitic stainless steel sheet having excellent formability by setting a shape aspect, an area ratio of austenitic grains, and the like in a predetermined range in addition to the components. Patent Documents 5 to 7 disclose a technique for obtaining a duplex stainless steel sheet having excellent formability by defining an texture and a particle size in addition to the area ratio of the austenite phase. Further, Patent Document 8 discloses that an alloy-saving duplex stainless steel sheet having good corrosion resistance and toughness of a weld heat affected zone can be obtained. However, this technology is premised on large heat input welding (submerged arc welding) for thick steel sheets with a plate thickness of 10 mm or more, and there is no knowledge about the toughness and fatigue resistance of thin steel sheets used for automobile fasteners. Patent Document 8 discloses a technique for defining the density of inclusions in duplex stainless steel and ensuring the impact value and fatigue strength of the welded portion, but the present invention is intended for TIG welding. In particular, tank bands that support automobile fuel tanks are often joined by spot welding, and there is little prior art in this regard. Patent Document 9 discloses a ferrite-duplex stainless steel plate that secures the nugget shape and strength of a spot welded portion, a tank band using the same, and an appropriate welding method.

特開2006-144040号公報Japanese Unexamined Patent Publication No. 2006-144040 特開2004-330993号公報Japanese Unexamined Patent Publication No. 2004-330991 特許第3941762号公報Japanese Patent No. 3941762 特許第5869922号公報Japanese Patent No. 5869922 2017-88945号公報2017-88945 Gazette 特許第6140856号公報Japanese Patent No. 6140856 特許第5345070号公報Japanese Patent No. 5345070 特開2019-157219号公報Japanese Unexamined Patent Publication No. 2019-157219 特開2019-157218号公報Japanese Unexamined Patent Publication No. 2019-157218

しかしながら、母材とスポット溶接部とを有する締結部品において、熱的に不安定な金属組織となる二相ステンレス鋼を母材として用い、通常のスポット溶接方法によってスポット溶接部を形成したのでは、強度や靭性を十分満足しない問題点があった。そこで、本発明ではスポット溶接時の組織形成を詳細に研究し、靭性を確保するためのフェライト、オーステナイト相構造の適正化を図るとともに、それを達成し得る鋼成分とスポット溶接条件を検討した。 However, in a fastening part having a base metal and a spot welded portion, if duplex stainless steel having a thermally unstable metal structure is used as the base metal and the spot welded portion is formed by a normal spot welding method, it may be possible. There was a problem that the strength and toughness were not sufficiently satisfied. Therefore, in the present invention, the microstructure formation during spot welding is studied in detail, the ferrite and austenite phase structures for ensuring toughness are optimized, and the steel components and spot welding conditions that can achieve this are investigated.

本発明は、高価な合金元素に頼らず、フェライト・オーステナイト2相ステンレス鋼板のスポット溶接部の信頼性を高めることのできる、締結部品用フェライト・オーステナイト2相ステンレス鋼板およびこれを用いた締結部品ならびにスポット溶接方法を提供することを目的とする。 The present invention is a ferrite / austenite two-phase stainless steel plate for fastening parts, which can enhance the reliability of spot welds of a ferrite / austenite two-phase stainless steel plate without relying on expensive alloying elements, and fastening parts using the same. It is an object of the present invention to provide a spot welding method.

上記課題を解決するために、本発明者らはフェライト・オーステナイト2相ステンレス鋼板のスポット溶接におけるナゲット形成ならびにその機械的特性について詳細に調査した。そして、かかる目的を達成すべく種々の検討を重ねた結果、以下の知見を得た。 In order to solve the above problems, the present inventors have investigated in detail the nugget formation in spot welding of a ferrite austenite two-phase stainless steel plate and its mechanical properties. As a result of repeated studies to achieve this purpose, the following findings were obtained.

本発明者らは,省合金2相ステンレス鋼板において、スポット溶接のナゲット組織と破断形態の安定化のために鋼成分を調整するとともに硬さを規定することによって優れたスポット溶接性が得られることを知見した。スポット溶接とは、2枚の素材を電極棒で加圧しつつ電流を流し、接触面の抵抗熱により素材内部で金属が溶解凝固して接合する手法であり、特にタンクバンドの結合に多用される。素材で溶解凝固した溶接部をナゲットと呼ぶ。スポット溶接はアーク溶接に比べて溶接温度が低く、溶接による変形や残留応力が小さい長所があるが、剥離試験を行った際に脆性的な破壊が生じないように溶接組織を安定化させる必要がある。材質によって電極を押し付ける加圧力、電流値、通電時間を変える必要があり、適正な溶接条件にしないと必要な強度が出ない他、接合界面で脆性的に破断する課題がある。本発明の材料の用途は自動車を主体とするタンクバンドであり、スポット溶接部にはせん断および剥離応力が作用する。その際に接合界面で脆性的に破壊する界面破壊が生じると溶接部の信頼性が得られない。本発明では、適正なナゲット組織を得るために素材の鋼成分とともに、硬さを規定する。また、スポット溶接時に二段通電を行うことにより、スポット溶接ナゲット部4のオーステナイト相を所定の量確保し、母材との硬度差を小さくすることにより、溶接部の信頼性を高めることを知見した。これにより、従来の鋼に比べて薄肉軽量化に寄与するタンクバンド等の締結部品を提供することに成功した。 In the alloy-saving duplex stainless steel sheet, the present inventors can obtain excellent spot weldability by adjusting the steel composition and defining the hardness in order to stabilize the nugget structure and the fracture shape of spot welding. Was found. Spot welding is a method in which an electric current is passed while pressurizing two materials with an electrode rod, and the metal melts and solidifies inside the material due to the resistance heat of the contact surface to bond them. .. The weld that is melted and solidified with the material is called a nugget. Spot welding has the advantages of lower welding temperature than arc welding and less deformation and residual stress due to welding, but it is necessary to stabilize the weld structure so that brittle fracture does not occur when performing a peeling test. be. It is necessary to change the pressing force for pressing the electrode, the current value, and the energization time depending on the material, and the required strength cannot be obtained unless proper welding conditions are met, and there is a problem of brittle fracture at the joint interface. The material of the present invention is used for a tank band mainly for automobiles, and shear and peel stress act on spot welds. At that time, if the interface fracture occurs brittlely at the joint interface, the reliability of the welded portion cannot be obtained. In the present invention, the hardness is defined together with the steel component of the material in order to obtain an appropriate nugget structure. It was also found that the reliability of the welded portion is improved by securing a predetermined amount of austenite phase in the spot welded nugget portion 4 and reducing the difference in hardness from the base metal by performing two-stage energization during spot welding. did. As a result, we have succeeded in providing fastener parts such as tank bands that contribute to thinning and weight reduction compared to conventional steel.

本発明は上記知見に基づいて完成したもので、その発明の要旨は、次の通りのものである。 The present invention has been completed based on the above findings, and the gist of the invention is as follows.

(1)質量%にて、
C:0.001~0.05%、Si:0.01~1.0%、Mn:2~5%、P≦0.05%、S≦0.005%、Ni:0.1~6.0%、Cr:15.0~23.0%、Mo:0.01~1.0%、Cu:0.01~2.0%、N:0.005~0.30%、B:0.0005~0.0100%、Al:0.01~0.5%、V:0.01~0.50%、Ca:0.0002~0.0100%、O:0.0001~0.0100%、Mg:0.0002~0.0100%を含有し、残部がFeおよび不可避的不純物からなり、フェライト相とオーステナイト相の2相組織を示し、ビッカース硬度による硬さが260以下であることを特徴とする締結部品用フェライト・オーステナイト2相ステンレス鋼板。
(2)さらに前記Feの一部に替えて、質量%にて、
Ti:0.005~0.30%、Nb:0.005~0.30%、Zr:0.005~0.30%、Sn:0.005~0.50%、W:0.01~2.0%、Mg:0.0002~0.0100%、Sb:0.005~0.5%、Ta:0.005~0.3%、Hf:0.005~0.3%、Co:0.01~0.5%、REM:0.001~0.05%、Ga:0.0002~0.1%の1種以上を含有することを特徴とする(1)に記載の締結部品用フェライト・オーステナイト2相ステンレス鋼板。
(1) By mass%
C: 0.001 to 0.05%, Si: 0.01 to 1.0%, Mn: 2 to 5%, P ≦ 0.05%, S ≦ 0.005%, Ni: 0.1 to 6 .0%, Cr: 15.0 to 23.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 2.0%, N: 0.005 to 0.30%, B: 0.0005 to 0.0100%, Al: 0.01 to 0.5%, V: 0.01 to 0.50%, Ca: 0.0002 to 0.0100%, O: 0.0001 to 0. It contains 0100%, Mg: 0.0002 to 0.0100%, the balance consists of Fe and unavoidable impurities, shows a two-phase structure of ferrite phase and austenite phase, and has a hardness of 260 or less due to Vickers hardness. A ferrite austenite two-phase stainless steel plate for fastening parts.
(2) Further, in place of a part of the Fe, in mass%.
Ti: 0.005 to 0.30%, Nb: 0.005 to 0.30%, Zr: 0.005 to 0.30%, Sn: 0.005 to 0.50%, W: 0.01 to 2.0%, Mg: 0.0002 to 0.0100%, Sb: 0.005 to 0.5%, Ta: 0.005 to 0.3%, Hf: 0.005 to 0.3%, Co The conclusion according to (1), which contains one or more of: 0.01 to 0.5%, REM: 0.001 to 0.05%, and Ga: 0.0002 to 0.1%. Ferrite austenite two-phase stainless steel plate for parts.

(3)スポット溶接ナゲット部のオーステナイト相率が10%以上であることを特徴とする(1)または(2)に記載のフェライト・オーステナイト2相ステンレス鋼板を用いた締結部品。
(4)スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度で50以下であることを特徴とする(3)に記載の締結部品。
(5)スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度で50以下であることを特徴とする(1)または(2)に記載のフェライト・オーステナイト2相ステンレス鋼板を用いた締結部品。
(3) Fastening component using the ferrite austenite two-phase stainless steel plate according to (1) or (2), wherein the austenite phase ratio of the spot welded nugget portion is 10% or more.
(4) The fastener according to (3), wherein the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness.
(5) The ferrite austenite two-phase stainless steel plate according to (1) or (2), characterized in that the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness, was used. Fastening parts.

(6)(3)から(5)までのいずれか1つに記載の締結部品にスポット溶接を施す際に、2段通電を行い、2段目の通電において電流を2.5kA以上6.0kA以下、通電サイクルを10サイクル以上とすることを特徴とするスポット溶接方法。 (6) When spot welding the fastener part according to any one of (3) to (5), two-stage energization is performed, and in the second-stage energization, the current is 2.5 kA or more and 6.0 kA. Hereinafter, a spot welding method characterized in that the energization cycle is 10 cycles or more.

以上の説明から明らかなように、自動車締結部品用に従来適用されているフェライト系ステンレス鋼板のタンクバンドの課題を解消するとともに、スポット溶接部のナゲット組織を安定化させることで強度を確保でき、特に自動車燃料タンクの締結部品に適用することで、既存鋼よりも薄肉・軽量化等のメリットが得られる。また、自動車分野以外の輸送機器、家電製品、建築部材としての適用も可能である。 As is clear from the above explanation, the problem of the tank band of the ferritic stainless steel plate conventionally applied for automobile fasteners can be solved, and the strength can be secured by stabilizing the nugget structure of the spot weld. In particular, by applying it to fastener parts of automobile fuel tanks, merits such as thinner wall and lighter weight can be obtained compared to existing steel. It can also be applied to transportation equipment, home appliances, and building materials other than the automobile field.

スポット溶接部のナゲット形状を示す図である。It is a figure which shows the nugget shape of a spot weld part. スポット溶接部の剥離試験を示す図である。It is a figure which shows the peeling test of a spot weld part. 二段通電時の時間と電流および温度の関係を模式的に示した図である。It is a figure which showed schematically the relationship between the time, the current, and the temperature at the time of two-stage energization. 発明鋼と比較鋼のスポット溶接ナゲット部の組織を比較した図である。It is a figure which compared the structure of the spot weld nugget part of the invention steel and the comparative steel.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず、本発明のフェライト・オーステナイト2相ステンレス鋼板の化学成分についての限定理由について説明する。ここで、成分についての「%」は質量%を意味する。 First, the reasons for limiting the chemical composition of the ferrite austenite two-phase stainless steel plate of the present invention will be described. Here, "%" for a component means mass%.

Cは、0.10%超の添加で成形性と耐食性が低下する他、溶接部で固溶して著しく硬質化させるため、上限を0.05%とした。しかしながら、オーステナイト相を安定的に生成させて組織微細化を得るために0.001%以上の添加が必要である。更に、精錬コスト、溶接部の鋭敏化抑制を考慮すると0.015~0.03%が望ましい。 The upper limit of C was set to 0.05% because the addition of more than 0.10% deteriorates the moldability and corrosion resistance, and also causes solid solution in the welded portion to remarkably harden the material. However, it is necessary to add 0.001% or more in order to stably generate the austenite phase and obtain microstructural miniaturization. Further, considering the refining cost and the suppression of sensitization of the welded portion, 0.015 to 0.03% is desirable.

Siは、脱酸剤としても有用な元素であり、固溶強化による高疲労強度化につながるが、1.0%超の添加により熱間加工性が劣化して製造し難くなる他、溶接部の靭性低下が生じるため、1.0%以下とした。しかしながら、脱酸のためには0.01%以上必要なことから、下限を0.01%とした。更に、精錬コスト、耐酸化性、耐食性を考慮すると、0.3%~0.8%が望ましい。 Si is an element that is also useful as a deoxidizing agent and leads to high fatigue strength by strengthening the solid solution. Since the toughness of the product is reduced, the content was set to 1.0% or less. However, since 0.01% or more is required for deoxidation, the lower limit is set to 0.01%. Further, considering the refining cost, oxidation resistance and corrosion resistance, 0.3% to 0.8% is desirable.

Mnは、脱酸剤として添加される元素であるとともに、Niに代わりオーステナイト相を安定的に生成させる元素である。本発明ではオーステナイト相率を40%以上とするために2%以上添加するが、過度に添加するとオーステナイト相が軟化して疲労亀裂進展の抵抗とならないため上限を5%とする。更に、耐酸化性や製造時の酸洗性を考慮すると、2.5~4.5%が望ましい。 Mn is an element added as a deoxidizing agent and an element that stably produces an austenite phase instead of Ni. In the present invention, 2% or more is added in order to make the austenite phase ratio 40% or more, but if it is added excessively, the austenite phase softens and does not become a resistance to fatigue crack growth, so the upper limit is set to 5%. Further, considering the oxidation resistance and the pickling property at the time of manufacture, 2.5 to 4.5% is desirable.

Pは、不純物として含有され製造時の熱間加工性や溶接部の靭性を劣化させるため、上限を0.05%とした。但し、過度の低減は精錬コストの増加につながる他、リン化物形成による亀裂発生を考慮すると、0.02~0.04%が望ましい。 Since P is contained as an impurity and deteriorates hot workability at the time of manufacture and toughness of the welded portion, the upper limit is set to 0.05%. However, excessive reduction leads to an increase in refining cost, and 0.02 to 0.04% is desirable in consideration of crack generation due to phosphide formation.

Sは、不純物として含有され製造時の熱間加工性や溶接部の靭性を劣化させるため、0.005%以下とした。但し、過度の低減は精錬コストの増加につながるため0.0002%以上が望ましい。 S was set to 0.005% or less because it was contained as an impurity and deteriorated the hot workability at the time of manufacture and the toughness of the welded portion. However, excessive reduction leads to an increase in refining cost, so 0.0002% or more is desirable.

Niはオーステナイト相を安定的に生成させる元素であり、溶接組織微細化と靭性向上に寄与するため0.1%を下限とする。一方、6.0%超の添加によりコスト高になるため上限を6.0%とした。但し、過度な低減は耐食性の劣化につながる場合がある他、応力腐食割れの観点から0.5~3.0%が望ましい。 Ni is an element that stably produces an austenite phase, and the lower limit is 0.1% in order to contribute to the miniaturization of the weld structure and the improvement of toughness. On the other hand, the upper limit was set to 6.0% because the cost increases due to the addition of more than 6.0%. However, excessive reduction may lead to deterioration of corrosion resistance, and 0.5 to 3.0% is desirable from the viewpoint of stress corrosion cracking.

Crは耐食性や耐酸化性を確保するために15.0%以上添加する。一方、多量の添加は合金コストの増加につながる他、オーステナイト相率が困難になる他、溶接組織が粗大化するため上限を23.0%とした。更に、靭性等の製造性や隙間腐食性を考慮すると、19~22%が望ましい。 Cr is added in an amount of 15.0% or more in order to secure corrosion resistance and oxidation resistance. On the other hand, the addition of a large amount leads to an increase in alloy cost, austenite phase ratio becomes difficult, and the weld structure becomes coarse, so the upper limit is set to 23.0%. Further, considering the manufacturability such as toughness and the crevice corrosiveness, 19 to 22% is desirable.

Nは2相ステンレス鋼の耐食性や強度を向上させるとともに、オーステナイトを安定的に生成させて溶接組織の微細化に寄与するため、特に省Ni2相ステンレス鋼には必要な元素である。本発明では0.005%以上の添加を行うが、0.30%超添加するとオーステナイト相率が過度に多くなる他、溶接部の固溶Nによる硬質化ならびにCrNの生成による低靭性化、低耐食化が生じるため上限を0.30%とする。また、精錬コストや延性を考慮すると、0.01~0.25%が望ましい。更に、製造性や高温強度を考慮すると、0.05~0.20%が望ましい。 N is an element particularly necessary for Ni-saving two-phase stainless steel because it improves the corrosion resistance and strength of the two-phase stainless steel and stably produces austenite to contribute to the miniaturization of the welded structure. In the present invention, 0.005% or more is added, but if more than 0.30% is added, the austenite phase ratio becomes excessively large, and the welded part is hardened by the solid solution N and the toughness is lowered by the formation of Cr 2N. The upper limit is set to 0.30% because low corrosion resistance occurs. Further, considering the refining cost and ductility, 0.01 to 0.25% is desirable. Further, considering manufacturability and high temperature strength, 0.05 to 0.20% is desirable.

Moは、耐食性や高温強度向上に寄与する元素であるとともに、疲労強度向上に有効な元素であるため、0.01%以上添加する。また、偏析元素であるため溶接凝固時にフェライト/オーステナイト相界面に濃化し、組織微細化に寄与して靭性や疲労強度の向上に有効であることを見出した。一方、1.0%超の添加はコスト高になる他、Moはフェライト相生成元素であり、オーステナイト相の確保や組織微細化が困難になることから、上限を1.0%とした。但し、合金コストや製造性を考慮すると、0.1~0.5%が望ましい。 Mo is an element that contributes to improving corrosion resistance and high-temperature strength, and is an element that is effective in improving fatigue strength, so 0.01% or more is added. It was also found that since it is a segregation element, it is concentrated at the ferrite / austenite phase interface during welding solidification, contributes to microstructure miniaturization, and is effective in improving toughness and fatigue strength. On the other hand, addition of more than 1.0% increases the cost, and Mo is a ferrite phase-forming element, which makes it difficult to secure an austenite phase and to refine the structure. Therefore, the upper limit is set to 1.0%. However, considering the alloy cost and manufacturability, 0.1 to 0.5% is desirable.

Cuは、耐食性に寄与する元素であり、オーステナイト相生成元素であるため、オーステナイト相率の調整のために0.01%以上添加する。また、偏析元素であるため、フェライト/オーステナイト相界面に濃化し、組織微細化に寄与して靭性や疲労強度の向上に有効であることを見出した。一方、2.0%超の添加は製造性を著しく低下させる他、析出Cuの影響で溶接部の靭性が低下することから上限を2.0%とした。但し、精錬コストや熱間加工性や酸洗性を考慮すると、0.5~1.5%が望ましい。 Since Cu is an element that contributes to corrosion resistance and is an austenite phase-forming element, 0.01% or more is added to adjust the austenite phase ratio. It was also found that since it is a segregation element, it is concentrated at the ferrite / austenite phase interface, contributes to microstructure miniaturization, and is effective in improving toughness and fatigue strength. On the other hand, the addition of more than 2.0% significantly reduces the manufacturability, and the toughness of the welded portion is lowered due to the influence of the precipitated Cu, so the upper limit is set to 2.0%. However, considering the refining cost, hot workability and pickling property, 0.5 to 1.5% is desirable.

Bは、溶接凝固時にフェライト/オーステナイト相界面に偏析し、組織微細化に寄与して靭性や疲労強度の向上に有効であるとともに、2段通電時にオーステナイト相を分散析出させることを見出した。この効果は0.0005%以上で発現することから0.0005%以上添加する。但し、フェライト生成元素である他、凝固割れ感受性が高くなることから上限を0.0100%とする。更に、粒界腐食性を考慮すると、0.0005~0.0030%が望ましい。 It was found that B segregates at the ferrite / austenite phase interface during welding solidification, contributes to microstructure miniaturization, is effective in improving toughness and fatigue strength, and disperses and precipitates the austenite phase during two-stage energization. Since this effect is expressed at 0.0005% or more, 0.0005% or more is added. However, in addition to being a ferrite-forming element, the upper limit is set to 0.0100% because the susceptibility to solidification cracking increases. Further, considering the intergranular corrosion property, 0.0005 to 0.0030% is desirable.

Alは、脱酸剤として活用できる他、耐酸化性や耐食性を向上させる他、適量の添加によって介在物の微細分散化によって溶接凝固時の凝固核として作用し、溶接組織微細化と靭性向上および疲労強度向上に寄与することを見出した。また、酸化物が核となり2段通電時にオーステナイト相を分散析出させることも見出した。この効果は0.01%以上で発現するため、下限を0.01%とした。一方、0.5%超の添加では、耐酸化性や耐食性の向上が飽和するとともに、AlNやAl系酸化物が凝集粗大化して衝撃および疲労亀裂の起点となるため、上限を0.5%とした。但し、靭性を考慮すると、0.01~0.10%が望ましい。 In addition to being able to be used as a deoxidizer, Al improves oxidation resistance and corrosion resistance, and by adding an appropriate amount, it acts as a solidification nucleus during welding solidification by finely dispersing inclusions, resulting in finer weld structure and improved toughness. It was found that it contributes to the improvement of fatigue strength. It was also found that the oxide becomes a nucleus and the austenite phase is dispersed and precipitated during the two-stage energization. Since this effect is exhibited at 0.01% or more, the lower limit is set to 0.01%. On the other hand, if the addition is more than 0.5%, the improvement of oxidation resistance and corrosion resistance is saturated, and AlN and Al-based oxides are aggregated and coarsened to become the starting point of impact and fatigue cracks, so the upper limit is 0.5%. And said. However, considering toughness, 0.01 to 0.10% is desirable.

Vは、CやNと結合して凝固組織の微細化や耐食性向上に寄与するため0.01%以上添加する。一方、過度な添加はコスト高になる他、耐酸化性の劣化に繋がるため上限を0.50%とする。但し、耐食性を考慮すると、0.05~0.30%が望ましい。 V is added in an amount of 0.01% or more because it binds to C and N and contributes to the miniaturization of the solidified structure and the improvement of corrosion resistance. On the other hand, excessive addition increases the cost and leads to deterioration of oxidation resistance, so the upper limit is set to 0.50%. However, considering corrosion resistance, 0.05 to 0.30% is desirable.

Mgは、脱酸剤として活用する他、MgO等が凝固核となって溶接部および鋳造組織の組織微細化に有効な元素であるため、0.0002~0.0100%添加する。また、酸化物が核となり2段通電時にオーステナイト相を分散析出させることも見出した。0.0002%未満の添加では、溶接部および鋳造組織の組織微細化に対し効果がない。0.0100%超の添加で、その効果は飽和するとともに、介在物の粗大化に起因して亀裂起点や伝播促進の原因になる。但し、製造性を考慮すると、0.0002~0.0020%が望ましい。 In addition to being used as a deoxidizing agent, Mg is an element effective for micronizing the structure of welds and cast structures by forming solidified nuclei such as MgO, so 0.0002 to 0.0100% is added. It was also found that the oxide becomes a nucleus and the austenite phase is dispersed and precipitated during the two-stage energization. Additions of less than 0.0002% have no effect on microstructure miniaturization of welds and cast structures. Addition of more than 0.0100% saturates the effect and causes crack origin and propagation promotion due to coarsening of inclusions. However, considering the manufacturability, 0.0002 to 0.0020% is desirable.

Caは、Sと結合して熱間加工性を向上させる他、CaO等が凝固核となって溶接部および鋳造組織の組織微細化に有効な元素であるため、0.0002~0.0100%添加する。また、酸化物が核となり2段通電時にオーステナイト相を分散析出させることも見出した。0.0100%超の添加で、その効果は飽和するするとともに、介在物の粗大化に起因して亀裂起点や伝播促進の原因になる。但し、耐食性を考慮すると、0.0005~0.0010%が望ましい。 Ca is 0.0002 to 0.0100% because Ca is an element that binds to S to improve hot workability and that CaO or the like acts as a solidified core and is an effective element for microstructure miniaturization of welds and cast structures. Added. It was also found that the oxide becomes a nucleus and the austenite phase is dispersed and precipitated during the two-stage energization. Addition of more than 0.0100% saturates the effect and causes crack origin and propagation promotion due to coarsening of inclusions. However, considering corrosion resistance, 0.0005 to 0.0010% is desirable.

Oは通常低い方が耐食性などの点で優位であるが、各種酸化物を凝固核として溶接組織微細化を達成するために0.0001~0.0100%に規定する。0.0100%超の場合には、介在物の粗大化に起因して亀裂起点や伝播促進の原因になる。但し、耐食性や精錬コストを考慮すると、0.0005~0.0010%が望ましい。 Normally, the lower O is superior in terms of corrosion resistance and the like, but it is specified to be 0.0001 to 0.0100% in order to achieve the miniaturization of the welded structure using various oxides as solidified nuclei. If it exceeds 0.0100%, it causes crack origin and propagation promotion due to coarsening of inclusions. However, considering corrosion resistance and refining cost, 0.0005 to 0.0010% is desirable.

本発明の締結部品用フェライト・オーステナイト2相ステンレス鋼板は、上記成分を含有し、残部がFeおよび不可避的不純物からなる。本発明はさらに、前記Feの一部に替えて、以下の成分を選択的に含有することができる。 The ferrite austenite two-phase stainless steel sheet for fasteners of the present invention contains the above components, and the balance consists of Fe and unavoidable impurities. The present invention can further selectively contain the following components in place of a part of the Fe.

Tiは、NとTiNを形成して溶接部および鋳造組織の組織微細化に有効な元素であるとともに耐食性を向上する元素であるため、必要に応じて0.005~0.30%添加する。0.005%未満の添加では、溶接部および鋳造組織の組織微細化に対し効果が発現しない。また、Ti酸化物や炭窒化物が核となり2段通電時にオーステナイト相を分散析出させる効果もある。0.30%超の添加で、その効果は飽和するとともに、粗大TiNが過度に生成し亀裂起点や伝播促進の原因になる。また、鋼板の製造工程において表面疵の発生原因となる。但し、合金コストや靭性を考慮すると、0.005~0.15%が望ましい。 Since Ti is an element that forms N and TiN and is effective for microstructure miniaturization of welds and cast structures and improves corrosion resistance, it is added in an amount of 0.005 to 0.30% as necessary. Additions of less than 0.005% have no effect on the microstructure of welds and cast structures. In addition, Ti oxide and carbonitride become nuclei and have the effect of dispersing and precipitating the austenite phase during two-stage energization. With the addition of more than 0.30%, the effect is saturated and coarse TiN is excessively generated, which causes crack origin and propagation promotion. It also causes surface defects in the steel sheet manufacturing process. However, considering the alloy cost and toughness, 0.005 to 0.15% is desirable.

Nbは、Tiと類似の作用があるとともに強度を向上させる元素であり、必要に応じて0.005~0.30%添加する。0.005%未満の添加では、溶接部および鋳造組織の組織微細化に対し効果が発現しない。また、Ti酸化物や炭窒化物が核となり2段通電時にオーステナイト相を分散析出させる効果もある。0.30%超の添加で、その効果は飽和するとともにNbNが過度に生成し亀裂起点や伝播促進の原因になる。但し、合金コストや靭性を考慮すると、0.005~0.15%が望ましい。 Nb is an element that has an action similar to that of Ti and improves the strength, and is added in an amount of 0.005 to 0.30% as needed. Additions of less than 0.005% have no effect on microstructure miniaturization of welds and cast structures. In addition, Ti oxide and carbonitride become nuclei and have the effect of dispersing and precipitating the austenite phase during two-stage energization. With the addition of more than 0.30%, the effect is saturated and NbN is excessively generated, which causes crack origin and propagation promotion. However, considering the alloy cost and toughness, 0.005 to 0.15% is desirable.

Zr、TaおよびHfは、TiやNbと類似の作用があるとともに耐酸化性を向上させる元素であり、必要に応じて0.005~0.30%添加する。0.005%未満の添加では、溶接部および鋳造組織の組織微細化に対し効果がなく、耐酸化性の効果を発現しない。0.30%超の添加で、その効果は飽和するとともに、各窒化物や炭化物が粗大に生成し、亀裂起点や伝播促進の原因になる。但し、合金コストや靭性を考慮すると、0.005~0.15%が望ましい。Zr添加量が0.15%を超えると靱性が低下する傾向にある。 Zr, Ta and Hf are elements having an action similar to that of Ti and Nb and improving oxidation resistance, and are added in an amount of 0.005 to 0.30% as necessary. Addition of less than 0.005% has no effect on the microstructure of the welded part and the cast structure, and does not exhibit the effect of oxidation resistance. With the addition of more than 0.30%, the effect is saturated and each nitride or carbide is coarsely formed, which causes crack origin and propagation promotion. However, considering the alloy cost and toughness, 0.005 to 0.15% is desirable. When the amount of Zr added exceeds 0.15%, the toughness tends to decrease.

SnやSbは、耐食性を向上させる元素であり、必要に応じて0.005~0.50%添加する。0.005%未満の添加では、耐食性の向上効果がない。0.50%超の添加で、その効果は飽和する。但し、熱間加工性や溶接性を考慮すると、0.05~0.20%が望ましい。 Sn and Sb are elements that improve corrosion resistance, and 0.005 to 0.50% are added as necessary. Addition of less than 0.005% has no effect of improving corrosion resistance. With the addition of more than 0.50%, the effect is saturated. However, considering hot workability and weldability, 0.05 to 0.20% is desirable.

Wは、耐食性や耐熱性を向上させる元素であり、必要に応じて0.01~2.0%添加する。0.01%未満の添加では、耐食性や耐熱性の向上効果がない。2.0%超の添加で、その効果は飽和する。但し、合金コストや靭性を考慮すると、0.1~1.0%が望ましい。 W is an element that improves corrosion resistance and heat resistance, and is added in an amount of 0.01 to 2.0% as needed. Addition of less than 0.01% has no effect of improving corrosion resistance and heat resistance. With the addition of more than 2.0%, the effect is saturated. However, considering the alloy cost and toughness, 0.1 to 1.0% is desirable.

Coは、高温強度の向上やオーステナイト相の靭性向上に寄与するため,必要に応じて0.01%以上添加する.0.5%超の添加によりコスト高になる他、延性の低下につながるため,上限を0.5%とする.更に,精錬コストや製造性を考慮すると、0.01~0.4%が望ましい。 Co is added in an amount of 0.01% or more as necessary because it contributes to the improvement of high temperature strength and the toughness of the austenite phase. Adding more than 0.5% will increase the cost and reduce ductility, so the upper limit is set to 0.5%. Further, considering the refining cost and manufacturability, 0.01 to 0.4% is desirable.

REMは、種々の析出物の微細化による靭性向上や耐酸化性の向上の観点から必要に応じて添加される場合があり、この効果は0.001%以上で発現することから下限を0.001%とした。しかしながら、0.05%超の添加により鋳造性が著しく悪くなることから上限を0.05%とした。更に,精錬コストや製造性を考慮すると、0.001~0.01%が望ましい。REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加してもよいし、混合物であってもよい。 REM may be added as needed from the viewpoint of improving toughness and oxidation resistance by refining various precipitates, and since this effect is exhibited at 0.001% or more, the lower limit is 0. It was set to 001%. However, since the castability is significantly deteriorated by adding more than 0.05%, the upper limit is set to 0.05%. Further, considering the refining cost and manufacturability, 0.001 to 0.01% is desirable. REM (rare earth element) is a general term for two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu), according to the general definition. It may be added alone or as a mixture.

Gaは、耐食性向上や水素脆化抑制のため、0.1%以下で添加してもよい。硫化物や水素化物形成の観点から下限は0.0002%とする。さらに、製造性やコストの観点ならびに、延性や靭性の観点から0.0020%以下が好ましい。 Ga may be added in an amount of 0.1% or less in order to improve corrosion resistance and suppress hydrogen embrittlement. From the viewpoint of sulfide and hydride formation, the lower limit is 0.0002%. Further, 0.0020% or less is preferable from the viewpoint of manufacturability and cost, as well as ductility and toughness.

その他の成分について本発明では特に規定するものではないが、本発明においては、Bi等を必要に応じて、0.001~0.1%添加してもよい。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが好ましい。 Other components are not particularly specified in the present invention, but in the present invention, Bi and the like may be added in an amount of 0.001 to 0.1%, if necessary. It is preferable to reduce general harmful elements such as As and Pb and impurity elements as much as possible.

本発明の締結部品用フェライト・オーステナイト2相ステンレス鋼板は、上記成分を含有するとともに、フェライト相とオーステナイト相の2相組織を示し、ビッカース硬度による硬さが260以下であることを特徴とする。ビッカース硬度については後述する。 The ferrite / austenite two-phase stainless steel plate for fastening parts of the present invention is characterized by containing the above components, exhibiting a two-phase structure of a ferrite phase and an austenite phase, and having a hardness of 260 or less according to Vickers hardness. The Vickers hardness will be described later.

本発明の締結部品は、母材とスポット溶接部を有する。母材として、上記本発明の締結部品用フェライト・オーステナイト2相ステンレス鋼板を用いる。 The fastening component of the present invention has a base material and a spot welded portion. As the base material, the above-mentioned ferrite / austenite two-phase stainless steel sheet for fastening parts of the present invention is used.

次に、本発明の締結部品においてスポット溶接部のスポット溶接形状および強度を得るための技術について説明する。 Next, a technique for obtaining a spot welded shape and strength of a spot welded portion in the fastening part of the present invention will be described.

先にも示したようにスポット溶接は種々の条件の適正化が必要であるが、本発明ではスポット溶接におけるスポット溶接ナゲット部4の組織安定性がスポット溶接部の強度信頼性に極めて重要であることを知見した。
図1に締結部品1のスポット溶接部3の断面模式図を示す。締結部品1は母材2とスポット溶接部3を有する。スポット溶接部3は、ナゲット径Dのスポット溶接ナゲット部4、熱影響部5、溶接コロナ部6を有する。
また、図2にスポット溶接部の強度信頼性を確認するための剥離試験の模式図を示す。スポット溶接部3の剥離試験を行った際、その破断形態はナゲット部外の熱影響部5や母材2が破壊するプラグ破断が生じることが好ましいが、スポット溶接ナゲット部4にボイドや割れといった欠陥が多数存在する場合にはスポット溶接ナゲット部4に亀裂が進行して破壊する界面破断が生じるケースが多くなることが知られている。
As shown above, spot welding requires optimization of various conditions, but in the present invention, the microstructure stability of the spot weld nugget portion 4 in spot welding is extremely important for the strength reliability of the spot weld portion. I found that.
FIG. 1 shows a schematic cross-sectional view of the spot welded portion 3 of the fastener 1. The fastening part 1 has a base material 2 and a spot welded portion 3. The spot welded portion 3 has a spot welded nugget portion 4 having a nugget diameter D, a heat affected zone 5, and a welded corona portion 6.
Further, FIG. 2 shows a schematic diagram of a peeling test for confirming the strength reliability of the spot welded portion. When the peeling test of the spot welded portion 3 is performed, it is preferable that the fractured form is a plug fracture in which the heat affected portion 5 outside the nugget portion and the base metal 2 are broken, but the spot welded nugget portion 4 has voids or cracks. It is known that when a large number of defects are present, there are many cases where cracks progress in the spot welded nugget portion 4 and fracture occurs at the interface.

本発明ではこれら以外に界面破断が生じる場合があり、母材2とスポット溶接ナゲット部4の硬さの差が著しく大きい場合に界面破断が生じやすくなることを知見した。母材2とスポット溶接ナゲット部4の硬さの差が生じる原因としては、以下のように推察される。即ち、母材2としてフェライト・オーステナイト2相ステンレス鋼を用いる場合、母材2はフェライト・オーステナイト2相組織であり、オーステナイト相率は約50%である。スポット溶接時に溶融部はフェライト単相まで加熱され、冷却時にオーステナイト相が再析出するが、スポット溶接ナゲット部4の冷却速度は速いため、オーステナイト相の析出が殆ど生じない。この場合、添加された窒素がフェライト相に過飽和に固溶しているため、スポット溶接ナゲット部4は著しく硬質化する。スポット溶接ナゲット部4のオーステナイト相が少なく、母相に比べて過度に硬質化した場合、界面での脆性的な破壊が生じ、必要な強度の確保も困難となり溶接部の信頼性が低くなる。 In the present invention, it has been found that interface fracture may occur in addition to these, and interface fracture is likely to occur when the difference in hardness between the base metal 2 and the spot weld nugget portion 4 is extremely large. The cause of the difference in hardness between the base metal 2 and the spot welded nugget portion 4 is presumed as follows. That is, when ferrite / austenite two-phase stainless steel is used as the base material 2, the base material 2 has a ferrite / austenite two-phase structure, and the austenite phase ratio is about 50%. The molten portion is heated to a ferrite single phase during spot welding, and the austenite phase is reprecipitated during cooling. However, since the cooling rate of the spot weld nugget portion 4 is high, precipitation of the austenite phase hardly occurs. In this case, since the added nitrogen is supersaturated and dissolved in the ferrite phase, the spot weld nugget portion 4 is remarkably hardened. If the spot-welded nugget portion 4 has a small amount of austenite phase and is excessively hardened as compared with the parent phase, brittle fracture occurs at the interface, it is difficult to secure the required strength, and the reliability of the welded portion is lowered.

これに対して、本発明ではスポット溶接ナゲット部4で10%以上のオーステナイト相を析出させオーステナイト相に窒素を固溶させることで軟質化が図れることを見出した。ここで、スポット溶接条件がスポット溶接ナゲット部4の組織に与える影響について評価した。母材として用いた鋼板は、鋼成分は0.016%C-0.40%Si-3.13%Mn-0.02%P-0.0010%S-2.2%Ni-21.2%Cr-0.16%N-0.40%Mo-05%Cu-0.02%Al-0.0016%B-0.06%V-0.0020%Ca-0.002%O-0.0005%Mgで、1.5mm厚さの冷延鋼板である。母材は、フェライト相とオーステナイト相の2相組織を示し、ビッカース硬度による硬さが253である。スポット溶接条件について、比較例は、1段通電のみで加圧力:8kN、電流:8kA、通電サイクル:25サイクル、保持サイクル:40サイクルとした。一方、本発明では加圧力:8kN、電流:8kA、通電サイクル:25サイクル、保持サイクル:5サイクルの1段通電を施した後に加圧力:8kN、電流:5kA、通電サイクル:30サイクル、保持サイクル:40サイクルの2段通電を施した。
図4に本発明と比較例のスポット溶接ナゲット部4の組織を示す。本発明(図4(B))のナゲット組織ではオーステナイト相が比較例(図4(A))よりも多い。また、スポット溶接ナゲット部4の硬さは、本発明例が280、比較例が318で、母材との硬さの差も本発明例の方が小さい。
本発明例と比較例について-20℃にて剥離試験を行った結果、比較例では界面破断が生じたのに対して、本発明例ではプラグ破断が得られ高い信頼性が認められた。
On the other hand, in the present invention, it has been found that softening can be achieved by precipitating 10% or more of the austenite phase in the spot weld nugget portion 4 and dissolving nitrogen in the austenite phase. Here, the influence of the spot welding conditions on the structure of the spot welding nugget portion 4 was evaluated. The steel plate used as the base material has a steel component of 0.016% C-0.40% Si-3.13% Mn-0.02% P-0.0010% S-2.2% Ni-21.2. % Cr-0.16% N-0.40% Mo-05% Cu-0.02% Al-0.0016% B-0.06% V-0.0020% Ca-0.002% O-0 It is a cold-rolled steel plate with a thickness of 1.5 mm and a thickness of 0005% Mg. The base metal has a two-phase structure of a ferrite phase and an austenite phase, and has a hardness of 253 due to Vickers hardness. Regarding the spot welding conditions, in the comparative example, the pressing force was 8 kN, the current was 8 kA, the energization cycle was 25 cycles, and the holding cycle was 40 cycles with only one stage energization. On the other hand, in the present invention, the pressurization: 8 kN, the current: 8 kA, the energization cycle: 25 cycles, the holding cycle: 5 cycles, and then the pressurization: 8 kN, the current: 5 kA, the energization cycle: 30 cycles, the holding cycle. : Two-stage energization of 40 cycles was applied.
FIG. 4 shows the structure of the spot welded nugget portion 4 of the present invention and the comparative example. In the nugget structure of the present invention (FIG. 4 (B)), the austenite phase is larger than that of the comparative example (FIG. 4 (A)). Further, the hardness of the spot weld nugget portion 4 is 280 in the example of the present invention and 318 in the comparative example, and the difference in hardness from the base metal is also smaller in the example of the present invention.
As a result of performing a peeling test at −20 ° C. for the example of the present invention and the comparative example, the interface fracture occurred in the comparative example, whereas the plug fracture was obtained in the example of the present invention, and high reliability was confirmed.

2段通電の条件を種々変更させて同様な検討を行った結果、スポット溶接ナゲット部のオーステナイト相率が10%以上、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度(100gf)で50以下である場合に、界面破断が抑制されることが確認された。そこで、本発明の締結部品ではスポット溶接ナゲット部のオーステナイト相率が10%以上、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度(100gf)で50以下と規定する。 As a result of conducting similar studies by changing the conditions of two-stage energization, the austenite phase ratio of the spot welded nugget is 10% or more, and the difference between the hardness of the spot welded nugget and the hardness of the base metal is the Vickers hardness (100 gf). ) Is 50 or less, it is confirmed that the interface breakage is suppressed. Therefore, in the fastener part of the present invention, it is defined that the austenite phase ratio of the spot welded nugget portion is 10% or more, and the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness (100 gf).

また、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度(100gf)を50以下とするためには、母材の硬さを260以下にする必要がある。これは、本発明の鋼成分に対して母材の硬さが260超になった場合には合金添加量が多くなるため、スポット溶接ナゲット部4の各種固溶元素量が多くなり、過度に硬質化する。そのため、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度(100gf)を50以下とすること困難となるため、母材の硬さを260以下と規定する。更に、スポット溶接時の熱変形を考慮すると母材の硬さは255以下が望ましく、タンクバンドの曲げ性やスプリングバックを考慮すると253以下が更に望ましい。 Further, in order for the difference between the hardness of the spot welded nugget portion and the hardness of the base metal to be 50 or less for the Vickers hardness (100 gf), it is necessary to set the hardness of the base metal to 260 or less. This is because when the hardness of the base metal exceeds 260 with respect to the steel component of the present invention, the amount of alloy added increases, so that the amount of various solid solution elements in the spot welded nugget portion 4 increases, which is excessive. Harden. Therefore, it is difficult for the difference between the hardness of the spot welded nugget portion and the hardness of the base metal to make the Vickers hardness (100 gf) 50 or less, so that the hardness of the base metal is defined as 260 or less. Further, the hardness of the base metal is preferably 255 or less in consideration of thermal deformation during spot welding, and further preferably 253 or less in consideration of the bendability of the tank band and springback.

母材の硬さを260以下とするためには、母材として用いるフェライト・オーステナイト2相ステンレス鋼板の成分組成を上記本発明の成分組成とするとともに、さらに当該成分組成範囲内において成分の微調整を行うことにより実施することができる。所定の成分組成において母材の硬さが260を超えたときには、鋼を硬質化する成分であるC、Si、Mn、P、Nの含有量を低減することにより、母材の硬さを260以下とすることができる。 In order to reduce the hardness of the base material to 260 or less, the component composition of the ferrite / austenite two-phase stainless steel sheet used as the base material should be the component composition of the present invention, and the components should be finely adjusted within the component composition range. It can be carried out by performing. When the hardness of the base metal exceeds 260 in a predetermined composition, the hardness of the base metal is increased to 260 by reducing the content of C, Si, Mn, P, and N, which are components that harden the steel. It can be as follows.

また、極低温での部品使用やせん断負荷が作用した際の破壊信頼性を考慮すると、スポット溶接ナゲット部のオーステナイト相率が15%以上、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度(100gf)で30以下が望ましい。 In addition, considering the use of parts at extremely low temperatures and the fracture reliability when a shear load is applied, the austenite phase ratio of the spot welded nugget is 15% or more, and the difference between the hardness of the spot welded nugget and the hardness of the base metal. Is preferably 30 or less in Vickers hardness (100 gf).

次にスポット溶接方法について説明する。本発明ではスポット溶接部の剥離試験を行った際に脆性的に界面破断が生じないために、母材として本発明の鋼板を用いるとともに、スポット溶接として先述した2段通電を行う。2段通電のスポット溶接条件を適正化することによってスポット溶接ナゲット部のオーステナイト相率が10%以上、スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度で50以下を確保する。このためには、1段目通電後に2段目通電として比較的低い電流にて通電することによってオーステナイト相を再析出させる必要がある。
図3は、2段通電において、通電のパターンと溶金部温度の時間変化について説明する図である。図3(A)(B)それぞれ、横軸が時間、下の図の縦軸は電流、上の図の縦軸は溶金部温度である。図3(A)に示すように、2段通電の1段目通電後は、従来の1段通電の通電後と同様、スポット溶接溶融部が急冷するため、オーステナイト相が10%未満の状態となる。ここで2段目通電を行い、2段通電時の電流が低く、通電サイクルを長くすることによってこの間に、図3(A)に示すように温度がオーステナイト析出温度となり、オーステナイト相の析出が確保され、ナゲット溶接部の軟質化が図れるのである。種々の実験を行った結果、2段目通電の電流を2.5kA以上6.0kA以下、通電サイクルを10サイクル以上確保することによって、スポット溶接ナゲット部4の組織および硬さを満足し、剥離試験時に界面破断が生じないことを確認したため、2段通電時の条件を上記の範囲で規定した。2段目通電時の電流が2.5kA未満、又は通電サイクルが10サイクル未満ではオーステナイト相の析出が少ないため、スポット溶接ナゲット部4が硬質化する。一方、2段目通電時の電流が6.0kA超の場合は、再度スポット溶接ナゲット部4が溶融してオーステナイト相が減少してしまうため、同じくスポット溶接ナゲット部4が硬質化する。
Next, the spot welding method will be described. In the present invention, since the interface breakage does not occur brittlely when the peeling test of the spot welded portion is performed, the steel sheet of the present invention is used as the base material, and the above-mentioned two-stage energization is performed as spot welding. By optimizing the spot welding conditions of the two-stage energization, the austenite phase ratio of the spot welded nugget portion is 10% or more, and the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness. For this purpose, it is necessary to reprecipitate the austenite phase by energizing at a relatively low current as the second stage energization after the first stage energization.
FIG. 3 is a diagram for explaining the pattern of energization and the time change of the temperature of the molten metal portion in the two-stage energization. In each of FIGS. 3A and 3B, the horizontal axis is time, the vertical axis in the lower figure is the current, and the vertical axis in the upper figure is the molten metal portion temperature. As shown in FIG. 3A, after the first-stage energization of the two-stage energization, the spot weld melted portion is rapidly cooled as in the case of the conventional one-stage energization, so that the austenite phase is less than 10%. Become. Here, the second stage energization is performed, the current at the time of the second stage energization is low, and the energization cycle is lengthened. During this period, the temperature becomes the austenite precipitation temperature as shown in FIG. Therefore, the nugget weld can be softened. As a result of conducting various experiments, by securing the current of the second stage energization of 2.5 kA or more and 6.0 kA or less and the energization cycle of 10 cycles or more, the structure and hardness of the spot welded nugget portion 4 are satisfied and peeled off. Since it was confirmed that no interface breakage occurred during the test, the conditions for two-stage energization were specified within the above range. If the current during the second stage energization is less than 2.5 kA or the energization cycle is less than 10 cycles, the precipitation of the austenite phase is small, so that the spot weld nugget portion 4 becomes hard. On the other hand, when the current at the time of energizing the second stage exceeds 6.0 kA, the spot welded nugget portion 4 melts again and the austenite phase decreases, so that the spot welded nugget portion 4 is also hardened.

更に、極低温での使用やせん断負荷に対する信頼性を考慮すると、2段通電の2段目通電時の電流を3.0kA以上5.7kA以下、通電サイクルを20サイクル以上が望ましい。また、通電サイクルが長すぎると再度スポット溶接ナゲット部4が溶融してオーステナイト相が減少してしまうため、通電サイクルは70サイクル以下が望ましく、60サイクル以下がより望ましい。 Further, considering the reliability for use at an extremely low temperature and a shear load, it is desirable that the current at the time of the second stage energization of the two-stage energization is 3.0 kA or more and 5.7 kA or less, and the energization cycle is 20 cycles or more. Further, if the energization cycle is too long, the spot weld nugget portion 4 is melted again and the austenite phase is reduced. Therefore, the energization cycle is preferably 70 cycles or less, and more preferably 60 cycles or less.

尚、2段目通電後の保持の有無は、オーステナイトの析出程度には関係しない。また、図3(B)に示したように、1段目通電後の保持がなくても、2段目通電を本発明範囲で行うことにより、オーステナイト析出領域に所定時間滞在するので、オーステナイト相を確保することができる。しかしながら、1段目通電後の保持は長時間行うと電極によるスポット溶接ナゲット部4の抜熱が大きくなり、オーステナイト相の析出が促進されずナゲットの硬質化が促進される。したがって、1段目通電後の保持は20サイクル以下が好ましく、15サイクル以下がより好ましい。 The presence or absence of retention after the second stage energization is not related to the degree of austenite precipitation. Further, as shown in FIG. 3B, even if the first-stage energization is not performed, the austenite phase stays in the austenite precipitation region for a predetermined time by performing the second-stage energization within the scope of the present invention. Can be secured. However, if the holding after the first stage energization is performed for a long time, the heat removal from the spot welded nugget portion 4 by the electrode becomes large, the precipitation of the austenite phase is not promoted, and the hardening of the nugget is promoted. Therefore, the holding after the first stage energization is preferably 20 cycles or less, and more preferably 15 cycles or less.

またスポット溶接の際の電極を押し付ける加圧力は、6.0kN未満では加圧力不足で発熱過多となりスポット溶接時にスパッタが飛んでしまいスポット溶接ナゲット部4の強度が低下し、10.0kN超では電極の接触面積が過大となりナゲットの断面積が小さくなりスポット溶接ナゲット部4の強度が低下してしまうため、加圧力は6.0~10.0kNで規定するのが望ましい。より望ましくは7.0~9.0kNである。 If the pressing force for pressing the electrode during spot welding is less than 6.0 kN, the pressure is insufficient and heat generation is excessive, spatter flies during spot welding, and the strength of the spot welded nugget portion 4 decreases. If the pressure exceeds 10.0 kN, the electrode is pressed. Since the contact area of the spot welded nugget 4 becomes excessive and the cross-sectional area of the nugget becomes small and the strength of the spot welded nugget portion 4 decreases, it is desirable to specify the pressing force at 6.0 to 10.0 kN. More preferably, it is 7.0 to 9.0 kN.

本発明の鋼板は、ステンレス冷延鋼板の汎用的な製造工程で製造することができる。具体的には、製鋼-熱間圧延-酸洗-冷間圧延-焼鈍・酸洗の各工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉あるいは電炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。熱間圧延は複数スタンドから成る熱間圧延機で圧延された後に巻き取られる。熱間圧延後は、熱延板焼鈍を施しても省略しても良い。冷間圧延においては、所定の板厚に応じて冷延圧下率を選択すれば良いが、20%未満の圧下率ではオーステナイト相の展伸が不十分であるため、圧下率は20%以上が望ましい。冷間圧延における他の条件(ロール径、パス数、圧延温度等)は特に規定せず、生産性に応じて適宜選択すれば良い。尚、冷間圧延後の焼鈍は、オーステナイト相量の調整のために、1050℃以上に加熱することが望ましい。他工程の製造方法については特に規定しないが、熱延板厚、焼鈍雰囲気などは適宜選択すれば良い。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。更に、製品板厚についても、要求部品厚に応じて選択すれば良い。 The steel sheet of the present invention can be manufactured by a general-purpose manufacturing process of a stainless cold-rolled steel sheet. Specifically, it comprises each process of steelmaking-hot rolling-pickling-cold rolling-annealing and pickling. In steelmaking, a method is preferable in which steel containing the above-mentioned essential components and components added as necessary is melted in a converter or an electric furnace, and then secondary refining is performed. The molten steel melted is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling. Hot rolling is rolled after being rolled in a hot rolling machine consisting of a plurality of stands. After hot rolling, hot-rolled sheet may be annealed or omitted. In cold rolling, the cold rolled rolling reduction ratio may be selected according to the predetermined plate thickness, but the rolling reduction of the austenite phase is insufficient at a rolling reduction ratio of less than 20%, so the rolling reduction ratio is 20% or more. desirable. Other conditions (roll diameter, number of passes, rolling temperature, etc.) in cold rolling are not particularly specified, and may be appropriately selected according to productivity. For annealing after cold rolling, it is desirable to heat to 1050 ° C. or higher in order to adjust the amount of austenite phase. The manufacturing method of other processes is not particularly specified, but the hot-rolled plate thickness, annealing atmosphere, etc. may be appropriately selected. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the product plate thickness may be selected according to the required component thickness.

(実施例1)
表1、表2に示す成分組成の鋼を溶製した後熱間圧延して4mm厚の熱延板とした。その後、熱延板を焼鈍・酸洗し、1.5mm厚まで冷間圧延し、1080℃で焼鈍後、酸洗を施して薄鋼板とした。
このようにして得られた薄鋼板を母材として用いて、図1に示すように母材2を2枚重ねてスポット溶接し、スポット溶接部3を形成した。この際のスポット溶接条件は、電極として銅電極、CR型、φ8mm、R40を用い、加圧力:8kN、電流:8kA、通電サイクル:25サイクル、保持サイクル:5サイクルの1段目通電を施した後に加圧力:8kN、電流:5kA、通電サイクル:30サイクル、保持サイクル:40サイクルの2段目通電を施した。
(Example 1)
The steels having the composition shown in Tables 1 and 2 were melted and then hot-rolled to obtain a hot-rolled plate having a thickness of 4 mm. Then, the hot-rolled sheet was annealed and pickled, cold-rolled to a thickness of 1.5 mm, annealed at 1080 ° C., and then pickled to obtain a thin steel sheet.
Using the thin steel plate thus obtained as a base material, as shown in FIG. 1, two base materials 2 were stacked and spot welded to form a spot welded portion 3. As the spot welding conditions at this time, a copper electrode, CR type, φ8 mm, R40 was used as the electrode, and the first stage energization of pressing force: 8 kN, current: 8 kA, energization cycle: 25 cycles, holding cycle: 5 cycles was performed. Later, the second stage of energization was performed with a pressing force of 8 kN, a current of 5 kA, an energization cycle of 30 cycles, and a holding cycle of 40 cycles.

母材部とスポット溶接ナゲット部4の断面硬さ(Hv100gf)の測定、オーステナイト相率の測定および-20℃で剥離試験、耐食性試験を実施した。
母材部とスポット溶接ナゲット部4の断面硬さの測定方法としては、スポット溶接ナゲット部4の中心部を観察できるように母材2の圧延方向と平行方向の板厚断面を観察できるようにサンプルを採取した後に、母材2部は板厚の1/2t部を5点測定した平均値を、スポット溶接ナゲット部4はナゲットの中心部からナゲットの長手幅に沿って7点測定した平均値を用いており、測定はJIS Z2244に準拠して行った。表3の「製品板(母材)の特性/硬さ」欄に母材の硬さを記載し、表3の「ナゲット部と母材の硬さの差」欄に当該硬さの差を記載した。
オーステナイト相率の測定は硬度測定したサンプルを10%しゅう酸中で0.1A/cmの電流密度で90秒間の電解エッチングを行い、母材2部とスポット溶接ナゲット部4の中心部のそれぞれを500倍で光学顕微鏡で撮影した後にオーステナイト相のみ画像で抽出してNIH製のImageJで画像解析して測定した。母材の組織がフェライト・オーステナイト2相組織になっている鋼については、組織が合格(〇)、単相組織になっている鋼については組織が不合格(×)とし、表3の「製品板(母材)の特性/組織」欄に記載した。また、スポット溶接ナゲット部のオーステナイト相率(%)を、表3の「ナゲット部のオーステナイト相率」欄に記載した。
剥離試験の方法としては、100mm長さ×20mm幅のサンプルを2枚採取して重ね合わせて板の端から10mm長さ×10mm幅の位置にスポット溶接を行った後に図2に示すようにスポット溶接した端から20mm長さの位置を曲げて拝みの形にしたサンプルを用いた。これらのサンプルを恒温槽付きの引張試験機で-20℃まで冷却した後にストローク制御で5mm/minの引張速度で引張試験を各条件n=2ずつ行った。せん断試験の後にいずれも界面破断が生じなかったものを合格(〇)、界面破断が生じたものを不合格(×)とし、表3の剥離試験の欄に記載した。
タンクバンドの耐食性の評価としてスポット溶接部に対してJASO-CCT試験を行った。JASO-CCTの条件は、塩水噴霧(温度35℃、NaCl濃度5%、2時間)、乾燥(温度60℃、湿度25%、4時間)、湿潤(温度50℃、湿度95%)を1サイクルとし、240サイクル実施した。その後、最大孔食深さを測定し、最大孔食深さが0.5mm以下のものを合格(○)、0.5mm超のものを不合格(×)とし、表3の耐食性の欄に記載した。
The cross-sectional hardness (Hv100 gf) of the base metal portion and the spot weld nugget portion 4 was measured, the austenite phase ratio was measured, and a peeling test and a corrosion resistance test were carried out at −20 ° C.
As a method of measuring the cross-sectional hardness of the base metal portion and the spot welded nugget portion 4, the plate thickness cross section in the direction parallel to the rolling direction of the base metal 2 can be observed so that the central portion of the spot welded nugget portion 4 can be observed. After collecting the sample, the average value of the base metal 2 parts measured at 5 points on the 1 / 2t part of the plate thickness, and the spot welded nugget part 4 measured at 7 points along the longitudinal width of the nugget from the center of the nugget. Values are used and measurements were made in accordance with JIS Z2244. Describe the hardness of the base material in the "Characteristics / hardness of the product plate (base material)" column of Table 3, and enter the difference in hardness in the "Difference in hardness between the nugget part and the base material" column of Table 3. Described.
To measure the austenite phase ratio, the sample whose hardness was measured was electrolytically etched in 10% arsenic at a current density of 0.1 A / cm 2 for 90 seconds, and the base material 2 and the center of the spot weld nugget 4 were respectively measured. Was photographed with an optical microscope at a magnification of 500, and then only the austenite phase was extracted as an image and image-analyzed with Image J manufactured by NIH for measurement. For steels whose base metal structure is a ferrite-austenite two-phase structure, the structure is acceptable (○), and for steels with a single-phase structure, the structure is rejected (×). Described in the "Characteristics / Structure of Plate (Base Material)" column. Further, the austenite phase ratio (%) of the spot welded nugget portion is described in the “Austenite phase ratio of the nugget portion” column of Table 3.
As a method of the peeling test, two samples having a length of 100 mm and a width of 20 mm are collected and superposed, and spot welding is performed at a position of a length of 10 mm and a width of 10 mm from the edge of the plate, and then spot welding is performed as shown in FIG. A sample was used in which a position 20 mm long from the welded end was bent into a worship shape. After cooling these samples to −20 ° C. in a tensile tester equipped with a constant temperature bath, a tensile test was performed under stroke control at a tensile speed of 5 mm / min under each condition n = 2. Those in which no interfacial fracture occurred after the shear test were regarded as acceptable (◯), and those in which the interfacial fracture occurred were regarded as rejected (x), and are described in the column of the peeling test in Table 3.
As an evaluation of the corrosion resistance of the tank band, a JASO-CCT test was performed on the spot welded portion. The conditions for JASO-CCT are salt spray (temperature 35 ° C, NaCl concentration 5%, 2 hours), drying (temperature 60 ° C, humidity 25%, 4 hours), and wetting (temperature 50 ° C, humidity 95%) in one cycle. 240 cycles were carried out. After that, the maximum pitting depth was measured, and those with a maximum pitting depth of 0.5 mm or less were regarded as acceptable (○), those with a maximum pitting depth of more than 0.5 mm were regarded as rejected (×), and the corrosion resistance column in Table 3 was used. Described.

Figure 2022023289000002
Figure 2022023289000002

Figure 2022023289000003
Figure 2022023289000003

Figure 2022023289000004
Figure 2022023289000004

本発明鋼を用いたスポット溶接部は、界面破断が生じず締結部品としての信頼性が高いとともに、耐食性にも優れており、タンクバンドに適した材料であることがわかる。 It can be seen that the spot welded portion using the steel of the present invention is a material suitable for a tank band because it does not cause interfacial fracture, has high reliability as a fastener, and has excellent corrosion resistance.

(実施例2)
また、表1の鋼No.1を用い、スポット溶接条件を変化させた試験を行った。スポット溶接条件のうち、2段目の通電条件のみを表4に示す条件として、それ以外の条件は上記実施例1と同様とした。結果を表4に示す。
(Example 2)
In addition, the steel No. in Table 1 Using No. 1, a test was conducted in which the spot welding conditions were changed. Of the spot welding conditions, only the energization condition of the second stage was set as the condition shown in Table 4, and the other conditions were the same as those of the first embodiment. The results are shown in Table 4.

Figure 2022023289000005
Figure 2022023289000005

表4の比較例53は2段目通電を行っておらず、即ち1段通電の場合の比較例である。比較例53の結果より、1段通電のみでは界面破断が生じることがわかる。また、比較例49~52と本発明例43~48の対比から、2段通電を施しても2段目の通電において電流が2.5kA未満、又は6.0kA超、通電サイクルが10サイクル未満であれば界面破断が生じることがわかる。一方、2段通電を施して、2段目の通電において電流が2.5kA以上6kA以下、通電サイクルが10サイクル以上であれば界面破断が抑制され、スポット溶接部の信頼性が高いこと生じることが確認できる。 Comparative Example 53 in Table 4 is a comparative example in the case where the second stage energization is not performed, that is, the first stage energization is performed. From the results of Comparative Example 53, it can be seen that interface fracture occurs only with one-stage energization. Further, from the comparison between Comparative Examples 49 to 52 and Examples 43 to 48 of the present invention, the current is less than 2.5 kA or more than 6.0 kA and the energization cycle is less than 10 cycles in the second stage energization even if the second stage energization is applied. If so, it can be seen that interface fracture occurs. On the other hand, if two-stage energization is applied and the current is 2.5 kA or more and 6 kA or less and the energization cycle is 10 cycles or more in the second stage energization, interface fracture is suppressed and the reliability of the spot welded portion is high. Can be confirmed.

本発明によれば、スポット溶接性に優れたフェライト・オーステナイト2相ステンレス鋼板を提供することが可能である。特に、自動車の燃料部品の締結用タンクバンドとしての活用が有効であるが、二輪、鉄道、建築用途、各種構造部品や締結部品として使用できる。これによって、薄肉軽量化や複雑構造の成形品に展開することが可能であることから、産業上極めて有益である。 According to the present invention, it is possible to provide a ferrite austenite two-phase stainless steel sheet having excellent spot weldability. In particular, it is effective to use it as a tank band for fastening fuel parts of automobiles, but it can be used for motorcycles, railways, construction applications, various structural parts and fastening parts. This is extremely beneficial in industry because it can be applied to thin-walled and lightweight molded products with complicated structures.

1 締結部品
2 母材
3 スポット溶接部
4 スポット溶接ナゲット部
5 熱影響部
6 溶接コロナ部
1 Fastener 2 Base material 3 Spot welded part 4 Spot welded nugget part 5 Heat-affected zone 6 Welded corona part

Claims (6)

質量%にて、
C:0.001~0.05%、Si:0.01~1.0%、Mn:2~5%、P≦0.05%、S≦0.005%、Ni:0.1~6.0%、Cr:15.0~23.0%、Mo:0.01~1.0%、Cu:0.01~2.0%、N:0.005~0.30%、B:0.0005~0.0100%、Al:0.01~0.5%、V:0.01~0.50%、Ca:0.0002~0.0100%、O:0.0001~0.0100%、Mg:0.0002~0.0100%を含有し、残部がFeおよび不可避的不純物からなり、フェライト相とオーステナイト相の2相組織を示し、ビッカース硬度による硬さが260以下であることを特徴とする締結部品用フェライト・オーステナイト2相ステンレス鋼板。
By mass%
C: 0.001 to 0.05%, Si: 0.01 to 1.0%, Mn: 2 to 5%, P ≦ 0.05%, S ≦ 0.005%, Ni: 0.1 to 6 .0%, Cr: 15.0 to 23.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 2.0%, N: 0.005 to 0.30%, B: 0.0005 to 0.0100%, Al: 0.01 to 0.5%, V: 0.01 to 0.50%, Ca: 0.0002 to 0.0100%, O: 0.0001 to 0. It contains 0100%, Mg: 0.0002 to 0.0100%, the balance consists of Fe and unavoidable impurities, shows a two-phase structure of ferrite phase and austenite phase, and has a hardness of 260 or less due to Vickers hardness. A ferrite austenite two-phase stainless steel plate for fastening parts.
さらに前記Feの一部に替えて、質量%にて、
Ti:0.005~0.30%、Nb:0.005~0.30%、Zr:0.005~0.30%、Sn:0.005~0.50%、W:0.01~2.0%、Mg:0.0002~0.0100%、Sb:0.005~0.5%、Ta:0.005~0.3%、Hf:0.005~0.3%、Co:0.01~0.5%、REM:0.001~0.05%、Ga:0.0002~0.1%の1種以上を含有することを特徴とする請求項1に記載の締結部品用フェライト・オーステナイト2相ステンレス鋼板。
Further, instead of a part of the Fe, in mass%,
Ti: 0.005 to 0.30%, Nb: 0.005 to 0.30%, Zr: 0.005 to 0.30%, Sn: 0.005 to 0.50%, W: 0.01 to 2.0%, Mg: 0.0002 to 0.0100%, Sb: 0.005 to 0.5%, Ta: 0.005 to 0.3%, Hf: 0.005 to 0.3%, Co The conclusion according to claim 1, wherein one or more of: 0.01 to 0.5%, REM: 0.001 to 0.05%, and Ga: 0.0002 to 0.1% are contained. Ferrite austenite two-phase stainless steel plate for parts.
スポット溶接ナゲット部のオーステナイト相率が10%以上であることを特徴とする請求項1または請求項2に記載のフェライト・オーステナイト2相ステンレス鋼板を用いた締結部品。 The fastener part using the ferrite austenite two-phase stainless steel plate according to claim 1 or 2, wherein the austenite phase ratio of the spot welded nugget portion is 10% or more. スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度で50以下であることを特徴とする請求項3に記載の締結部品。 The fastener according to claim 3, wherein the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness. スポット溶接ナゲット部の硬さと母材の硬さの差がビッカース硬度で50以下であることを特徴とする請求項1または請求項2に記載のフェライト・オーステナイト2相ステンレス鋼板を用いた締結部品。 The fastener part using the ferrite-duplex stainless steel plate according to claim 1 or 2, wherein the difference between the hardness of the spot welded nugget portion and the hardness of the base metal is 50 or less in Vickers hardness. 請求項3から請求項5までのいずれか1項に記載の締結部品にスポット溶接を施す際に、2段通電を行い、2段目の通電において電流を2.5kA以上6.0kA以下、通電サイクルを10サイクル以上とすることを特徴とするスポット溶接方法。 When spot welding the fastener part according to any one of claims 3 to 5, two-stage energization is performed, and in the second-stage energization, the current is 2.5 kA or more and 6.0 kA or less, and energization is performed. A spot welding method characterized in that the cycle is 10 cycles or more.
JP2020126118A 2020-07-27 2020-07-27 Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method Pending JP2022023289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020126118A JP2022023289A (en) 2020-07-27 2020-07-27 Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020126118A JP2022023289A (en) 2020-07-27 2020-07-27 Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method

Publications (1)

Publication Number Publication Date
JP2022023289A true JP2022023289A (en) 2022-02-08

Family

ID=80226069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020126118A Pending JP2022023289A (en) 2020-07-27 2020-07-27 Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method

Country Status (1)

Country Link
JP (1) JP2022023289A (en)

Similar Documents

Publication Publication Date Title
KR101673217B1 (en) Ferritic stainless steel
EP1918399B9 (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
EP2474635B1 (en) Ferritic stainless steel having excellent heat resistance
KR101878245B1 (en) Ferritic stainless steel excellent in oxidation resistance
TWI460292B (en) Ferritic stainless steel
KR100484983B1 (en) A ferritic stainless steel having superior secondary working embrittleness resistance and superior high temperature fatigue characteristic of welded parts
JP7005396B2 (en) Ferrite-austenite two-phase stainless steel sheet for automobile fasteners
KR20180043359A (en) Ferritic stainless steel
US10400318B2 (en) Ferritic stainless steel
US20170073799A1 (en) Ferritic stainless steel
JP4604714B2 (en) Ferritic Cr-containing steel material and manufacturing method thereof
JP2019178417A (en) Ferrite austenite two phase stainless steel sheet and steel tube
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
JP6961518B2 (en) Ferrite / austenite two-phase stainless steel plate for tank band and tank band and spot welding method using this
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP4608818B2 (en) Ferritic stainless steel with excellent secondary work brittleness resistance and high temperature fatigue properties of welds
JP2022023289A (en) Ferrite-austenite 2-phase stainless steel plate for fastening parts, fastening parts using the same, and spot welding method
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability
KR102592758B1 (en) Welded structures and storage tanks
JP4325243B2 (en) Stainless steel plate for welded structure with excellent intergranular corrosion resistance and workability
JP2023005308A (en) Ferritic stainless steel sheet and method for producing the same
JP2022126000A (en) Ferritic stainless steel sheet, method for producing the same, and part
JP4385502B2 (en) Martensitic stainless steel for welded pipes with excellent weldability and toughness
JP2004043964A (en) Chromium-containing steel for automobile superior in intergranular corrosion resistance at weld zone
JP2003113446A (en) Stainless steel for construction superior in intergranular corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240416