JPH0245695B2 - - Google Patents

Info

Publication number
JPH0245695B2
JPH0245695B2 JP59265967A JP26596784A JPH0245695B2 JP H0245695 B2 JPH0245695 B2 JP H0245695B2 JP 59265967 A JP59265967 A JP 59265967A JP 26596784 A JP26596784 A JP 26596784A JP H0245695 B2 JPH0245695 B2 JP H0245695B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
strength
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59265967A
Other languages
Japanese (ja)
Other versions
JPS61143563A (en
Inventor
Kazuo Sugino
Kenichiro Suemune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26596784A priority Critical patent/JPS61143563A/en
Publication of JPS61143563A publication Critical patent/JPS61143563A/en
Publication of JPH0245695B2 publication Critical patent/JPH0245695B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は湿潤環境における耐錆性が優れ、25K
以下の極低温で1100MPa以上の耐力と、50J以上
のシヤルピー吸収エネルギーを有する極低温用靭
鋼に関するものである。 (従来の技術) 近年超電導電磁石を使用した核融合実験炉、粒
子加速器、磁気浮上鉄道などが日本あるいは欧米
各国で建設され近い将来には実用化されようとし
ている。これらの設備の内、特に超電導電磁石あ
るいは超電導体の保持材あるいはその周辺の構造
材はこれらの超電導体が液化ヘリウムにより
4.2K付近の極低温に冷却されているため、必然
的に同温度まで冷却され、同時に磁石容量の巨大
化に伴なう電磁力の増大により従来では予測し得
なかつた高い応力下で使用されようとしている。
したがつてかかる構造材には、これらの使用条件
に耐え得るため4.2K付近の極低温において高い
強度と良好な靭性を有することが要求されてい
る。さらにかかる構造材は断熱構造部材の一部と
して表面に金属光沢を付与した後、真空に接して
使用される場合があり、その表面は高真空を維持
するため、金属光沢を保つことが要求される。し
たがつてかかる場合には大気中の曝露、あるいは
装置の真空度の劣化により大気が侵入した場合の
結露、結氷などにより金属光沢面が発錆しないこ
と、すなわち耐錆性も重要な特性となる。またそ
の他の場合でもその用途上、耐錆性は無視し得な
い特性の一つに数えられている。 現在かかる要求に対し低温強度向上のため
SUS304LNや316LNなど通常よりもN含有量を
多くしたNi−Cr系のオーステナイト系ステンレ
ス鋼が使用されている。これらの鋼の耐錆性は極
めて優れている反面、4.2K付近の極低温でオー
ステナイト組織が不安定となつて靭性が低下する
欠点を有し、強度も近年の高強度化の要求に対し
て必ずしも十分とは云えず、またNi含有量が多
いため高価である。一方最近では特開昭57−2868
号公報特開昭58−144418号公報などに示されるよ
うに高Mnオーステナイト鋼が低温構造用鋼とし
て開発されているが、これは一様に上述した耐錆
性が無く強度も不十分であり、さらに切削、穿孔
などの機械加工が著るしく困難であるという欠点
を有している。現状ではこれらの鋼はいずれも
4.2K付近の温度では本発明の目的とする高強度
と高靭性を得ることは一般に困難であるとされて
いる。 (発明が解決しようとする問題点) 本発明はかかる既存鋼の欠点を排除し、大気曝
露時あるいは結露時に発錆せず、さらに4.2K付
近の極低温において1100MPa以上の耐力と良好
な靭性を有し、加工性も優れた極低温用強靭鋼を
安価にすることを目的とするものである。 (問題点を解決するための手段) 本発明の目的は、C0.20%以下、Si0.05〜2.5%、
Mn16〜35%、Cr10〜20%、Ni0.1〜8.0%、
N0.10〜0.50%、Al0.001〜0.20%、S0.003%以下
を含有し、あるいは必要に応じて、Mo0.05〜4.0
%、Cu、W、Coの1種または2種以上を総和で
0.01〜4.0%、Nb、Ti、Vの1種または2種以上
を総和で0.005〜2.0%含有し、残部が鉄および不
可避的不純物から成り耐錆性が優れ、25K以下で
1100MPa以上の耐力と50J以上のシヤルピー吸収
エネルギーを有する極低温用高マンガン強靭鋼を
提供することによつて達成される。 まず本発明における鋼成分の限定理由について
述べるが、ここに述べる機械的性質は25K以下に
おける性質である。 Cは多量のMnとCrを含有する鋼できわめて有
効なオーステナイト安定化元素であり、オーステ
ナイトの安定化により25K以下の極低温における
靭性を向上させ、さらに引張強さを高める。しか
し、その含有量が0.2%を超えるると加工性を著
しく悪化させ、さらに溶接時あるいは応力除去焼
鈍時などで600〜800℃に加熱された部分でCr炭
化物が析出して耐錆性を劣化させ靭性も低下させ
る。したがつてC量は0.20%以下とした。 Siは強度を上昇させる有効な成分で0.05%未満
では効果が不十分あり、2.5%を超えるとオース
テナイトを不安定化して靭性を低下させるのでそ
の含有量を0.05〜2.5%とした。 MnはCrを10〜200%含有する鋼のオーステナ
イト相を安定化して極低温における強度と靭性を
向上させるが、16%未満では十分な量のオーステ
ナイトが得られず、またMn量の増加とともに強
度、靭性は向上するが、35%を超えると鋼の溶製
も困難になりMn合金の投入量に増えて高価にな
るため35%以下とした。 Crは耐錆性を付与するとともにオーステナイ
トを安定化する有効成分で、10%未満では十分な
耐錆性が得られず大気曝露で発錆することが避け
られない。また20%を超えるフエライト相を生成
して靭性を安定させるのに十分な量のオーステナ
イトが得られないためその量を10〜20%とした。 Niはオーステナイトからα′マルテンサイトへ
の変態を阻止し強度と靭性を向上させると共に溶
製上問題となるMn量、N量を減少させ得る効果
を奏するが、0.1%未満では顕著な効果が得られ
ない。一方NiはMnに比べて地の強化作用が少な
く、またNの溶解度を減少させるためその上限を
8.0%とした。なおNiは耐錆性を劣化させるため
好ましくは6.0%以下とするのが有利である。 Nはオーステナイトを含有化させると共に極低
温において、強度、特に耐力の上昇に著るしい効
果を有する。特に本発明鋼ではNの溶解度を増大
させるMnとCrを多量に含有するためN溶解度を
減少させる作用を有するNiを多量に含むCr−Ni
系オーステナイトステンレス鋼にくらべて少量の
Nで高強度を得ることが可能で高強度化にはきわ
めて有利である。さらに本発明鋼のような低C高
Mn高Cr鋼の耐錆性の向上にもNは顕著な効果を
有する。本発明鋼では4.2Kにおける目標下限の
耐力を1100MPaとしているが、Nが0.10%未満で
は1100MPaの耐力が得られず、また十分な耐錆
性も得られない。N量の増加で強度は上昇し、耐
錆性も向上するが、Nが0.5%を超えると靭性が
低下し、鋼の溶製あるいは溶接が困難となるた
め、Nの範囲は0.10〜0.50%に限定した。 Alは、Mn−Cr系オーステナイト鋼の熱間加工
性を向上させまたオーステナイト結晶粒を微細化
して強度を上昇させるために用いるが、0.001%
未満ではその効果が不足し、一方0.20%を超える
と靭性を低下させるため、含有量を0.001〜0.20
%とした。 Sの含有量を0.003以下にすることは本発明の
大きな特徴である。すなわち、本発明者等はSを
除き本発明の成分範囲を満足する鋼について
4.2Kにおけるシヤルピー吸収エネルギーに及ぼ
すSの影響について調査した結果、その含有量を
0.003%以下にすることによりそのエネルギーは
著しく向上することを知見した。 第1図は、0.02%C−0.3%Si−25%Mn−15%
Cr−1%Ni−0.20%N鋼の厚さ13mmの厚板を
1100℃で固溶熱処理をした後、JIS4号シヤルピー
衝撃試験を採取し、4.2Kで衝撃試験した結果を
示したものである。この結果から明らかなよう
に、S量が0.003%以下になるとシヤルピー吸収
エネルギーが著しく向上することがわかる。この
ことからS量を0.003%以下とした。 さらに本発明では、必要に応じてMo、Cu、
W、Co、Nb、Ti、Vを含有させて鋼の強度と靭
性を向上させることができる。 数多くの実験結果、本発明におけるような極低
炭素量の高Mo−高Cr鋼において、適量のMoを
添加することは、応力除去後焼鈍や溶接などで
600〜800℃の温度範囲に加熱された場合に一般に
起こるCr炭化物の析出に起因する低温靭性の低
下を防止するのに極めて有効である。 第2図は、0.03%C−0.3%Si−25%Mn−15%
Cr−3%Ni−0.20%N鋼にMoを添加して、固溶
化熱処理を行つたままの鋼に対してそれにさらに
700℃における鋭敏化処理を行つた場合の靭性の
変化を示したものである。0.2%耐力とシヤルピ
ー衝撃吸収エネルギーの値は、それぞれ平行部が
直径7mm、標点距離45mmの丸棒引張試験片とJIS4
号衝撃試験片について液体ヘリウム(4.2K)で
試験された結果であるる。この結果からMoを全
く添加しない場合にくらべて1%および2%添加
すると鋭敏化処理によるシヤルピー吸収エネルギ
ーの低下が著しく軽減されることがわかる。この
ような効果はMo0.05%以上で認められるため下
限を0.05%とし、しかし4%を越えるとフエライ
ト相が生成し逆に靭性が低下するため上限を4.0
%とした。 Cu、W、Coは0.01%以上で靭性の向上と地の
強化に効果を有するが4.0%を超えると靭性の劣
化が始まるためそれらの成分の含有量の総和は
0.01〜4.0%でなければならない。Nb、Ti、Vは
析出硬化で強度を増加させると共に、鋼の結晶粒
を微細化して靭性を向上させる効果も有する。し
かしこれらの元素は総和で2.0%を超えると靭性
が低下するため総和で0.005〜2.0%とした。 極低温として、25K以下の温度を用いている
が、これは現在の超電導電磁石がほとんどの場合
液化ヘリウム(4.2K)で冷却されており、また
試験の便宜上冷媒として液化ヘリウムを用いたた
めである。実際の使用温度としては、超流動液化
ヘリウムの温度(2.1K)から液化水素の温度
(20.4K)までを対象としている。25K以下の温度
で強度として1100MPa以上の耐力(0.2永久伸び
時)を有する。これは前述した設備の使用応力が
最大で約1000MPaとなるためであり、実用上は
1200MPa以上の耐力を付与することが望ましい。
このためには常温において330MPa以上の耐力を
有する必要がある。同じくこれらの設備では靭性
として4.2Kで50J以上のシヤルピー吸収エネルギ
ー(JIS4号試験片による)が必要とされており、
本発明鋼でも50J以上の吸収エネルギーを良好と
しているが、望ましくは80J以上であることが良
い。 従来かかる用途に用いられる構造用鋼は、強磁
場で用いられるため非磁性であることが要求さ
れ、従つて4.2K付近の使用温度で完全にオース
テナイトであることが必要であつた。しかし、本
発明鋼では4.2K付近において完全に非磁性であ
ることは必ずしも必要とするものではなく、耐錆
性と4.2Kにおいて1100MPa以上の耐力と、50J以
上のシヤルピー吸収エネルギーを有するならばオ
ーステナイト相の他に強磁性のフエライト相が存
在することを妨げるものではない。そのためには
オーステナイト相は80%以上存在すればよく、こ
の限度内で合金元素の増減、取捨選択を行ない得
る。もちろん4.2Kにおいて完全なオーステナイ
ト鋼とすることは可能であつてこの場合にはCr
は10〜18%、Mnは20〜27%、Nは0.20〜0.40%
とすることが望ましい。 本発明鋼は、次に述べる工程に従つて製造され
る。すなわち転炉、電気炉などの溶解炉あるいは
さらに必要によつては真空脱ガス法、取鍋精錬
法、再溶解法などを用いて所定成分の溶鋼を得、
これを鋼塊とした後、1000〜1250℃に加熱して分
塊圧延または鍛造あるいは連続鍛造することによ
つて鋼片とする。この鋼片を通常の方法によつて
1000〜1250℃に再加熱した後、あるいは鋼片製造
直後に、低温まで冷却することなく圧延または鍛
造などの加工を行なつて厚板、形鋼、棒鋼、線
材、熱延薄板などに製造される。この圧延または
鍛造後の冷却は通常行われるように自然放冷でも
よいが、冷却中の炭窒化物の析出による靭性や耐
錆性の劣化を防ぐために水冷などの急冷を行つて
もよい。 本発明鋼は、圧延または鍛造まで使用してもよ
いが耐錆性や靭性をより安定させるには900〜
1150℃に加熱して固溶化処理することが望まし
い。 さらに、このようにして製造された熱延薄板に
ついては、通常の方法で冷間圧延を行い900〜
1150℃で再結晶および固溶化のための熱処理を行
つて冷却薄板とすることができる。 また、本発明鋼は切削、曲げなどの加工、およ
び溶接も問題なく行うことができる。熱間や冷間
成形によりボルトとして使用することもできる。 (実施例) 次に、本発明の実施例について説明する。 第1表に、本発明鋼および比較鋼の化学成分と
機械的性質、および耐食性を示す。これらのうち
本発明鋼は、電気炉によつて溶製した後、鋼塊と
なし1100〜1200℃に加熱した後、圧延して鋼片と
なし、再び1100〜1200℃に加熱して厚さ10〜50mm
に圧延して厚板とし、次いで1000〜1150℃で固溶
化熱処理を行つたものについて引張、衝撃および
屋外曝露による耐食性試験を行つた結果である。
ただし、鋼2だけは厚板圧延の後1000℃から直接
に水焼入れされ、その後に固溶化熱処理は行われ
ていない。 比較鋼のうち、No.38の鋼はSUS304LN、No.39
の鋼は316N、No.10の鋼は熱膨張率の小さい低温
用鋼として開発された低C−25%Mn鋼である。 この結果からわかるように、本発明のNo.1〜37
の鋼は4.2Kにおいて0.2%耐力は1100MPa以上で
シヤルピー吸収エネルギーは138J以上できわめて
優れた強度と靭性を示している。また、例えば60
日間の屋外曝露試験において全く錆を発生してい
ない。さらにこれらの鋼については30日間の空気
飽和水中浸漬を行つたが錆の発生はなかつた。一
方、比較鋼としてあげたNo.38、39の鋼は耐力が
1100MPsより低く、No.40の鋼はその上耐錆性が
劣る。また、本発明鋼は完全に非磁性であり、透
過率は1.005以下であつた。 (発明の効果) 上記の実験結果から明らかなように、本発明鋼
は従来の高Mn鋼に比較して強度、耐錆性、靭性
がすぐれ、またNi、Cr量の多いオーステナイト
系ステンレス鋼と同等の耐錆性に加えて、極低温
においてステンレス鋼よりも優れた強度と性を具
備し、しかもステンレス鋼よりも安価に供給し得
る点においても産業上裨益するところが極めて大
である。
(Industrial Application Field) The present invention has excellent rust resistance in a humid environment, and
This relates to a cryogenic tough steel having a yield strength of 1100 MPa or more and a Charpy absorbed energy of 50 J or more at the following cryogenic temperatures. (Prior Technology) In recent years, experimental nuclear fusion reactors, particle accelerators, magnetic levitation trains, etc. using superconducting electromagnets have been constructed in Japan, Europe, and the United States, and are expected to be put into practical use in the near future. Among these facilities, especially superconducting electromagnets, superconductor holding materials, and surrounding structural materials are
Since it is cooled to an extremely low temperature of around 4.2K, it is inevitably cooled to the same temperature, and at the same time, due to the increase in electromagnetic force due to the huge magnet capacity, it is used under high stress that could not be predicted in the past. I am trying to do.
Therefore, such structural materials are required to have high strength and good toughness at extremely low temperatures around 4.2K in order to withstand these usage conditions. Furthermore, such structural materials may be used in contact with vacuum after being given a metallic luster to the surface as part of a heat insulating structural member, and the surface is required to maintain its metallic luster in order to maintain a high vacuum. Ru. Therefore, in such cases, rust resistance is also an important characteristic, that is, that the shiny metal surface does not rust due to condensation or ice formation due to exposure to the atmosphere or when the atmosphere enters due to deterioration of the vacuum level of the equipment. . In other cases as well, rust resistance is considered one of the characteristics that cannot be ignored. To improve low-temperature strength in response to current demands.
Ni-Cr based austenitic stainless steels with higher N content than usual, such as SUS304LN and 316LN, are used. Although these steels have extremely excellent rust resistance, they have the disadvantage that the austenite structure becomes unstable at extremely low temperatures around 4.2K, resulting in a decrease in toughness, and their strength does not meet the recent demands for higher strength. It is not always sufficient, and it is expensive because it contains a large amount of Ni. On the other hand, recently, Japanese Patent Application Publication No. 57-2868
High Mn austenitic steels have been developed as low-temperature structural steels, as shown in Japanese Patent Application Laid-Open No. 58-144418, but they do not have the above-mentioned rust resistance and have insufficient strength. Furthermore, it has the disadvantage that machining such as cutting and drilling is extremely difficult. At present, both of these steels
It is generally considered difficult to obtain the high strength and high toughness that are the objectives of the present invention at temperatures around 4.2K. (Problems to be Solved by the Invention) The present invention eliminates the drawbacks of existing steels, does not rust when exposed to the atmosphere or when condensed, and has a yield strength of more than 1100 MPa and good toughness at extremely low temperatures around 4.2 K. The purpose of this project is to make low-cost, high-strength steel for cryogenic use that has excellent workability and excellent workability. (Means for Solving the Problems) The purpose of the present invention is to achieve C0.20% or less, Si0.05 to 2.5%,
Mn16~35%, Cr10~20%, Ni0.1~8.0%,
Contains N0.10~0.50%, Al0.001~0.20%, S0.003% or less, or as necessary, Mo0.05~4.0
%, one or more of Cu, W, Co in total
Contains 0.01 to 4.0%, one or more of Nb, Ti, and V in a total of 0.005 to 2.0%, with the remainder consisting of iron and unavoidable impurities, and has excellent rust resistance.
This is achieved by providing a high manganese tough steel for cryogenic use that has a yield strength of 1100 MPa or more and a Charpy absorbed energy of 50 J or more. First, the reasons for limiting the steel components in the present invention will be described.The mechanical properties described here are properties at 25K or lower. C is an extremely effective austenite stabilizing element in steels containing large amounts of Mn and Cr, and by stabilizing austenite it improves toughness at cryogenic temperatures below 25K and further increases tensile strength. However, if its content exceeds 0.2%, workability will be significantly deteriorated, and Cr carbides will precipitate in areas heated to 600 to 800°C during welding or stress relief annealing, reducing rust resistance. It also reduces toughness. Therefore, the amount of C was set to 0.20% or less. Si is an effective component for increasing strength, and if it is less than 0.05%, the effect is insufficient, and if it exceeds 2.5%, it destabilizes austenite and reduces toughness, so its content was set at 0.05 to 2.5%. Mn stabilizes the austenite phase of steel containing 10 to 200% Cr and improves its strength and toughness at cryogenic temperatures, but if it is less than 16%, a sufficient amount of austenite cannot be obtained, and as the amount of Mn increases, the strength increases. , toughness improves, but if it exceeds 35%, it becomes difficult to melt the steel, and the amount of Mn alloy input increases, making it expensive, so it was set to 35% or less. Cr is an active ingredient that provides rust resistance and stabilizes austenite, and if it is less than 10%, sufficient rust resistance cannot be obtained and rust will inevitably occur when exposed to the atmosphere. Furthermore, since it is not possible to obtain a sufficient amount of austenite to stabilize toughness by generating a ferrite phase exceeding 20%, the amount is set to 10 to 20%. Ni has the effect of preventing the transformation from austenite to α' martensite, improving strength and toughness, and reducing the amount of Mn and N, which are problems in melting. However, if it is less than 0.1%, no significant effect is obtained. I can't. On the other hand, Ni has less reinforcing effect than Mn, and also reduces the solubility of N, so the upper limit is
It was set at 8.0%. Note that since Ni deteriorates rust resistance, it is advantageous to keep it preferably at 6.0% or less. N causes austenite to be included and has a remarkable effect on increasing strength, especially proof stress, at extremely low temperatures. In particular, the steel of the present invention contains a large amount of Mn and Cr, which increase the solubility of N, so Cr-Ni contains a large amount of Ni, which has the effect of reducing the solubility of N.
Compared to austenitic stainless steels, it is possible to obtain high strength with a small amount of N, which is extremely advantageous for increasing strength. Furthermore, low C high like the steel of the present invention
N also has a remarkable effect on improving the rust resistance of Mn-high Cr steel. The target lower limit yield strength of the steel of the present invention at 4.2K is 1100 MPa, but if N is less than 0.10%, a yield strength of 1100 MPa cannot be obtained, and sufficient rust resistance cannot be obtained. Increasing the amount of N increases strength and improves rust resistance, but if N exceeds 0.5%, toughness decreases and it becomes difficult to melt or weld the steel, so the range of N is 0.10 to 0.50%. limited to. Al is used to improve the hot workability of Mn-Cr austenitic steel and to refine the austenite grains to increase the strength.
If the content is less than 0.20%, the effect will be insufficient, while if it exceeds 0.20%, the toughness will decrease, so the content should be reduced to 0.001 to 0.20%.
%. It is a major feature of the present invention that the S content is 0.003 or less. That is, the present inventors have developed steel that satisfies the composition range of the present invention except for S.
As a result of investigating the influence of S on the Charpy absorbed energy at 4.2K, we found that its content was
It has been found that the energy can be significantly improved by reducing the content to 0.003% or less. Figure 1 shows 0.02%C-0.3%Si-25%Mn-15%
A 13mm thick plate of Cr-1%Ni-0.20%N steel
After solid solution heat treatment at 1100℃, JIS No. 4 Charpy impact test was taken, and the results of the impact test at 4.2K are shown. As is clear from these results, it can be seen that when the amount of S is 0.003% or less, the Charpy absorbed energy is significantly improved. From this, the amount of S was set to 0.003% or less. Furthermore, in the present invention, Mo, Cu,
The strength and toughness of steel can be improved by containing W, Co, Nb, Ti, and V. As a result of numerous experiments, it has been found that adding an appropriate amount of Mo to high Mo-high Cr steel with extremely low carbon content, such as the one used in the present invention, is effective in annealing and welding after stress relief.
It is extremely effective in preventing the deterioration of low-temperature toughness caused by the precipitation of Cr carbides, which generally occurs when heated to a temperature range of 600 to 800°C. Figure 2 shows 0.03%C-0.3%Si-25%Mn-15%
By adding Mo to Cr-3%Ni-0.20%N steel, it is further added to the steel that has been subjected to solution heat treatment.
This figure shows the change in toughness when sensitized at 700°C. The values of 0.2% proof stress and Charpy impact absorption energy are obtained using a round bar tensile test piece with a parallel part diameter of 7 mm and a gauge length of 45 mm, respectively, and JIS4
These are the results of testing the No. 1 impact test piece in liquid helium (4.2K). These results show that when Mo is added in an amount of 1% and 2%, the reduction in Charpy absorbed energy due to the sensitization treatment is significantly reduced compared to when Mo is not added at all. Such an effect is observed with Mo of 0.05% or more, so the lower limit is set at 0.05%. However, if it exceeds 4%, a ferrite phase is formed and the toughness decreases, so the upper limit is set at 4.0%.
%. Cu, W, and Co have the effect of improving toughness and strengthening the base at 0.01% or more, but when it exceeds 4.0%, toughness begins to deteriorate, so the total content of these components is
Must be between 0.01 and 4.0%. Nb, Ti, and V increase strength through precipitation hardening, and also have the effect of refining the grains of steel and improving toughness. However, if the total content of these elements exceeds 2.0%, the toughness decreases, so the total content of these elements was set to 0.005 to 2.0%. A temperature below 25K is used as the cryogenic temperature, because most current superconducting electromagnets are cooled with liquefied helium (4.2K), and liquefied helium was used as the coolant for the convenience of the test. The actual operating temperatures range from the temperature of superfluid liquefied helium (2.1K) to the temperature of liquefied hydrogen (20.4K). It has a yield strength of 1100MPa or more (at 0.2 permanent elongation) at a temperature of 25K or less. This is because the operating stress of the equipment mentioned above is approximately 1000 MPa at maximum, and in practical terms
It is desirable to provide a yield strength of 1200MPa or more.
For this purpose, it is necessary to have a yield strength of 330 MPa or more at room temperature. Similarly, these facilities require toughness of 50 J or more of Sharpy absorbed energy (based on JIS No. 4 test piece) at 4.2 K.
The steel of the present invention also has a good absorbed energy of 50 J or more, but preferably 80 J or more. Traditionally, structural steels used in such applications have been required to be non-magnetic because they are used in strong magnetic fields, and therefore required to be fully austenitic at service temperatures around 4.2K. However, the steel of the present invention does not necessarily need to be completely non-magnetic at around 4.2K, and if it has rust resistance, proof stress of 1100MPa or more at 4.2K, and sharpy absorbed energy of 50J or more, it becomes austenite. This does not preclude the presence of a ferromagnetic ferrite phase in addition to the phase. For this purpose, it is sufficient that the austenite phase exists in an amount of 80% or more, and the alloying elements can be increased, decreased, or selected within this limit. Of course, it is possible to make completely austenitic steel at 4.2K, and in this case Cr
is 10-18%, Mn is 20-27%, N is 0.20-0.40%
It is desirable to do so. The steel of the present invention is manufactured according to the steps described below. That is, molten steel of a specified composition is obtained using a melting furnace such as a converter or an electric furnace, or if necessary, a vacuum degassing method, a ladle refining method, a remelting method, etc.
After forming this into a steel ingot, it is heated to 1000 to 1250°C and subjected to blooming rolling, forging, or continuous forging to obtain a steel billet. This piece of steel is processed using the usual method.
After being reheated to 1,000 to 1,250℃, or immediately after producing the billet, it is processed by rolling or forging without being cooled down to low temperatures to produce thick plates, shaped steel, steel bars, wire rods, hot-rolled sheets, etc. Ru. Cooling after rolling or forging may be allowed to cool naturally as is usually done, but rapid cooling such as water cooling may be performed to prevent deterioration of toughness and rust resistance due to precipitation of carbonitrides during cooling. The steel of the present invention may be rolled or forged, but in order to make the rust resistance and toughness more stable,
It is desirable to perform solution treatment by heating to 1150°C. Furthermore, the hot-rolled thin sheets produced in this way are cold-rolled using a normal method to
It can be heat treated at 1150°C for recrystallization and solid solution formation to form a cooling thin plate. Further, the steel of the present invention can be processed such as cutting and bending, and welded without any problem. It can also be used as a bolt by hot or cold forming. (Example) Next, an example of the present invention will be described. Table 1 shows the chemical composition, mechanical properties, and corrosion resistance of the steel of the present invention and comparative steel. Among these, the steel of the present invention is produced by melting it in an electric furnace, heating it to a steel ingot at 1100-1200°C, rolling it into a steel billet, heating it again to 1100-1200°C, and reducing the thickness. 10~50mm
These are the results of corrosion resistance tests by tensile, impact, and outdoor exposure on plates that were rolled into thick plates and then subjected to solution heat treatment at 1000 to 1150°C.
However, only Steel 2 was water quenched directly at 1000°C after thick plate rolling, and was not subjected to solution heat treatment thereafter. Among the comparison steels, steel No. 38 is SUS304LN and No. 39
The steel No. 10 is a low C-25% Mn steel developed as a low temperature steel with a small coefficient of thermal expansion. As can be seen from this result, Nos. 1 to 37 of the present invention
The steel has a 0.2% yield strength of over 1100MPa and a absorbed energy of over 138J at 4.2K, showing extremely excellent strength and toughness. Also, for example 60
No rust was observed in the outdoor exposure test for several days. Furthermore, these steels were immersed in air-saturated water for 30 days, but no rust occurred. On the other hand, steels No. 38 and 39 listed as comparative steels have a high yield strength.
Lower than 1100MPs, No. 40 steel also has poor rust resistance. Further, the steel of the present invention was completely non-magnetic and had a transmittance of 1.005 or less. (Effects of the invention) As is clear from the above experimental results, the steel of the present invention has superior strength, rust resistance, and toughness compared to conventional high-Mn steel, and is also superior to austenitic stainless steel with high Ni and Cr contents. In addition to equivalent rust resistance, it has superior strength and properties at extremely low temperatures than stainless steel, and can be supplied at a lower cost than stainless steel, which is of great industrial benefit.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は0.02%C−0.3%Si−25%Mn−15%Cr
−1%Ni−0.20%N鋼の厚板(13mm)を1100℃で
固溶化熱処理した後、4.2Kで衝撃試験した結果
を示す図、第2図は0.03%C−0.3%Si−25%Mn
−15%Cr−3%Ni−0.2%N鋼にMoを添加して、
固溶化熱処理を行つたままの鋼板に対し、それに
さらに700℃における鋭敏化処理を行つた場合の
靭性の変化を示す図である。
Figure 1 shows 0.02%C-0.3%Si-25%Mn-15%Cr
-1%Ni-0.20%N A thick plate (13mm) of N steel was solution heat treated at 1100℃ and then subjected to an impact test at 4.2K. Figure 2 is 0.03%C-0.3%Si-25% Mn
- Adding Mo to 15% Cr - 3% Ni - 0.2% N steel,
FIG. 2 is a diagram showing changes in toughness when a steel plate that has been subjected to solution heat treatment is further subjected to sensitization treatment at 700°C.

Claims (1)

【特許請求の範囲】 1 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下を含有し、残部
が鉄および不可避的不純物から成ることを特徴と
する耐錆性極低温用高マンガン強靭鋼。 2 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下およびMo0.05〜
4.0%を含有し、残部が鉄および不可避的不純物
から成ることを特徴とする耐錆性極低温用高マン
ガン強靭鋼。 3 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下を含有し、さら
にCu、W、Coの1種または2種以上を総和で
0.01〜4.0%含有し、残部が鉄および不可避的不
純物から成ることを特徴とする耐錆性極低温用高
マンガン強靭鋼。 4 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下を含有し、さら
にNb、Ti、Vの1種または2種以上を総和で
0.005〜2.0%含有し、残部が鉄および不可避的不
純物から成ることを特徴とする耐錆性極低温用高
マンガン強靭鋼。 5 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下を含有し、さら
にCu、W、Coの1種または2種以上を総和で
0.01〜4.0%、およびNb、Ti、Vの1種または2
種以上を総和で0.005〜2.0%含有し、残部が鉄お
よび不可避的不純物から成ることを特徴とする耐
錆性極低温用高マンガン強靭鋼。 6 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下およびMo0.05〜
4.0%を含有し、さらにCu、W、Coの1種または
2種以上を総和で0.01〜4.0%含有し、残部が鉄
および不可避的不純物から成ることを特徴とする
耐錆性極低温用高マンガン強靭鋼。 7 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下およびMo0.05〜
4.0%を含有し、さらにNb、Ti、Vの1種または
2種以上を総和で0.005〜2.0%含有し、残部が鉄
および不可避的不純物から成ることを特徴とする
耐錆性極低温用高マンガン強靭鋼。 8 C0.20%以下、Si0.05〜2.5%、Mn16〜35%、
Cr10〜20%、Ni0.1〜8.0%、N0.10〜0.50%、
Al0.001〜0.20%、S0.003%以下およびMo0.05〜
4.0%を含有し、さらにCu、W、Coの1種または
2種以上を総和で0.01〜0.4%、およびNb、Ti、
Vの1種または2種以上を総和で0.005〜2.0%含
有し、残部が鉄および不可避的不純物から成るこ
とを特徴とする耐錆性極低温用高マンガン強靭
鋼。
[Claims] 1 C 0.20% or less, Si 0.05 to 2.5%, Mn 16 to 35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
A rust-resistant cryogenic high manganese tough steel containing 0.001 to 0.20% Al and 0.003% or less S, with the balance consisting of iron and inevitable impurities. 2 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Al0.001~0.20%, S0.003% or less and Mo0.05~
4.0%, with the balance consisting of iron and unavoidable impurities. 3 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Contains Al0.001~0.20%, S0.003% or less, and also contains one or more of Cu, W, and Co in total.
Rust-resistant high manganese tough steel for cryogenic use, characterized by containing 0.01 to 4.0%, with the remainder consisting of iron and inevitable impurities. 4 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Contains Al0.001~0.20%, S0.003% or less, and also contains one or more of Nb, Ti, and V in total.
Rust-resistant high manganese tough steel for cryogenic use, characterized by containing 0.005 to 2.0%, with the remainder consisting of iron and inevitable impurities. 5 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Contains Al0.001~0.20%, S0.003% or less, and also contains one or more of Cu, W, and Co in total.
0.01 to 4.0%, and one or two of Nb, Ti, and V
Rust-resistant high manganese tough steel for cryogenic use, characterized in that it contains 0.005 to 2.0% in total of 0.005% to 2.0%, with the balance consisting of iron and unavoidable impurities. 6 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Al0.001~0.20%, S0.003% or less and Mo0.05~
4.0%, and further contains one or more of Cu, W, and Co in a total of 0.01 to 4.0%, with the balance consisting of iron and inevitable impurities. Manganese tough steel. 7 C0.20% or less, Si0.05~2.5%, Mn16~35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Al0.001~0.20%, S0.003% or less and Mo0.05~
4.0%, and further contains one or more of Nb, Ti, and V in a total of 0.005 to 2.0%, with the balance consisting of iron and inevitable impurities. Manganese tough steel. 8 C0.20% or less, Si0.05-2.5%, Mn16-35%,
Cr10~20%, Ni0.1~8.0%, N0.10~0.50%,
Al0.001~0.20%, S0.003% or less and Mo0.05~
4.0%, and further contains one or more of Cu, W, and Co in a total of 0.01 to 0.4%, and Nb, Ti,
A rust-resistant, high manganese tough steel for cryogenic use, which contains one or more types of V in a total amount of 0.005 to 2.0%, with the remainder consisting of iron and inevitable impurities.
JP26596784A 1984-12-17 1984-12-17 Rust resistant, tough and hard high-manganese steel for use at very low temperature Granted JPS61143563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26596784A JPS61143563A (en) 1984-12-17 1984-12-17 Rust resistant, tough and hard high-manganese steel for use at very low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26596784A JPS61143563A (en) 1984-12-17 1984-12-17 Rust resistant, tough and hard high-manganese steel for use at very low temperature

Publications (2)

Publication Number Publication Date
JPS61143563A JPS61143563A (en) 1986-07-01
JPH0245695B2 true JPH0245695B2 (en) 1990-10-11

Family

ID=17424532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26596784A Granted JPS61143563A (en) 1984-12-17 1984-12-17 Rust resistant, tough and hard high-manganese steel for use at very low temperature

Country Status (1)

Country Link
JP (1) JPS61143563A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227557A (en) * 1985-07-27 1987-02-05 Kobe Steel Ltd High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability
JP5526809B2 (en) 2009-04-27 2014-06-18 大同特殊鋼株式会社 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
BR112021014128A2 (en) * 2019-01-22 2021-09-21 Aperam IRON AND MANGANESE ALLOY, RIBBON MANUFACTURING METHOD, TAPE, YARN AND WIRE MANUFACTURING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS56258A (en) * 1979-06-12 1981-01-06 Sumitomo Metal Ind Ltd No-nickel high-manganese-content steel for low temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS56258A (en) * 1979-06-12 1981-01-06 Sumitomo Metal Ind Ltd No-nickel high-manganese-content steel for low temperature

Also Published As

Publication number Publication date
JPS61143563A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
Niikura et al. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures
US4675156A (en) Structural austenitic stainless steel with superior proof stress and toughness at cryogenic temperatures
CN110423950B (en) Fe-Mn-Al-C series medium-manganese low-temperature steel and preparation method thereof
CN102428198A (en) Steel material for high heat input welding
US5591391A (en) High chromium ferritic heat-resistant steel
CN113737091A (en) Steel for low-magnetism high-strength corrosion-resistant fastener and fastener
JPH08225833A (en) Production of martensitic heat resistant steel excellent in high temperature creep strength
JPS6145697B2 (en)
JPH0619110B2 (en) Method for producing high Mn austenitic stainless steel for cryogenic use
JP3851394B2 (en) High Mn stainless steel welding wire for cryogenic temperatures with excellent resistance to welding hot cracking
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH0245695B2 (en)
JPS6054374B2 (en) Method for manufacturing austenitic steel plates and steel strips
US3453152A (en) High-strength alloy steel compositions and process of producing high strength steel including hot-cold working
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
EP2313537B1 (en) Austenitic alloy for cryogenic applications
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
EP0783595B1 (en) Use of a nonmagnetic stainless steel
JPH068487B2 (en) Ferritic heat resistant steel with excellent toughness at weld bond
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
JP3439062B2 (en) High Mn stainless steel with excellent hot workability and cryogenic toughness
JPS59104455A (en) Tenacious steel for ultra-low temperature excellent in anti-rust property
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same