JP5526809B2 - High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same - Google Patents

High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same Download PDF

Info

Publication number
JP5526809B2
JP5526809B2 JP2010015591A JP2010015591A JP5526809B2 JP 5526809 B2 JP5526809 B2 JP 5526809B2 JP 2010015591 A JP2010015591 A JP 2010015591A JP 2010015591 A JP2010015591 A JP 2010015591A JP 5526809 B2 JP5526809 B2 JP 5526809B2
Authority
JP
Japan
Prior art keywords
mass
corrosion resistance
stainless steel
high strength
high corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010015591A
Other languages
Japanese (ja)
Other versions
JP2011006776A (en
Inventor
浩一 石川
茂紀 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42321059&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5526809(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010015591A priority Critical patent/JP5526809B2/en
Priority to US12/766,390 priority patent/US20100272593A1/en
Priority to CN201010159146.2A priority patent/CN101921970B/en
Priority to EP10004443.7A priority patent/EP2248919B1/en
Publication of JP2011006776A publication Critical patent/JP2011006776A/en
Application granted granted Critical
Publication of JP5526809B2 publication Critical patent/JP5526809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法に関し、更に詳しくは、地磁気の影響を遮断でき、石油井掘削に用いて特に好適な非磁性ステンレス鋼を特性(高耐食性・高強度)を損なわずに製造する技術に関する。   The present invention relates to a high corrosion resistance, high strength, nonmagnetic stainless steel and a high corrosion resistance, high strength, nonmagnetic stainless steel product and a method for producing the same, and more particularly, the influence of geomagnetism can be cut off and used particularly in petroleum well drilling. The present invention relates to a technique for producing a suitable nonmagnetic stainless steel without impairing characteristics (high corrosion resistance and high strength).

従来、ドリルを用いて石油井掘削を行う場合等においては、ドリル先端の地表からの位置(例えば、方位・傾斜)を磁気感知により特定し、ドリルを制御することから、測定機器はビット近くのドリルカラーに装着される。その際に方位・傾斜を測定するには地磁気の影響を遮断するために、ドリルカラー等が非磁性鋼で作製されていることを要する。従来、このような用途の鋼として、13Cr−18Mn−0.5Mo−2Ni−0.3N、13Cr−21Mn−0.3N、16.5Cr−16Mn−1Mo−1.3Ni−0.5Cu−0.4N等の高Mn系非磁性ステンレス鋼が用いられてきた。   Conventionally, when drilling oil wells using a drill, the position of the drill tip from the ground surface (for example, azimuth / inclination) is specified by magnetic sensing and the drill is controlled. Mounted on the drill collar. In this case, in order to measure the azimuth and inclination, it is necessary that the drill collar or the like is made of nonmagnetic steel in order to block the influence of geomagnetism. Conventionally, 13Cr-18Mn-0.5Mo-2Ni-0.3N, 13Cr-21Mn-0.3N, 16.5Cr-16Mn-1Mo-1.3Ni-0.5Cu-0. High Mn nonmagnetic stainless steel such as 4N has been used.

また、この種の周知改良技術として、例えば、以下の特許文献記載のものが提案されている。
特許文献1には、遠心分離器回転体等への用途のために、C:0.15%以下、Si:0.1〜2.0%、Mn:7.0〜18.0%、Ni:0.50〜6.0%、Cr:15.0〜21.0%未満、Mo:0.5〜4.0%、N:0.20〜0.60%を含み、残部Fe及び不純物からなる高力オーステナイトステンレス鋼が開示されている。
As this kind of well-known improvement technique, for example, a technique described in the following patent document has been proposed.
In Patent Document 1, C: 0.15% or less, Si: 0.1-2.0%, Mn: 7.0-18.0%, Ni for use in a centrifuge rotor or the like : 0.50 to 6.0%, Cr: 15.0 to less than 21.0%, Mo: 0.5 to 4.0%, N: 0.20 to 0.60%, the balance Fe and impurities A high strength austenitic stainless steel is disclosed.

特許文献2には、超伝導電磁石や超伝導体の保持材等への用途のために、C:0.01〜0.20wt%、Si:0.05〜1.5wt%、Mn:16〜27wt%、Cr:10〜20wt%、Cu:0.1〜4wt%、N:0.10〜0.50wt%、Al:0.003〜0.20wt%を含有し、残部がFe及び不可避的不純物からなる耐錆性の優れた極低温用強靱鋼が開示されている。   In Patent Document 2, C: 0.01 to 0.20 wt%, Si: 0.05 to 1.5 wt%, Mn: 16 to, for use as a superconducting electromagnet or a superconductor holding material. 27 wt%, Cr: 10 to 20 wt%, Cu: 0.1 to 4 wt%, N: 0.10 to 0.50 wt%, Al: 0.003 to 0.20 wt%, the balance being Fe and inevitable An extremely low temperature tough steel having excellent rust resistance composed of impurities is disclosed.

特許文献3には、C:0.15%以下、Si:0.1〜2.0%、Mn:7.0〜18.0%、Ni:0.50〜6.0%、Cr:15.0〜26.0%、Mo:0.5〜4.0%、N:0.2〜0.6%を含み、残部実質的にFeよりなり、圧下率50%以上の熱間加工を施し、前記熱間加工の仕上げ温度を800℃〜1000℃としてなる海中探索船搭載機器用高強度部材が開示されている。   In Patent Document 3, C: 0.15% or less, Si: 0.1 to 2.0%, Mn: 7.0 to 18.0%, Ni: 0.50 to 6.0%, Cr: 15 0.0-26.0%, Mo: 0.5-4.0%, N: 0.2-0.6%, the balance being substantially made of Fe and hot working with a reduction rate of 50% or more And a high-strength member for a submarine vessel equipped with an underwater search ship having a finishing temperature of 800 to 1000 ° C. is disclosed.

特許文献4には、超伝導電磁石や超伝導体の保持材等への用途のために、C:0.20%以下、Si:0.05〜2.5%、Mn:16〜35%、Cr:10〜20%、Ni:0.1〜8.0%、N:0.10〜0.50%、Al:0.001〜0.20%、S:0.003%以下を含有し、残部がFe及び不可避的不純物からなる耐錆性極低温用高マンガン強靱鋼が開示されている。   In Patent Document 4, C: 0.20% or less, Si: 0.05 to 2.5%, Mn: 16 to 35%, for use as a superconducting electromagnet or a superconductor holding material, etc. Cr: 10 to 20%, Ni: 0.1 to 8.0%, N: 0.10 to 0.50%, Al: 0.001 to 0.20%, S: 0.003% or less In addition, a rust-resistant, high-manganese tough steel for cryogenic use whose balance is made of Fe and inevitable impurities is disclosed.

特許文献5には、超伝導電磁石を使用した核融合実験炉等で使用される構造物等への用途のために、C:0.20%以下、Si:0.05〜2.5%、Mn:9〜35%、Cr:10〜20%、Ni:0.1〜8.0%、N:0.001〜0.50%、Al:0.001〜0.20%、Ca:0.001〜0.020%を含有し、残部がFe及び不可避的不純物からなる耐錆性の優れた極低温用高マンガン鋼が開示されている。   In Patent Document 5, C: 0.20% or less, Si: 0.05 to 2.5%, for use in a structure or the like used in a nuclear fusion experimental reactor using a superconducting electromagnet, Mn: 9 to 35%, Cr: 10 to 20%, Ni: 0.1 to 8.0%, N: 0.001 to 0.50%, Al: 0.001 to 0.20%, Ca: 0 A high-manganese steel for cryogenic temperatures having excellent rust resistance, containing 0.001 to 0.020% and the balance being Fe and inevitable impurities is disclosed.

特許文献6には、磁気を回避する必要のある精密機器部品(マイクロモーターシャフト、磁気テープのガイド、シャフト等)への用途のために、C:0.01〜0.15wt%、Si:0.05〜0.60wt%、Mn:16〜25wt%、S≦0.010wt%、Ni≦4.0wt%、Cr:14〜20wt%、N:0.3〜0.6wt%、O≦0.01wt%、Al:0.001〜0.20wt%を含有し、更に、面積率で非金属介在物≦0.10%であり、残部がFe及び不可避的不純物からなる耐銹性の優れた高強度非磁性鋼が開示されている。   In Patent Document 6, C: 0.01 to 0.15 wt%, Si: 0 for applications to precision instrument parts (micromotor shaft, magnetic tape guide, shaft, etc.) that need to avoid magnetism. 0.05 to 0.60 wt%, Mn: 16 to 25 wt%, S ≦ 0.010 wt%, Ni ≦ 4.0 wt%, Cr: 14 to 20 wt%, N: 0.3 to 0.6 wt%, O ≦ 0 .01 wt%, Al: 0.001 to 0.20 wt%, and in addition, the area ratio is non-metallic inclusions ≦ 0.10%, and the balance is excellent in weather resistance consisting of Fe and inevitable impurities A high strength non-magnetic steel is disclosed.

特許文献7には、歯間ブラシ用線材への用途のために、質量で、C≦0.07%,Si≦0.6%,Mn:13〜17%,Ni:2.0〜5.0%,Cr:16.0〜20.0%,Mo:0.4〜2.0%,N:0.3〜0.60%と、Cu:0.3〜1.0%を含有する歯間ブラシ用線材が開示されている。   In Patent Document 7, for use as an interdental brush wire, C ≦ 0.07%, Si ≦ 0.6%, Mn: 13-17%, Ni: 2.0-5. 0%, Cr: 16.0 to 20.0%, Mo: 0.4 to 2.0%, N: 0.3 to 0.60%, and Cu: 0.3 to 1.0% An interdental brush wire is disclosed.

特許文献8には、石油井掘削用のドリルカラーへの用途のために、C:0.06%以下、Si:0.40%以下、Mn:15.5〜17%、P:0.040%以下、S:0.010%以下、Cu:0.35〜2.00%、Ni:2.50〜4.00%、Cr:17.0〜21.0%、Mo+W:0.5〜1.5%、N:0.42〜0.65%、O:0.01%以下、sol−Al:0.05%以下及びB:0.001〜0.010%を含有し、残部が実質的にFeである非磁性ステンレス鋼が開示されている。   In Patent Document 8, C: 0.06% or less, Si: 0.40% or less, Mn: 15.5 to 17%, P: 0.040 for use as a drill collar for drilling oil wells. % Or less, S: 0.010% or less, Cu: 0.35 to 2.00%, Ni: 2.50 to 4.00%, Cr: 17.0 to 21.0%, Mo + W: 0.5 to 1.5%, N: 0.42 to 0.65%, O: 0.01% or less, sol-Al: 0.05% or less and B: 0.001 to 0.010%, the balance being Non-magnetic stainless steel that is substantially Fe is disclosed.

このように、耐食性・非磁性といった特性に優れた多くのステンレス鋼が提案されている。   Thus, many stainless steels excellent in properties such as corrosion resistance and non-magnetic properties have been proposed.

特開昭53−117618号公報JP-A-53-117618 特開昭59−104455号公報JP 59-104455 A 特開昭59−205452号公報JP 59-205452 A 特開昭61−143563号公報JP-A 61-143563 特開昭61−170545号公報JP-A 61-170545 特開昭61−238943号公報JP-A-61-238943 特開2004−052097号公報JP 2004-052097 A 特開2004−156086号公報Japanese Patent Laid-Open No. 2004-156066

しかしながら、ここ最近は石油井掘削領域も多岐にわたっており、非磁性を前提とした更なる高耐食・高強度なステンレス鋼が産業界から要望されている。また、上記の特許文献1〜8に記載の各種鋼には、改良すべき課題が多々存在する。例えば、特許文献1の高力オーステナイトステンレス鋼や特許文献3の海中探索船搭載機器用高強度部材は、Cが過剰であるため粗大な炭化物晶出による加工性・耐食性劣化が懸念される。
特許文献2の極低温用強靱鋼や特許文献4の耐錆性極低温用高マンガン強靱鋼は、Nが少ないため非磁性・高強度・耐食性の要求特性を満たさないことが懸念される。特許文献2の極低温用強靱鋼は、更に、Mn過多による耐食性劣化も懸念される。
Recently, however, the drilling area for oil wells is also diverse, and there is a demand from the industry for further high corrosion resistance and high strength stainless steel premised on non-magnetism. Moreover, the various steels described in Patent Documents 1 to 8 have many problems to be improved. For example, the high-strength austenitic stainless steel of Patent Document 1 and the high-strength member for underwater search ship-mounted equipment of Patent Document 3 are concerned with deterioration of workability and corrosion resistance due to coarse carbide crystallization because C is excessive.
The extremely low temperature tough steel of Patent Document 2 and the rust-resistant high temperature tough steel for extremely low temperature of Patent Document 4 have a concern that it may not satisfy the required characteristics of nonmagnetic properties, high strength, and corrosion resistance because N is low. The extremely low temperature tough steel of Patent Document 2 is also concerned about deterioration of corrosion resistance due to excessive Mn.

特許文献5の極低温用高マンガン鋼は、Mnに対してCrが少なめであり、N量も少なめであるため非磁性・高強度・耐食性の要求特性を満たさないことが懸念される。
特許文献6の高強度非磁性鋼はNiやNが少なめであり、特許文献7の歯間ブラシ用線材はMnやNiが過少であり、特許文献8の非磁性ステンレス鋼はNiやMoが過少であり、非磁性・高強度・耐食性の要求特性を満たさないことが懸念される。
以上のように、特許文献1〜8によっても、要求特性を満足するステンレス鋼が得られていない。
The cryogenic high-manganese steel of Patent Document 5 has a low Cr content relative to Mn and a low N content, so there is a concern that it will not satisfy the required characteristics of nonmagnetic properties, high strength, and corrosion resistance.
The high-strength nonmagnetic steel of Patent Document 6 has less Ni and N, the interdental brush wire of Patent Document 7 has too little Mn and Ni, and the nonmagnetic stainless steel of Patent Document 8 has too little Ni and Mo. Therefore, there is a concern that the required properties of nonmagnetic properties, high strength, and corrosion resistance are not satisfied.
As described above, according to Patent Documents 1 to 8, stainless steel satisfying the required characteristics has not been obtained.

本発明は、上記事情に鑑みてなされたものであり、高耐食性、高強度、非磁性を備えた高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法を提供することを目的とする。
特に、石油井掘削時における地磁気の影響を遮断し、多岐領域に渡る石油井切削製品に応用できるほか、各種部品(各種バネ製品、VTRガイドピン、モータシャフト)の素材としても好適な高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has high corrosion resistance, high strength, nonmagnetic stainless steel, high corrosion resistance, high strength, nonmagnetic stainless steel products and high corrosion resistance, high strength, nonmagnetic properties, and its An object is to provide a manufacturing method.
In particular, it can block the influence of geomagnetism when drilling oil wells and can be applied to petroleum well cutting products across a wide range of areas, as well as high corrosion resistance suitable as a material for various parts (various spring products, VTR guide pins, motor shafts) It is an object of the present invention to provide a high-strength non-magnetic stainless steel, a high corrosion resistance high-strength non-magnetic stainless steel product, and a method for producing the same.

上記課題を解決するために、本発明者等は、高耐食化を図るべく耐食性向上元素であるCr、Moの活用を中心に鋭意研究を進めたが、Cr、Moの増量は、磁性を帯びさせるため、石油井切削等のドリルカラー等に要求される「地磁気の影響を遮断しうる非磁性」を達成できないという問題に直面した。そこで、本発明者等は、更に、鋭意研究を進めた結果、Cr、Moを活用して高耐食化を図っても、N,Niを活用して組成バランスを調整すると、安定した非磁性のオーステナイト単相組織が得られることを知見するに至った。
本発明は、このような知見に基づいてなされたものである。
In order to solve the above-mentioned problems, the present inventors have conducted extensive research focusing on the use of Cr and Mo, which are elements for improving corrosion resistance, in order to achieve high corrosion resistance. However, the increase in Cr and Mo is magnetic. Therefore, we faced the problem that “non-magnetism that can block the influence of geomagnetism” required for drill collars for oil well cutting and the like cannot be achieved. Therefore, as a result of further diligent research, the present inventors, as a result of using Cr and Mo to achieve high corrosion resistance, use N and Ni to adjust the composition balance to achieve stable nonmagnetic properties. It came to know that an austenite single phase structure was obtained.
The present invention has been made based on such knowledge.

上記課題を解決するために、本発明に係る高耐食・高強度・非磁性ステンレス鋼は、0.01≦C≦0.05質量%、0.05≦Si≦0.50質量%、16.0<Mn≦19.0質量%、P≦0.040質量%、S≦0.010質量%、0.50≦Cu≦0.80質量%、3.5≦Ni≦5.0質量%、17.0≦Cr≦21.0質量%、1.80≦Mo≦3.50質量%、0.0010≦B≦0.0050質量%、O≦0.010質量%、及び、0.45≦N≦0.65質量%、を含有し、
下記の式(1)〜式(4)を満たし、残部がFe及び不可避不純物からなることを要旨とする。
P.I=[Cr]+3.3×[Mo]+16×[N]≧30 …式(1)
[Cr]/[C]≧330 …式(2)
[Cr]/[Mn]>1.0 …式(3)
([Ni]+3×[Cu])/([Cr]+[Mo])>0.25 …式(4) 但し、[M]は成分Mの質量%を示す。
In order to solve the above problems, the high corrosion resistance / high strength / nonmagnetic stainless steel according to the present invention is 0.01 ≦ C ≦ 0.05 mass%, 0.05 ≦ Si ≦ 0.50 mass%, 16. 0 <Mn ≦ 19.0 mass%, P ≦ 0.040 mass%, S ≦ 0.010 mass%, 0.50 ≦ Cu ≦ 0.80 mass%, 3.5 ≦ Ni ≦ 5.0 mass%, 17.0 ≦ Cr ≦ 21.0 mass%, 1.80 ≦ Mo ≦ 3.50 mass%, 0.0010 ≦ B ≦ 0.0050 mass%, O ≦ 0.010 mass%, and 0.45 ≦ N ≦ 0.65 mass%,
The following expressions (1) to (4) meet, the balance is summarized in that consisting of F e and unavoidable impurities.
P. I = [Cr] + 3.3 × [Mo] + 16 × [N] ≧ 30 Formula (1)
[Cr] / [C] ≧ 330 Formula (2)
[Cr] / [Mn]> 1.0 Formula (3)
([Ni] + 3 × [Cu]) / ([Cr] + [Mo])> 0.25 Formula (4) where [M] represents mass% of the component M.

本発明に係る高耐食・高強度・非磁性ステンレス鋼は、
更に、Ca、Mg、REMからなる群のいずれか1種又は2種以上を合計で、0.0001≦Ca+Mg+REM≦0.0100質量%含有してもよく、
更に、Nb、V、Ta、Hfからなる群のいずれか1種又は2種以上を合計で、0.1≦Nb+V+Ta+Hf≦2.0質量%含有してもよく、
更に、0.001≦Al≦0.10質量%含有してもよく、
更に、W、Coからなる群のいずれか1種又は2種以上を合計で、0.1≦W+Co≦3.0質量%含有してもよい。
High corrosion resistance, high strength, non-magnetic stainless steel according to the present invention is
Furthermore, any one or two or more of the group consisting of Ca, Mg, and REM may be contained in total, 0.0001 ≦ Ca + Mg + REM ≦ 0.0100 mass%,
Furthermore, any one or two or more of the group consisting of Nb, V, Ta, Hf may be contained in total, 0.1 ≦ Nb + V + Ta + Hf ≦ 2.0% by mass,
Furthermore, 0.001 ≦ Al ≦ 0.10% by mass may be contained,
Furthermore, you may contain 0.1 <= W + Co <= 3.0 mass% in any one or the 2 types or more in the group which consists of W and Co in total.

本発明に係る高耐食・高強度・非磁性ステンレス鋼製品の製造方法は、本発明に係る高耐食・高強度・非磁性ステンレス鋼に対して、300〜900℃の温度条件下、減面率が15〜40%の加工を行うことを要旨とする。   The manufacturing method of the high corrosion resistance / high strength / non-magnetic stainless steel product according to the present invention is a reduction in area ratio under the temperature condition of 300 to 900 ° C. with respect to the high corrosion resistance / high strength / non-magnetic stainless steel according to the present invention. The gist is to perform 15 to 40% processing.

本発明に係る高耐食・高強度・非磁性ステンレス鋼製品は、本発明に係る高耐食・高強度・非磁性ステンレス鋼に対して、300〜900℃の温度条件下、減面率が15〜40%の加工を行って得られることを要旨とする。得られる鋼製品としては、石油井掘削製品、バネ製品やVTRガイドピン、モータシャフト等が挙げられる。   The high corrosion resistance / high strength / non-magnetic stainless steel product according to the present invention has a surface area reduction rate of 15 to under a temperature condition of 300 to 900 ° C. compared to the high corrosion resistance / high strength / nonmagnetic stainless steel according to the present invention. The gist is obtained by performing 40% processing. Examples of the steel product to be obtained include oil well drilling products, spring products, VTR guide pins, motor shafts, and the like.

本発明に係る高耐食・高強度・非磁性ステンレス鋼及び高耐食・高強度・非磁性ステンレス鋼製品は、上記成分組成を有するとともに、上記式(1)〜式(4)を満たすため、高耐食性、高強度、非磁性を備える。従って、石油井掘削時における地磁気の影響を遮断し、多岐領域に渡る石油井切削製品に応用できるほか、各種部品(各種バネ製品、VTRガイドピン、モータシャフト)の素材としても好適であるという効果がある。
本発明に係る高耐食・高強度・非磁性ステンレス鋼製品の製造方法によれば、得られる鋼製品は、上記と同様の効果を発揮することができる。
The high corrosion resistance / high strength / nonmagnetic stainless steel product and the high corrosion resistance / high strength / nonmagnetic stainless steel product according to the present invention have the above component composition and satisfy the above formulas (1) to (4). Corrosion resistance, high strength, non-magnetic. Therefore, it is possible to cut off the influence of geomagnetism when drilling oil wells, and to be applied to petroleum well cutting products across a wide range of areas, as well as suitable as a material for various parts (various spring products, VTR guide pins, motor shafts). There is.
According to the method for producing a high corrosion resistance / high strength / nonmagnetic stainless steel product according to the present invention, the obtained steel product can exhibit the same effects as described above.

以下に本発明の一実施形態に係る高耐食・高強度・非磁性ステンレス鋼について説明する。
本実施形態に係る高耐食・高強度・非磁性ステンレス鋼は、以下の必須元素及び選択元素を含有し、残部がFe及び不可避的不純物からなり、後述する式(1)〜式(4)で定義される関係を満たす。
A high corrosion resistance, high strength, nonmagnetic stainless steel according to an embodiment of the present invention will be described below.
The high corrosion resistance / high strength / nonmagnetic stainless steel according to the present embodiment contains the following essential elements and selective elements, with the balance being Fe and inevitable impurities, and the formulas (1) to (4) described below. Satisfies the relationship defined in.

(高耐食・高強度・非磁性ステンレス鋼の成分組成及びその限定理由)
本実施形態に係る高耐食・高強度・非磁性ステンレス鋼は、必須元素として、C、Si、Mn、Cu、Ni、Cr、Mo、B、Nを含有し、残部がFe及び不可避的不純物からなる。ここで、不可避的不純物には、例えば、P、S、Oが含まれる。
(Composition composition of high corrosion resistance, high strength, non-magnetic stainless steel and reasons for limitation)
The high corrosion resistance / high strength / nonmagnetic stainless steel according to the present embodiment contains C, Si, Mn, Cu, Ni, Cr, Mo, B, and N as essential elements, with the balance being Fe and inevitable impurities. Consists of. Here, inevitable impurities include, for example, P, S, and O.

(1)0.01≦C≦0.05質量%
Cは、オーステナイト形成元素として不可欠な必須元素であり、強度に寄与することから、0.01質量%を下限とする。また、Cは、過剰に添加すると粗大な炭化物が晶出することにより加工性及び耐食性を劣化させることから、0.05質量%を上限とする。C含有量は、0.03≦C≦0.05質量%がより好ましい。
(1) 0.01 ≦ C ≦ 0.05 mass%
C is an essential element indispensable as an austenite-forming element and contributes to strength, so 0.01% by mass is set as the lower limit. Further, if C is added excessively, coarse carbides are crystallized to deteriorate workability and corrosion resistance, so 0.05 mass% is made the upper limit. The C content is more preferably 0.03 ≦ C ≦ 0.05 mass%.

(2)0.05≦Si≦0.50質量%
Siは、鋼の脱酸剤として添加する必須元素であるため、0.05質量%を下限とする。しかし、Siは、含有量が過大になると靱性の低下を招き、鋼の熱間加工性を劣化させるため、上限を0.50質量%とする。Si含有量は、0.10≦Si≦0.30質量%がより好ましい。
(2) 0.05 ≦ Si ≦ 0.50 mass%
Since Si is an essential element to be added as a deoxidizer for steel, 0.05% by mass is set as the lower limit. However, if the content of Si is excessive, the toughness is lowered and the hot workability of the steel is deteriorated, so the upper limit is made 0.50% by mass. The Si content is more preferably 0.10 ≦ Si ≦ 0.30 mass%.

(3)16.0<Mn≦19.0質量%
Mnは、鋼の脱酸剤として作用する必須元素であり、N固容量を確保するため、16.0質量%を下限とする。一方で、Mnは、耐食性を劣化させるため、19.0質量%を上限とする。Mn含有量は、16.0≦Mn≦17.0質量%がより好ましい。
(3) 16.0 <Mn ≦ 19.0 mass%
Mn is an essential element that acts as a deoxidizer for steel, and in order to ensure N solid capacity, the lower limit is 16.0% by mass. On the other hand, since Mn deteriorates corrosion resistance, the upper limit is 19.0% by mass. The Mn content is more preferably 16.0 ≦ Mn ≦ 17.0% by mass.

(4)P≦0.040質量%
Pは、不可避的不純物であり、粒界に偏析し、粒界腐食感受性を高めるほか、靱性の低下を招くため低いほうが望ましいが、必要以上の低減はコストの上昇を招くため、0.040質量%以下とする。P含有量は、0.030質量%以下がより好ましい。
(4) P ≦ 0.040 mass%
P is an unavoidable impurity, segregates at the grain boundary, increases the intergranular corrosion sensitivity, and lowers the toughness. % Or less. As for P content, 0.030 mass% or less is more preferable.

(5)S≦0.010質量%
Sは、不可避的不純物であり、熱間加工性を低下させるため、0.010質量%を上限とする。製造コストとの兼ね合いの観点によれば、S含有量は、0.005質量%以下がより好ましい。
(5) S ≦ 0.010 mass%
S is an unavoidable impurity and lowers the hot workability, so 0.010% by mass is the upper limit. From the viewpoint of balance with the manufacturing cost, the S content is more preferably 0.005% by mass or less.

(6)0.50≦Cu≦0.80質量%
Cuは、必須元素であり、耐食性、特に、還元性酸環境中での耐食性を向上させるのに有効であるほか、オーステナイト単相組織を得るのに有効であることから、0.50質量%を下限とする。一方、Cuの過剰な添加は、熱間加工性を劣化させることから、Cu含有量は、0.80質量%を上限とする。
(6) 0.50 ≦ Cu ≦ 0.80 mass%
Cu is an essential element, and is effective for improving corrosion resistance, particularly corrosion resistance in a reducing acid environment, and is effective for obtaining an austenite single phase structure. The lower limit. On the other hand, since excessive addition of Cu deteriorates hot workability, the upper limit of the Cu content is 0.80% by mass.

(7)3.5≦Ni≦5.0質量%
Niは、必須元素であり、耐食性、特に、還元性酸環境中での耐食性を向上させるのに有効であること、並びに、固溶化熱処理時にオーステナイト単相組織が得られることから、3.5質量%を下限とする。一方、Niの過剰な添加は、コストの上昇を招くことから、5.0質量%を上限とする。Ni含有量は、特性とコストとのバランスから、3.5≦Ni≦4.5質量%がより好ましい。
(7) 3.5 ≦ Ni ≦ 5.0 mass%
Ni is an essential element and is effective in improving the corrosion resistance, in particular, the corrosion resistance in a reducing acid environment, and since an austenite single phase structure is obtained during the solution heat treatment, 3.5 mass. % Is the lower limit. On the other hand, excessive addition of Ni causes an increase in cost, so the upper limit is made 5.0 mass%. The Ni content is more preferably 3.5 ≦ Ni ≦ 4.5% by mass from the balance between characteristics and cost.

(8)17.0≦Cr≦21.0質量%
Crは、耐食性を確保する観点から必須元素であり、かつ、N固溶量を確保するため、17.0質量%を下限とする。一方、Crの過剰な添加は、熱間加工性を害するとともに、靱性の低下を招くため、21.0質量%を上限とする。Cr含有量は、18.0≦Cr≦19.5質量%がより好ましい。
(8) 17.0 ≦ Cr ≦ 21.0% by mass
Cr is an essential element from the viewpoint of ensuring corrosion resistance, and in order to ensure the amount of N solid solution, the lower limit is 17.0% by mass. On the other hand, excessive addition of Cr impairs hot workability and causes a decrease in toughness, so the upper limit is 21.0% by mass. The Cr content is more preferably 18.0 ≦ Cr ≦ 19.5% by mass.

(9)1.80≦Mo≦3.50質量%
Moは、必須元素であり、必要な耐食性が得られ、強度をより向上させることができるため、1.80質量%を下限とする。一方、Moの過剰な添加は、熱間加工性を害するほか、コストの上昇を招くため、3.50質量%を上限とする。Mo含有量は、2.00≦Mo≦2.50質量%がより好ましい。
(9) 1.80 ≦ Mo ≦ 3.50 mass%
Mo is an essential element, and necessary corrosion resistance can be obtained and the strength can be further improved. Therefore, 1.80% by mass is set as the lower limit. On the other hand, excessive addition of Mo impairs hot workability and causes an increase in cost. Therefore, the upper limit is set to 3.50% by mass. The Mo content is more preferably 2.00 ≦ Mo ≦ 2.50 mass%.

(10)0.0010≦B≦0.0050質量%
Bは、鋼の熱間加工性を向上させるのに有効な必須元素であることから、0.0010質量%を下限とする。一方、Bの過剰な添加は、BN等の窒化物を形成し、加工性を低下させることから、0.0050質量%を上限とする。B含有量は、0.0030質量%以下がより好ましい。
(10) 0.0010 ≦ B ≦ 0.0050 mass%
B is an essential element effective for improving the hot workability of steel, so 0.0010% by mass is set as the lower limit. On the other hand, excessive addition of B forms nitrides such as BN and degrades workability, so 0.0050 mass% is made the upper limit. The B content is more preferably 0.0030% by mass or less.

(11)O≦0.010質量%
Oは、不可避的不純物であり、冷間加工性や疲労特性等へ悪影響を及ぼす有害な酸化物を形成することから、極力低めに抑制すべきであり、0.010質量%を上限とする。製造コストとの兼ね合いの観点によれば、O含有量は、0.007質量%以下がより好ましく、0.005質量%以下が更に好ましい。
(11) O ≦ 0.010 mass%
O is an unavoidable impurity and forms a harmful oxide that adversely affects cold workability, fatigue properties, and the like, so it should be suppressed as low as possible, and the upper limit is 0.010 mass%. From the viewpoint of balance with the manufacturing cost, the O content is more preferably 0.007% by mass or less, and further preferably 0.005% by mass or less.

(12)0.45≦N≦0.65質量%
Nは、非磁性、高強度、並びに、良好な耐食性を得るために必要な必須元素であり、0.45質量%を下限とする。一方で、Nの過剰な添加は、Nブローを引き起こすことから、0.65質量%を上限とする。N含有量は、0.50≦N≦0.60質量%がより好ましい。
(12) 0.45 ≦ N ≦ 0.65 mass%
N is an essential element necessary for obtaining nonmagnetic properties, high strength, and good corrosion resistance, and the lower limit is 0.45% by mass. On the other hand, excessive addition of N causes N blow, so the upper limit is 0.65% by mass. The N content is more preferably 0.50 ≦ N ≦ 0.60 mass%.

本実施形態に係る高耐食・高強度・非磁性ステンレス鋼は、更に、以下の選択元素、すなわち、「Ca、Mg、REM」からなる群、「Nb、V、Ta、Hf」からなる群、Al、「W、Co」からなる群に含まれる元素のいずれか1種又は2種以上を含有してもよい。
(13)Ca、Mg、REMからなる群のいずれか1種又は2種以上を合計で、
0.0001≦Ca+Mg+REM≦0.0100質量%
Ca、Mg、REMは、選択元素であり、鋼の熱間加工性を向上させるのに有効な元素であることから合計で0.0001質量%を下限として添加してもよい。しかし、これらの過剰な添加は、効果が飽和し、逆に熱間加工性を低下させることから合計で、0.0100質量%を上限とする。これらの含有量は、0.0050質量%以下がより好ましい。尚、本実施形態において、REMは、Ce、La又はこれらの合金を含有するものをいう。
The high corrosion resistance / high strength / nonmagnetic stainless steel according to the present embodiment further includes the following selective elements, that is, a group consisting of “Ca, Mg, REM”, a group consisting of “Nb, V, Ta, Hf”, You may contain any 1 type (s) or 2 or more types of the element contained in the group which consists of Al and "W, Co".
(13) Any one or more of the group consisting of Ca, Mg and REM in total,
0.0001 ≦ Ca + Mg + REM ≦ 0.0100 mass%
Ca, Mg, and REM are selective elements, and since they are effective elements for improving the hot workability of steel, 0.0001 mass% in total may be added as a lower limit. However, these excessive additions saturate the effect and conversely reduce the hot workability, so the upper limit is 0.0100% by mass. As for these content, 0.0050 mass% or less is more preferable. In the present embodiment, REM refers to a material containing Ce, La, or an alloy thereof.

(14)Nb、V、Ta、Hfからなる群のいずれか1種又は2種以上を合計で、0.1≦Nb+V+Ta+Hf≦2.0質量%
Nb、V、Ta、Hfは、選択元素であり、これらは、炭化物又は炭窒化物を形成して鋼の結晶粒を微細化し、靱性を高める効果がある。そこで、Nb、V、Ta、Hfの含有量は、合計で0.1質量%を下限とする。一方、Nb、V、Ta、Hfの過剰な添加は、コスト上昇を招くため、合計で2.0質量%を上限とする。Nb、V、Ta、Hfの含有量は、1.0質量%以下がより好ましい。
(14) Any one or two or more of the group consisting of Nb, V, Ta, and Hf in total, 0.1 ≦ Nb + V + Ta + Hf ≦ 2.0% by mass
Nb, V, Ta, and Hf are selective elements, and these have the effect of forming carbides or carbonitrides to refine the crystal grains of the steel and increase the toughness. Therefore, the total content of Nb, V, Ta, and Hf is 0.1% by mass as the lower limit. On the other hand, excessive addition of Nb, V, Ta, and Hf causes an increase in cost, so the upper limit is made 2.0 mass% in total. As for content of Nb, V, Ta, and Hf, 1.0 mass% or less is more preferable.

(15)0.001≦Al≦0.10質量%
Alは、強力な脱酸元素であり、Oを極力低減させるため、必要に応じて添加する選択元素である。Al含有量は、その効果が確認できる、0.001質量%を下限とする。一方、Alの過剰な添加は、熱間加工性を劣化させることから、0.10質量%を上限とする。Al含有量は、0.050質量%以下がより好ましく、0.010質量%以下が更に好ましい。
(15) 0.001 ≦ Al ≦ 0.10 mass%
Al is a strong deoxidizing element, and is an optional element added as necessary to reduce O as much as possible. The lower limit of the Al content is 0.001% by mass, the effect of which can be confirmed. On the other hand, excessive addition of Al deteriorates hot workability, so the upper limit is made 0.10% by mass. The Al content is more preferably 0.050% by mass or less, and further preferably 0.010% by mass or less.

(16)W、Coからなる群のいずれか1種又は2種以上を合計で、0.1≦W+Co≦3.0質量%
Wは、選択元素であり、耐食性を向上し、炭化物又は炭窒化物を形成して鋼の結晶粒を微細化し、靱性を高める効果があるため、0.1≦W≦3.0質量%の範囲で添加してもよい。一方、Wの過剰な添加は、コスト上昇を招くため、W含有量は、2.0質量%以下がより好ましい。
(16) Any one or two or more of the group consisting of W and Co in total, 0.1 ≦ W + Co ≦ 3.0 mass%
W is an optional element and has the effect of improving corrosion resistance, forming carbides or carbonitrides to refine steel crystal grains and increasing toughness, so that 0.1 ≦ W ≦ 3.0 mass% You may add in the range. On the other hand, excessive addition of W causes an increase in cost, so the W content is more preferably 2.0% by mass or less.

Coは、選択元素であり、オーステナイト単相組織を得るのに有効であり、固溶強化による高強度が図れることから必要に応じて添加してもよい。ただし、Coの過剰な添加は、コストの大幅上昇を招くため、3.0質量%を上限とする。Co含有量は、1.5質量%以下がより好ましい。   Co is a selective element, is effective for obtaining an austenite single phase structure, and can be added as necessary because high strength can be achieved by solid solution strengthening. However, excessive addition of Co causes a significant increase in cost, so the upper limit is 3.0% by mass. The Co content is more preferably 1.5% by mass or less.

(高耐食・高強度・非磁性ステンレス鋼の成分関係及びその限定理由)
本実施形態に係る高耐食・高強度・非磁性ステンレス鋼は、下記の式(1)〜式(4)を満たす。
(17)P.I=[Cr]+3.3×[Mo]+16×[N]≧30 …式(1)
P.I(Pitting Index)は、耐食性を示す値であり、[Cr]、[Mo]、[N]によって定義され、大きいほど耐食性が良好なため、30以上とする。厳しい腐食環境下でも使用できるようにするには、式(1)の値は、33以上がより好ましい。
(Relationship between high corrosion resistance, high strength, non-magnetic stainless steel and reasons for limitation)
The high corrosion resistance / high strength / nonmagnetic stainless steel according to the present embodiment satisfies the following formulas (1) to (4).
(17) P.I. I = [Cr] + 3.3 × [Mo] + 16 × [N] ≧ 30 Formula (1)
P. I (Pitting Index) is a value indicating corrosion resistance, and is defined by [Cr], [Mo], [N]. The larger the value, the better the corrosion resistance. In order to be able to be used even in a severe corrosive environment, the value of the formula (1) is more preferably 33 or more.

(18)[Cr]/[C]≧330 …式(2)
Cは、Crと結合して炭化物を形成し、マトリックス中のCr含有量を減少させ、耐食性の劣化を招く。そのため、式(2)は、耐食性の指標として用いることができる関係式となる。従って、C含有量に対するCr含有量が多いほど耐食性の劣化を抑制できるため、式(2)の値は、330以上とする。
(18) [Cr] / [C] ≧ 330 Formula (2)
C combines with Cr to form a carbide, reduces the Cr content in the matrix, and causes deterioration in corrosion resistance. Therefore, Expression (2) is a relational expression that can be used as an index of corrosion resistance. Therefore, since the deterioration of the corrosion resistance can be suppressed as the Cr content increases with respect to the C content, the value of the formula (2) is set to 330 or more.

(19)[Cr]/[Mn]>1.0 …式(3)
Cr、Mnは、両者共に、Nを十分固溶させるために添加するが、Mnは、耐食性を劣化させることから耐食性を向上させる元素であるCrとのバランスをとることが必要となる。そこで、Mn添加によって耐食性が劣化する分、Crによって補うことにより、耐食性を十分維持するために、式(3)の値は、1.0超とする。
(19) [Cr] / [Mn]> 1.0 Formula (3)
Both Cr and Mn are added to sufficiently dissolve N, but since Mn deteriorates the corrosion resistance, it is necessary to balance with Cr, which is an element that improves the corrosion resistance. Therefore, in order to sufficiently maintain the corrosion resistance by supplementing with Cr to the extent that the corrosion resistance deteriorates due to the addition of Mn, the value of Equation (3) is set to more than 1.0.

(20)([Ni]+3×[Cu])/([Cr]+[Mo])>0.25 …式(4)
Cr、Moは、両者共に、耐食性を十分確保するために添加するが、それに伴いオーステナイト単相の安定性が低下する。そこで、オーステナイト相の安定化を図るために、オーステナイト形成元素であるNi、Cuを所定量含有させることによって、オーステナイト単相の安定性の低下を抑制した。また、Cr増量やMoの添加は、非磁性を損なう方向へ作用するため、Ni、Cuによって非磁性を維持している。これらの事情に鑑みて、式(4)は、Ni、CuがCr、Moに対して満たすべき量的関係を定義したものである。式(4)の値は、0.25超とするが、0.30以上がより好ましい。
(20) ([Ni] + 3 × [Cu]) / ([Cr] + [Mo])> 0.25 Formula (4)
Both Cr and Mo are added to ensure sufficient corrosion resistance, but the stability of the austenite single phase decreases accordingly. Therefore, in order to stabilize the austenite phase, a predetermined amount of Ni and Cu, which are austenite forming elements, are contained to suppress a decrease in stability of the austenite single phase. Moreover, since Cr increase and addition of Mo act in the direction which impairs nonmagnetism, nonmagnetism is maintained by Ni and Cu. In view of these circumstances, Equation (4) defines a quantitative relationship that Ni and Cu should satisfy with respect to Cr and Mo. Although the value of Formula (4) shall be over 0.25, 0.30 or more is more preferable.

(高耐食・高強度・非磁性ステンレス鋼及びこれを用いた鋼製品の製造方法)
本実施形態に係る高耐食・高強度・非磁性ステンレス鋼は、
(1)上記所定成分を所定量、所定の関係を満たすように含有する鋼塊を溶製し、
(2)熱間加工により適当な形状・サイズに加工した後、
(3)溶体化処理(1050〜1150℃)に供することにより得られ、
本実施形態に係る高耐食・高強度・非磁性ステンレス鋼製品は、これらに更に、
(4)温間加工(300〜900℃、減面率15〜40%)を行うことにより得られ、必要に応じて更に切削加工等を行えばよい。尚、下限温度を300℃としたのは、加工温度が低い程、高強度には寄与する一方、伸び・絞りが悪くなり、加工しにくくなるという理由による。
(High corrosion resistance, high strength, non-magnetic stainless steel and steel product manufacturing method using the same)
High corrosion resistance, high strength, non-magnetic stainless steel according to this embodiment is
(1) melting a steel ingot containing a predetermined amount of the predetermined component so as to satisfy a predetermined relationship;
(2) After processing into an appropriate shape and size by hot processing,
(3) Obtained by subjecting to a solution treatment (1050-1150 ° C.),
High corrosion resistance, high strength, non-magnetic stainless steel products according to the present embodiment,
(4) It is obtained by performing warm processing (300 to 900 ° C., area reduction rate of 15 to 40%), and further cutting or the like may be performed as necessary. The lower limit temperature is set to 300 ° C. because the lower the processing temperature, the higher the strength, while the lower the elongation / drawing and the lower the processing.

(発明鋼及び比較鋼の作製)
表1及び表2に示す成分組成(残部はFe及び不可避的不純物からなる)を備えた50kg鋼塊を高周波誘導炉にて溶製し、熱間鍛造加工にて直径20mmの棒材を作製し、1050〜1150℃で溶体化処理を行った。表2に、上記式(1)〜式(4)の値を併せて示す。また、表1及び表2において横棒(−)は、該当する元素が無添加であるか、又は、無添加であっても不可避的に含まれることを示す。
(Production of invention steel and comparative steel)
A 50 kg steel ingot having the composition shown in Tables 1 and 2 (the balance is made of Fe and inevitable impurities) is melted in a high-frequency induction furnace, and a bar with a diameter of 20 mm is produced by hot forging. The solution treatment was performed at 1050 to 1150 ° C. Table 2 also shows the values of the above formulas (1) to (4). In Tables 1 and 2, the horizontal bar (-) indicates that the corresponding element is not added, or is inevitably included even if it is not added.

Figure 0005526809
Figure 0005526809

Figure 0005526809

その後、表3及び表4に示す温度条件及び減面率で温間加工を実施し、供試材(加工材)を作製した。この供試材から各種試験片に加工を行った。
引張強さ、0.2%耐力、伸び(%)は、供試材からJIS4号試験片を作製し、JIS Z 2241に準拠して先端に引張荷重を加えた際の破断応力を測定することにより求めた。
透磁率は、外部磁界を200Oeとし、VSM法に従って透磁率測定を行うことにより求めた。
耐食性は、6%塩化第二鉄試験(JIS G 0578)、10%蓚酸エッチ試験(JIS G 0571)により評価した。
これらの試験結果を表3及び表4に併せて示す。
Figure 0005526809

Then, warm processing was implemented on the temperature conditions and surface-reduction rate shown in Table 3 and Table 4, and the test material (processed material) was produced. Various test pieces were processed from this specimen.
Tensile strength, 0.2% proof stress, and elongation (%) are measured by measuring the rupture stress when a JIS No. 4 test piece is prepared from the specimen and a tensile load is applied to the tip in accordance with JIS Z 2241. Determined by
The magnetic permeability was determined by measuring the magnetic permeability according to the VSM method with an external magnetic field of 200 Oe.
The corrosion resistance was evaluated by a 6% ferric chloride test (JIS G 0578) and a 10% oxalic acid etch test (JIS G 0571).
These test results are also shown in Tables 3 and 4.

Figure 0005526809
Figure 0005526809

Figure 0005526809
Figure 0005526809

(評価)
発明鋼1〜26は、強度(引張強さ≧1050MPa、0.2%耐力≧968MPa)、加工性(伸び≧25)、非磁性(透磁率≦1.010)、耐食性(塩化第二鉄腐食<0.5、10%蓚酸エッチはstep)のいずれについても要求特性を満たした。発明鋼1〜26は、表1及び表2に規定する成分を所定量含有するとともに、表2に規定する式(1)〜式(4)を満たすため、高耐食性、高強度、非磁性を同時に達成できたものと考えられる。
従って、発明鋼1〜26は、石油井掘削時における地磁気の影響を遮断し、多岐領域に渡る石油井切削製品に応用できるほか、各種部品(各種バネ製品、VTRガイドピン、モータシャフト)の素材としても好適であることが判明した。
(Evaluation)
Inventive steels 1 to 26 have strength (tensile strength ≧ 1050 MPa, 0.2% yield strength ≧ 968 MPa), workability (elongation ≧ 25), nonmagnetic (permeability ≦ 1.010), corrosion resistance (ferric chloride corrosion) <0.5, 10% oxalic acid etch met the required properties for any of the steps). Inventive steels 1 to 26 contain a predetermined amount of the components specified in Tables 1 and 2 and satisfy the formulas (1) to (4) specified in Table 2, so that they have high corrosion resistance, high strength, and nonmagnetic properties. It is thought that it was achieved at the same time.
Therefore, invention steels 1 to 26 block the influence of geomagnetism during oil well drilling and can be applied to petroleum well cutting products across a wide range of areas, as well as various parts (various spring products, VTR guide pins, motor shafts) materials. It was also found to be suitable.

これに対し、比較鋼1〜10は、強度(引張強さ≧1050MPa、0.2%耐力≧968MPa)、加工性(伸び≧25)、非磁性(透磁率≦1.010)、耐食性(塩化第二鉄腐食<0.5、10%蓚酸エッチはstep)のいずれかに要求特性を満たさないものがあった。比較鋼1〜10は、表1及び表2に規定する成分を所定量含有していなかったり、表2に規定する式(1)〜式(4)のいずれかを満たさなかったためと考えられる。   On the other hand, the comparative steels 1 to 10 have the strength (tensile strength ≧ 1050 MPa, 0.2% proof stress ≧ 968 MPa), workability (elongation ≧ 25), nonmagnetic (permeability ≦ 1.010), corrosion resistance (salt chloride). Some ferric corrosion <0.5, 10% oxalic acid etches) did not meet the required properties. It is considered that Comparative Steels 1 to 10 did not contain a predetermined amount of the components specified in Tables 1 and 2 or did not satisfy any of Formulas (1) to (4) specified in Table 2.

例えば、比較鋼1は、Moが少ないため式(1)を満たさず、更に、Cが過大であるため式(2)を満たさず、Mnが少なくても耐食性を損なったものと考えられる。尚、比較鋼1は、式(4)を満たさなかったが、透磁率は要求特性を満たした。
比較鋼2は、耐食性を確保するために必須のCrを所定量含有しても、Mo、Nが少ないため式(1)を満たさず、耐食性を損なったものと考えられる。更に、比較鋼2の透磁率が高かったのは、Nが低いとの理由によると考えられる。
For example, it is considered that the comparative steel 1 does not satisfy the formula (1) because Mo is small, and further does not satisfy the formula (2) because C is excessive, and the corrosion resistance is impaired even if the Mn is small. The comparative steel 1 did not satisfy the formula (4), but the magnetic permeability satisfied the required characteristics.
Even if the comparative steel 2 contains a predetermined amount of Cr that is essential for ensuring corrosion resistance, Mo and N are small, so the formula (1) is not satisfied and the corrosion resistance is considered to be impaired. Furthermore, it is thought that the reason why the permeability of the comparative steel 2 was high was that N was low.

比較鋼3は、耐食性を確保するために必須のCrを所定量含有しても、Mo、Nが少ないため式(1)を満たさず、更に、Cが過大であったため式(2)を満たさず、よって、耐食性を損なったものと考えられる。
比較鋼4、比較鋼5は、Mo過少、Mn過多であり、Crも少なめであるため式(1)、式(3)を満たさず、耐食性を損なったものと考えられる。
比較鋼6は、Cuが過少であるため式(4)を満たさず、耐食性を損なったものと考えられる。
Even if the comparative steel 3 contains a predetermined amount of Cr that is essential for ensuring corrosion resistance, Mo and N are small, so Formula (1) is not satisfied, and C is too large to satisfy Formula (2). Therefore, it is considered that the corrosion resistance is impaired.
Comparative steel 4 and comparative steel 5 are considered to have deteriorated corrosion resistance because they have too little Mo, too much Mn, and little Cr, so they do not satisfy formulas (1) and (3).
It is considered that the comparative steel 6 does not satisfy the formula (4) because Cu is too small, and the corrosion resistance is impaired.

比較鋼7は、Cu、Ni、Moが所定範囲外であるが式(1)〜式(4)を満たし、高耐食、非磁性、高強度の要求特性は満たす。しかし、比較鋼7は、加工温度が低かったため、伸びが低くなり、加工がしにくく実生産に向かないことがわかった。
比較鋼8は、Cu、Moが過少であり式(1)を満たさず、耐食性を損なったものと考えられる。また、比較鋼8では、加工温度を950℃としたが、加工温度を上げても高強度化にはあまり効かないことが確認できた。
In comparative steel 7, Cu, Ni, and Mo are outside the predetermined range, but satisfy the formulas (1) to (4) and satisfy the required characteristics of high corrosion resistance, non-magnetic property, and high strength. However, it was found that the comparative steel 7 had a low processing temperature and therefore had a low elongation and was difficult to process and not suitable for actual production.
It is considered that the comparative steel 8 has insufficient Cu and Mo, does not satisfy the formula (1), and has deteriorated the corrosion resistance. Further, in the comparative steel 8, the processing temperature was set to 950 ° C., but it was confirmed that even if the processing temperature was raised, the strength was not very effective.

比較鋼9、比較鋼10は、Mo過少であり式(1)を満たさず、成分バランスの関係で式(3)を満たさず、更に、Cuが過少であるため、耐食性を損なったものと考えられる。更に、これらはいずれも透磁率が高かった。尚、比較鋼9は、加工温度が低くても減面率が10%と低かったため、伸びが高く、加工硬化により加工性が低下することがなかったと考えられる。一方、比較鋼10は、加工温度が低く、しかも、減面率が50%と高かったため、加工硬化により高強度となったが伸びが低く加工しにくく、実生産に向かないことがわかった。   The comparative steel 9 and the comparative steel 10 are considered to have deteriorated corrosion resistance because Mo is insufficient, does not satisfy the formula (1), does not satisfy the formula (3) due to the component balance, and further, Cu is insufficient. It is done. Furthermore, all of these had high magnetic permeability. In addition, it is considered that the comparative steel 9 has a high elongation because it has a low area reduction rate of 10% even when the processing temperature is low, and the workability does not deteriorate due to work hardening. On the other hand, it was found that the comparative steel 10 had a low processing temperature and a high surface area reduction ratio of 50%, so that it became high strength by work hardening, but its elongation was low and difficult to process, making it unsuitable for actual production.

以上、本発明の一実施形態について説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、その趣旨を逸脱しない範囲で、当業者の通常有する知識に基づき、あらゆる改変が可能であり、そのような改変は、本発明の技術的範囲に包含されるものである。   As mentioned above, although one embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment at all, and various modifications can be made based on the knowledge of those skilled in the art without departing from the spirit of the present invention. Such modifications are possible and are within the scope of the invention.

本発明に係る高耐食・高強度・非磁性ステンレス鋼及び鋼製品並びにその製造方法は、所定の成分組成を備えるとともに、所定の成分相互の関係が調整されているため、鋼材メーカーにとって産業上利用価値が高い。本発明に係る高耐食・高強度・非磁性ステンレス鋼は、石油井切削製品、バネ、シャフト、ボルト、ネジ製品等の鋼製品への応用が期待される。   The high corrosion resistance, high strength, non-magnetic stainless steel and steel product according to the present invention and the manufacturing method thereof have a predetermined component composition and the relationship between the predetermined components is adjusted. High value. The high corrosion resistance, high strength, nonmagnetic stainless steel according to the present invention is expected to be applied to steel products such as petroleum well cutting products, springs, shafts, bolts, screw products and the like.

Claims (7)

0.01≦C≦0.05質量%、
0.05≦Si≦0.50質量%、
16.0<Mn≦19.0質量%、
P≦0.040質量%、
S≦0.010質量%、
0.50≦Cu≦0.80質量%、
3.5≦Ni≦5.0質量%、
17.0≦Cr≦21.0質量%、
1.80≦Mo≦3.50質量%、
0.0010≦B≦0.0050質量%、
O≦0.010質量%、及び、
0.45≦N≦0.65質量%、を含有し、
下記の式(1)〜式(4)を満たし、残部がFe及び不可避不純物からなることを特徴とする高耐食・高強度・非磁性ステンレス鋼。
P.I=[Cr]+3.3×[Mo]+16×[N]≧30 …式(1)
[Cr]/[C]≧330 …式(2)
[Cr]/[Mn]>1.0 …式(3)
([Ni]+3×[Cu])/([Cr]+[Mo])>0.25 …式(4) 但し、[M]は成分Mの質量%を示す。
0.01 ≦ C ≦ 0.05% by mass,
0.05 ≦ Si ≦ 0.50 mass%,
16.0 <Mn ≦ 19.0% by mass,
P ≦ 0.040 mass%,
S ≦ 0.010 mass%,
0.50 ≦ Cu ≦ 0.80 mass%,
3.5 ≦ Ni ≦ 5.0 mass%,
17.0 ≦ Cr ≦ 21.0% by mass,
1.80 ≦ Mo ≦ 3.50 mass%,
0.0010 ≦ B ≦ 0.0050 mass%,
O ≦ 0.010 mass%, and
0.45 ≦ N ≦ 0.65 mass%,
The following formulas (1) to (4) meets the high corrosion-resistant, high-strength and non-magnetic stainless steel balance being composed of F e and unavoidable impurities.
P. I = [Cr] + 3.3 × [Mo] + 16 × [N] ≧ 30 Formula (1)
[Cr] / [C] ≧ 330 Formula (2)
[Cr] / [Mn]> 1.0 Formula (3)
([Ni] + 3 × [Cu]) / ([Cr] + [Mo])> 0.25 Formula (4) where [M] represents mass% of the component M.
更に、
Ca、Mg、REMからなる群のいずれか1種又は2種以上を合計で、
0.0001≦Ca+Mg+REM≦0.0100質量%、
含有することを特徴とする請求項1に記載の高耐食・高強度・非磁性ステンレス鋼。
Furthermore,
Any one or more of the group consisting of Ca, Mg and REM in total,
0.0001 ≦ Ca + Mg + REM ≦ 0.0100 mass%,
The high corrosion resistance / high strength / nonmagnetic stainless steel according to claim 1, which is contained.
更に、
Nb、V、Ta、Hfからなる群のいずれか1種又は2種以上を合計で、
0.1≦Nb+V+Ta+Hf≦2.0質量%、
含有することを特徴とする請求項1又は2に記載の高耐食・高強度・非磁性ステンレス鋼。
Furthermore,
Any one or more of the group consisting of Nb, V, Ta, Hf in total,
0.1 ≦ Nb + V + Ta + Hf ≦ 2.0 mass%,
The high corrosion resistance / high strength / nonmagnetic stainless steel according to claim 1, which is contained.
更に、
0.001≦Al≦0.10質量%、
含有することを特徴とする請求項1から3のいずれかに記載の高耐食・高強度・非磁性ステンレス鋼。
Furthermore,
0.001 ≦ Al ≦ 0.10 mass%,
The high corrosion resistance / high strength / nonmagnetic stainless steel according to claim 1, wherein the stainless steel is contained.
W、Coからなる群のいずれか1種又は2種以上を合計で、
0.1≦W+Co≦3.0質量%、
含有することを特徴とする請求項1から4のいずれかに記載の高耐食・高強度・非磁性ステンレス鋼。
Any one or more of the group consisting of W and Co in total,
0.1 ≦ W + Co ≦ 3.0% by mass,
5. The high corrosion resistance / high strength / nonmagnetic stainless steel according to any one of claims 1 to 4, which is contained.
請求項1から5のいずれかに記載の高耐食・高強度・非磁性ステンレス鋼に対して、300〜900℃の温度条件下、減面率が15〜40%の加工を行うことを特徴とする高耐食・高強度・非磁性ステンレス鋼製品の製造方法。   The high corrosion resistance / high strength / nonmagnetic stainless steel according to any one of claims 1 to 5 is processed at a temperature reduction of 15 to 40% under a temperature condition of 300 to 900 ° C. Manufacturing method of high corrosion resistance, high strength, non-magnetic stainless steel products. 請求項1から5のいずれかに記載の高耐食・高強度・非磁性ステンレス鋼に対して、300〜900℃の温度条件下、減面率が15〜40%の加工を行って得られることを特徴とする高耐食・高強度・非磁性ステンレス鋼製品。   The high corrosion resistance, high strength, non-magnetic stainless steel according to any one of claims 1 to 5 can be obtained by performing processing with a surface reduction rate of 15 to 40% under a temperature condition of 300 to 900 ° C. High corrosion resistance, high strength, non-magnetic stainless steel products characterized by
JP2010015591A 2009-04-27 2010-01-27 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same Active JP5526809B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010015591A JP5526809B2 (en) 2009-04-27 2010-01-27 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
US12/766,390 US20100272593A1 (en) 2009-04-27 2010-04-23 High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same
CN201010159146.2A CN101921970B (en) 2009-04-27 2010-04-26 High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing same
EP10004443.7A EP2248919B1 (en) 2009-04-27 2010-04-27 High corrosion-resistant, high-strength and non-magnetic stainless steel

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009108189 2009-04-27
JP2009108189 2009-04-27
JP2009123661 2009-05-22
JP2009123661 2009-05-22
JP2010015591A JP5526809B2 (en) 2009-04-27 2010-01-27 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same

Publications (2)

Publication Number Publication Date
JP2011006776A JP2011006776A (en) 2011-01-13
JP5526809B2 true JP5526809B2 (en) 2014-06-18

Family

ID=42321059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015591A Active JP5526809B2 (en) 2009-04-27 2010-01-27 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same

Country Status (4)

Country Link
US (1) US20100272593A1 (en)
EP (1) EP2248919B1 (en)
JP (1) JP5526809B2 (en)
CN (1) CN101921970B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535606B2 (en) * 2008-07-11 2013-09-17 Baker Hughes Incorporated Pitting corrosion resistant non-magnetic stainless steel
JP5954865B2 (en) * 2012-03-29 2016-07-20 株式会社日本製鋼所 Motor rotor support and manufacturing method thereof
JP5954864B2 (en) * 2012-03-29 2016-07-20 株式会社日本製鋼所 Motor rotor support and manufacturing method thereof
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
CN102747308B (en) * 2012-08-01 2014-08-27 上海加宁新技术研究所 Method for producing high-strength non-magnetic stainless steel propeller shaft
JP6259621B2 (en) 2012-09-27 2018-01-10 新日鐵住金ステンレス株式会社 Super-nonmagnetic soft stainless steel wire rod excellent in cold workability and corrosion resistance and method for producing the same, steel wire, steel wire coil and method for producing the same
CN104513933A (en) * 2013-09-29 2015-04-15 宝钢不锈钢有限公司 Inexpensive non-magnetic stainless steel and manufacturing method thereof
CN103667893B (en) * 2013-12-06 2015-09-16 武汉钢铁(集团)公司 The high-strength steel with anti-delayed fracture of yield tensile ratio≤0.5 and production method
CN104259229B (en) * 2014-08-14 2016-02-10 燕山大学 The potassium steel tubing of cold plasticity and processing technology thereof
JP7110629B2 (en) 2018-03-08 2022-08-02 セイコーエプソン株式会社 Metal powders, compounds, granulated powders and sintered bodies for powder metallurgy
JP7029544B2 (en) * 2018-05-23 2022-03-03 ファ,マンチャオ NPR non-magnetic rock bolt steel material and its production method
CN110724880A (en) * 2018-07-16 2020-01-24 中兴通讯股份有限公司 Cr-Ni-Mn series non-magnetic stainless steel and preparation method thereof
CN109355596B (en) * 2018-12-22 2022-03-18 佛山培根细胞新材料有限公司 Copper-hafnium-cobalt-containing high-corrosion-resistance austenitic stainless steel and processing and heat treatment method thereof
RU2696792C1 (en) * 2019-05-23 2019-08-06 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Corrosion-resistant high-strength non-magnetic steel
CN114032461B (en) * 2021-11-04 2022-05-27 华北理工大学 High-nitrogen steel with high strength, low yield ratio and high corrosion resistance for marine engineering and preparation method thereof
CN115627428B (en) * 2022-10-21 2023-08-01 山东烟炉节能科技有限公司 Seawater desalination engineering pipeline and preparation method thereof
CN115961216B (en) * 2023-02-15 2023-08-04 山东烟炉节能科技有限公司 Submarine oil and gas transmission pipeline and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1553841B2 (en) * 1966-03-22 1974-06-06 Wuerttembergische Metallwarenfabrik, 7340 Geislingen Use of an austenitic work-hardened stainless steel alloy for knife blades
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
JPS6037183B2 (en) 1977-03-24 1985-08-24 日本冶金工業株式会社 High strength austenitic stainless steel with excellent corrosion resistance
DE3018537A1 (en) * 1979-05-17 1980-11-27 Daido Steel Co Ltd CONTROLLED INCLUDING AUTOMATIC STEEL AND METHOD FOR THE PRODUCTION THEREOF
JPS59104455A (en) 1982-12-03 1984-06-16 Nippon Steel Corp Tenacious steel for ultra-low temperature excellent in anti-rust property
JPS59205452A (en) 1983-05-09 1984-11-21 Nippon Yakin Kogyo Co Ltd High strength member for machinery mounted on board submarine searching ship
JPS61143563A (en) 1984-12-17 1986-07-01 Nippon Steel Corp Rust resistant, tough and hard high-manganese steel for use at very low temperature
JPS61170545A (en) 1985-01-24 1986-08-01 Nippon Steel Corp High manganese steel for very low temperature use having superior rust resistance
JPS61238943A (en) 1985-04-15 1986-10-24 Kobe Steel Ltd High-strength non-magnetic steel excelling in rust resistance
JPH0759723B2 (en) * 1988-12-07 1995-06-28 新日本製鐵株式会社 High hardness non-magnetic stainless steel manufacturing method
JPH02190444A (en) * 1989-01-17 1990-07-26 Kobe Steel Ltd Corrosion-resisting high-mn nonmagnetic steel having excellent workability
US5094812A (en) 1990-04-12 1992-03-10 Carpenter Technology Corporation Austenitic, non-magnetic, stainless steel alloy
JP3918644B2 (en) 2002-06-10 2007-05-23 村田機械株式会社 Facsimile device
JP4026056B2 (en) 2002-07-19 2007-12-26 日本精線株式会社 Interdental brush wire and interdental brush product using the wire
JP4120354B2 (en) * 2002-11-05 2008-07-16 大同特殊鋼株式会社 Nonmagnetic stainless steel and method of manufacturing the same
AT412727B (en) 2003-12-03 2005-06-27 Boehler Edelstahl CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
EP1624082A1 (en) 2004-05-25 2006-02-08 Edelstahl Witten-Krefeld GmbH Non-magnetic, austenitic steel and its uses.
DE602007008420D1 (en) 2006-06-23 2010-09-23 Jorgensen Forge Corp AUSTENITIAN PARAMAGNETIC CORROSION-FREE STEEL
US7598879B2 (en) * 2007-01-03 2009-10-06 Exhart Environmental Systems, Inc. Electronic rodent repeller
JP5162954B2 (en) * 2007-05-06 2013-03-13 大同特殊鋼株式会社 High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
JP5057055B2 (en) * 2007-07-30 2012-10-24 大同特殊鋼株式会社 Non-magnetic stainless steel forged product, drill collar using the forged product, and method for producing the forged product

Also Published As

Publication number Publication date
US20100272593A1 (en) 2010-10-28
CN101921970A (en) 2010-12-22
EP2248919A1 (en) 2010-11-10
EP2248919B1 (en) 2015-10-21
CN101921970B (en) 2014-03-12
JP2011006776A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5526809B2 (en) High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
JP5072285B2 (en) Duplex stainless steel
JP5162954B2 (en) High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
CA2477420C (en) Low alloy steel
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
CN104379774A (en) High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
WO2016052397A1 (en) High-strength steel material for oil wells, and oil well pipe
EP2194152B1 (en) High-strength cr-ni alloy product and seamless oil well pipes made by using the same
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
EP0280996B1 (en) Austenitic stainless steel combining strength and resistance to intergranular corrosion
JP2003525354A (en) Duplex stainless steel
KR101539520B1 (en) Duplex stainless steel sheet
CN115349024A (en) Stainless steel seamless steel pipe and method for manufacturing stainless steel seamless steel pipe
JP2014043616A (en) Duplex stainless steel, and manufacturing method thereof
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
JPH0218381B2 (en)
JP2002309349A (en) Martensitic stainless steel with excellent strength stability
JP2015199971A (en) High strength nonmagnetic stainless steel and stainless steel component
CN114450430A (en) Stainless steel seamless steel pipe and method for manufacturing same
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
EP4279628A1 (en) Non-magnetic austenitic stainless steel material and production method therefor
JP7226571B2 (en) Seamless stainless steel pipe and manufacturing method thereof
JP2759401B2 (en) Free-cutting stainless steel for cold heading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150